Pseudo Entropy in $\mathrm{U}(1)$ gauge theory

Jyotirmoy Mukherjee
Centre for High Energy Physics, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
E-mail: jyotirmoym@iisc.ac.in

Abstract

We study the properties of pseudo entropy, a new generalization of entanglement entropy, in free Maxwell field theory in $d=4$ dimension. We prepare excited states by the different components of the field strengths located at different Euclidean times acting on the vacuum. We compute the difference between the pseudo Rényi entropy and the Rényi entropy of the ground state and observe that the difference changes significantly near the boundary of the subsystems and vanishes far away from the boundary. Near the boundary of the subsystems, the difference between pseudo Rényi entropy and Rényi entropy of the ground state depends on the ratio of the two Euclidean times where the operators are kept. To begin with, we develop the method to evaluate pseudo entropy of conformal scalar field in $d=4$ dimension. We prepare two states by two operators with fixed conformal weight acting on the vacuum and observe that the difference between pseudo Rényi entropy and ground state Rényi entropy changes only near the boundary of the subsystems. We also show that a suitable analytical continuation of pseudo Rényi entropy leads to the evaluation of real-time evolution of Rényi entropy during quenches.

Keywords: Conformal and W Symmetry, Gauge Symmetry, Scale and Conformal Symmetries

ArXiv ePrint: 2205.08179

Contents

1 Introduction 1
2 Pseudo-entropy in conformal field theory 3
2.1 Conformal scalar in $d=2$ dimension 4
2.2 Conformal scalar in $d=4$ dimension 6
3 Free Maxwell field in $d=4$ dimension 10
3.1 Excitation by the same components of the field strength with different cutoffs 11
3.2 Excitation by the different components of the field strength with different cutoffs 23
4 Discussion 24
A Derivation of two-point functions and $\Delta S_{A}^{(n)}$ for arbitary n 26

1 Introduction

Entanglement entropy is a useful quantity in a quantum system to characterize the degrees of freedom present in the system. For conformal field theory in 2-dimension, the universal contribution to the entanglement entropy of the ground state is proportional to the central charge [1-3] or the degrees of freedom and the similar statements hold true in higher dimensions. Moreover, the holographic derivation of entanglement entropy [4, 5] gives us a deeper insight into the gravity emerging from the quantum entanglement.

To define the entanglement entropy of a quantum system, one subdivides the Hilbert space into two Hilbert spaces and integrates out the degrees of freedom in one of the Hilbert spaces to define the reduced density matrix. Finally one obtains entanglement entropy as the Von-Neumann entropy of the reduced density matrix.

$$
\begin{equation*}
S_{A}=-\operatorname{Tr}_{\mathrm{A}}\left(\rho_{\mathrm{A}} \log \rho_{\mathrm{A}}\right) . \tag{1.1}
\end{equation*}
$$

Here ρ_{A} is the reduced density matrix associated with the sub-region A. Generally one computes the entanglement entropy of the ground state or vacuum of a quantum system by evaluating the Von-Neumann entropy of the reduced density matrix of the ground state.

Recently a new generalisation of entanglement entropy known as the pseudo-entropy has been introduced in [6-8] which is a Von-Neumann entropy of the transition matrix $\rho^{\psi_{1} \mid \psi_{2}}$. The transition matrix is constructed from initial state $\left|\psi_{1}\right\rangle$ and a final state $\left|\psi_{2}\right\rangle$ of a quantum system, where $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ are not orthogonal to each other.

$$
\begin{equation*}
\rho^{\psi_{1} \mid \psi_{2}}=\frac{\left|\psi_{1}\right\rangle\left\langle\psi_{2}\right|}{\left\langle\psi_{1} \mid \psi_{2}\right\rangle}, \quad\left\langle\psi_{1} \mid \psi_{2}\right\rangle \neq 0 \tag{1.2}
\end{equation*}
$$

Now one subdivides the Hilbert spaces into two Hilbert spaces and traces out the degrees of freedom in one of the sub-spaces to define the reduced transition matrix

$$
\begin{equation*}
\rho_{A}^{\psi_{1} \mid \psi_{2}}=\operatorname{Tr}_{\mathrm{B}} \rho^{\psi_{1} \mid \psi_{2}} . \tag{1.3}
\end{equation*}
$$

Therefore, the pseudo-entropy is defined as the Von Neumann entropy of the reduced transition matrix

$$
\begin{equation*}
S_{A}\left(\rho_{A}^{\psi_{1} \mid \psi_{2}}\right)=-\operatorname{Tr}\left(\rho_{\mathrm{A}}^{\psi_{1} \mid \psi_{2}} \log \rho_{\mathrm{A}}^{\psi_{1} \mid \psi_{2}}\right) . \tag{1.4}
\end{equation*}
$$

When initial and final states are the same, pseudo-entropy reduces to entanglement entropy. Note that, the reduced transition matrix is non-Hermitian in general and pseudo-entropy can be complex-valued. But this quantity is useful in the post-selection process where a initial state results into a final state and one is interested in measuring the weak value [9, 10] of an observable $\langle\mathcal{O}\rangle=\operatorname{Tr}\left(\mathcal{O} \rho^{\psi_{1}} \mid \psi_{2}\right)$.

We evaluate pseudo Rényi entropy for different fields to understand its general properties. The main motivation of this paper is to study the properties of the pseudo-entropy in gauge theory, in particular free Maxwell theory in 4 -dimension. However, there are subtleties in defining the entanglement entropy of the ground state of a gauge theory because the degrees of freedom are non-local. But it has been understood well for the free Maxwell field in 4 -dimension [11-16] and in linearized gravity [16-18]. In free Maxwell theory, we prepare two excited states by different components of the field strengths acting on the vacuum. Therefore the excited states remain gauge invariant and the pseudo-entropy of the two states becomes well defined. At a constant time slice, we subdivide the region by a planar boundary and study pseudo-entropy as a function of the distance from the boundary of the subsystems. We evaluate the difference between pseudo Rényi entropy and Rényi entropy of the ground state and observe that the difference is non-zero near the boundary of the subsystems and it vanishes far away from the boundary. The difference between pseudo Rényi entropy and the Rényi entropy of the ground state near the boundary depends on the ratio of the Euclidean times where two operators are kept. This indicates that the pseudo Rényi entropy and Rényi entropy of the ground state are the same when two operators are far away from the boundary of the subsystems.

The paper is organized as follows. In section (2), we define pseudo-entropy in conformal field theory using the replica trick. In section (2.1), we begin with revisiting the computation of pseudo-entropy in $d=2$ conformal scalar field theory. Moreover, we take a slightly different approach which is to vary the positions of the operators instead of the center of the subsystems which was done in [6]. This approach results in the same conclusion since we have a translational invariance along the spatial direction. Then we move on to evaluating pseudo-entropy in $d=4$ dimension. We prepare two excited states by two operators which act on the vacuum and study pseudo-entropy as a function of the distance from the boundary. In section (3), we study the properties of pseudo-entropy in free Maxwell theory in $d=4$ dimension. We first create two different states by the same components of the field strengths acting on the vacuum located at two different Euclidean times. Similarly, we use two different field tes to prepare different states. In both cases,
we study the behavior of pseudo-entropy as a distance from the boundary of the subsystems. We also study its real-time behavior of it by Wick rotating the Euclidean time to Minkowski time and observe that the difference of pseudo Rényi entropy and the Rényi entropy of the ground state saturates to a constant value $\log 2$ after a large time.

2 Pseudo-entropy in conformal field theory

Given two non-orthogonal states $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$, one defines the pseudo-Rényi entropy in the following way

$$
\begin{equation*}
S_{A}^{(n)}\left(\rho_{A}^{\psi_{1} \mid \psi_{2}}\right)=\frac{1}{1-n} \log \left(\operatorname{Tr}\left(\rho_{\mathrm{A}}^{\psi_{1} \mid \psi_{2}}\right)^{\mathrm{n}}\right), \quad n \geq 2 \tag{2.1}
\end{equation*}
$$

where n is the Rényi parameter and pseudo-entropy can be obtained by taking $n \rightarrow 1$ limit in the equation (2.1). The reduced transition matrix is defined in (1.3). One can evaluate $S_{A}^{(n)}\left(\rho^{\psi_{1} \mid \psi_{2}}\right)$ in quantum field theory using the replica trick method which is explained in details in [6]. The inner product of the states is evaluated using the path integral approach on a manifold with proper boundary conditions imposed on the states. We denote the manifold corresponding to the inner product of the states $\left\langle\psi_{1} \mid \psi_{2}\right\rangle$ as Σ_{1} and $\operatorname{Tr}\left(\rho_{\mathrm{A}}^{\psi_{1} \mid \psi_{2}}\right)^{\mathrm{n}}$ by Σ_{n}. Then, nth pseudo-Rényi entropy can be expressed as [6]

$$
\begin{equation*}
S_{A}^{(n)}\left(\rho_{A}^{\psi_{1} \mid \psi_{2}}\right)=\frac{1}{1-n} \log \frac{Z_{\Sigma_{n}}}{\left(Z_{\Sigma_{1}}\right)^{n}} \tag{2.2}
\end{equation*}
$$

where $Z_{\Sigma_{n}}$ corresponds to the path integral over the n-sheeted manifold. We are interested in evaluating the pseudo-entropy in conformal field theory. We create two states by two operators acting on vacuum at two different points.

$$
\begin{equation*}
\left|\psi_{1}\right\rangle=\mathcal{N}_{1} \mathcal{O}_{1}\left(\mathbf{x}_{1}, t_{1}\right)|0\rangle, \quad\left|\psi_{2}\right\rangle=\mathcal{N}_{2} \mathcal{O}_{2}\left(\mathbf{x}_{2}, t_{2}\right)|0\rangle \tag{2.3}
\end{equation*}
$$

where \mathcal{N}_{1} and \mathcal{N}_{2} are the normalization constants. Therefore the reduced transition matrix becomes

$$
\begin{equation*}
\rho_{A}^{\psi_{1} \mid \psi_{2}}=\mathcal{N} \operatorname{Tr}_{\mathrm{B}}\left(\mathcal{O}_{1}\left(\mathbf{x}_{1}, \mathrm{t}_{1}\right)|0\rangle\langle 0| \mathcal{O}_{2}^{\dagger}\left(\mathbf{x}_{2}, \mathrm{t}_{2}\right)\right) . \tag{2.4}
\end{equation*}
$$

Here \mathcal{N} is the overall constant to ensure the unit normalization of the reduced transition matrix.

We would like to ask how pseudo-entropy varies from the ground state of a conformal field theory. Therefore, we compute the difference between the pseudoRényi entropy and the Rényi entropy of the ground state

$$
\begin{equation*}
\Delta S_{A}^{(n)}=S_{A}^{(n)}\left(\rho_{A}^{\psi_{1} \mid \psi_{2}}\right)-S_{A}^{(n)}\left(\rho_{A}^{(0)}\right) \tag{2.5}
\end{equation*}
$$

where $\rho_{A}^{(0)}$ is the reduced density matrix of the vacuum ,i.e, $\rho_{A}^{(0)}=\operatorname{Tr}_{\mathrm{B}}|0\rangle\langle 0| . \operatorname{Tr}\left(\rho_{\mathrm{A}}^{\psi_{1} \mid \psi_{2}}\right)^{\mathrm{n}}$ can be evaluated by performing path integral over n-sheeted manifold with two operators \mathcal{O}_{1} and \mathcal{O}_{2} inserted at each sheet but in different points. Finally the difference can be written in the following way [6]

$$
\begin{equation*}
\Delta S_{A}^{(n)}=\frac{1}{1-n} \log \frac{\left\langle\mathcal{O}\left(\mathbf{x}_{1}, t_{1}\right) \mathcal{O}^{\dagger}\left(\mathbf{x}_{2}, t_{2}\right) \cdots \mathcal{O}_{2 n}\left(\mathbf{x}_{2 n}, t_{2 n}\right)\right\rangle}{\left.\left(\left\langle\mathcal{O}\left(\mathbf{x}_{1}, t_{1}\right) \mathcal{O}^{\dagger}\left(\mathbf{x}_{2}, t_{2}\right)\right\rangle\right)\right)_{\Sigma_{1}}^{n}} . \tag{2.6}
\end{equation*}
$$

Here path integral over n-sheeted manifold $Z_{\Sigma_{n}}$ is expressed in terms of the $2 n$-point function on the replica surface where each sheet carries two operators located at different points. We will evaluate explicitly $\Delta S_{A}^{(n)}$ for scalar and free Maxwell theories.

2.1 Conformal scalar in $d=2$ dimension

In this section we revisit the analysis of pseudo-entropy of conformal scalar in $d=2$ dimension [6]. We compute the difference between the pseudo Rényi entropy with the Rényi entropy of the ground state.

We begin by considering a massless scalar field theory in Euclidean 2-dimesion with the co-ordinate $w=x+i \tau$. We create two states by acting two operators on the vacuum at the same spatial points but in different Euclidean times a and a^{\prime}.

$$
\begin{align*}
\left|\psi_{1}\right\rangle & =e^{-a H_{\mathrm{CFT}}} \mathcal{O}(x)|0\rangle, \tag{2.7}\\
\left|\psi_{2}\right\rangle & =e^{-a^{\prime} H_{\mathrm{CFT}}} \mathcal{O}(x)|0\rangle .
\end{align*}
$$

For simplicity, let us begin by computing the variation of second pseudo-entropy $\Delta S_{A}^{(2)}$ explicitly. In [6], $\Delta S_{A}^{(2)}$ is computed as a function of the center of the sub-systems, and the inserted operators were kept at fixed spatial points. Here we will investigate $\Delta S_{A}^{(2)}$ as a function of the spatial insertion of the operators. Note that, we have translational invariance along the spatial direction and therefore $\Delta S_{A}^{(2)}$ should remain the same if we vary the center of the subsystems or vary the spatial positions of the operators.

In the path integral picture, the operators are inserted at

$$
\begin{equation*}
\left(w_{1}, \bar{w}_{1}\right)=(x-i a, x+i a), \quad\left(w_{2}, \bar{w}_{2}\right)=\left(x-i a^{\prime}, x+i a^{\prime}\right) . \tag{2.8}
\end{equation*}
$$

We choose the operator $\mathcal{O}=e^{\frac{i}{2} \phi}+e^{-\frac{i}{2} \phi}$, with conformal dimension $h=\bar{h}=\frac{1}{8}$. The variation of the second pseudo-Rényi entropy becomes

$$
\begin{equation*}
\Delta S_{A}^{(2)}=-\log \frac{\left\langle\mathcal{O}\left(w_{1}, \bar{w}_{1}\right) \mathcal{O}^{\dagger}\left(w_{2}, \bar{w}_{2}\right) \mathcal{O}\left(w_{3}, \bar{w}_{3}\right) \mathcal{O}^{\dagger}\left(w_{4}, \bar{w}_{4}\right)\right\rangle}{\left(\left\langle\mathcal{O}\left(w_{1}, \bar{w}_{1}\right) \mathcal{O}^{\dagger}\left(w_{2}, \bar{w}_{2}\right)\right\rangle\right)^{2}} . \tag{2.9}
\end{equation*}
$$

So, the expression of $\Delta S_{A}^{(2)}$ involves the four and two-point functions of the operator $\mathcal{O}=e^{\frac{i}{2} \phi}+e^{-\frac{i}{2} \phi}$ on the replica surface. To compute the four and two-point functions on the replica surface, one uses the conformal mapping

$$
\begin{equation*}
z=\left(\frac{w-u}{w-v}\right)^{\frac{1}{2}} . \tag{2.10}
\end{equation*}
$$

This uniformization map takes branched cover Σ_{2} to a plane. Note that, u and v are the end points of the subsystems which are held fixed. Since it is a free theory, one can evaluate the four-point functions easily using the Wick contraction of the operators. For $n=2$, two-point function is given by [19]

$$
\begin{equation*}
\left\langle\phi\left(z_{1}, \bar{z}_{1}\right) \phi\left(z_{2}, \bar{z}_{2}\right)\right\rangle=-\frac{1}{2} \log \left|z_{1}^{\frac{1}{2}}-z_{2}^{\frac{1}{2}}\right|+\frac{1}{2} \log \left(\frac{\left|z_{1}\right|^{-\frac{1}{2}}}{2}\right)+\frac{1}{2} \log \left(\frac{\left|z_{2}\right|^{-\frac{1}{2}}}{2}\right) . \tag{2.11}
\end{equation*}
$$

Figure 1. The first plot shows the variation of $\Delta S_{A}^{(2)}$ with respect to subsytem size with fixed UV cutoffs. Blue line: $\ell=20$, orange line: $\ell=10$, green line: $\ell=4$. The second plot shows the variation of $\Delta S_{A}^{(2)}$ with respect to UV cutoffs at a fixed subsytem size of $\ell=20$. Blue line: $a=4$, $a^{\prime}=6$, orange line: $a=2, a^{\prime}=8$, green line: $a=0.1, a^{\prime}=9.9$.

We evaluate the four-point functions and express $\Delta S_{A}^{(2)}$ as a function of the cross-ratio

$$
\begin{equation*}
\Delta S_{A}^{(2)}=\log \frac{2}{1+|\eta|+|1-\eta|} \tag{2.12}
\end{equation*}
$$

The cross-ratio η is given by

$$
\begin{equation*}
\eta=\frac{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{4}\right)}{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)} \tag{2.13}
\end{equation*}
$$

where z_{i} 's can be obtained from the relation (2.10) and u, v are kept fixed. We evaluate $\Delta S_{A}^{(2)}$ as a function of the insertion of the operators. Figure (1a) shows $\Delta S_{A}^{(2)}$ for different sub-system size $u-v=\ell$, keeping a and a^{\prime} fixed. We plot $\Delta S_{A}^{(2)}$ for $\ell=20, \ell=10, \ell=4$ and observe that $\Delta S_{A}^{(2)}$ picks up a sharp negative value when the insertion point becomes very close to the edges of the subsystems. Since we have translational invariance along the spatial line, one can also vary the center of the subsystems $x=\frac{u+v}{2}$ and observe the similar behavior of $\Delta S_{A}^{(2)}$ [6].

Therefore second pseudo Rényi entropy is mostly zero, except at the points where operators become very close to the edges of the sub-systems.

This property can be understood in the language of entanglement swapping [6]. When the spatial positions of the operators become close to the boundary, the system exhibits entanglement swapping. But entanglement swapping does not occur in the case where both the operators are located in one of the subsystems. In this case, there is no contribution to the $\Delta S_{A}^{(2)}$. Therefore, pseudo Rényi entropy becomes the same as the ground state Rényi entropy. It was also proved that the pseudo entropy is always greater than the original entanglement entropy of each state for 2-qubit systems but this is not true in general for all systems with larger degrees of freedom [6]. For example, in the four-qubit systems, thermofield double states, and two-coupled harmonic oscillators the pseudo entropy becomes smaller than the original entanglement entropy of each state. Therefore the monotonicity
of the pseudo entropy is not a general feature for all systems rather one has to investigate case by case. In this paper, we mainly focus on the variation of pseudo entropy with respect to the ground state Rényi entropy.

2.2 Conformal scalar in $d=4$ dimension

In this section, we study the pseudo-entropy in conformal field theory in $d=4$ dimension. In particular, we are interested to evaluate the difference between the pseudo Rényi entropy and the Rényi entropy of the ground states, and the expression is given in (2.6). In $d=2$ dimension, we observe that the quantity $\Delta S_{A}^{(2)}$ decreases sharply near the boundary of the subsystems. Therefore we want to investigate the property of $\Delta S_{A}^{(2)}$ and particularly how it behaves near the boundary of the subsystem in $d=4$ dimension.

Same operator different insertion. At a constant time slice we subdivide the space and restrict one of the subspaces in the region of $x>0$ which means the two subsystems are separated by $y-z$ plane.

We now consider two excited states which are prepared by acting two same operators but at different points on the vacuum in $d=4$ dimension.

$$
\begin{align*}
|\psi\rangle & =e^{-a H} \phi\left(x_{1}, y_{1}, z_{1}\right)|0\rangle \\
|\chi\rangle & =e^{-a^{\prime} H} \phi\left(x_{2}, y_{1}, z_{1}\right)|0\rangle . \tag{2.14}
\end{align*}
$$

Here $\phi(x, y, z)$ is the conformal primary operator with unit dimension and a and a^{\prime} are the cutoffs to avoid the UV divergences which can also be thought of as Euclidean times. Since we want to study $\Delta S_{A}^{(2)}$ as a function of the distance from the boundary, we substitute $y_{1}=y_{2}$ and $z_{1}=z_{2}$, which means two operators are placed at the same points along the boundary of the subsystems. Therefore $\Delta S_{A}^{(2)}$ is a function of the Euclidean times and the transverse distance from the boundary located at $x=0$. For computational simplification, we use polar coordinates for the $t-x$ plane and the other $y-z$ plane remains in cartesian. Therefore we work with the following metric

$$
\begin{equation*}
d s^{2}=d r^{2}+r^{2} d \theta^{2}+d y^{2}+d z^{2} . \tag{2.15}
\end{equation*}
$$

We now compute $\Delta S_{A}^{(2)}$,

$$
\begin{equation*}
\Delta S_{A}^{(2)}=-\log \frac{\left\langle\phi\left(r_{1}, \theta_{1}^{(1)}, y_{1}, z_{1}\right) \phi\left(r_{2}, \theta_{2}^{(1)}, y_{1}, z_{1}\right) \phi\left(r_{1}, \theta_{1}^{(2)}, y_{1}, z_{1}\right) \phi\left(r_{2}, \theta_{2}^{(2)}, y_{1}, z_{1}\right)\right\rangle}{\left\langle\phi\left(r_{1}, \theta_{1}^{\prime} y_{1}, z_{1}\right) \phi\left(r_{2}, \theta_{2}, y_{1}, z_{1}\right)\right\rangle_{\Sigma_{1}}^{2}} . \tag{2.16}
\end{equation*}
$$

We analyze the pseudo-entropy with the same operators but inserted at two different points. Since y and z coordinates are the same, r_{1} and r_{2} can be written as

$$
r_{1}=\sqrt{a^{2}+x_{1}^{2}}, \quad r_{2}=\sqrt{a^{\prime 2}+x_{2}^{2}} .
$$

Also, the angle between two points are given by

$$
\begin{equation*}
\cos \left(\theta_{1}-\theta_{2}\right)=\frac{a a^{\prime}+x_{1} x_{2}}{r_{1} r_{2}} \tag{2.17}
\end{equation*}
$$

To evaluate the $\Delta S_{A}^{(2)}$, we compute the four-point function by using Wick-contraction

$$
\begin{align*}
&\left\langle\phi\left(r_{1}, \theta_{1}^{(1)}, y, z\right) \phi\left(r_{2}, \theta_{2}^{(1)}, y, z\right) \phi\left(r_{1}, \theta_{1}^{(2)}, y, z\right) \phi\left(r_{2}, \theta_{2}^{(2)}, y, z\right)\right\rangle= \\
&\left\langle\phi\left(r_{1}, \theta_{1}^{(1)}, y, z\right) \phi\left(r_{2}, \theta_{2}^{(1)}, y, z\right)\right\rangle\left\langle\phi\left(r_{1}, \theta_{1}^{(2)}, y, z\right) \phi\left(r_{2}, \theta_{2}^{(2)}, y, z\right)\right\rangle \\
&+\left\langle\phi\left(r_{1}, \theta_{1}^{(1)}, y, z\right) \phi\left(r_{2}, \theta_{2}^{(2)}, y, z\right)\right\rangle\left\langle\phi\left(r_{2}, \theta_{2}^{(1)}, y, z\right) \phi\left(r_{1}, \theta_{1}^{(2)}, y, z\right)\right\rangle \\
&+\left\langle\phi\left(r_{1}, \theta_{1}^{(1)}, y, z\right) \phi\left(r_{1}, \theta_{1}^{(2)}, y, z\right)\right\rangle\left\langle\phi\left(r_{2}, \theta_{2}^{(1)}, y, z\right) \phi\left(r_{2}, \theta_{2}^{(2)}, y, z\right)\right\rangle . \tag{2.18}
\end{align*}
$$

The two-point functions of conformal primaries on the replica surface are known [20]. The two-point function which involves the two operators on the same sheet is given by

$$
\begin{align*}
\left\langle\phi\left(r_{1}, \theta_{1}^{(1)}, y, z\right) \phi\left(r_{2}, \theta_{2}^{(1)}, y, z\right)\right\rangle & =\left\langle\phi\left(r_{1}, \theta_{1}^{(2)}, y, z\right) \phi\left(r_{2}, \theta_{2}^{(2)}, y, z\right)\right\rangle, \\
& =\frac{1}{\left(8 \pi^{2}\right)\left(r_{1}+r_{2}\right)\left(\left(r_{1}+r_{2}\right)-2 \sqrt{r_{1} r_{2}} \cos \frac{\left(\theta_{1}-\theta_{2}\right)}{2}\right)} . \tag{2.19}
\end{align*}
$$

Similarly we have the two-point function which involves the operators across the sheet. This two-point function can be obtained by shifting $\theta_{2} \rightarrow \theta_{2}+2 \pi$ in the expression of the two-point function on the same sheet. Therefore we obtain the two-point functions across the sheets

$$
\begin{align*}
\left\langle\phi\left(r_{1}, \theta_{1}^{(1)}, y, z\right) \phi\left(r_{2}, \theta_{2}^{(2)}, y, z\right)\right\rangle & =\left\langle\phi\left(r_{2}, \theta_{2}^{(1)}, y, z\right) \phi\left(r_{1}, \theta_{1}^{(1)}, y, z\right)\right\rangle, \\
& =\frac{1}{\left(8 \pi^{2}\right)\left(r_{1}+r_{2}\right)\left(\left(r_{1}+r_{2}\right)+2 \sqrt{r_{1} r_{2}} \cos \frac{\left(\theta_{1}-\theta_{2}\right)}{2}\right)} . \tag{2.20}
\end{align*}
$$

We also require the two-point functions across the sheets but involving the same points. This can be obtained by taking the limit $r_{1} \rightarrow r_{2}$ and $\theta_{1} \rightarrow \theta_{2}+2 \pi$ in the expression of the correlator on the same sheet (2.19). So the two-point functions involving the same points across the sheets are given by

$$
\begin{align*}
& \left\langle\phi\left(r_{1}, \theta_{1}^{(1)}, y, z\right) \phi\left(r_{1}, \theta_{1}^{(2)}, y, z\right)\right\rangle=\frac{1}{\left(64 \pi^{2} r_{1}^{2}\right)}, \\
& \left\langle\phi\left(r_{2}, \theta_{2}^{(1)}, y, z\right) \phi\left(r_{2}, \theta_{2}^{(2)}, y, z\right)\right\rangle=\frac{1}{\left(64 \pi^{2} r_{2}^{2}\right)} . \tag{2.21}
\end{align*}
$$

Calculation of pseudo-entropy. Given all the two-point functions one can compute the four-point function explicitly. We therefore write the four-point functions explicitly in terms of r and θ variables

$$
\begin{align*}
\left\langle\phi\left(r_{1}, \theta_{1}^{(1)}, y, z\right) \phi\left(r_{2}, \theta_{2}^{(1)}, y, z\right) \phi\left(r_{1}, \theta_{1}^{(2)}, y, z\right) \phi\left(r_{2}, \theta_{2}^{(2)}, y, z\right)\right\rangle= \\
\frac{\frac{64\left(r_{2} r_{1}\left(\cos \left(\theta_{1}-\theta_{2}\right)+5\right)+2 r_{1}^{2}+2 r_{2}^{2}\right)}{\left(r_{1}+r_{2}\right)^{2}\left(-\frac{1}{2} r_{2} r_{1}\left(\cos \left(\theta_{1}-\theta_{2}\right)-3\right)+r_{1}^{2}+r_{2}^{2}\right)^{2}}+\frac{1}{r_{1}^{2} r_{2}^{2}}}{4096 \pi^{4}} . \tag{2.22}
\end{align*}
$$

The two-point function on the $n=1$ sheet is also given by

$$
\begin{equation*}
\left\langle\phi\left(r_{1}, \theta_{1}, y, z\right) \phi\left(r_{2}, \theta_{2}, y, z\right)\right\rangle_{\Sigma_{1}}=\frac{1}{4 \pi^{2}\left(r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)\right)} . \tag{2.23}
\end{equation*}
$$

Figure 2. $\Delta S_{A}^{(2)}$ as a function of the center of the operators.

This is just the usual two-point function on the flat space which depends on the distance between two pints. Therefore the pseudo-entropy for $n=2$ can be obtained

$$
\begin{align*}
\Delta S_{A}^{(2)} & =-\log \frac{\mathcal{N}}{\mathcal{D}}, \quad \mathcal{N}=\frac{\frac{64\left(r_{2} r_{1}\left(\cos \left(\theta_{1}-\theta_{2}\right)+5\right)+2 r_{1}^{2}+2 r_{2}^{2}\right)}{\left(r_{1}+r_{2}\right)^{2}\left(-\frac{1}{2} r_{2} r_{1}\left(\cos \left(\theta_{1}-\theta_{2}\right)-3\right)+r_{1}^{2}+r_{2}^{2}\right)^{2}}+\frac{1}{r_{1}^{2} r_{2}^{2}}}{4096 \pi^{4}} \\
\mathcal{D} & =\left(\frac{1}{4 \pi^{2}\left(r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)\right)}\right)^{2} \tag{2.24}
\end{align*}
$$

Here \mathcal{N} is the four-point function given in (2.22) and \mathcal{D} is the square of the two-point function on $n=1$ sheet which is given in (2.23).

We now substitute $x_{1}=x_{2}=x$ and plot the variation of pseudo Rényi entropy as function of center of the two operators $x=\frac{x_{1}+x_{2}}{2}$. From the plot, we observe that $\Delta S_{A}^{(2)}$ increases as the center of the operators approaches the boundary of the subsystems. This indicates the entanglement swapping near the boundary of the subsystem.

Let us understand $\Delta S_{A}^{(2)}$ as a function of x. When the center of the two operators becomes very close to the boundary

$$
\begin{equation*}
\lim _{x \rightarrow 0} \Delta S_{A}^{(2)}=\log \left(\frac{256}{\frac{\left(a-a^{\prime}\right)^{4}}{a^{2}\left(a^{\prime}\right)^{2}}+\frac{128\left(a^{2}+6 a a^{\prime}+\left(a^{\prime}\right)^{2}\right)}{\left(a^{\prime}+a\right)^{2}}}\right)+\mathcal{O}\left(x^{2}\right)+\cdots \tag{2.25}
\end{equation*}
$$

We keep two different UV cutoffs. Therefore it is expected that $\Delta S_{A}^{(2)}$ will take a finite positive value when a and a^{\prime} are comparable which is $a \sim a^{\prime}$. We define the ratio $\frac{a^{\prime}}{a}=p$ because as we will see the near boundary behavior of $\Delta S_{A}^{(2)}$ will depend on this ratio.

When $p \sim 1$, which means the two UV cutoffs are comparable the leading behavior of the $\lim _{x \rightarrow 0} \Delta S_{A}^{(2)} \sim \frac{1}{8}(p-1)^{2}>0$. In the first plot of, we keep $a \sim a^{\prime}$ and observe that $\Delta S_{A}^{(2)}$ becomes a finite positive quantity near the boundary. In the plot (2a) green line: $a=8, a^{\prime}=12$; orange line $a=7, a^{\prime}=13$ and blue line $a=6$ and $a^{\prime}=14$.

When $p \sim 0$, which means one of the UV cutoffs are negligible in compared to the other, the leading behavior of $\lim _{x \rightarrow 0} \Delta S_{A}^{(2)} \sim\left(\log p^{2}\right)<0$. In the second plot (2b) we

Figure 3. Real-time evolution of $\Delta S_{A}^{(2)}$. Blue line: $x=2$, ; orange line $x=4$; green line $x=6$. We keep $\epsilon=0.1$ in all cases.
consider the case where $a \gg a^{\prime}$. We observe that $\Delta S_{A}^{(2)}$ becomes sharply negative near the boundary. In the plot, green line: $a=100, a^{\prime}=5$; orange line $a=150, a^{\prime}=8$ and blue line $a=200$ and $a^{\prime}=10$.

But in both cases, $\Delta S_{A}^{(2)}$ changes significantly near the boundary of the subsystems due the transition in the entanglement. In the large x limit where the center of the operators is far away from the boundary, $\Delta S_{A}^{(2)}$ becomes negligible.

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \Delta S_{A}^{(2)}=\frac{\left(a-a^{\prime}\right)^{2}}{8 x^{2}}+\mathcal{O}\left(\frac{1}{x^{4}}\right)+\cdots \tag{2.26}
\end{equation*}
$$

This feature is similar to the case of conformal scalar in $d=2$ dimension. When the operators are far away from the boundary there is no contribution to the $\Delta S_{A}^{(2)}$ indicating the fact that pseudo Rényi entropy becomes the same as the ground state Rényi entropy.

Real-time behavior. Real-time behavior of $\Delta S_{A}^{(2)}$ can be evaluated by substituting $a=-i t-\epsilon$ and $a^{\prime}=-i t+\epsilon$ in the expression given in (2.24). Here t is the real-time and ϵ is a small positive real number used to avoid the divergence. We observe that $\Delta S_{A}^{(2)}$ becomes $\log 2$ in the large time. This has been noted earlier in the context of local quench by a scalar primary operator in $d=4$ dimension [19-22]. Therefore our computation of $\Delta S_{A}^{(2)}$ in (2.24) provides a good consistency checks in the real-time framework where one interprets it as a transition in the entanglement due to local quench of a scalar primary operator.

From the plot, we observe that $\Delta S_{A}^{(2)}=0$ when $t<x$ and it starts increasing immediately after $t=x$ and finally approaches to $\log 2$. This can be understood in the language of relativistic propagation of quasi-particles [20]. One can decompose the scalar field $\phi=\phi_{L}+\phi_{R}$ where ϕ_{L} and ϕ_{R} corresponds to the left $(x<0)$ and right ($x>0$) moving modes. The entanglement between two modes kicks in at $t \geq x$ and they get maximally entangled at the large time. We calculate the large time behavior,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \Delta S_{A}^{(2)}=\log 2-\frac{x^{2}}{t^{2}}+\mathcal{O}\left(\frac{1}{t^{4}}\right) \tag{2.27}
\end{equation*}
$$

3 Free Maxwell field in $d=4$ dimension

In this section, we evaluate the pseudo-entropy of the free Maxwell field in $d=4$ dimension. The field strength can be used to create excitations. We create excitations by the same components of the field strengths with different cutoffs. We also use the different components of the field strengths to create different states. We will follow the procedure developed in the previous section to compute $\Delta S_{A}^{(2)}$ analytically. In $d=4$ dimension, the free Maxwell theory is conformal, and therefore all the two-point functions and four-point functions can be computed exactly. But we are using the replica trick and therefore all the two-point functions have to be computed on the replica surface which was introduced in [16].

We know that the $\mathrm{U}(1)$ theory is gauge invariant under the transformation

$$
\begin{equation*}
A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \epsilon, \tag{3.1}
\end{equation*}
$$

where ϵ is the gauge parameter. We can use the covariant gauge condition to fix the gauge

$$
\begin{equation*}
\partial^{\mu} A_{\mu}=0 . \tag{3.2}
\end{equation*}
$$

The equations of motion in the covariant gauge becomes

$$
\begin{equation*}
\nabla^{2} A_{\mu}=0 \tag{3.3}
\end{equation*}
$$

Therefore under the gauge transformation

$$
\begin{equation*}
A_{\mu}^{\prime}=A_{\mu}+\partial_{\mu} \epsilon, \quad \text { with } \quad \square \epsilon=0 . \tag{3.4}
\end{equation*}
$$

Given a gauge potential which satisfies (3.2) and (3.3) one can make a further gauge transformation so that

$$
\begin{equation*}
\partial^{a} A_{a}^{\prime}=0, \quad \partial^{i} A_{i}^{\prime}=0 \quad a \in\{r, \theta\}, i \in\{y, z\} . \tag{3.5}
\end{equation*}
$$

These two gauge restrictions acting on the gauge potential can be done by choosing the gauge transformation to be

$$
\begin{equation*}
\epsilon=-\frac{\partial^{i} A_{i}}{\nabla^{2}}, \quad \nabla^{2}=\partial_{y}^{2}+\partial_{z}^{2} . \tag{3.6}
\end{equation*}
$$

Note that the gauge transformation also satisfies $\square \epsilon=0$. Therefore, it is a valid choice of gauge. Note that (3.5), are two gauge restrictions acting on two subspaces separately and gauge potential becomes transverse in both the subspaces.

We need to evaluate the two and four-point functions on the replica surface. For this it is convenient to choose polar coordinates

$$
\begin{equation*}
d s^{2}=d r^{2}+r^{2} d \theta^{2}+(d y)^{2}+(d z)^{2} . \tag{3.7}
\end{equation*}
$$

Here $\theta \sim \theta+2 \pi n$. This n corresponds to the Rényi parameter and one gets a periodicity in the θ coordinate after $2 \pi n$ rotation. The two point function fo the gauge field on the cone satisfying the gauge condition (3.5), is given by [16, 23]

$$
\begin{align*}
G_{\mu \nu^{\prime}}\left(x, x^{\prime}\right) & =\left\langle A_{\mu}(x) A_{\nu^{\prime}}\left(x^{\prime}\right)\right\rangle \tag{3.8}\\
G_{a b^{\prime}}\left(x, x^{\prime}\right) & =\frac{P_{a} P_{b^{\prime}}}{\widehat{\nabla}^{2}} G\left(x, x^{\prime}\right), \quad G_{i j^{\prime}}\left(x, x^{\prime}\right)=\left[\delta_{i j}-\frac{\partial_{i} \partial_{j}}{\nabla^{2}}\right] \tilde{G}\left(x, x^{\prime}\right), \\
G_{a i^{\prime}}\left(x, x^{\prime}\right) & =G_{i a^{\prime}}\left(x, x^{\prime}\right)=0
\end{align*}
$$

All two-point functions are transverse and $G\left(x, x^{\prime}\right)$ is the scalar propagator on the cone which is given by

$$
\begin{align*}
G\left(x, x^{\prime}\right) & =\frac{1}{4 n \pi^{2} r r^{\prime}\left(a-a^{-1}\right)} \frac{a^{\frac{1}{n}}-a^{-\frac{1}{n}}}{a^{\frac{1}{n}}+a^{-\frac{1}{n}}-2 \cos \left(\frac{\theta-\theta^{\prime}}{n}\right)} \tag{3.9}\\
\frac{a}{1+a^{2}} & =\frac{r r^{\prime}}{\left(x^{i}-x^{\prime}\right)^{2}+r^{2}+r^{\prime 2}}, \quad r=\sqrt{t^{2}+x^{2}}, r^{\prime}=\sqrt{t^{\prime 2}+x^{\prime 2}}
\end{align*}
$$

and P_{a} are defined as

$$
\begin{equation*}
P_{a}=\epsilon_{a b} g^{b c} \nabla_{c}, \quad \quad \epsilon_{12}=-\epsilon_{21}=r, \epsilon_{11}=\epsilon_{22}=0 \tag{3.10}
\end{equation*}
$$

Note that, the scalar two-point function (3.9) on the replica surface is not invariant under translation in the t and x coordinate. So it is convenient to use the gauge we choose to write the correlators (3.8) on the replica surface. Using the gauge invariant two-point functions on the replica surface, we compute $\Delta S_{A}^{(2)}$ for different components of the field strength.

3.1 Excitation by the same components of the field strength with different cutoffs

The field strength is the gauge invariant operator and therefore different states prepared by the different components of the field strengths acting on vacuum remain gauge invariant. We choose two field strengths located at two different Euclidean times. We obtain pseudo Rényi entropy for $n=2$ explicitly to study the properties of it.

Excitation by $\boldsymbol{F}_{\boldsymbol{r} \boldsymbol{\theta}}$. We begin with the component $F_{r \boldsymbol{\theta}}$. We prepare two states in the following way

$$
\begin{align*}
\left|\psi_{1}\right\rangle & =e^{-\alpha H_{\mathrm{CFT}}} F_{r \theta}\left(x_{1}, y_{1}, z_{1}\right)|0\rangle \tag{3.11}\\
\left|\psi_{2}\right\rangle & =e^{-\alpha^{\prime} H_{\mathrm{CFT}}} F_{r \theta}\left(x_{2}, y_{1}, z_{1}\right)|0\rangle
\end{align*}
$$

We keep y and z coordinates of the operators the same and α, α^{\prime} are the two different cutoffs to avoid UV divergence. The cutoffs α and α^{\prime} distinguish two states. One can think of it as two operators located at two different Euclidean times. The subsystem is associated with $x>0$ region which means the $y-z$ plane separates the two subsystems. Therefore, two operators are separated only along the perpendicular direction from the boundary of
the subsystems, We now evaluate $\Delta S_{A}^{(2)}$,

$$
\begin{equation*}
\Delta S_{A}^{(2)}=-\log \frac{\left\langle F_{r \theta}\left(r_{1}, \theta_{1}^{(1)}, y_{1}, z_{1}\right) F_{r \theta}\left(r_{2}, \theta_{2}^{(1)}, y_{1}, z_{1}\right) F_{r \theta}\left(r_{1}, \theta_{1}^{(2)}, y_{1}, z_{1}\right) F_{r \theta}\left(r_{2}, \theta_{2}^{(2)}, y_{1}, z_{1}\right)\right\rangle}{\left\langle F_{r \theta}\left(r_{1}, \theta_{1}^{\prime} y_{1}, z_{1}\right) F_{r \theta}\left(r_{2}, \theta_{2}, y_{1}, z_{1}\right)\right\rangle_{\Sigma_{1}}^{2}} \tag{3.12}
\end{equation*}
$$

To evaluate $\Delta S_{A}^{(2)}$, we need to have the four-point and two-point functions of the gauge invariant operator $F_{r \theta}$.

Using the definitions of the gauge invariant two-point functions, we compute

$$
\begin{align*}
& \left\langle F_{r \theta}\left(x_{i_{1}}\right) F_{r \theta}\left(x_{i_{2}}\right)\right\rangle=\partial_{r_{1}} \partial_{r_{2}}\left\langle A_{\theta} A_{\theta}\right\rangle+\partial_{\theta_{1}} \partial_{\theta_{2}}\left\langle A_{r} A_{r}\right\rangle-\partial_{r_{1}} \partial_{\theta_{2}}\left\langle A_{\theta} A_{r}\right\rangle-\partial_{\theta_{1}} \partial_{r_{2}}\left\langle A_{r} A_{\theta}\right\rangle, \\
& \quad=\left[\partial_{r_{1}} \partial_{r_{2}}\left(\frac{P_{1} P_{1}^{\prime}}{\nabla^{2}}\right)+\partial_{\theta_{1}} \partial_{\theta_{2}}\left(\frac{P_{0} P_{0}^{\prime}}{\nabla^{2}}\right)-\partial_{r_{1}} \partial_{\theta_{2}}\left(\frac{P_{1} P_{0}^{\prime}}{\nabla^{2}}\right)-\partial_{r_{2}} \partial_{\theta_{1}}\left(\frac{P_{0} P_{1}^{\prime}}{\nabla^{2}}\right)\right] G\left(x_{i_{1}} ; x_{i_{2}}\right), \\
& \quad=-\left(r_{1} r_{2}\right)\left(\partial_{r_{1}}^{2}+\frac{1}{r_{1}} \partial_{r_{1}}+\frac{1}{r_{1}^{2}} \partial_{\theta_{1}}^{2}\right) G\left(x_{i_{1}} ; x_{i_{2}}\right) . \tag{3.13}
\end{align*}
$$

Here $G\left(x_{i_{1}} ; x_{i_{2}}\right)$ is the massless scalar Green's function on the replica surface in $d=4$ dimension and the definition of the operator P_{a} is given in (3.10). P_{a} denotes the operator located at the first coordinate and P_{a}^{\prime} denotes the operator located at the second coordinate. To derive the last line in (3.13), we use the on-shell condition.

$$
\left(\partial_{r_{1}}^{2}+\frac{1}{r_{1}} \partial_{r_{1}}+\frac{1}{r_{1}^{2}} \partial_{\theta_{1}}^{2}+\nabla^{2}\right) G\left(x_{i_{1}} ; x_{i_{2}}\right)=0, \quad \nabla^{2}=\partial_{y_{1}}^{2}+\partial_{z_{1}}^{2}
$$

It is now easy to compute the four-point function using the Wick contraction. The fourpoint function involves the correlators on the same sheets as well as the correlators across the sheets. The two-point function across the sheet can be obtained by shifting $\theta_{2} \rightarrow \theta_{2}+2 \pi$ in the expression of the correlators on the same sheet. This follows exactly the same pattern we observed in evaluating the four-point function of the scalar field in $d=4$ dimension. Therefore, the four-point function is given by

$$
\begin{align*}
& \left\langle F_{r \theta}\left(r_{1}, \theta_{1}^{(1)}, y_{1}, z_{1}\right) F_{r \theta}\left(r_{2}, \theta_{2}^{(1)}, y_{1}, z_{1}\right) F_{r \theta}\left(r_{1}, \theta_{1}^{(2)}, y_{1}, z_{1}\right) F_{r \theta}\left(r_{2}, \theta_{2}^{(2)}, y_{1}, z_{1}\right)\right\rangle \\
& \quad= \\
& \quad\left\langle F_{r \theta}\left(r_{1}, \theta_{1}^{(1)}, y_{1}, z_{1}\right) F_{r \theta}\left(r_{2}, \theta_{2}^{(1)}, y_{1}, z_{1}\right)\right\rangle\left\langle F_{r \theta}\left(r_{1}, \theta_{1}^{(2)}, y_{1}, z_{1}\right) F_{r \theta}\left(r_{2}, \theta_{2}^{(2)}, y_{1}, z_{1}\right)\right\rangle+ \\
& \\
& \quad\left\langle F_{r \theta}\left(r_{1}, \theta_{1}^{(1)}, y_{1}, z_{1}\right) F_{r \theta}\left(r_{1}, \theta_{1}^{(2)}, y_{1}, z_{1}\right)\right\rangle\left\langle F_{r \theta}\left(r_{2}, \theta_{2}^{(1)}, y_{1}, z_{1}\right) F_{r \theta}\left(r_{2}, \theta_{2}^{(2)}, y_{1}, z_{1}\right)\right\rangle+ \\
& \tag{3.14}\\
& \quad\left\langle F_{r \theta}\left(r_{1}, \theta_{1}^{(1)}, y, z\right) F_{r \theta}\left(r_{2}, \theta_{2}^{(2)}, y_{1}, z_{1}\right)\right\rangle\left\langle F_{r \theta}\left(r_{2}, \theta_{2}^{(1)}, y_{1}, z_{1}\right) F_{r \theta}\left(r_{1}, \theta_{1}^{(2)}, y_{1}, z_{1}\right)\right\rangle \\
& = \\
& \quad \frac{r_{1}^{2} r_{2}^{2}\left(\sqrt{r_{1} r_{2}}\left(-\cos \left(\frac{1}{2}\left(\theta_{1}-\theta_{2}\right)\right)\right)+r_{1}+r_{2}\right)^{2}}{4 \pi^{4}\left(r_{1}+r_{2}\right)^{6}\left(-2 \sqrt{r_{1} r_{2}} \cos \left(\frac{1}{2}\left(\theta_{1}-\theta_{2}\right)\right)+r_{1}+r_{2}\right)^{4}}+\left(-\frac{3}{256 \pi^{2} r_{1}^{2}}\right)\left(-\frac{3}{256 \pi^{2} r_{2}^{2}}\right) \\
& \quad+\frac{r_{1}^{2} r_{2}^{2}\left(\sqrt{r_{1} r_{2}} \cos \left(\frac{1}{2}\left(\theta_{1}-\theta_{2}\right)\right)+r_{1}+r_{2}\right)^{2}}{4 \pi^{4}\left(r_{1}+r_{2}\right)^{6}\left(2 \sqrt{r_{1} r_{2}} \cos \left(\frac{1}{2}\left(\theta_{1}-\theta_{2}\right)\right)+r_{1}+r_{2}\right)^{4}} .
\end{align*}
$$

We also compute the two-point function on $n=1$ sheet

$$
\begin{align*}
\left\langle F_{r \theta}\left(r_{1}, \theta_{1}^{(1)}, y, z\right) F_{r \theta}\left(r_{2}, \theta_{2}^{(1)}, y, z\right)\right\rangle_{\Sigma_{1}} & =-\left(r_{1} r_{2}\right)\left(\partial_{r_{1}}^{2}+\frac{1}{r_{1}} \partial_{r_{1}}+\frac{1}{r_{1}^{2}} \partial_{\theta_{1}}^{2}\right) G_{n=1}\left(x_{i_{1}} ; x_{i_{2}}\right) \\
& =-\frac{r_{1} r_{2}}{\pi^{2}\left(-2 r_{2} r_{1} \cos \left(\theta_{1}-\theta_{2}\right)+r_{1}^{2}+r_{2}^{2}\right)^{2}} \tag{3.15}
\end{align*}
$$

Figure 4. $\Delta S_{A}^{(2)}$ as a function of the center of the operators $F_{r \theta}$.
Note that, $\Delta S_{A}^{(2)}$ becomes a function of r and θ only because we keep the operators at the same y and z coordinates and separated them along the transverse direction from the boundary. We write r_{1} and r_{2}

$$
\begin{equation*}
r_{1}=\sqrt{\alpha^{2}+x_{1}^{2}}, \quad r_{2}=\sqrt{\alpha^{\prime 2}+x_{2}^{2}} . \tag{3.16}
\end{equation*}
$$

Also, the angle between two points are given by

$$
\begin{equation*}
\cos \left(\theta_{1}-\theta_{2}\right)=\frac{\alpha \alpha^{\prime}+x_{1} x_{2}}{r_{1} r_{2}} . \tag{3.17}
\end{equation*}
$$

With two and four-point functions on the replica surface, we can obtain $\Delta S_{A}^{(2)}$. It becomes a function of the ratio of the four-point function and the square of the two-point function on the replica surface.

$$
\begin{equation*}
\Delta S_{A}^{(2)}=-\log \frac{\mathcal{N}_{1}}{\mathcal{D}_{1}} \tag{3.18}
\end{equation*}
$$

where \mathcal{N}_{1} is given in (3.14) and \mathcal{D}_{1} is the square of the expression given in (3.15). Now we substitute $x_{1}=x_{2}$ and plot $\Delta S_{A}^{(2)}$ as a function of the center of the operators $x=\frac{x_{1}+x_{2}}{2}$.

The two-point function of $F_{r \theta}$ on the replica surface is proportional to the scalar Laplacian (in r and θ coordinates) acting on the Green's function. So one can expect a similar behavior of the pseudo entropy for the excited states prepared by field strength $F_{r \theta}$ acting on ground state at different Euclidean times. Let us investigate near boundary behavior of $\Delta S_{A}^{(2)}$.

$$
\begin{align*}
& \lim _{x \rightarrow 0} \Delta S_{A}^{(2)} \\
& =\log \left(\frac{65536 \alpha^{4}\left(\alpha^{\prime}\right)^{4}}{\left(\alpha-\alpha^{\prime}\right)^{8}\left(\frac{32768 \alpha^{4}\left(\alpha^{6}+15 \alpha\left(\alpha^{\prime}\right)^{5}+\left(\alpha^{\prime}\right)^{6}+15 \alpha^{5} \alpha^{\prime}+27 \alpha^{4}\left(\alpha^{\prime}\right)^{2}+42 \alpha^{3}\left(\alpha^{\prime}\right)^{3}+27 \alpha^{2}\left(\alpha^{\prime}\right)^{4}\right)\left(\alpha^{\prime}\right)^{4}}{\left(\alpha-\alpha^{\prime}\right)^{8}\left(\alpha^{\prime}+\alpha\right)^{6}}+9\right)}\right)+\cdots \tag{3.19}
\end{align*}
$$

Figure 5. $\Delta S_{A}^{(2)}$ as a function for same components $F_{r \theta}$ of the field strength. Blue line: $x=2$; orange line $x=4$; green line $x=6$. We keep $\epsilon=0.01$ in all cases.

It is clear that near boundary behavior of $\Delta S_{A}^{(2)}$ will depend on the ratio of the two Euclidean times $p=\frac{\alpha^{\prime}}{\alpha}$.

When $p \sim 1$, which means the two Euclidean times are comparable, the leading behavior of the $\lim _{x \rightarrow 0} \Delta S_{A}^{(2)} \sim \frac{3}{128}(p-1)^{4}>0$. In the first plot of, we keep $\alpha \sim \alpha^{\prime}$ and observe that $\Delta S_{A}^{(2)}$ becomes a finite positive quantity near the boundary. In the plot green line: $\alpha=8, \alpha^{\prime}=12$; orange line $\alpha=7, \alpha^{\prime}=13$ and blue line $\alpha=6$ and $\alpha^{\prime}=14$.

When $p \sim 0, \lim _{x \rightarrow 0} \Delta S_{A}^{(2)} \sim \log (p)<0$. In the second plot we consider the case where $\alpha \gg \alpha^{\prime}$. We observe that $\Delta S_{A}^{(2)}$ becomes sharply negative near the boundary. In the plot, green line: $\alpha=100, \alpha^{\prime}=5$; orange line $\alpha=150, \alpha^{\prime}=8$ and blue line $\alpha=200$ and $\alpha^{\prime}=10$.

But in both cases, $\Delta S_{A}^{(2)}$ changes significantly near the boundary of the subsystems due to the transition in the entanglement. In the large x limit where the center of the operators is far away from the boundary, $\Delta S_{A}^{(2)}$ becomes negligible. This is what we also observed in the case of the scalar field in $d=4$ dimension. Therefore, pseudo Rényi entropy only differs from the ground state Rényi entropy near the boundary of the subsystems.

Real-time evolution. We also analyze the real-time evolution of ΔS_{A}^{2} for the excited states created by $F_{r \theta}$ located at two different Euclidean times. To obtain the real-time expression, we substitute $\alpha=-i t-\epsilon$ and $\alpha^{\prime}=-i t+\epsilon$ in the expression of $\Delta S_{A}^{(2)}$, where ϵ is a small positive real number. We insert the operators at the same y and z co-ordinate. We fix the x co-ordinate and observe the real-time dependence of $\Delta S_{A}^{(2)}$. We observe that in the large time $\Delta S_{A}^{(2)}$ reaches to $\log 2$ when the left and right moving states become maximally entangled [22].

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \Delta S_{A}^{(2)}=\log (2)-\frac{9 x^{2}}{4 t^{2}}+\cdots \tag{3.20}
\end{equation*}
$$

Like the conformal scalar in $d=4$ dimension, $\Delta S_{A}^{(2)}$ remain zero till $t=x$. It starts growing after that and saturates to $\log 2$ at large time. But the growth of $\Delta S_{A}^{(2)}$ to reach the maximal entanglement differs from the scalar case.

Excitation by $\boldsymbol{F}_{\boldsymbol{y z}}$. We consider the case where the excitations are created by two same components of the field strength at different Euclidean times α and α^{\prime}. We choose the particular component to be $F_{y z}$.

$$
\begin{align*}
& \left|\psi_{1}\right\rangle=e^{-\alpha H_{\mathrm{CFT}}} F_{y z}\left(x_{1}, y_{1}, z_{1}\right)|0\rangle \tag{3.21}\\
& \left|\psi_{2}\right\rangle=e^{-\alpha^{\prime} H_{\mathrm{CFT}}} F_{y z}\left(x_{2}, y_{1}, z_{1}\right)|0\rangle
\end{align*}
$$

We place the operators at the same y and z co-ordinates but in different x coordinates. We want to study $\Delta S_{A}^{(2)}$ as a function of the center of the two operators. This is same as keeping the operators fixed and moving the center of the subsystem which is $x>0$ in this case. We now compute $\Delta S_{A}^{(2)}$,

$$
\begin{equation*}
\Delta S_{A}^{(2)}=-\log \frac{\left\langle F_{y z}\left(r_{1}, \theta_{1}^{(1)}, y_{1}, z_{1}\right) F_{y z}\left(r_{2}, \theta_{2}^{(1)}, y, z\right) F_{y z}\left(r_{1}, \theta_{1}^{(2)}, y_{1}, z_{1}\right) F_{y z}\left(r_{2}, \theta_{2}^{(2)}, y_{1}, z_{1}\right)\right\rangle}{\left\langle F_{y z}\left(r_{1}, \theta_{1}^{\theta} y, z\right) F_{y z}\left(r_{2}, \theta_{2}, y_{1}, z_{1}\right)\right\rangle_{\Sigma_{1}}^{2}} . \tag{3.22}
\end{equation*}
$$

To evaluate $\Delta S_{A}^{(2)}$, we require the two and four-point functions of $F_{y z}$ on the replica surface. Using the definition of the two-point functions given in (3.8), we obtain

$$
\begin{align*}
\left\langle F_{y z} F_{y z}\right\rangle & =\left(\partial_{y_{1}} \partial_{y_{2}}\left\langle A_{z} A_{z}\right\rangle+\partial_{z_{1}} \partial_{z_{2}}\left\langle A_{y} A_{y}\right\rangle\right) \\
& =-\frac{1}{2}\left(\partial_{y_{1}}^{2}+\partial_{z_{1}}^{2}\right) G\left(x_{i_{1}}, x_{i_{2}}\right) \\
& =\frac{1}{2}\left(\partial_{r_{1}}^{2}+\frac{1}{r_{1}} \partial_{\theta_{1}}+\frac{1}{r_{1}^{2}} \partial_{\theta_{1}}^{2}\right) G\left(x_{i_{1}}, x_{i_{2}}\right) \tag{3.23}
\end{align*}
$$

In the second line, we use the translational invariance in the y and z coordinates and the isotropy in the $y-z$ plane. This can be checked very easily that

$$
\begin{equation*}
\partial_{y_{1}}^{2} G\left(x_{i_{1}}, x_{i_{2}}\right)=\partial_{z_{1}}^{2} G\left(x_{i_{1}}, x_{i_{2}}\right)=\frac{1}{2} \nabla^{2} G\left(x_{i_{1}}, x_{i_{2}}\right) \tag{3.24}
\end{equation*}
$$

In the last line we use the on-shell condition which is given by

$$
\begin{equation*}
\left(\partial_{r_{1}}^{2}+\frac{1}{r_{1}} \partial_{\theta_{1}}+\frac{1}{r_{1}^{2}} \partial_{r_{1}}^{2}+\partial_{y_{1}}^{2}+\partial_{z_{1}}^{2}\right) G\left(x_{i_{1}}, x_{i_{2}}\right)=0 \tag{3.25}
\end{equation*}
$$

Here $G\left(x_{i_{1}}, x_{i_{2}}\right)$ is the scalar two-point function on the replica surface. It is now easy to compute the four-point function using the two-point functions on the replica surface. The four-point function involves the correlator on the same sheet and correlators across the

Figure 6. $\Delta S_{A}^{(2)}$ as a function of the center of the operators $F_{y z}$.
sheets as well.

$$
\begin{align*}
& \left\langle F_{y z}\left(r_{1}, \theta_{1}^{(1)}, y_{1}, z_{1}\right) F_{y z}\left(r_{2}, \theta_{2}^{(1)}, y, z\right) F_{y z}\left(r_{1}, \theta_{1}^{(2)}, y_{1}, z_{1}\right) F_{y z}\left(r_{2}, \theta_{2}^{(2)}, y_{1}, z_{1}\right)\right\rangle \\
& = \\
& \left\langle F_{y z}\left(r_{1}, \theta_{1}^{(1)}, y_{1}, z_{1}\right) F_{y z}\left(r_{2}, \theta_{2}^{(1)}, y_{1}, z_{1}\right)\right\rangle\left\langle F_{y z}\left(r_{1}, \theta_{1}^{(2)}, y_{1}, z_{1}\right) F_{y z}\left(r_{2}, \theta_{2}^{(2)}, y_{1}, z_{1}\right)\right\rangle+ \\
& \quad\left\langle F_{y z}\left(r_{1}, \theta_{1}^{(1)}, y_{1}, z_{1}\right) F_{y z}\left(r_{1}, \theta_{1}^{(2)}, y_{1}, z_{1}\right)\right\rangle\left\langle F_{y z}\left(r_{2}, \theta_{2}^{(1)}, y_{1}, z_{1}\right) F_{y z}\left(r_{2}, \theta_{2}^{(2)}, y_{1}, z_{1}\right)\right\rangle+ \\
& \\
& \left\langle F_{y z}\left(r_{1}, \theta_{1}^{(1)}, y, z\right) F_{y z}\left(r_{2}, \theta_{2}^{(2)}, y_{1}, z_{1}\right)\right\rangle\left\langle F_{y z}\left(r_{2}, \theta_{2}^{(1)}, y_{1}, z_{1}\right) F_{y z}\left(r_{1}, \theta_{1}^{(2)}, y_{1}, z_{1}\right)\right\rangle \tag{3.26}\\
& = \\
& \frac{1}{2}\left[\frac{r_{1} r_{2}\left(\sqrt{r_{1} r_{2}}\left(-\cos \left(\frac{1}{2}\left(\theta_{1}-\theta_{2}\right)\right)\right)+r_{1}+r_{2}\right)^{2}}{4 \pi^{4}\left(r_{1}+r_{2}\right)^{6}\left(-2 \sqrt{r_{1} r_{2}} \cos \left(\frac{1}{2}\left(\theta_{1}-\theta_{2}\right)\right)+r_{1}+r_{2}\right)^{4}}+\left(-\frac{3}{256 \pi^{2} r_{1}^{3}}\right)\left(-\frac{3}{256 \pi^{2} r_{2}^{3}}\right)\right. \\
& \left.\quad+\frac{r_{1} r_{2}\left(\sqrt{r_{1} r_{2}} \cos \left(\frac{1}{2}\left(\theta_{1}-\theta_{2}\right)\right)+r_{1}+r_{2}\right)^{2}}{4 \pi^{4}\left(r_{1}+r_{2}\right)^{6}\left(2 \sqrt{r_{1} r_{2}} \cos \left(\frac{1}{2}\left(\theta_{1}-\theta_{2}\right)\right)+r_{1}+r_{2}\right)^{4}}\right]
\end{align*}
$$

We also compute the two-point function on $n=1$ sheet

$$
\begin{align*}
\left\langle F_{y z}\left(r_{1}, \theta_{1}^{(1)}, y, z\right) F_{y z}\left(r_{2}, \theta_{2}^{(1)}, y_{1}, z_{1}\right)\right\rangle_{\Sigma_{1}} & =\frac{1}{2}\left(\partial_{r_{1}}^{2}+\frac{1}{r_{1}} \partial_{r_{1}}+\frac{1}{r_{1}^{2}} \partial_{\theta_{1}}^{2}\right) G\left(x_{i_{1}} ; x_{i_{2}}\right)_{n=1} \\
& =\frac{1}{2} \frac{1}{\pi^{2}\left(-2 r_{2} r_{1} \cos \left(\theta_{1}-\theta_{2}\right)+r_{1}^{2}+r_{2}^{2}\right)^{2}} \tag{3.27}
\end{align*}
$$

$\Delta S_{A}^{(2)}$ is a function of r and θ only because we keep the operators at the same y and z coordinates. Note that, two-point function of $F_{y z}$ is also proportional to the scalar Laplacian acting on the scalar Green's function in $d=4$ dimension. This reflects the duality between the field strengths $F_{r \theta}$ and $F_{y z}$ in Euclidean coordinates.

$$
\begin{equation*}
F_{r \theta}(r)=\frac{i}{2} \sqrt{g} F_{y z}(r) \tag{3.28}
\end{equation*}
$$

Now we plot $\Delta S_{A}^{(2)}$ as a function of the center of the two operators.
From the plot, we observe that $\Delta S_{A}^{(2)}$ changes significantly when the operators are very close to the boundary of the subsystems and there is no contribution to the $\Delta S_{A}^{(2)}$

Figure 7. $\Delta S_{A}^{(2)}$ as a function for same components $F_{y z}$ of the field strength. Blue line: $x=2$; orange line $x=4$; green line $x=6$. We keep $\epsilon=0.01$ in all cases.
far away from the boundary. This property is similar to the case of a scalar field in $d=4$ dimension. We now investigate the near boundary behavior of $\Delta S_{A}^{(2)}$.

$$
\begin{align*}
\lim _{x \rightarrow 0} \Delta S_{A}^{(2)}= & 16 \log (2)-\log \left((\alpha - \alpha ^ { \prime }) ^ { 8 } \left(\frac{16384\left(-\sqrt{\alpha \alpha^{\prime}}+\alpha^{\prime}+\alpha\right)^{2}}{\left(\alpha^{\prime}+\alpha\right)^{6}\left(-2 \sqrt{\alpha \alpha^{\prime}}+\alpha^{\prime}+\alpha\right)^{4}}+\frac{9}{\alpha^{3}\left(\alpha^{\prime}\right)^{3}}\right.\right. \\
& \left.\left.+\frac{16384\left(\sqrt{\alpha \alpha^{\prime}}+\alpha^{\prime}+\alpha\right)^{2}}{\left(\alpha^{\prime}+\alpha\right)^{6}\left(2 \sqrt{\alpha \alpha^{\prime}}+\alpha^{\prime}+\alpha\right)^{4}}\right)\right) . \tag{3.29}
\end{align*}
$$

Evidently, the near boundary behavior of $\Delta S_{A}^{(2)}$ will depend on the ratio of two Euclidean times $p=\frac{\alpha^{\prime}}{\alpha}$. When $\alpha \sim \alpha^{\prime}, \Delta S_{A}^{(2)} \sim \frac{3}{128}(p-1)^{4}>0$. Therefore two comparable Euclidean times of the operators leads to a small finite positive $\Delta S_{A}^{(2)}$ near the boundary of subsystems. In the first plot (6a), we keep $\alpha \sim \alpha^{\prime}$ and observe that $\Delta S_{A}^{(2)}$ becomes a finite positive quantity near the boundary. In the plot green line: $\alpha=8, \alpha^{\prime}=12$; orange line $\alpha=7, \alpha^{\prime}=13$ and blue line $\alpha=6$ and $\alpha^{\prime}=14$.

In the $p \sim 0, \lim _{x \rightarrow 0} \Delta S_{A}^{(2)} \sim \log p^{3}<0$. In the second plot (6 b), we consider the case where $\alpha \gg \alpha^{\prime}$. We observe that $\Delta S_{A}^{(2)}$ becomes sharply negative near the boundary. In the plot, green line: $\alpha=100, \alpha^{\prime}=5$; orange line $\alpha=150, \alpha^{\prime}=8$ and blue line $\alpha=200$ and $\alpha^{\prime}=10$. Similar to the scalar case, the variation of the pseudo entropy is significant near the boundary of the subsystems due to the entanglement swapping but far away from the boundary there is no transition in the entanglement and hence no contribution to $\Delta S_{A}^{(2)}$.

Real-time evolution. We also analyze the real-time evolution of $\Delta S_{A}^{(2)}$ for the same components $F_{y z}$ of field strength. We substitute $\alpha=-i t-\epsilon$ and $\alpha^{\prime}=-i t+\epsilon$ in the expression of $\Delta S_{A}^{(2)}$, where ϵ is a small positive real number. We insert the operators at the same y and z co-ordinate. We fix the x co-ordinate and observe the time depenence of $\Delta S_{A}^{(2)}$. We observe that in the large time $\Delta S_{A}^{(2)}$ reaches to $\log 2$.

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \Delta S_{A}^{(2)}=\log (2)-\frac{9 x^{2}}{4 t^{2}}+\cdots \tag{3.30}
\end{equation*}
$$

Note that $\Delta S_{A}^{(2)}$ due to the local quench by the operator $F_{y z}$ is identical to that of $\Delta S_{A}^{(2)}$ by the operator $F_{r \theta}$ in the large t limit. This is the consequence of the duality relation between the field strengths. This duality relation is reflected explicitly on the two-point functions and hence in $\Delta S_{A}^{(2)}$. The explicit time dependence of $\Delta S_{A}^{(2)}$ also remains same and saturates to $\log 2$ at $t \rightarrow \infty$ when two excited states created by $F_{y z}$ acting on the vacuum become maximally entangled.

Excitation created by $\boldsymbol{F}_{r y}$. We consider the case where the excitations are created by two same components of the field strength at different Euclidean time α and α^{\prime}. In this case we choose the field strength to be $F_{r y}$.

$$
\begin{align*}
& \left|\psi_{1}\right\rangle=e^{-\alpha H_{\mathrm{CFT}}} F_{r y}\left(x_{1}, y_{1}, z_{1}\right)|0\rangle \tag{3.31}\\
& \left|\psi_{2}\right\rangle=e^{-\alpha^{\prime} H_{\mathrm{CFT}}} F_{r y}\left(x_{2}, y_{1}, z_{1}\right)|0\rangle
\end{align*}
$$

We place the operators at the same y and z co-ordinates but in different x coordinates. We want to study $\Delta S_{A}^{(2)}$ as a function of the center of the two operators. This is same as keeping the operators fixed and moving the center of the subsystem which is $x>0$ in this case. We now compute $\Delta S_{A}^{(2)}$,

$$
\begin{equation*}
\Delta S_{A}^{2}=-\log \frac{\left\langle F_{r y}\left(r_{1}, \theta_{1}^{(1)}, y_{1}, z_{1}\right) F_{r y}\left(r_{2}, \theta_{2}^{(1)}, y, z\right) F_{r y}\left(r_{1}, \theta_{1}^{(2)}, y_{1}, z_{1}\right) F_{r y}\left(r_{2}, \theta_{2}^{(2)}, y_{1}, z_{1}\right)\right\rangle}{\left\langle F_{r y}\left(r_{1}, \theta_{1}^{\prime} y, z\right) F_{r y}\left(r_{2}, \theta_{2}, y_{1}, z_{1}\right)\right\rangle_{\Sigma_{1}}^{2}} . \tag{3.32}
\end{equation*}
$$

To evaluate ΔS_{A}^{2}, we require the four and two-point functions of $F_{r y}$ on the replica surface. Using the definition of the two-point functions given in (3.8), we obtain

$$
\begin{align*}
\left\langle F_{r y} F_{r y}\right\rangle & =\left(\partial_{r_{1}} \partial_{r_{2}}\left\langle A_{y} A_{y}\right\rangle+\partial_{y_{1}} \partial_{y_{2}}\left\langle A_{r} A_{r}\right\rangle\right) \\
& =\left(\partial_{r_{1}} \partial_{r_{2}} \frac{\partial_{z_{1}}^{2}}{\nabla^{2}}-\partial_{y_{1}}^{2} \frac{\partial_{\theta_{1}} \partial_{\theta_{2}}}{r_{1} r_{2} \nabla^{2}}\right) G\left(x_{i_{1}}, x_{i_{2}}\right) \\
& =\frac{1}{2}\left(\partial_{r_{1}} \partial_{r_{2}}-\frac{1}{r_{1} r_{2}} \partial_{\theta_{1}} \partial_{\theta_{2}}\right) G\left(x_{i_{1}}, x_{i_{2}}\right) \tag{3.33}
\end{align*}
$$

In the second line, we use the translational invariance of the scalar Green's function in the y and z coordinate and in the final line, we use the isotropic relation (3.24) in the $y-z$ plane. Here $G\left(x_{i_{1}}, x_{i_{2}}\right)$ is the scalar two-point function on the replica surface. To evaluate
$\Delta S^{(2)}$, we need the four-point function which we evaluate

$$
\left.\left.\begin{array}{l}
\left\langle F_{r y}\left(r_{1}, \theta_{1}^{(1)}, y, z\right) F_{r y}\left(r_{2}, \theta_{2}^{(1)}, y, z\right) F_{r y}\left(r_{1}, \theta_{1}^{(2)}, y, z\right) F_{r y}\left(r_{2}, \theta_{2}^{(2)}, y, z\right)\right\rangle \\
\quad=\left\langle F_{r y}\left(r_{1}, \theta_{1}^{(1)}, y, z\right) F_{r y}\left(r_{2}, \theta_{2}^{(1)}, y, z\right)\right\rangle\left\langle F_{r y}\left(r_{1}, \theta_{1}^{(2)}, y, z\right) F_{r y}\left(r_{2}, \theta_{2}^{(2)}, y, z\right)\right\rangle+ \\
\quad\left\langle F_{r y}\left(r_{1}, \theta_{1}^{(1)}, y, z\right) F_{r y}\left(r_{2}, \theta_{2}^{(2)}, y, z\right)\right\rangle\left\langle F_{r y}\left(r_{2}, \theta_{2}^{(1)}, y, z\right) F_{r y}\left(r_{1}, \theta_{1}^{(2)}, y, z\right)\right\rangle \\
\quad\left\langle F_{r y}\left(r_{1}, \theta_{1}^{(1)}, y, z\right) F_{r y}\left(r_{1}, \theta_{1}^{(2)}, y, z\right)\right\rangle\left\langle F_{r y}\left(r_{2}, \theta_{2}^{(1)}, y, z\right) F_{r y}\left(r_{2}, \theta_{2}^{(2)}, y, z\right)\right\rangle \\
= \\
\quad\left(\begin{array}{r}
\left(r_{1}^{2}+6 r_{2} r_{1}+r_{2}^{2}\right)\left(r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)-3 \sqrt{r_{1} r_{2}}\left(r_{1}+r_{2}\right) \cos \left(\frac{1}{2}\left(\theta_{1}-\theta_{2}\right)\right)\right) \\
+r_{1} r_{2}\left(9 r_{1}^{2}+22 r_{2} r_{1}+9 r_{2}^{2}\right) \\
16 \pi^{2} r_{1} r_{2}\left(r_{1}+r_{2}\right)^{3}\left(-2 \sqrt{r_{1} r_{2}} \cos \left(\frac{1}{2}\left(\theta_{1}-\theta_{2}\right)\right)+r_{1}+r_{2}\right)^{3}
\end{array}\right)^{2} \\
\quad+\left(\begin{array}{r}
\left(r_{1}^{2}+6 r_{2} r_{1}+r_{2}^{2}\right)\left(r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)+3 \sqrt{r_{1} r_{2}}\left(r_{1}+r_{2}\right) \cos \left(\frac{1}{2}\left(\theta_{1}-\theta_{2}\right)\right)\right) \\
+r_{1} r_{2}\left(9 r_{1}^{2}+22 r_{2} r_{1}+9 r_{2}^{2}\right)
\end{array}\right. \tag{3.34}\\
\quad+\left(\frac{3}{256 \pi^{2} r_{2}^{4}}\right)\left(\frac{3}{256 \pi^{2} r_{1}^{4}}\right) .
\end{array}\right)^{2}\right)
$$

The four-point function involves the correlator on the same sheet and the correlator across the sheets. We also evaluate the two-point function on $n=1$ sheet,

$$
\begin{align*}
\left\langle F_{r y} F_{r y}\right\rangle_{\Sigma_{1}} & =\frac{1}{2}\left(\partial_{r_{1}} \partial_{r_{2}}-\frac{1}{r_{1} r_{2}} \partial_{\theta_{1}} \partial_{\theta_{2}}\right) G\left(x_{i_{1}}, x_{i_{2}}\right)_{n=1} \\
& =\frac{2 r_{1} r_{2}-\left(r_{1}^{2}+r_{2}^{2}\right) \cos \left(\theta_{1}-\theta_{2}\right)}{\pi^{2}\left(-2 r_{2} r_{1} \cos \left(\theta_{1}-\theta_{2}\right)+r_{1}^{2}+r_{2}^{2}\right)^{3}} \tag{3.35}
\end{align*}
$$

$\Delta S_{A}^{(2)}$ is now a function of r and θ only because we keep the operators at the same y and z co-ordinates. We substitute $x_{1}=x_{2}$ and plot $\Delta S_{A}^{(2)}$ as a function of the center of the two operators $x=\frac{x_{1}+x_{2}}{2}$.

From the above plot of $\Delta S^{(2)}$, we observe that changes significantly near the boundary of the subsystem which is at $x=0$. More importantly, $\Delta S^{(2)}$ diverges at a point $x=\sqrt{\alpha \alpha^{\prime}}$. This is one of the major differences with the pseudo-entropy of the excited states created by the $F_{r \theta}$ and $F_{x z}$. Let us investigate the reason for the divergence of $\Delta S^{(2)}$ at the point $x=\sqrt{\alpha \alpha^{\prime}}$. The two-point function of $F_{r y}$ at $n=1$ sheet is given in (3.35). We can write it as a function of x and Euclidean times α, α^{\prime}.

$$
\begin{equation*}
\left\langle F_{r y} F_{r y}\right\rangle_{\Sigma_{1}}=\frac{x^{2}-\alpha \alpha^{\prime}}{\pi^{2}\left(\alpha-\alpha^{\prime}\right)^{4} \sqrt{\alpha^{2}+x^{2}} \sqrt{\left(\alpha^{\prime}\right)^{2}+x^{2}}} \tag{3.36}
\end{equation*}
$$

Note that, the two-point function vanishes at $x= \pm \sqrt{\alpha \alpha^{\prime}}$. From the explicit expression of $\Delta S^{(2)}$ we see that the square of the two-point function on the same sheet comes in the denominator and therefore $\Delta S^{(2)}$ becomes singular at the point $x= \pm \sqrt{\alpha \alpha^{\prime}}$. So we understand that $\Delta S^{(2)}$ decreases near the boundary which is similar to the scalar case

Figure 8. $\Delta S_{A}^{(2)}$ as a function for same components $F_{r y}$ of the field strength. Blue line: $\alpha=2$, $\alpha^{\prime}=400$; orange line $\alpha=4, \alpha^{\prime}=400$; green line $\alpha=5, \alpha^{\prime}=500$.

Figure 9. $\Delta S_{A}^{(2)}$ as a function for same components $F_{r y}$ of the field strength. Blue line: $x=2$; orange line $x=4$; green line $x=6$. We keep $\epsilon=0.01$ in all cases.
as well as for the states excited by $F_{r \theta}$ or $F_{x z}$. The main difference turns out to be the singularity of $\Delta S^{(2)}$ at $x= \pm \sqrt{\alpha \alpha^{\prime}}$ in this case. But it follows the general features of the scalar case in $d=4$ dimension except at the point $x= \pm \sqrt{\alpha \alpha^{\prime}}$. We will see the singularity at $x= \pm \sqrt{\alpha \alpha^{\prime}}$ as a coordinate artifact in section (3.1).

Real-time evoulution. We also analyze the real-time evolution of $\Delta S_{A}^{(2)}$ for the same components $F_{r y}$ of field strength. We substitute $\alpha=-i t-\epsilon$ and $\alpha^{\prime}=-i t+\epsilon$ in the expression of $\Delta S_{A}^{(2)}$, where ϵ is a small positive real number. We insert the operators at the same y and z co-ordinate. We fix the x co-ordinate and observe the time depenence of $\Delta S_{A}^{(2)}$. We observe that in the large time $\Delta S_{A}^{(2)}$ reaches to $\log 2$.

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \Delta S_{A}^{(2)}=\log (2)-\frac{81 x^{2}}{16 t^{2}}+\cdots \tag{3.37}
\end{equation*}
$$

Note that, the growth of $\Delta S_{A}^{(2)}$ to reach maximal entanglement due to the local quench by the operator $F_{y z}$ is different to that of $\Delta S_{A}^{(2)}$ by the operator $F_{r \theta}$ in the large t limit and this should be because this is a vector like excitation whereas the excitation by $F_{r \theta}$ was
a pseudo-scalar excitation. However, it still saturates to $\log 2$ when left and right moving modes become maximally entangled in the large time limit.

Excitation created by $\boldsymbol{F}_{\boldsymbol{\theta y}}$. We consider the case where the excitations are created by two same components of the field strength at different Euclidean time α and α^{\prime}. In this case we choose the field strength to be $F_{\theta y}$.

$$
\begin{align*}
& \left|\psi_{1}\right\rangle=e^{-\alpha H_{\mathrm{CFT}}^{\prime}} F_{\theta y}\left(x_{1}, y_{1}, z_{1}\right)|0\rangle, \\
& \left|\psi_{2}\right\rangle=e^{-\alpha^{\prime} H_{\mathrm{CFT}}} F_{\theta y}\left(x_{2}, y_{1}, z_{1}\right)|0\rangle . \tag{3.38}
\end{align*}
$$

We place the operators at the same y and z co-ordinates but in different x coordinates. We want to study $\Delta S_{A}^{(2)}$ as a function of the center of the two operators. This is same as keeping the operators fixed and moving the center of the subsystem which is $x>0$ in this case. We now compute $\Delta S_{A}^{(2)}$,

$$
\begin{equation*}
\Delta S_{A}^{(2)}=-\log \frac{\left\langle F_{\theta y}\left(r_{1}, \theta_{1}^{(1)}, y_{1}, z_{1}\right) F_{\theta y}\left(r_{2}, \theta_{2}^{(1)}, y, z\right) F_{\theta y}\left(r_{1}, \theta_{1}^{(2)}, y_{1}, z_{1}\right) F_{\theta y}\left(r_{2}, \theta_{2}^{(2)}, y_{1}, z_{1}\right)\right\rangle}{\left\langle F_{\theta y}\left(r_{1}, \theta_{1} y, z\right) F_{\theta y}\left(r_{2}, \theta_{2}, y_{1}, z_{1}\right)\right\rangle_{\Sigma_{1}}^{2}} . \tag{3.39}
\end{equation*}
$$

To evaluate $\Delta S_{A}^{(2)}$, we require the four and two-point functions of $F_{\theta y}$ on the replica surface. Using the definition of the two-point functions given in (3.8), we obtain

$$
\begin{align*}
\left\langle F_{\theta y} F_{\theta y}\right\rangle & =-\frac{r_{1} r_{2}}{2}\left(\partial_{r_{1}} \partial_{r_{2}}-\frac{1}{r_{1} r_{2}} \partial_{\theta_{1}} \partial_{\theta_{2}}\right) G\left(x_{i_{1}}, x_{i_{2}}\right), \\
& =-r_{1} r_{2}\left\langle F_{r y} F_{r y}\right\rangle . \tag{3.40}
\end{align*}
$$

Note that this two-point function reflects the duality between $F_{r y}$ and $F_{\theta y}$. Here $G\left(x_{i_{1}}, x_{i_{2}}\right)$ is the scalar two-point function on the replica surface. To evaluate $\Delta S_{A}^{(2)}$, we need the fourpoint function which is given by

$$
\begin{align*}
& \left\langle F_{\theta y}\left(r_{1}, \theta_{1}^{(1)}, y_{1}, z_{1}\right) F_{\theta y}\left(r_{2}, \theta_{2}^{(1)}, y, z\right) F_{\theta y}\left(r_{1}, \theta_{1}^{(2)}, y_{1}, z_{1}\right) F_{\theta y}\left(r_{2}, \theta_{2}^{(2)}, y_{1}, z_{1}\right)\right\rangle= \\
& \quad\left(r_{1} r_{2}\right)^{2}\left\langle F_{r y}\left(r_{1}, \theta_{1}^{(1)}, y, z\right) F_{r y}\left(r_{2}, \theta_{2}^{(1)}, y, z\right) F_{r y}\left(r_{1}, \theta_{1}^{(2)}, y, z\right) F_{r y}\left(r_{2}, \theta_{2}^{(2)}, y, z\right)\right\rangle . \tag{3.41}
\end{align*}
$$

We also evaluate the two-point function on $n=1$ sheet,

$$
\begin{align*}
\left\langle F_{\theta y} F_{\theta y}\right\rangle_{\Sigma_{1}} & =-\frac{r_{1} r_{2}}{2}\left(\partial_{r_{1}} \partial_{r_{2}}-\frac{1}{r_{1} r_{2}} \partial_{\theta_{1}} \partial_{\theta_{2}}\right) G\left(x_{i_{1}}, x_{i_{2}}\right)_{n=1}, \\
& =-r_{1} r_{2}\left\langle F_{r y} F_{r y}\right\rangle_{\Sigma_{1}} . \tag{3.42}
\end{align*}
$$

From all the two-point functions, it is easy to see that $\Delta S_{A}^{(2)}$ for the states created by the operator $F_{\theta y}$ (inserted at two different Euclidean times) will be identical to that of $\Delta S_{A}^{(2)}$ for $F_{r y}$. The overall scale factor $\left(r_{1} r_{2}\right)^{2}$ in the numerator gets cancelled from the denominator in (3.39). Therfore, the properties of $\Delta S_{A}^{(2)}$ remain the same in this case. It exhibits the similar nature shown in (8). So we observe that, at the point $x= \pm \sqrt{\alpha \alpha^{\prime}}$ where two states become orthogonal to each other, $\Delta S_{A}^{(2)}$ diverges and it is mostly zero everywhere except near the boundary of the subsytems. To understand the orthogonality
of the two states more extensively let us also consider the case where one prepares states by acting $F_{\tau y}$ on vacuum, where τ is the Euclidean time direction. One has to evaluate the two point function of $F_{\tau y}$ on replica surface. But one can relate $F_{\tau y}$ to $F_{r y}$ and $F_{\theta y}$ by coordinate transformation.

$$
\begin{equation*}
F_{\tau y}=\frac{\partial r}{\partial \tau} F_{r y}+\frac{\partial \theta}{\partial \tau} F_{\theta y} . \tag{3.43}
\end{equation*}
$$

Therefore two-point functions of $F_{\tau y}$ can be computed from the two-point functions of $F_{r y}$ and $F_{\theta y}$.

$$
\begin{align*}
\left\langle F_{\tau y} F_{\tau y}\right\rangle= & \frac{\partial r_{1}}{\partial \tau_{1}} \frac{\partial r_{2}}{\partial \tau_{2}}\left\langle F_{r y} F_{r y}\right\rangle+\frac{\partial \theta_{1}}{\partial \tau_{1}} \frac{\partial \theta_{2}}{\partial \tau_{2}}\left\langle F_{\theta y} F_{\theta y}\right\rangle \\
& +\frac{\partial r_{1}}{\partial \tau_{1}} \frac{\partial \theta_{2}}{\partial \tau_{2}}\left\langle F_{r y} F_{\theta y}\right\rangle+\frac{\partial \theta_{1}}{\partial \tau_{1}} \frac{\partial r_{2}}{\partial \tau_{2}}\left\langle F_{\theta y} F_{r y}\right\rangle . \tag{3.44}
\end{align*}
$$

We have computed the two-point function $\left\langle F_{r y} F_{r y}\right\rangle$ in (3.33) and $\left\langle F_{\theta y} F_{\theta y}\right\rangle$ in (3.40). Let us now compute $\left\langle F_{r y} F_{\theta y}\right\rangle$.

$$
\begin{align*}
\left\langle F_{r y} F_{\theta y}\right\rangle & =\partial_{r_{1}} \partial_{\theta_{2}}\left\langle A_{y} A_{y}\right\rangle+\partial_{y_{1}} \partial_{y_{2}}\left\langle A_{r} A_{\theta}\right\rangle, \\
& =\frac{1}{2}\left(\partial_{r_{1}} \partial_{\theta_{2}}+\frac{r_{2}}{r_{1}} \partial_{r_{2}} \partial_{\theta_{1}}\right) G\left(x_{i_{1}} ; x_{i_{2}}\right) . \tag{3.45}
\end{align*}
$$

Here $G\left(x_{i_{1}} ; x_{i_{2}}\right)$ is the scalar two-point function in $d=4$ dimension on the replica surface. Note that, we place two operators at two different Euclidean times $\tau_{1}=\alpha$ and $\tau_{2}=\alpha^{\prime}$ and therefore the two-point function of $F_{\tau y}$ becomes

$$
\begin{equation*}
\left\langle F_{\tau y} F_{\tau y}\right\rangle_{\substack{\tau_{1}=\alpha \\ \tau_{2}=\alpha^{\prime}}}=\frac{\alpha \alpha^{\prime}-x^{2}}{2 r_{1} r_{2}}\left\langle F_{r y} F_{r y}\right\rangle_{\substack{\tau_{1}=\alpha \\ \tau_{2}=\alpha^{\prime}}}-\frac{\left(\alpha+\alpha^{\prime}\right) x}{2 r_{1} r_{2}}\left(\partial_{r_{1}} \frac{\partial_{\theta_{2}}}{r_{2}}+\partial_{r_{2}} \frac{\partial_{\theta_{2}}}{r_{1}}\right) G\left(x_{i_{1}} ; x_{i_{2}}\right)_{\tau_{1}=\alpha=\alpha}^{\tau_{2}=\alpha^{\prime}} . \tag{3.46}
\end{equation*}
$$

To derive equation (3.46), we use the relation between $\left\langle F_{r y} F_{r y}\right\rangle$ and $\left\langle F_{\theta y} F_{\theta}\right\rangle$ which is given in (3.40). The two-point function of $F_{r y}$ on $n=1$ sheet is given in (3.36). Note that, the first term vanishes at $x= \pm \sqrt{\alpha \alpha^{\prime}}$. Let us compute the second term explicitly for $n=1$,

$$
\begin{align*}
& \lim _{x \rightarrow \pm \sqrt{\alpha \alpha^{\prime}}}\left\langle F_{r y} F_{\theta y}\right\rangle_{\substack{1=\alpha \\
\tau_{2}=\alpha^{\prime}}}=\frac{x^{2}\left(\alpha^{\prime}+\alpha\right)\left(\sqrt{\alpha^{2}+x^{2}}-\sqrt{\left(\alpha^{\prime}\right)^{2}+x^{2}}\right)}{4 \pi^{2}\left(\alpha^{\prime}-\alpha\right)^{5}\left(\alpha^{2}+x^{2}\right)\left(\left(\alpha^{\prime}\right)^{2}+x^{2}\right)^{3 / 2}} \\
& \times\left(\left(\alpha^{\prime}+\alpha\right)^{2}+4 \sqrt{\left(\alpha^{2}+x^{2}\right)\left(\left(\alpha^{\prime}\right)^{2}+x^{2}\right)}+4 x^{2}\right) . \tag{3.47}
\end{align*}
$$

We observe that the second term does not vanish at $x= \pm \sqrt{\alpha \alpha^{\prime}}$ and hence the two excited states prepared by $F_{\tau y}$ acting on the vacuum will not be orthogonal at $x= \pm \sqrt{\alpha \alpha^{\prime}}$. Therefore, the orthogonality of states is associated only with the components $F_{r y}$ and $F_{\theta y}$ indicating the coordinate artifact.

Now we compute $\Delta S_{A}^{(2)}$ for the excited states created by $F_{r y}$ or $F_{\theta y}$ acting on vacuum. We observe that near the boundary of the subsystems it depends on the ratio $p=\frac{\alpha}{\alpha^{\prime}}$
of the two Euclidean times. When $p \sim 0$ or $\alpha \gg \alpha^{\prime}, \Delta S_{A}^{(2)} \sim \log p^{3}$ and for $p \sim 1$, $\Delta S_{A}^{(2)} \sim-\frac{3}{128}(p-1)^{4}$.

So we understand that $\Delta S_{A}^{(2)}$ only changes near the boundary of the subsystems and vanishes far away from the boundary. The singularity at $x= \pm \sqrt{\alpha \alpha^{\prime}}$ is just a coordinate artifact which does not show up in other components of the field strengths.

3.2 Excitation by the different components of the field strength with different cutoffs

We create two different states by the different components on the field strengths acting on the ground state. We choose two different UV cutoffs. In other words the operators are placed in two different Euclidean times.

We create two states in the following way

$$
\begin{align*}
\left|\psi_{1}\right\rangle & =e^{-\alpha H_{\mathrm{CFT}}} F_{r y}\left(x_{1}, y_{1}, z_{1}\right)|0\rangle \\
\left|\psi_{2}\right\rangle & =e^{-\alpha^{\prime} H_{\mathrm{CFT}}} F_{\theta y}\left(x_{2}, y_{1}, z_{1}\right)|0\rangle \tag{3.48}
\end{align*}
$$

We follow the same strategy and place the operators at the same y and z coordinates but in different x coordinates. We want to study $\Delta S_{A}^{(2)}$ as a function of the center of the two operators. This is the same as keeping the operators fixed and moving the center of the subsystem which is $x>0$ in this case. We now compute $\Delta S_{A}^{(2)}$,

$$
\begin{equation*}
\Delta S_{A}^{(2)}=-\log \frac{\left\langle F_{r y}\left(r_{1}, \theta_{1}^{(1)}, y_{1}, z_{1}\right) F_{\theta y}\left(r_{2}, \theta_{2}^{(1)}, y, z\right) F_{r y}\left(r_{1}, \theta_{1}^{(2)}, y_{1}, z_{1}\right) F_{\theta y}\left(r_{2}, \theta_{2}^{(2)}, y_{1}, z_{1}\right)\right\rangle}{\left\langle F_{r y}\left(r_{1}, \theta_{1} y, z\right) F_{\theta y}\left(r_{2}, \theta_{2}, y_{1}, z_{1}\right)\right\rangle_{\Sigma_{1}}^{2}} \tag{3.49}
\end{equation*}
$$

To evaluate $\Delta S_{A}^{(2)}$, we require the four and two-point functions of $F_{r y}$ and $F_{\theta y}$ on the replica surface. Using the definition of the two-point functions given in (3.8), we obtain

$$
\begin{align*}
\left\langle F_{r y} F_{\theta y}\right\rangle & =\left(\partial_{r_{1}} \partial_{\theta_{2}}\left\langle A_{y} A_{y}\right\rangle+\partial_{y_{1}} \partial_{y_{2}}\left\langle A_{r} A_{\theta}\right\rangle\right) \\
& =\frac{1}{2}\left(\partial_{r_{1}} \partial_{\theta_{2}}+\frac{r_{2}}{r_{1}} \partial_{r_{2}} \partial_{\theta_{1}}\right) G\left(x_{i_{1}}, x_{i_{2}}\right) \tag{3.50}
\end{align*}
$$

To derive the last line we use the isotropic condition in the $y-z$ plane given in (3.24). Similarly we also need the two-point functions of $F_{r y}$ and $F_{\theta y}$. The two-point functions of $F_{r y}$ is given in (3.33). Two-point function of $F_{\theta y}$ is also given in (3.40). We also evaluate the two-point function on $n=1$ sheet,

$$
\begin{align*}
\left\langle F_{r y} F_{\theta y}\right\rangle_{\Sigma_{1}} & =\frac{1}{2}\left(\partial_{r_{1}} \partial_{\theta_{2}}+\frac{r_{2}}{r_{1}} \partial_{r_{2}} \partial_{\theta_{1}}\right) G\left(x_{i_{1}}, x_{i_{2}}\right)_{n=1} \\
& =\frac{r_{2}\left(r_{2}-r_{1}\right)\left(r_{1}+r_{2}\right) \sin \left(\theta_{1}-\theta_{2}\right)}{\pi^{2}\left(-2 r_{2} r_{1} \cos \left(\theta_{1}-\theta_{2}\right)+r_{1}^{2}+r_{2}^{2}\right)^{3}} \tag{3.51}
\end{align*}
$$

To evaluate $\Delta S_{A}^{(2)}$, we compute the four-point function

$$
\begin{align*}
& \left\langle F_{r y}\left(r_{1}, \theta_{1}^{(1)}, y, z\right) F_{\theta y}\left(r_{2}, \theta_{2}^{(1)}, y, z\right) F_{r y}\left(r_{1}, \theta_{1}^{(2)}, y, z\right) F_{\theta y}\left(r_{2}, \theta_{2}^{(2)}, y, z\right)\right\rangle \\
& =\left\langle F_{r y}\left(r_{1}, \theta_{1}^{(1)}, y, z\right) F_{\theta y}\left(r_{2}, \theta_{2}^{(1)}, y, z\right)\right\rangle\left\langle F_{r y}\left(r_{1}, \theta_{1}^{(2)}, y, z\right) F_{\theta y}\left(r_{2}, \theta_{2}^{(2)}, y, z\right)\right\rangle+ \\
& \left\langle F_{r y}\left(r_{1}, \theta_{1}^{(1)}, y, z\right) F_{r y}\left(r_{1}, \theta_{1}^{(2)}, y, z\right)\right\rangle\left\langle F_{\theta y}\left(r_{2}, \theta_{2}^{(1)}, y, z\right) F_{\theta y}\left(r_{2}, \theta_{2}^{(2)}, y, z\right)\right\rangle+ \\
& \left\langle F_{r y}\left(r_{1}, \theta_{1}^{(1)}, y, z\right) F_{\theta y}\left(r_{2}, \theta_{2}^{(2)}, y, z\right)\right\rangle\left\langle F_{\theta y}\left(r_{2}, \theta_{2}^{(1)}, y, z\right) F_{r y}\left(r_{1}, \theta_{1}^{(2)}, y, z\right)\right\rangle \\
& = \\
& \frac{1}{4}\left(\partial_{r_{1}} \partial_{\theta_{2}}+\frac{r_{2}}{r_{1}} \partial_{r_{2}} \partial_{\theta_{1}}\right) G\left(r_{1}, \theta_{1} ; r_{2}, \theta_{2}\right)\left(\partial_{r_{1}} \partial_{\theta_{2}}+\frac{r_{2}}{r_{1}} \partial_{r_{2}} \partial_{\theta_{1}}\right) G\left(r_{1}, \theta_{1} ; r_{2}, \theta_{2}\right) \\
& -\lim _{\theta_{1} \rightarrow r_{2}} \frac{r_{1} r_{2}}{4}\left(\partial_{r_{1}} \partial_{r_{2}}-\frac{1}{r_{1} r_{2}} \partial_{\theta_{1}} \partial_{\theta_{2}}\right) G\left(r_{1}, \theta_{1} ; r_{2}, \theta_{2}\right)\left(\partial_{r_{1}} \partial_{r_{2}}-\frac{1}{r_{1} r_{2}} \partial_{\theta_{1}} \partial_{\theta_{2}}\right) G\left(r_{1}, \theta_{1} ; r_{2}, \theta_{2}\right) \\
& +\frac{1}{4}\left(\partial_{r_{1}} \partial_{\theta_{2}}+\frac{r_{2}}{r_{1}} \partial_{r_{2}} \partial_{\theta_{1}}\right) G\left(r_{1}, \theta_{1} ; r_{2}, \theta_{2}+2 \pi\right)\left(\partial_{r_{1}} \partial_{\theta_{2}}+\frac{r_{2}}{r_{1}} \partial_{r_{2}} \partial_{\theta_{1}}\right) G\left(r_{1}, \theta_{1} ; r_{2}, \theta_{2}+2 \pi\right), \\
& = \\
& \tag{3.52}\\
& -\frac{\left(r_{1}-r_{2}\right)^{2} r_{2} \sin ^{2}\left(\frac{1}{2}\left(\theta_{1}-\theta_{2}\right)\right)\left(2 \sqrt{r_{1} r_{2}} \cos \left(\frac{1}{2}\left(\theta_{1}-\theta_{2}\right)\right)-3\left(r_{1}+r_{2}\right)\right)^{2}}{256 \pi^{4} r_{1}\left(r_{1}+r_{2}\right)^{4}\left(-2 \sqrt{r_{1} r_{2}} \cos \left(\frac{1}{2}\left(\theta_{1}-\theta_{2}\right)\right)+r_{1}+r_{2}\right)^{6}} \\
& -\left(\frac{3}{256 \pi^{2}}\right)^{2} \frac{1}{r_{1}^{4} r_{2}^{2}} \\
& +\frac{\left(r_{1}-r_{2}\right)^{2} \sin ^{2}\left(\frac{1}{2}\left(\theta_{1}-\theta_{2}\right)\right)\left(2 \sqrt{r_{1} r_{2}} \cos \left(\frac{1}{2}\left(\theta_{1}-\theta_{2}\right)\right)+3\left(r_{1}+r_{2}\right)\right)^{2}}{256 \pi^{4}\left(r_{1}+r_{2}\right)^{4}\left(2 \sqrt{r_{1} r_{2}} \cos \left(\frac{1}{2}\left(\theta_{1}-\theta_{2}\right)\right)+r_{1}+r_{2}\right)^{6}} .
\end{align*}
$$

Here, $G\left(r_{1}, \theta_{1} ; r_{2}, \theta_{2}\right)$ is the scalar two-point function on the replica surface for $n=2$. Note that, the four point function diverges negatively as the operator approaches to the boundary which is located at $x=0$. This is due to the second term which comes from the correlators across the sheets but involve same points. Therefore, $\Delta S_{A}^{(2)}$ becomes complex near the boundary. This is one of the examples where $\Delta S_{A}^{(2)}$ becomes complex and the reason is that the reduced transition matrix is not Hermitian which can be seen from the expression

$$
\begin{equation*}
\rho_{A}^{\psi_{1} \mid \psi_{2}}=\operatorname{Tr}_{\mathrm{B}}\left(\mathrm{~F}_{\mathrm{ry}}(\alpha, \mathbf{x})|0\rangle\langle 0| \mathrm{F}_{\theta \mathrm{y}}\left(\alpha^{\prime}, \mathbf{x}\right)\right) . \tag{3.53}
\end{equation*}
$$

Now we plot the real part of $\Delta S_{A}^{(2)}$ as a function of the center of the two operators.
From figure (10), we observe that real part of $\Delta S_{A}^{(2)}$ decreases significantly near the boundary of the subsystems and vanishes far away from the boundary. Therefore, there is no contribution to $\Delta S_{A}^{(2)}$ far away from the boundary where pseudo Rényi entropy becomes equal to the Rényi entropy of the ground state.

4 Discussion

In this paper, we study pseudo entropy in the free Maxwell field theory in $d=4$ dimension. Mainly we are interested in evaluating the difference between the pseudo Rényi entropy and the Rényi entropy of the ground states. This effectively captures the variation of the Rényi entropy from the ground state.

Figure 10. Real part of $\Delta S_{A}^{(2)}$ as a function for different components of the field strength. Blue line: $\alpha=5, \alpha^{\prime}=25$; orange line $\alpha=10, \alpha^{\prime}=30$; green line $\alpha=15, \alpha^{\prime}=35$.

To set up the whole formalism we begin with conformal scalar field theory in $d=4$ dimension. We prepare two excited states by two conformal operators with fixed conformal weights acting on the ground state. We keep the spatial positions separate them by placing them at two different Euclidean times. We observe that the difference between the pseudo entropy and the ground state Rényi entropy are the same everywhere except near the boundary of the subsystems where it changes significantly. This difference at the boundary actually depends on the ratio of the two Euclidean times near the boundary. Near boundary, behavior can be understood at the correlator level. The two-point functions on the replica surface change significantly near the boundary and hence it is reflected on the $\Delta S_{A}^{(n)}$. We also show that under a suitable analytical continuation of pseudo Rényi entropy leads to evaluation of real-time evolution of Rényi entropy during quenches. In this case $\Delta S_{A}^{(n)}$ starts growing from the point when real time of the operator becomes the same as the spatial insertion point and it reaches to $\log 2$ after a large time when left and right moving modes become maximally entangled [20].

To understand the general features of $\Delta S_{A}^{(n)}$ in gauge theory, we prepare excited states by a different component of the field strengths acting on the vacuum. Therefore the states remain gauge invariant and we evaluate the difference between pseudo Rényi entropy and the Rényi entropy of the ground state. Similar to the scalar field, the difference $\Delta S_{A}^{(n)}$ is mostly zero everywhere except near the boundary of the subsystems. This property can be explained by the two-point functions of the field strength on the replica surface. Two-point correlators also exhibit a significant change near the boundary which reflects on $\Delta S_{A}^{(n)}$ and the peak of $\Delta S_{A}^{(n)}$ depends on the ratio of the Euclidean times of the field strengths.

In general, one requires the $2 n$-point correlators on the replica surface to evaluate the difference between pseudo Rényi entropy and ground state Rényi entropy, $\Delta S_{A}^{(n)}$. Once, it is expressed as a function of the Rényi parameter n, it is easy to take the limit $n \rightarrow 1$ in the expression of $\Delta S_{A}^{(n)}$. But, one can also evaluate the difference between pseudo entanglement entropy and ground state entanglement entropy in the particular region of the parameter space $\tilde{\alpha}=\frac{1}{2}\left(\alpha_{2}-\alpha_{1}\right)$, where $\alpha_{1}=-i t-\epsilon$ and $\alpha_{2}=-i t+\epsilon$ are the two Euclidean times where the field strengths are placed. Note that, in the limit $\tilde{\alpha}=\epsilon \rightarrow 0$,
the correlators on the same sheet and the correlators across the sheets have the leading contribution in $\Delta S_{A}^{(n)}$ as shown in [19-22] for conformal scalar and free Maxwell field and recently in [24] for the local gravitational excitations. Therefore, in the limit $\alpha \rightarrow 0$, one can extract the leading term in the expression of ΔS_{A}.

As a future direction, we would like to investigate pseudo entropy for the linearized graviton. One can, in principle, create excitations using the Riemann tensor acting on the ground state. The difference between pseudo entropy from the ground state entropy can be evaluated in Euclidean path integral formalism. Therefore one can also compare $\Delta S_{A}^{(n)}$ for spin-0, spin-1 and spin-2 field and understand the general spin dependence. The physical question would be to relate this quantity $\Delta S_{A}^{(n)}$ with some property of the local operator which creates the excitation. It will be interesting to evaluate and understand the general properties of pseudo-entropy for the fermionic systems where one can prepare different excited states by the different primaries at different Euclidean times. But Wick rotating the Euclidean time to real-time should lead to the analysis of the local quench by the fermionic operators [21]. Another important direction would be to understand pseudoentropy in conformal higher derivative and conformal higher spin fields [25, 26] where one has to develop two and four-point functions on the replica surface. It will be nice to show the non-unitarity nature of these theories within the framework of pseudo entropy.

Acknowledgments

It is a pleasure to thank Justin R. David, Aninda Sinha, and Chethan Krishnan for fruitful discussions and comments on the draft.

A Derivation of two-point functions and $\Delta S_{A}^{(n)}$ for arbitary n

In this section we present the derivation for $\Delta S_{A}^{(n)}$, for scalar field, free Maxwell field in $d=4$ dimension. The key ingredient is just the two-point functions on the replica surface. We list out the two-point functions of scalar and different components of the field strength on the replica surface for arbitrary n.

Scalar correlator in $\boldsymbol{d}=\mathbf{4}$ dimension. One has to compute the $2 n$-point function of conformal scalars on replica surface. Since the theory is free, one can easily evaluate it using Wick contraction of the two-point function. The two-point function on the replica surface is known [19, 20] and presented in (3.9). This can also be written as

$$
\begin{equation*}
G\left(x_{i_{1}} ; x_{i_{2}}\right)_{(n, k)}=\frac{\sinh \frac{\eta}{n}}{8 \pi^{2} n r_{1} r_{2} \sinh \eta\left(\cosh \frac{\eta}{n}-\cos \frac{\theta_{1}-\theta_{2}-2 \pi k}{n}\right)} \tag{A.1}
\end{equation*}
$$

where $\cosh \eta=\frac{r_{1}^{2}+r_{2}^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}{2 r_{1} r_{2}}$. Note that, the two-point function which involves points separated by k sheets are the same as the two-point functions separated by $k-n$ sheets.

$$
G\left(x_{i_{1}} ; x_{i_{2}}\right)_{(n, k)}=G\left(x_{i_{1}} ; x_{i_{2}}\right)_{(n, k-n)} .
$$

In this two-point function, $k=0$ denotes the correlator involving the points on the same sheet. Threrefore, $2 n$-point function on replica surface can be expressed as

$$
\begin{equation*}
\left\langle\phi^{(1)}\left(x_{i_{1}}\right) \phi^{(1)}\left(x_{i_{2}}\right) \cdots \phi^{(n)}\left(x_{i_{1}}\right) \phi^{(n)}\left(x_{i_{2}}\right)\right\rangle_{\Sigma_{n}}=\left(G\left(x_{i_{1}} ; x_{i_{2}}\right)_{(n, k=0)}\right)^{n}+\left(G\left(x_{i_{1}} ; x_{i_{2}}\right)_{(n, k=1)}\right)^{n}+\cdots \tag{A.2}
\end{equation*}
$$

where ... includes all possible contraction of points in sheets for $k \geq 1$. One can easily obtain the $2 n$-point function from the correlator given in (A.1).

Two-point functions of field strength on replica surface. We begin with the correlator $\left\langle F_{r \theta} F_{r \theta}\right\rangle$ which is proportional to the scalar Laplacian acting on the two-point function of conformal scalar.

$$
\begin{align*}
& \left\langle F_{r \theta} F_{r \theta}\right\rangle_{\Sigma_{n}}=-r_{1} r_{2}\left(\partial_{r_{1}}^{2}+\frac{1}{r_{1}} \partial_{r_{1}}+\frac{1}{r_{1}^{2}} \partial_{\theta_{1}}^{2}\right) G\left(x_{i_{1}}, x_{i_{2}}\right)_{(n, k)} \\
& =-\frac{(\operatorname{coth}(\eta)+1) \operatorname{csch}(\eta)\left(\cosh \left(\frac{\eta}{n}\right) \cos \left(\frac{\theta}{n}\right)+n \operatorname{coth}(\eta) \sinh \left(\frac{\eta}{n}\right)\left(\cosh \left(\frac{\eta}{n}\right)-\cos \left(\frac{\theta}{n}\right)\right)-1\right)}{4 \pi^{2} n^{2} r_{1}^{2}\left(\cos \left(\frac{\theta}{n}\right)-\cosh \left(\frac{\eta}{n}\right)\right)^{2}} \tag{A.3}
\end{align*}
$$

Here $\theta=\theta_{1}-\theta_{2}-2 \pi k$. Using this two-point function, one can compute $2 n$-point function on the replica surface. Similarly the two-point function $\left\langle F_{y z} F_{y z}\right\rangle$ on replica surface is given by

$$
\begin{align*}
& \left\langle F_{y z} F_{y z}\right\rangle_{\Sigma_{n}}=\frac{1}{2}\left(\partial_{r_{1}}^{2}+\frac{1}{r_{1}} \partial_{r_{1}}+\frac{1}{r_{1}^{2}} \partial_{\theta_{1}}^{2}\right) G\left(x_{i_{1}}, x_{i_{2}}\right)_{(n, k)} \\
& =\frac{(\operatorname{coth}(\eta)+1) \operatorname{csch}(\eta)\left(\cosh \left(\frac{\eta}{n}\right) \cos \left(\frac{\theta}{n}\right)+n \operatorname{coth}(\eta) \sinh \left(\frac{\eta}{n}\right)\left(\cosh \left(\frac{\eta}{n}\right)-\cos \left(\frac{\theta}{n}\right)\right)-1\right)}{8 \pi^{2} n^{2} r_{1}^{3} r_{2}\left(\cos \left(\frac{\theta}{n}\right)-\cosh \left(\frac{\eta}{n}\right)\right)^{2}} \tag{A.4}
\end{align*}
$$

with $\theta=\theta_{1}-\theta_{2}-2 \pi k$.

$$
\begin{align*}
& \left\langle F_{r y} F_{r y}\right\rangle_{\Sigma_{n}}=\frac{\operatorname{csch}(\eta)}{16 \pi^{2} n^{3} r_{1}^{2} r_{2}^{2}\left(\cos \left(\frac{\theta}{n}\right)-\cosh \left(\frac{\eta}{n}\right)\right)^{3}}\left[8 n \operatorname{coth}(\eta) \cosh ^{2}\left(\frac{\eta}{n}\right) \cos \left(\frac{\theta}{n}\right)\right. \\
& -2 n \cosh \left(\frac{\eta}{n}\right)-4 n \operatorname{coth}(\eta) \cosh ^{3}\left(\frac{\eta}{n}\right) \operatorname{coth}(\eta)\left(-\cosh \left(\frac{2 \eta}{n}\right)+\cos \left(\frac{2 \theta}{n}\right)+2\right) \\
& +\sinh \left(\frac{\eta}{n}\right)\left(-3-3 \operatorname{coth}^{2}(\eta)+\left(\left(2 n^{2}-1\right) \cos \left(\frac{2 \theta}{n}\right)+4 n^{2}+3\right)\right. \\
& \left.+2 n^{2} \cosh \left(\frac{2 \eta}{n}\right)+\cosh (2 \eta)+\cos \left(\frac{2 \theta}{n}\right) \operatorname{csch}^{2}(\eta)-4 n \operatorname{coth}(\eta) \sinh \left(\frac{\eta}{n}\right) \cos \left(\frac{\theta}{n}\right)\right) \\
& \left.+\operatorname{csch}^{2}(\eta) \sinh \left(\frac{2 \eta}{n}\right)\left(\cosh (2 \eta)-4 n^{2}-1\right)+\cos \left(\frac{\theta}{n}\right)\right] \\
& =-r_{1} r_{2}\left\langle F_{\theta y} F_{\theta y}\right\rangle_{\Sigma_{n}} . \tag{A.5}
\end{align*}
$$

Given all the two-point functions on the replica surface for arbitrary n, one can evaluate the $2 n$-point function explicitly and compute $\Delta S_{A}^{(n)}$.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. SCOAP ${ }^{3}$ supports the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] J.L. Cardy and I. Peschel, Finite Size Dependence of the Free Energy in Two-dimensional Critical Systems, Nucl. Phys. B 300 (1988) 377 [inSPIRE].
[2] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].
[3] P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].
[4] S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [inSPIRE].
[5] V.E. Hubeny, M. Rangamani, and T. Takayanagi, A Covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [InSPIRE].
[6] Y. Nakata, T. Takayanagi, Y. Taki, K. Tamaoka, and Z. Wei, New holographic generalization of entanglement entropy, Phys. Rev. D 103 (2021), no. 2026005 [arXiv:2005.13801] [inSPIRE].
[7] A. Mollabashi, N. Shiba, T. Takayanagi, K. Tamaoka, and Z. Wei, Pseudo Entropy in Free Quantum Field Theories, Phys. Rev. Lett. 126 (2021), no. 8081601 [arXiv:2011.09648] [inSPIRE].
[8] A. Mollabashi, N. Shiba, T. Takayanagi, K. Tamaoka, and Z. Wei, Aspects of pseudoentropy in field theories, Phys. Rev. Res. 3 (2021), no. 3033254 [arXiv:2106.03118] [INSPIRE].
[9] Y. Aharonov, D.Z. Albert and L. Vaidman, How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100, Phys. Rev. Lett. 60 (1988) 1351 [INSPIRE].
[10] J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, Colloquium: Understanding quantum weak values: Basics and applications, Rev. Mod. Phys. 86 (2014) 307.
[11] W. Donnelly and A.C. Wall, Entanglement entropy of electromagnetic edge modes, Phys. Rev. Lett. 114 (2015), no. 11111603 [arXiv: 1412.1895] [INSPIRE].
[12] H. Casini and M. Huerta, Entanglement entropy of a Maxwell field on the sphere, Phys. Rev. D 93 (2016), no. 10105031 [arXiv: 1512.06182] [INSPIRE].
[13] H. Casini, M. Huerta, J.M. Magán, and D. Pontello, Logarithmic coefficient of the entanglement entropy of a Maxwell field, Phys. Rev. D 101 (2020), no. 6065020 [arXiv:1911.00529] [InSPIRE].
[14] S. Ghosh, R.M. Soni, and S.P. Trivedi, On The Entanglement Entropy For Gauge Theories, JHEP 09 (2015) 069 [arXiv:1501.02593] [inSPIRE].
[15] R.M. Soni and S.P. Trivedi, Entanglement entropy in $(3+1)$-d free $U(1)$ gauge theory, JHEP 02 (2017) 101 [arXiv:1608.00353] [inSPIRE].
[16] J.R. David and J. Mukherjee, Hyperbolic cylinders and entanglement entropy: gravitons, higher spins, p-forms, JHEP 01 (2021) 202 [arXiv:2005.08402] [INSPIRE].
[17] V. Benedetti and H. Casini, Entanglement entropy of linearized gravitons in a sphere, Phys. Rev. D 101 (2020), no. 4045004 [arXiv: 1908.01800] [inSPIRE].
[18] J.R. David and J. Mukherjee, Entanglement entropy of gravitational edge modes, JHEP 08 (2022) 065 [arXiv:2201.06043] [INSPIRE].
[19] M. Nozaki, Notes on Quantum Entanglement of Local Operators, JHEP 10 (2014) 147 [arXiv:1405.5875] [INSPIRE].
[20] M. Nozaki, T. Numasawa, and T. Takayanagi, Quantum Entanglement of Local Operators in Conformal Field Theories, Phys. Rev. Lett. 112 (2014) 111602 [arXiv:1401.0539] [InSPIRE].
[21] M. Nozaki, T. Numasawa, and S. Matsuura, Quantum Entanglement of Fermionic Local Operators, JHEP 02 (2016) 150 [arXiv:1507.04352] [inSPIRE].
[22] M. Nozaki and N. Watamura, Quantum Entanglement of Locally Excited States in Maxwell Theory, JHEP 12 (2016) 069 [arXiv:1606.07076] [INSPIRE].
[23] P. Candelas and D. Deutsch, On the vacuum stress induced by uniform acceleration or supporting the ether, Proc. Roy. Soc. Lond. A 354 (1977) 79 [InSPIRE].
[24] J.R. David and J. Mukherjee, Entanglement entropy of local gravitational quenches, arXiv:2209. 05792 [INSPIRE].
[25] J. Mukherjee, Partition functions of higher derivative conformal fields on conformally related spaces, JHEP 10 (2021) 236 [arXiv:2108.00929] [INSPIRE].
[26] J. Mukherjee, Partition functions and entanglement entropy: Weyl graviton and conformal higher spin fields, JHEP 04 (2022) 071 [arXiv:2112.15461] [INSPIRE].

