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ABSTRACT

Theoretical foundations of chaos have been predominantly laid out for finite-dimensional dynamical systems, such as the three-body problem
in classical mechanics and the Lorenz model in dissipative systems. In contrast, many real-world chaotic phenomena, e.g., weather, arise in
systems with many (formally infinite) degrees of freedom, which limits direct quantitative analysis of such systems using chaos theory. In
the present work, we demonstrate that the hydrodynamic pilot-wave systems offer a bridge between low- and high-dimensional chaotic
phenomena by allowing for a systematic study of how the former connects to the latter. Specifically, we present experimental results, which
show the formation of low-dimensional chaotic attractors upon destabilization of regular dynamics and a final transition to high-dimensional
chaos via the merging of distinct chaotic regions through a crisis bifurcation. Moreover, we show that the post-crisis dynamics of the system
can be rationalized as consecutive scatterings from the nonattracting chaotic sets with lifetimes following exponential distributions.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0102904

Hydrodynamic pilot-wave systems formed by a millimetric
droplet bouncing on the vertically vibrating bath of the same fluid
are primarily studied for their analogies to quantum phenomena.
These intriguing analogies are rooted in the rich dynamics that
arise from the interaction of the droplet with the surface waves
that it generates at each impact. Here, we experimentally study
one such system formed by a single droplet bouncing on a circu-
larly shaped vibrating bath and uncover the qualitative changes
in the system’s dynamics as a control parameter is slowly varied.
In particular, we present compelling evidence that some of these
changes correspond to so-called “crisis bifurcations” wherein a
chaotic attractor loses stability giving way to a discontinuous
change in the dynamics upon a small variation of the control
parameter. Finally, we show that the complex dynamics of the sys-
tem that follows a merger of previously distinct chaotic sets can
be understood as scatterings from chaotic repellers with distinct
physical properties.

I. INTRODUCTION

When a fluid bath vibrates vertically with an amplitude above
a critical value, the surface undergoes an instability leading to the
spontaneous formation of the so-called Faraday waves.1,2 Nearly two
decades ago, Yves Couder and co-workers3,4 showed that when a
bath of silicone oil is vertically vibrating with an amplitude slightly
below this point of instability, a millimeter-sized droplet of the
same fluid can bounce vertically and “walk” (move horizontally)
on the surface without coalescing due to the presence of a thin air
layer between the droplet and the bath surface. In this regime, the
impulse that the droplet experiences at each impact is determined
by the surface topography, which itself is shaped by the waves gen-
erated at previous bounces. Although these waves do not persist and
decay exponentially, they do so at a rate that vanishes as the vibra-
tion amplitude approaches the Faraday threshold, thus retaining a
“memory”5 of the droplet’s trajectory. Soon after the initial demon-
strations of bouncing and walking, Couder and co-workers realized
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macroscopic analogs to quantum mechanical phenomena such as
tunneling and orbital quantization on these setups.6,7 Their results
were extended in subsequent studies8–12 and the setups were named
“hydrodynamic pilot-wave systems”13 due to their reminiscence of
the de Broglie–Bohm interpretation of quantum mechanics. Today,
the exploration of analogies between pilot-wave hydrodynamics and
quantum phenomena continues to be an active area of research (see
the recent review by Bush and Oza).14

Over the past two decades, pilot-wave hydrodynamics have
also received considerable attention for their dynamical properties.15

Hydrodynamic pilot-wave systems can be viewed from two different
theoretical perspectives that are compatible with one another. If one
approximates the droplet as a point particle and takes its position
and momentum as state variables, then the corresponding dynami-
cal system is non-Markovian since the time-evolution of the system
not only depends on its present state but also on its history which
determines the surface topography.5,16 Alternatively, if one takes the
droplet and fluid bath as a whole and includes the bath’s configura-
tion in the description of the system’s state,17,18 then the knowledge
of the present state becomes sufficient for predicting its future,
thus rendering the system Markovian. In this latter approach, the
hydrodynamic pilot-wave setup constitutes an infinite-dimensional
dynamical system since the surface field approximated as a contin-
uum introduces infinitely many degrees of freedom. In the follow-
ing, we adopt this infinite-dimensional Markovian view in order
to explain how complex dynamics can arise in a hydrodynamic
pilot-wave system.

The view of complex hydrodynamic phenomena as those aris-
ing in infinite-dimensional dynamical systems can be traced to
Hopf’s early mathematical work in turbulence.19 Over the past 30
years, this approach enjoyed a resurgent interest mainly due to
the advancements in computing hardware and numerical algo-
rithms that made searching for simple time-invariant solutions such
as equilibria and periodic orbits in fully resolved Navier–Stokes
simulations feasible.20,21 In addition to numerical simulations, the
influence of invariant solutions on weakly turbulent flows was also
demonstrated in experiments.22,23 One of the frequently stated goals
of this research field is building low-dimensional models of turbu-
lence using (unstable) periodic orbits as building blocks.24 Although
several papers23,25–28 illustrated the resemblance of turbulent flows
and periodic orbits in different fluid flows, building quantitatively
accurate models based on periodic orbits has only been possible
in highly restricted configurations.29 In this paper, we explore an
alternative approach to this problem, namely, one that takes the
chaotic repellers as building blocks as opposed to periodic orbits,
and demonstrate its success through our analysis of hydrodynamic
pilot-wave experiments.

Finite-lifetime chaotic motion can be observed in a variety
of settings, such as chemical reactions,30 advection of suspended
particles,31 and dynamics of transitionally turbulent flows.32 Among
these, a well-studied phenomenon is chaotic scattering, that is, the
scattering of a particle from the neighborhood of a nonattracting
chaotic set in the phase space of a system.33–36 Although initially
studied in open billiard systems,33–35 chaotic scattering found appli-
cations in various other systems with chaotic repellers (for recent
examples, see Refs. 37–39). In the present paper, we demonstrate
that the chaotic dynamics of a hydrodynamic pilot-wave system

can be decomposed into chaotic repellers formed around distinct
periodic solutions of the system. Consequently, we show that the
observed dynamics can be understood as consecutive scatterings
from these repellers.

Our experiments consist of a single droplet bouncing on a
bath with variable topography that introduces a radially confining
force, which is known to enable chaotic dynamics in hydrodynamic
pilot-wave systems.17,40,41 In this setup, we slowly change the con-
trol parameter to uncover the series of bifurcations that lead to
the formation of the system’s chaotic attractor. In particular, we
observe crisis bifurcations,42 i.e., discontinuous changes of the sys-
tem’s attractor upon small changes of the control parameter. In
the final chaotic regime, we study lifetime statistics of dynamics
in different parts of the attractor and show that they have expo-
nential tails as expected for chaotic repellers.43 Our results suggest
that the final crisis bifurcation that leads to the formation of the
system’s attractor is mediated by a chaotic repeller, in contrast to
well-studied36,42,44 crisis phenomena that take place when a chaotic
attractor of a continuous-(discrete-)time system collides with a peri-
odic orbit (fixed point) of saddle type. We, thus, argue that our find-
ings open new theoretical questions for high-dimensional chaotic
systems.

This article is structured as follows. In Sec. II, we discuss the
experimental setup, a symmetry-reducing transformation of exper-
imental data, and the construction of Poincaré sections. In Sec. III,
we examine how droplet dynamics change as the memory Me of the
vibrating fluid bath is varied. We also rationalize our findings using
tools from chaos theory. Finally, we discuss the significance of our
findings in the broader context of hydrodynamic quantum analogs
as well as fluid turbulence in Sec. IV.

II. METHODS

A. Experimental setup

Our setup consists of a computer-controlled electromagnetic
shaker on which a bath containing silicone oil is mounted and a
camera above records the dynamics of the bouncing droplet. As
shown in Fig. 1, the bath is in the shape of a circular corral formed
by concentric cylinders with a deep inner section surrounded by a
shallow damping (overflow) region, a configuration that was shown
to yield an effective radially confining force.8,9,45 All experimen-
tal runs are performed by setting the bath’s vibration frequency
to f0 = 75 Hz and using a single droplet with a diameter D = 0.85
± 0.05 mm. The bath acceleration γ is varied to adjust the memory,

Me = (1 − γ /γF)
−1. (1)

Me is a dimensionless control parameter that is proportional to the
damping time of the surface waves5 and tends to infinity as the
bath acceleration γ approaches the Faraday instability threshold
at γF. In our experiments, we adjust γ according to (1) such that
Me is varied in approximately equal steps and study the changes
in the system’s behavior. In presenting our results, we convert
length and time to dimensionless quantities by measuring them in
units of the Faraday wavelength λF = 5.3 mm and time tF = 2/f0,
respectively. The droplet trajectories are reconstructed via image
processing for detecting the droplet center in each frame recorded
by the camera [Fig. 1(b)], and the droplet’s instantaneous velocity
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FIG. 1. Schematic of the experimental setup. (a) Top view showing the corral (white dashed circle), the overflow region, and accelerometers (gray squares). (b) Side view
illustrating fluid layer and imaging configurations. The center of the corral is chosen as the origin of the coordinate system.

is estimated by computing the time-derivative of the cubic splines
that fit these trajectories. Further experimental details can be found
in the Appendix.

B. Symmetry reduction

Figure 2(top) shows examples of reconstructed droplet
trajectories in our experiments at different Me. While visualizations

in the laboratory frame are illustrative, they contain redundant
information due to symmetries of the corral, i.e., azimuthal reflec-
tion and rotations. As a result of the reflection symmetry, for
each clockwise rotating orbit, the system also exhibits a dynami-
cally equivalent counterclockwise-rotating one. In the case of the
circular orbit in Fig. 2(a) for instance, the clockwise and counter-
clockwise orbits can be distinguished using the sign of their angular
momentum L = m(x × v), where m is the mass of the silicone

FIG. 2. Experimentally measured droplet trajectories where the top row shows the trace of the drop in the lab and the bottom row shows their symmetry-reduced
representations. The arrow heads indicate the direction of time and the dashed circles show the boundary of the corral. (a) Circle (orange) and lemniscate (blue) atMe = 20,
(b) lemniscate chaos at Me = 26.48, (c) oval chaos at Me = 31.48, and (d) chaos Me = 31.86.
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oil droplet, and x(t) = [x(t), y(t)] and v(t) = [vx(t), vy(t)] are its
instantaneous two-dimensional position and velocity, respectively.
These two orbits trace approximately the same trajectory on the
xy-plane. The continuous rotation symmetry poses a different chal-
lenge; any non-circular trajectory [e.g., lemniscate in Fig. 2(a)] can
be rotated by an arbitrary angle about the origin to generate a
dynamically equivalent trajectory at a different orientation. In order
to eliminate this degeneracy, we apply Budanur and Fleury’s18 con-
tinuous symmetry reduction method to our experimental data. The
basic idea of this method is to set the polar angle in the velocity plane
of the pilot-wave system’s state space to a fixed value so that each
rotation-equivalent trajectory is mapped to a single representative.
Formally, this transformation is applied to all dynamical degrees
of freedom, including those encoding the state of the bath. In the
present experimental case, we neglect the bath’s degrees of freedom
which are not essential for our discussion to follow and transform
the measured coordinate x(t) and velocity v(t) as

x̃(t) = R(−θ̃ (t))x(t) and ṽ(t) = R(−θ̃ (t))v(t), (2)

where θ̃ (t) = arg(vx(t) + ivy(t)) is the instantaneous polar angle in
the velocity plane and R(θ) is the 2 × 2 matrix,

R(θ) =

[

cos θ − sin θ

sin θ cos θ

]

, (3)

whose action rotates a two-dimensional vector in counterclockwise
direction by θ .

By fixing the phase of the measurements on the velocity plane
to 0, transformation (2) maps all rotation-equivalent measurements
to one with ṽx = ‖v‖ and ṽy = 0, hence performing a symmetry
reduction. Note that the transformation (2) is defined as long as the
speed ‖v(t)‖ of the droplet does not vanish, which is the case for
the dynamical regime of interest (see Fig. 8 in the Appendix). We
note that the analogous transformation that maps coordinates x to
(‖x‖, 0) cannot be applied since this transformation is singular at
the origin x = y = 0, which is approached by the lemniscate-shaped
trajectories [Figs. 2(a) and 2(b)].

Figure 2 (bottom row) shows the symmetry-reduced trajecto-
ries corresponding to the panels above. As seen in Fig. 2(a) (orange),
symmetry reduction maps the circular trajectory to approximately a
point corresponding to the one at which the droplet velocity is in
positive x direction.

In the case of the lemniscate orbit, the trajectory in Fig. 2(a)
and all of its rotation copies are mapped to the symmetry-reduced
lemniscate shown in the bottom panel. Another feature of our
symmetry reduction can be understood by noting the apparent sym-
metry of the symmetry-reduced lemniscate in Fig. 2(a) (bottom)
with respect to the ỹ = 0 line. This follows directly from the fact
that the azimuthal reflection symmetry of our pilot-wave system
is equivalent to the transformation ỹ → −ỹ after symmetry reduc-
tion. Consequently, the lower and upper halves of the x̃ỹ-plane
correspond to droplet motions with positive and negative angu-
lar momenta, respectively. This fact is also observed in the circular
[Fig. 2(a), bottom] and oval [Fig. 2(c), bottom] trajectories, where
the counterclockwise-rotating (L > 0) trajectories are confined to
the lower half of the x̃ỹ-plane after symmetry reduction.

C. Reduction to a Poincaré section

In order to identify the sequence of bifurcations, we define
the Poincaré section46 as the position-velocity pairs (x̃P , ṽP) on the
symmetry-reduced trajectories that satisfy the half-plane condition,

x̃P · [1, 0] = 0 and ṽP · [1, 0] > 0, (4)

which corresponds to taking the intersections of the trajectories
(x̃(t), ṽ(t)) with the ỹ axis in the positive-x̃ direction. We chose this
section since it is intersected by all of the symmetry-reduced tra-
jectories (Fig. 2, bottom row) that we observe. In our results to
follow, we approximated these intersections as linear interpolations
between the symmetry-reduced data points at times ti and ti+1 with
x̃(ti) < 0 and x̃(ti+1) > 0.

Because we only measure droplet trajectories, our Poincaré
section (4) in the space of symmetry-reduced trajectories (x̃, ỹ, ṽx, 0)
corresponds to a two-dimensional plane (0, ỹ, ṽx, 0). Consequently,
the Poincaré section (4) retains only a subset of the system’s state
due to our neglect of the bath’s degrees of freedom. Formally, an
equivalent Poincaré section could have been defined for the infinite-
dimensional state measurements containing the bath’s degrees of
freedom as done for the numerical data by Budanur and Fleury.18

Section (4) should be understood as a projection of that Poincaré
section onto a two-dimensional plane, and as we shall demonstrate
next, the retained information is sufficient for our analysis.

III. RESULTS AND DISCUSSION

In the following, we present the results of a parametric study
wherein we vary Me in small increments to follow the changes in the
symmetry-reduced dynamics.

A. Crisis bifurcations

Figure 3 shows the orbit diagram which we obtained by record-
ing the symmetry-reduced droplet trajectories’ intersections with
the Poincaré section (4) starting from the lemniscate trajectory at
Me = 20 and increasing Me in small steps of 1Me ≈ 0.36 up to
Me = 32.8 and reversing the direction of parameter sweep after-
ward. Top (bottom) panels correspond to the experimental run
where Me was increased (decreased).

For the stable lemniscate solution at Me ≈ 20, we obtain two
(localized) intersections on the Poincaré section at ỹP/λF ≈ ±0.025.
Upon increasing the Me, this solution loses stability and a chaotic
lemniscate attractor [Fig. 2(b)] takes its place. This transition to
chaos results in the expansion of the ỹP interval spanned by the
intersections in Fig. 3 (top panel), starting at Me ≈ 22.5. Upon fur-
ther increase in Me, the chaotic lemniscate attractor loses stability
at Me ≈ 26.6, after which we observe circular trajectories simi-
lar to the orange curve in Fig. 2(a). On the orbit diagram, the
corresponding intersections with the Poincaré section are local-
ized at ỹP/λF ≈ −0.08. When we increase Me further, we observe
modulations to the circular trajectories and the formation of a
new oval chaotic attractor [Fig. 2(c)]. This is once again indi-
cated by the gradual expansion of the markers in the orbit dia-
gram at Me ≈ 29.5. Finally, we observe a sudden expansion of
the attractor at Me ≈ 31.65, which results in droplet trajectories
intermittently switching between oval motions and lemniscates as
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FIG. 3. Orbit diagram generated by marking the intersections of the symmetry-
reduced trajectories with the Poincaré section (4). Top panel shows the parameter
sweep with increasingMe and bottom panel for the opposite direction as indicated
by the arrows. Vertical dashed red lines at Me = 26.6 and Me = 31.65 mark
approximate parameter values at which the crisis bifurcations take place. The
labels (A–D) next to the dashed rectangles indicate the corresponding trajectories
shown in Fig. 2.

shown in Fig. 2(d). Qualitative features of this chaotic motion
remain unchanged for the higher Me values shown in Fig. 3.
Decreasing Me from this point (bottom panel of Fig. 3), however,
yields a different scenario. Although at Me ≈ 31.65, the dynam-
ics fall back onto the oval chaos [Fig. 2(c)], we do not recover
the lemniscates upon further decrease of Me . Rather, we fol-
low the branch of stable circular trajectories down to Me = 20.0
as shown in Fig. 3. In other words, for the parameter interval
Me ∈ [20.0, 26.6], we have a multistable system with distinct
branches of stable dynamics that can be observed depending on how
the system is initiated.

Sudden changes in the orbit diagram (Fig. 3) indicated by
the dashed red lines can be understood as crisis bifurcations42 at
which the attractor of a nonlinear system undergoes a discontinu-
ous change upon a small variation of the control parameter. The
first of these bifurcations takes place when the lemniscate chaos
[Fig. 2(b)] loses stability at Me ≈ 26.6. This so-called boundary
crisis42 generically takes place when a chaotic set intersects with its
basin boundary. Usually, this boundary is the stable manifold of
another solution, such as a periodic orbit. Naturally, in an exper-
imental study, we cannot probe unstable solutions. Nevertheless,
we note that multistability of the system for Me ∈ [20.0, 26.6] is in
agreement with this scenario. The second crisis bifurcation takes
place at Me = 31.65, when the chaotic attractor with oval-shaped

FIG. 4. State-space cartoon of the hydrodynamic pilot-wave system prior
(Me < 31.65) and after (Me > 31.65) the symmetry-increasing crisis bifurca-
tion. Solid (striped) areas correspond to distinct stable (unstable) state-space
regions in the vicinity of lemniscate and oval orbits depicted as closed curves.
Orange curve segments indicate possible transitions between the regions with
arrowheads showing the directions.

trajectories [Fig. 2(c)] suddenly expands into the upper-half of the
ỹP axis in Fig. 3. Recalling that the azimuthal reflection symmetry is
represented by the sign change of the ỹ coordinate, we conclude that
this crisis bifurcation is a symmetry-restoring47 one at which the pre-
viously disconnected state-space regions that are reflection copies
of one another merge to form the final chaotic attractor [Fig. 2(d)]
of the pilot-wave system. The appearance of lemniscate-shaped tra-
jectories [Fig. 2(d)] following the symmetry-restoring bifurcation
suggests that it is the result of a merger of oval-shaped chaotic
trajectories with lemniscate ones, which lost stability via boundary
crisis at Me ≈ 26.6. This scenario, illustrated as a state-space car-
toon in Fig. 4, is markedly different from previously studied36,42,44

crisis bifurcations that follow a chaotic attractor’s collision with an
unstable periodic orbit.

B. Chaotic scattering

In our bifurcation study, we observed seemingly chaotic tra-
jectories in the neighborhoods of both lemniscate and oval orbits.
As our final result and further evidence for the bifurcation scenario
depicted in Fig. 4, we demonstrate that the system’s dynamics fol-
lowing the symmetry-increasing bifurcation at Me ≈ 31.65 can be
understood as chaotic scatterings from the state-space regions cor-
responding to the lemniscate- and oval-shaped orbits. To begin, we
track the time series of the angular momentum L that distinguishes
clockwise and counterclockwise-rotating trajectories. Figure 5(a)
shows the angular momentum time series (blue) corresponding to
a chaotic trajectory segment similar to the one shown in Fig. 2(d).
Intervals, such as t ∈ [500TF, 1000TF], during which the angular
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FIG. 5. (a) Time series of angular momentum (blue) and its window average
(orange) for a chaotic droplet trajectory similar to the one shown in Fig. 2(d). The
shaded red (cyan) indicates window-averaged angular momentum intervals that
are ruled as lemniscate (oval) for computing the lifetimes. (b) Lifetime distributions
of the lemniscate trajectories at Me values beyond the symmetry-increasing cri-
sis along with an exponential fit to their average. (c) Lifetime distributions of the
oval trajectories at Me values beyond the symmetry-increasing crisis along with
exponential fits (solid black) to the tails of the distributions. The legend for the Me
values of the data in C is identical to that in D, hence not shown.

momentum oscillates between positive and negative values of L
correspond to lemniscate-shaped orbits. Conversely, the episodes
during which the angular momentum remains either positive or
negative correspond to the oval-shaped trajectories. This indeed
suggests that the lemniscate orbits should separate the chaotic ovals
with opposite senses of rotation, just prior to the crisis bifurcation,
and, hence, constitute a chaotic basin boundary.

If the chaotic attractor can be decomposed into distinct chaotic
repellers, then we would expect the droplet to spend exponen-
tially distributed times within each of these sets.43 In order to test
this hypothesis, we first computed the moving average 〈L〉Tw of
the angular momentum, shown in Fig. 5(a), with a window length
Tw ∈ [104, 113]TF (see the Appendix for details). During the lem-
niscate episodes, the window-averaged angular momentum remains
near zero, whereas for the ovals, it takes a near constant value
〈L〉Tw ≈ ±0.05 mλ2

F/TF. Following this observation, we choose the
thresholds Ll = 0.025 mλ2

F/TF and Lo = 0.045 mλ2
F/TF and assume

that the episodes with |〈L〉Tw | < Ll [Fig. 5(a), transparent red] and
|〈L〉Tw | > Lo [Fig. 5(a), transparent cyan] correspond lemniscate and
oval trajectories, respectively. Under this assumption, we estimated

the distribution of the lifetime τ for the lemniscate trajectories at
four Me values as shown in Fig. 5(b). The survival function S(τ ) is
the probability of the droplet to remain in lemniscate-like motion
for a time τ , and for all Me values, it appears to have an exponential
tail for τ > 100TF. Interestingly, this distribution shows very little
variation upon changing Me; thus, we fit an exponential to the mean
of S(τ ) in Fig. 5(b) for τ ≥ 125TF. The lifetimes of the oval trajec-
tories shown in Fig. 5(c), on the other hand, become progressively
shorter as we increase Me. Similar to the lifetime distributions of the
lemniscates, the ovals also show exponential tails for high τ .

A lifetime distribution with an exponential tail is the hallmark43

of transient chaos.48–50 Intuitively, one can understand the neces-
sity of an exponential-tailed lifetime distribution by arguing that
a chaotic system is memoryless51 for time scales much longer than
the Lyapunov time µ−1

L , where µL is the leading Lyapunov expo-
nent. Since any noise in the system is typically amplified as exp µLt,
the system’s memory of its present state will be completely lost
after a time t � µ−1

L . Therefore, the exponential tails of the life-
time distributions in Figs. 5(b) and 5(c) lead us to the conclusion
that the lemniscate- and oval-shaped motions of the droplet corre-
spond to distinct chaotic repellers, which are visited transiently by
the dynamics. The overall dynamics can, thus, be viewed as con-
secutive scatterings between these strange repellers. In Fig. 6(a),
we illustrate one such scattering event where the droplet tran-
sitions from the oval-repeller with positive angular momentum
(〈L〉Tw > Lo) to the negative side after spending some time on the
lemniscate repeller. In order to illustrate these different regions
in Fig. 6, we also plotted samples from a very long trajectory
with different colors corresponding to distinct state-space regions
(blue: lemniscate, orange: oval with 〈L〉Tw > Lo, green: oval with
〈L〉Tw < −Lo).

FIG. 6. (a) Symmetry-reduced chaotic attractor of the pilot-wave system where
colors correspond to points on the distinct chaotic repellers inferred from the win-
dow-averaged angular momentum of the trajectories. Blue points correspond to
those on the lemniscate trajectories, whereas the orange and green are those on
ovals with 〈L〉Tw > Lo and 〈L〉Tw < −Lo, respectively. A trajectory (black) tran-
sitioning from the 〈L〉Tw < −Lo region (orange) to 〈L〉Tw > Lo region (green)
one after spending some time on the lemniscate repeller (blue) is also shown
where arrowheads indicate the direction of time. (b) Same data points and the
transitioning trajectory in the lab frame where the dashed circle indicates the cor-
ral boundary. Due to the degeneracy of lab-frame visualizations, the orange and
green data points overlap in B.
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Prior to the symmetry-increasing crisis bifurcation at
Me ≈ 31.65, the oval-shaped chaotic trajectories constitute an
attractor of our pilot-wave system. The symmetry-increasing bifur-
cation is, therefore, one at which the chaotic ovals lose stability and
become transient. The post-crisis reduction of the mean lifetimes of
oval-shaped orbits [Fig. 5(c)] is reminiscent of the well-understood
behavior in dissipative two-dimensional maps.42,44 In those systems,
attractors generically lose stability through homoclinic or hetero-
clinic tangencies of periodic orbits. Subsequent mean lifetimes of the
chaotic transients drop off following a power-law as a function of the
distance from the critical parameter value at which the crisis bifur-
cation takes place. In the present case, our measurements near the
critical Me are not dense enough to quantitatively test a power-law
behavior. Moreover, the chaotic attractor in the present case loses
stability through its merger with the chaotic lemniscates, for which,
to the best of our knowledge, there is no obvious reason to expect a
power-law scaling. Nevertheless, it is clear that the lifetimes of ovals
become progressively shorter as we increase the Me further from
its critical value. We would like to note that this behavior can be
exploited to tune the probabilities of observing the droplets in oval
and lemniscate states.

IV. CONCLUDING REMARKS

In this paper, we presented a parametric study of a hydrody-
namic pilot-wave system, in which we identified two crisis bifurca-
tions. The first of these occurs when chaotic lemniscate trajectories
lose stability giving way to stable circular-like trajectories. The sec-
ond symmetry-increasing one occurs when a chaotic attractor cor-
responding to oval trajectories merges with the lemniscate repeller,
yielding the final attractor of the system. We have also demonstrated
that the proximity of the control parameter Me to its critical bifur-
cation value determines the lifetime distribution of the oval-shaped
motions, providing a useful tool for adjusting the global statistics
of similar pilot-wave systems. We note that global bifurcations due
to the merger of distinct chaotic sets were previously observed in
the discrete-52–54 and continuous-time18 models of the pilot-wave
hydrodynamics.

The idea of decomposing high-dimensional chaos into subunits
of chaotic repellers by identifying crisis bifurcations has recently
been explored in the numerical studies of transitionally turbulent
shear flows.55–57 Similarly, chaotic basin boundaries were also inves-
tigated in the numerical studies of laminar-turbulence transition in
shear flows.58–61 The instability of these basin boundaries, however,
renders them inaccessible to direct observations in the laboratory.
To the best of our knowledge, our study is the first experimental
demonstration of transitions mediated by a chaotic basin boundary
and the high-dimensional attractor formation through the merger of
distinct chaotic sets. A future research direction that is motivated by
these results is a theoretical treatment of high-dimensional attractors
as those formed by chaotic repellers around distinct periodic orbits.
In particular, it might be possible to adapt the periodic orbit expan-
sions for chaotic repellers50 to predict lifetime distributions such as
those shown in Fig. 5.

One of the most striking features of hydrodynamic pilot-wave
systems is the wavelike patterns that are reminiscent of the quantum
wave functions which emerge in long-time statistics of the droplet

position at high Me.9,10,62 Already in Ref. 9, Harris et al. argued that
the emergent statistics can be understood as a droplet’s transient
visit of unstable (quasi-)periodic orbits. Our results are consistent
with their insights and suggest new methods to understand the
nature of deterministic dynamics underlying the emergent wave-
like statistics. Specifically, lifetime measurements, such as those in
Fig. 5, can be used to characterize individual neighborhoods in these
experiments. Moreover, we would like to note that tuning the life-
time distribution of a particular droplet motion by varying a control
parameter’s proximity to a bifurcation value might be relevant for
quantum analogies since the adjustment of the lifetime distribution
of some state directly influences the probability of observing the
droplet in that state. In our case, we achieved this by varying Me,
which as we moved farther away from the symmetry-increasing cri-
sis bifurcation, resulted in shorter and shorter oval lifetimes, hence
a lower probability of observing it.
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APPENDIX: EXPERIMENTAL DETAILS

The vibrating bath in the experiment is made from black
anodized aluminum. The circular corral located at its center has
a diameter 19.95 ± 0.05 mm and depth 6 ± 0.05 mm, as shown
in Fig. 1. The corral is filled to a height 6.9 ± 0.1 mm with sil-
icone oil (polydimethysiloxane), which has kinematic viscosity
ν = 21.5 × 10−6 m2/s, density ρ = 953 kg/m3, and surface tension
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σ = 20.8 × 10−3 N/m at room temperature (T = 21.6 ± 0.1 ◦C).
For this fluid layer depth, a thin 0.9 ± 0.1 mm overflow layer—that
serves to dampen surface waves—is formed outside the corral. A
transparent plastic lid placed on top of the aluminum bath shields
the corral (and the droplet) from stray air currents.

The aluminum bath is mounted on an air-cooled electromag-
netic shaker (Data Physics V55) and is leveled perpendicular to
gravity. The shaker oscillates vertically at a frequency f0 = 75 Hz,
when a sinusoidally varying voltage signal of the same frequency
is input. Three piezoelectric sensors (PCB 352C65), mounted as
shown in Fig. 1, measure the vertical (γ ) and horizontal (γx, γy)
accelerations of the vibrating aluminum bath. The setup is aligned
such that |γx|/|γ |, |γy|/|γ | . 0.01. For a given memory Me, the
target vertical acceleration γMe is computed using Eq. (1), i.e.,
γMe = γF(1 − M e−1). Here, γF = 4.32 g is the experimentally mea-
sured critical acceleration (in units of g = 9.8 m2/s) for the onset of
Faraday instability at 21.7 ◦C. A feedback loop controls the ampli-
tude of the sinusoidal voltage signal driving the shaker such that the
measured vertical acceleration (γ ) deviates from γMe by less than
±0.1%, i.e., |γ − γMe|/γMe ≤ 0.001.

To generate droplets of a desired size, silicone oil—filled in a
syringe to a fixed height—was drained through a 33 gauge needle for
a fixed time. The syringe was then touched against the vibrating bath
to dislodge the droplet onto the fluid surface. The longer (shorter)
the duration of draining, the larger (smaller) is the drop size. For
a fixed drain-time, droplets generated using this technique varied
in diameter by about ±0.05 mm. All experimental runs reported in
this study were performed with a single silicone oil droplet of diam-
eter 0.85 ± 0.05 mm. Images of the bouncing droplet were recorded
at intervals 1t ≈ 57 ms, using a CMOS camera (Basler acA2000-
165um) mounted above the bath [cf. Fig. 1(b)]. In pixel units, the
diameters of the corral and the droplet are 468 ± 1 and 20 ± 1,
respectively. To track the position of the droplet in real-time, a gaus-
sian filter (with a 6 pixel standard deviation) was applied to each
image and the location of the brightest pixel—approximating the
coordinates (xc, yc) of the droplet center—was measured. The time
series xc(t), yc(t) were then interpolated onto a temporal grid with
spacing 1t = 5.7 ms, using a cubic spline interpolation. Instanta-
neous droplet velocities vx(t), vy(t) were then computed by comput-
ing derivatives of the spline interpolation. An example, Fig. 7 shows
droplet trajectories reconstructed by overlaying successive images,
each approximately 150 ms apart in time.

The horizontal speed ‖v‖ of the droplet remains fairly con-
stant (≈ 0.06) for the dynamical regimes explored in this article. To
demonstrate this, Fig. 8 shows that the probability density function
of ‖v‖ for representative values of Me ∈ [20, 33.64] is normalized
such that

∫

Pd‖v‖ = 1 in each case. Recall that symmetry reduction
in the velocity plane requires that the speed of the droplet does not
vanish. Indeed, the probability of the droplet speed ‖v‖ ≤ 0.01 is
smaller than 10−3 for Me ≥ 32.1. Even though this is an insignifi-
cant fraction, such a decrease in droplet speed is possibly due to the
droplet (very rarely) approaching the boundary of the inner corral
and subsequently bouncing back.

The sequence of bifurcations (Figs. 2 and 3) was identi-
fied using an experimental run, where memory Me ∈ [20, 33] was
increased (decreased) in steps of 1Me ≈ 0.36 (1Me ≈ −0.37) and
the droplet position was tracked for a duration of 1800 s at each Me.

FIG. 7. Reconstructed trajectories of the silicone oil droplet tracing (a) oval and
(b) lemniscate at Me = 32.8. The white dashed circle marks the boundary of the
corral. The yellow curve is the trajectory of the brightest pixel (after Gaussian
blurring) on the droplet.

The lifetime distributions (cf. Fig. 5) were estimated from separate
runs, each approximately 9 × 104 s long. The ambient room temper-
ature (measured using a PT-100 probe placed beside the shaker) over
the duration of these experimental runs was fairly constant (20.6
± 0.1 ◦C). Nevertheless, we measured the critical memory Mec cor-
responding to the crisis bifurcation before and after each experimen-
tal run. Mec was reproducible to within 1Me ≈ ±0.15 for different
runs, which suggests that the temperature of the silicone oil, its phys-
ical properties, and, consequently, γF do not vary significantly across
the various experiments runs. Last, although all experimental runs
reported in this article correspond to a single droplet, the repeatabil-
ity of results was validated using (at least five) different experiments
performed with different droplets and replacing the silicone oil in
the bath each time.

The survival probabilities in Figs. 5(b) and 5(c), as mentioned
in the main text, were estimated from window-averaged angular

FIG. 8. Probability density function of the droplet velocity at various Me values.
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TABLE I. Characteristic times for tracing ovals and lemniscates.

Me 32.1 32.8 33.3 33.6
Tw (lemniscate) 105 104 110 105
Tw (oval) 40 39 39 38

momentum 〈L〉Tw of the droplet. Here, Tw is the average character-
istic time-scale for tracing the lemniscates and ovals at each value
of Me. Tw was estimated by computing the Fourier transform of the
time series of L for the entire duration (≈9 × 104 s) of each experi-
mental run. Table I lists the values of Tw for lemniscates and ovals at
each Me.
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