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Abstract
Identification of groundwater recharge zone is an important factor for water resource management in any area. The present 
study investigates the potential water recharge zones in the Sikkim state, a mountain region of the Eastern Himalayas. To iden-
tify potential watershed recharge zone in the region, a combination of geographic information system (GIS)-based weighted 
overlay index (WOI) tools and analytic hierarchy process (AHP) pairwise matrix techniques was applied. The delineated 
watershed recharge sites were classified into five different potential zones. The results show that the majority of the study 
area (54.22%) was under moderate recharge potential zone. Some of the suitable recharge potential sites are forest-covered 
regions; therefore, the construction of surface check dams could be a suitable recharge method; it will escalate the discharge 
in springs and also help to make them perineal. This study provides first-hand information on the groundwater recharge 
potential of East Sikkim, where the populace depends largely on spring water discharge. Also, it is useful in selecting areas 
for digging staggered contour trenches, pits, and other structures to recharge the spring water and improve the watershed 
management system.
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Introduction

The Himalayan cryosphere is the source of major river sys-
tems in Asia, which is the lifeline of more than 1 billion 
people living in the downstream valley (Immerzeel et al. 
2010; Kumar et al. 2017; Wester et al. 2019; Pritchard 2019). 
Precipitation in the form of rainfall also contributes signifi-
cantly to the total discharge of the major rivers, especially 
in the eastern Himalayas (Armstrong et al. 2019). Sikkim, 
which is in the eastern Himalayan region, has two major 
rivers, namely Teesta and Rangit. The rivers originate from 
the high-altitude mountains of Sikkim. Snow and glaciers 

meltwater as well as the high-altitude mountain lakes are the 
main water sources of these rivers. At the same time, Sik-
kim receives high-intensity of precipitation and the south-
west monsoon season is responsible for more than 80% of 
the total annual precipitation in the Teesta Basin of Sikkim 
(CISMHE 2007). The geographical total area of Sikkim is 
around 7096 sq. km and is characterized by steep slopes and 
escarpments having terraces, gorges, and U- and V-shaped 
valleys at various altitudes. Although river water resources 
are available in Sikkim throughout the year, this river flows 
at the bottom of the narrow valleys which makes them inac-
cessible for the majority of the inhabitants of Sikkim. There-
fore, for daily requirements, the region is heavily dependent 
on perennial springs and small streams (Tambe et al. 2012). 
However, groundwater development is limited due to the 
presence of hard rocks having steep slopes and so far no such 
information is available on the underground water resources 
of Sikkim. With the increase in population and land-use/
cover (LULC) change, water demands per person for daily 
use have increased around various regions. Similarly issues 
on water quality and quantity have arisen (Kumar et al. 2017, 
2021; Khan et al. 2020). On the other hand, climate change 
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adds a new level of uncertainty concerning the availability 
of spring water across the Himalayas (Scott et al. 2019). In 
Sikkim, the drying up of springs has been observed dur-
ing the pre-monsoon season (Tambe et al. 2012). A recent 
study by Ranjan and Pandey 2019 relates the drying up of 
many water sources with various factors such as ecologi-
cal degradation, changing land-use/cover patterns, erratic 
rainfall patterns, socioeconomic and demographic changes. 
Rapid urbanization and tourism are other factors that affect 
groundwater quality (Khan et al. 2020; Kumar et al. 2021). 
Simultaneously, it is reported that there is undergoing deple-
tion and deterioration of water quantity and quality of the 
springs (NITI Aayog 2017). In Sikkim, several studies have 
reported that the glaciers have lost ~ 20% area in recent dec-
ades (Basnett et al. 2013; Debnath et al. 2019). A study on 
extreme analysis of precipitation and drought in Sikkim has 
observed extreme excess and deficit of rainfall during dif-
ferent seasons (Dubey et al. 2022). Hence, the climate and 
water resources of Sikkim are undergoing various changes. 
Therefore, better planning and effective utilization of water 
resources has become necessary.

Among the four districts in Sikkim, viz. East, West, 
North, and South District, East Sikkim is selected as the 
study area because it is the most populated district in the 
state, and recently few projects for artificial recharge of 
groundwater are underway. The development of industrial 
estates at Marchak, the airport at Pakyong, and changing 
consumption patterns have led to the rising water demand 
in the region. To address the water-related problems, efforts 
have been made by the government of Sikkim. Among them, 
the Repair, Renovation, and Restoration (RRR) scheme is 
carried out to revive various dried water bodies in Sikkim 
(WRRDD 2018). Various measures to augment the water 
supply of springs such as watershed and “springshed” devel-
opment are also recommended (Mahamuni and Kulkarni 
2012). Among these, digging trenches in hilly terrain is one 
common method that has been implemented in the region 
(Tambe et al. 2012). Recently, in the Namcheybong area 
in East Sikkim, more than 1000 trenches are being dug to 
improve the discharge of springs in the lean season which 
is initiated by the Eco-tourism and Conservation Society of 
Sikkim (ECOSS). However, to date, no such scientific study 
has been conducted related to hydrogeological study in Sik-
kim. The lack of data and knowledge related to such a study 
makes it difficult to assess the efficiency and usefulness of 
trenches and pits that have been constructed. Also, Sikkim 
is situated in a very high earthquake vulnerable zone (zone 
IV) and high landslides susceptible zone. It is among India’s 
most vulnerable regions in regard to natural and human-
made disasters. Further, the mountainous terrain is a com-
plex, unstable, and a fragile ecosystem threatened by the 
major driving force of several devastating natural hazards 
including soil erosion (Chauhan et al. 2016). A study on 

morphometry-based watershed prioritization of Teesta Basin 
suggests that most portion of East Sikkim falls in high and 
very high erosion susceptible regions (Haokip et al. 2021). 
A study on landslide hazard risk vulnerability assessment 
in Gangtok indicates that 7.51% and 18.18% of the area fell 
in the very high-risk zone and high-risk zone respectively 
(SSDMA 2012). Considering the vulnerability to landslides 
and other risks in the region, a proper measure has to be 
taken in selecting the sites for digging trenches. To con-
duct a detailed hydrogeological, geological, and geophysical 
study on the identification and quantification of groundwa-
ter resources is often expensive and requires skilled human 
resources (Machiwal et al. 2015). On the other hand, remote 
sensing data and geographic information system (GIS) tech-
niques are a crucial alternative approach to delineate ground-
water recharge sites that will be a guide for further develop-
ment on water management in the region.

In recent years, geospatial technology has been increas-
ingly used for the identification of potential groundwater 
zones (Shaban et al. 2006; Gupta and Srivastava 2010; 
Gumma and Pavelic 2013; Nampak et  al. 2014; Khan 
et al. 2020; Pradhan et al. 2021). The advantage of remote 
sensing and GIS-based analytic hierarchy process (AHP) 
is that it allows evaluation by considering various factors 
and utilizes them in decision-making. It has the applica-
tion of scientific knowledge and proven field evidence, as 
well as an evaluation of the matrix for consistency (Yeh 
et al. 2016a, b). AHP is proven significant in the field of 
decision analysis across various disciplines such as waste 
management, land-use allocation group dynamics in psy-
chology, real estate for picking preferred locations during 
house hunting, resource mapping in mineral exploration, 
etc. (Saaty 1980; Şener et al. 2006; Wang et al. 2009; Mohd 
et al. 2011; Felice et al. 2016). AHP ranks the influence of 
different factors on groundwater recharge, and thus, along 
with GIS, it becomes a compatible tool (Lentswe and Mol-
walefhe 2020). The influencing parameters, e.g., geology, 
soil, slope, geomorphology, LULC, drainage density, line-
ament density, and rainfall, are selected based on their con-
tribution toward water yield to underground water. For the 
first time, the application of remote sensing, GIS, and AHP 
techniques is used to study groundwater recharge potential 
in Sikkim. This study will help to select the appropriate 
sites for digging trenches and pits for underground water 
recharge. The objective is to delineate the spatial distribu-
tion of groundwater recharge potential in the mountainous 
region of East Sikkim by (i) preparing thematic layers for 
eight parameters controlling groundwater recharge in the 
region, (ii) reclassifying and ranking the parameters based 
on their influence on groundwater recharge, and, (iii) pro-
ducing groundwater recharge potential map. This study will 
benefit in identifying the potential recharge zone for vari-
ous springs and wetlands in the study area.
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Study area

Sikkim is located in the North-Eastern part of India, bor-
dered by West Bengal in the south. It shares international 
boundaries with China in the north and northeast, Bhu-
tan in the east, and Nepal in the west (Fig. 1). According 
to the 2011 census, it is the least populous and the second 
smallest state in India. It extends between 27°04′ 46" and 
28°07′ 48" N latitudes and 88°00′58" and 88°55′25" E 

longitudes with elevations having a wide range from 280 
to 8586 m above mean sea level.

The southern part of the state exhibits softer sedimentary 
rocks, and the northern and eastern parts are dominated by 
high-grade gneisses (GSI 2012). The degree of deforma-
tion of rock is quite variable, with the southern parts more 
deformed than the rocks found in the northern regions of 
the State. In East Sikkim, the dominant rock types include 
granite gneiss, phyllite, schist, quartzite, and migmatite (GSI 

Fig. 1  Maps: A Location of Sikkim and the neighboring states in India which is bordered by China, Bhutan, and Nepal, B Four districts of Sik-
kim: East, West, North, and South Sikkim, and C Digital elevation map of the study area. Elevation given in m

Table 1  Geological succession 
of East Sikkim (GSI 2012)

Formation Group/Supergroup Age

Lingtse Granite Gneiss Meso Proterozoic
Reyong Formation Daling Group Proterozoic Undifferentiated
Gorubathan Formation
Kanchenjunga Gneiss/Darjeeling Gneiss 

(Undifferentiated)
Central Crystalline Gneissic Com-

plex (CCGC)
Chungthang Formation
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2012). The geological succession of East Sikkim is given 
in Table 1. The Himalayan fold-thrust belt (FTB) is domi-
nant in the study area, which is characterized by a series of 
south-verging, folded thrust faults (Medlicott 1864; Gan-
sser 1964; Srivastava and Mitra 1994; Pearson and DeCelles 
2005). The belt accommodated a significant portion of the 
total Indo-Eurasian convergence in the Himalayan arc. The 
other significant faults in the belt are the Main Central thrust 
(MCT), the Main Boundary Thrust (MBT), and the Main 
Frontal Thrust (MFT). The MCT and the MBT mark the 
boundaries between the Greater and Lesser Himalayan, and 
the Lesser and Sub-Himalayan sequences (Bhattacharyya 
et al. 2015). The MCT is in contact with the Paro gneiss and 
lies above the Pelling Thrust (PT). There is the occurrence of 
a large number of perennial springs with varying discharge, 
which is an indication of the occurrence of groundwater in 
various rock formations and weathered zones in the host 
rocks such as phyllite, schist, gneisses, and quartzite. Direct 
infiltrations of rainwater through weathered zones of the 
rock, soil covers, joints, and fractures are the principal mode 
of recharge of the springs which is used by the populace for 
consumption and other domestic uses. Sikkim region has 
a relatively high slope; thus, the recharge of rainwater is 
minimized and flows off as surface runoff through streams 
and intermittent springs. The average maximum temperature 
is 27.2 °C, and the average minimum temperature is 1.6 °C. 
The annual rainfall varies spatially and temporally in Sik-
kim, and the study area receives an annual average rainfall 
of 3894 mm (CGWB 2013). A study on rainfall variability in 
Sikkim from 1951 to 2018 using daily gridded rainfall data 
revealed significantly widespread changing rainfall patterns 
(Dubey et al. 2022). The study indicates a decline in annual 
precipitation in the study area during the monsoon season. 
In July and September, negative changes in precipitation are 
observed, whereas positive changes are observed in Febru-
ary, March, April, May, November and December showing 
shifting of the rainfall patterns. Further, both negative and 
positive changes are observed in other months. The yearly 

precipitation changes show negative precipitation changes 
in 85% and positive changes in 15% of the area (Dubey et al. 
2022). The soils in East Sikkim between 15 and 30% slopes 
are deep, excessively drained, coarse loamy to the fine loamy 
surface with moderate erosion, predominantly under forest 
and cultivation. The soils between 30 and 50% slopes are 
moderately shallow to deep, well-drained, silty to fine loamy 
with moderate erosion, and largely under temperate forest. 
The soils with more than 50% slope are moderately deep, 
excessively drained, coarse loamy to fine loamy with mod-
erate erosion, and under temperate forest covers (Haokip 
et al. 2021).

Data and methods

Data acquisition and development of thematic 
layers

In this study, the maps for geology, geomorphology, and soil 
were prepared from the existing maps. The terra Advanced 
Spaceborne Thermal Emission and Reflection Radiometer 
Digital Elevation Model (ASTER DEM) data were used to 
generate drainage density and slope maps. The rainfall map 
was prepared from the IMD gridded data. Lineament map 
and LULC maps were generated from Landsat 8 image. The 
details of the data collected, sources, and their purposes are 
given in Table 2.

Analytic hierarchy process

There are several assessment techniques for delineat-
ing groundwater recharge potential such as single-factor 
analysis, multifactor analysis, fuzzy-analytical hierarchy 
process (F-AHP), fuzzy clustering, geographic informa-
tion fusion systems, fuzzy-analytical hierarchy process 
indices, the multi-criteria decision-making method, and 
the multi-influencing approach (Xin-feng et al. 2012; Pinto 

Table 2  Details of data collected, sources, and its purpose

Sl No Data Source Purpose

1 Annual rainfall of 2020 (0.25 × 0.25 
degree)

https:// www. imdpu ne. gov. in/ Clim_ Pred_ LRF_ New/ 
Grided_ Data_ Downl oad. html

Rainfall map

2 ASTER DEM (30 m resolution) https:// aster web. jpl. nasa. gov/ data. asp Drainage Density, and Slope map
3 Landsat 8 (30 m resolution) https:// earth explo rer. usgs. gov/ LULC and Lineament map
4 Geology map of Sikkim Geological Survey of India: Miscellaneous Publication 

No. 30, Part XIX – Sikkim
Geology map

5 Natural resources atlas of Sikkim ENVIS Hub: Sikkim Status of Environment and Related 
Issues. http:// siken vis. nic. in/ Datab ase/ Natur alRes 
ources_ 790. aspx

Soil map

6 Geomorphology map of Sikkim https:// bhuvan- app1. nrsc. gov. in/ thema tic/ thema tic/ 
index. php#

Geomorphology map

https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html
https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html
https://asterweb.jpl.nasa.gov/data.asp
https://earthexplorer.usgs.gov/
http://sikenvis.nic.in/Database/NaturalResources_790.aspx
http://sikenvis.nic.in/Database/NaturalResources_790.aspx
https://bhuvan-app1.nrsc.gov.in/thematic/thematic/index.php#
https://bhuvan-app1.nrsc.gov.in/thematic/thematic/index.php#
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et al. 2017; Nag and Kundu 2018; Nasir et al. 2018; Celik 
2019; Thapa et al. 2017; Ahmad et al. 2020; Lentswe and 
Molwalefhe 2020; Shao et al. 2020). Among these, the 
multi-criteria decision-making method using AHP is one 
of the most significant because it involves decision-making 
based on various parameters (Lentswe and Molwalefhe 
2020; Fauzia et  al. 2021a, b). The various parameters 
which influence groundwater recharge potential include 
geology, topography (slope), lineament, rainfall, land-use/
cover, geomorphology, drainage density, primary poros-
ity, elevation, secondary porosity, soil type, soil texture, 
fractures, and weather in a region (Rahmati et al. 2015; 
Jasrotia et al. 2013; Adiat et al. 2012). Based on the avail-
ability of data and the factor of influence for groundwa-
ter recharge in the region, a total of eight sets of criteria/
factors are considered in this study. The factors include 
drainage, lineament, LULC, rainfall, slope, geomorphol-
ogy, soil, and geology. The various thematic layers were 
transformed into raster data. It is then followed by the 
weighted overlay method (rank and weightage-wise the-
matic maps). Based on Saaty’s 9-point scale, the param-
eters were assigned an appropriate weight and through 
AHP, the weights were normalized. AHP was applied 
to rank the importance of each parameter relative to one 
another concerning groundwater recharge. The weighted 
layers were statistically computed in the overlay analysis to 
generate the groundwater recharge potential. The general 
methodology is summarized in Fig. 2, which includes the 

preparation of thematic layers, reclassifying and ranking 
the parameters, and generation of a groundwater recharge 
potential map.

Each of the eight thematic layers was georeferenced and 
projected to Universal Transverse Mercator (UTM) World 
Geodetic System 84 (WGS-84). Further, the images were 
reclassified and assigned a weight according to their rela-
tive influence on groundwater recharge using the AHP tech-
nique (Saaty 1977; Brunelli 2014). The weight is assigned to 
each map layer to represent the relative importance of each 
parameter class concerning recharge. AHP is a common 
technique applied for structuring information alternatives 
on a hierarchical framework aided by mathematical pairwise 
comparisons (Chowdhury et al. 2009; Hachem et al. 2014; 
Yeh et al. 2016a, b; Arulbalaji et al. 2019). The process 
is significant for compiling multiple layers to get a single 
layer. The requirement of separating into a series of pairwise 
comparisons is aided by AHP. The fundamental scale used in 
AHP is given in Table 3, and the weights of various param-
eters by multi-criteria evaluation technique and the ranking 
for individual features are given in Table 4.

Eigenvector and principal eigenvalue

The eigenvector is the ordering of parameters that were 
computed to show the relative weights of each of the 
parameters (Saaty 2003; Brunelli 2014). The eigenvec-
tors were calculated first by dividing column values by 

Fig. 2  Workflow diagram for the evaluation of potential groundwater recharge zones
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the column sum and then averaging row values (Saaty 
1980). The eigenvalue is used to rank the importance of 
the parameters. The sum of eigenvalues called principal 
eigenvalue (λmax) is a measure of matrix deviation from 
consistency (Brunelli 2014). A pairwise comparison 
matrix is considered to be consistent only if the principal 
eigenvalue (λmax) is greater than or equal to the number 
of the parameters considered (n); otherwise, a new matrix 
is required (Saaty 1980). The principal eigenvalue was 
obtained from the summation of the products column in 
the pairwise matrix and eigenvector. The principal eigen-
value was achieved for the 8*8 matrix to calculate the 
consistency index. The standardized pairwise compari-
son matrix and weight factors influencing recharge for all 
parameters are given in Table 5.

The pairwise matrix is given by the matrix as follows 
(Saaty 1980):

where A = pairwise comparison matrix of Ai; i = 1, 2…. 8 for 
criteria K; n = the number of evaluation criteria (Table 6).

The consistency index (CI) may be expressed in Eq. (1) 
(Saaty 1988):

(1)CI =
�max−n

n − 1

�
max

= (7.69 + 7.63 + 8.13 + 8.13 + 8.13 + 8.12 + 8.12 + 8.12)∕8

= (64.07)∕8

= 8.009

CI =
8.009 − 8

8 − 1
= 0.00129

The consistency ratio (CR) is expressed in Eq. (2) as:

where RCI is the random index for n number of evaluation 
criteria. The RI value for n = 8 is given in Table 7 (Saaty 
1980).

For consistent decisions, the value of CI is 0, but incon-
sistency may be tolerated for (CR)< 0.1 (Saaty 1990). The 
value of acceptable CR values differs based on the matrix 
size. The acceptable CR values are as follows: for a 3×3 
matrix, CR< 0.05; for a 4×4 matrix CR< 0.09; and for larger 
matrices CR< 0.1 (Saaty 1980). In this study, since the CI 
and CR values are 0.00129 and 0.0009, respectively, the 
judgments matrix is very consistent.

Delineation of potential recharge zones

To delineate potential recharge zones in the study area, 
the AHP technique was implemented in four phases: (1) 
selection of factors influencing groundwater recharge 
(2) pairwise comparison matrix, (3) estimating relative 
weights, and (4) assessing matrix consistency. The first 
phase in the AHP technique includes the selection of fac-
tors influencing groundwater recharge and their attributes. 
It enables the identification of the problem into a pyramid 
structure comprising objectives and eventually, the influ-
encing factors are selected (Saaty 1980; Boroushaki and 
Malczewski 2008; Brunelli 2014). To delineate potential 
recharge zones in East Sikkim, the various factor attributes 
comprise thematic layers of geology, soil, drainage den-
sity, lineament density, LULC, geomorphology, rainfall, 
and slope. The reclassified layers of the influencing factors 
show potential recharge zones based on each factor. The 
relative importance of the parameters was graded based 

(2)
CR =

CI

RCI

=
0.00048

1.41
= 0.0009

Table 3  The fundamental scale for AHP (Saaty, 1980)

Intensity of 
importance

Definition Details

1 Equal importance The contribution of the two activities is equal
3 Moderate importance of one over another The contribution of one activity favors the other
5 Strong importance The contribution of one activity strongly favors the other
7 Very strong importance The contribution of one activity very strongly favors the other
9 Extreme importance The highest possible order of affirmation of one factor over the other
2, 4, 6, 8 Intermediate values between the absolute scale When compromise is needed
Reciprocal For any activity i and j, the value of one will be recip-

rocal of the other
Rational Ratios arising from the scale
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on a nine-point scale (Table 3). A score of 1 indicates 
equal importance between the two factors. Likewise, a 
score of 9 indicates the extreme importance of the param-
eter in the row compared to the parameter in the column 
(Saaty 1980). The second phase is the construction of a 
pairwise comparison matrix (8*8), based on the number 
of input factors for the delineation of recharge potential 
zones (Saaty 1980). Each entry of the matrix represents 

the influence of the row-factor relative to the column fac-
tor. Due to the significance of geology in groundwater 
recharge, the selection and weighting of factors for deline-
ating recharge zones were based on geology and processes 
affecting recharge in the study area. Geology was selected 
as the first parameter and recorded in row 1 and column 
1 of the matrix. The soil was selected as the second most 
important parameter followed by LULC, geomorphology, 

Table 4  Weightage of various 
parameters by AHP

Thematic layers Weightage Individual features Rank

Geology 19 Granite Gneiss 2
Gorubathan Formation 4
Kanchenjunga Gneiss/Darjeeling Gneiss 4
Chungthang Formation 6
Reyong Formation 6

Soil Snow 2
17 Entisols 7

Inceptisols 5
Mollisols 3

LULC 14 Dense forest 6
Water 9
Built-up 2
Barren 1
Agriculture 7
Open forest 5

Geomorphology 12 Structural Origin-Highly Dissected Hills and Valleys 2
Structural Origin-Moderately Dissected Hills and Valleys 3
Fluvial Origin-Younger Alluvial Plain 7
Glacial Origin-Glacial Terrain 2
Glacial Origin-Snow Cover 2
Waterbodies 9

Slope 12 Very high 1
High 3
Medium 5
Low 7
Very low 9

Drainage density 10 Very high 1
High 3
Medium 5
Low 7
Very low 9

Lineament density 8 Very high 9
High 7
Medium 5
Low 3
Very low 1

Rainfall 8 Very high 9
High 7
Medium 5
Low 3
Very low 1
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slope, drainage density, lineament density, and rainfall. 
Drainage density and lineament density largely depends 
on other parameters under investigation, so it was allo-
cated in the lower order. Rainfall is an important factor in 
recharge, but since the difference in average annual rainfall 
in the study area is not significant, it is considered in the 
lowest order. The selection parameter pair, as well as the 
assignment of pair weight, was based on the interrelation-
ship between geology and other factors affecting recharge. 
The eigenvector and eigenvalue are used to reduce noise 
in the data by eliminating features that have a strong cor-
relation and help in reducing over-fitting (Lentswe and 
Molwalefhe 2020). Expert opinion and eigenvector are 
used to assign factor weight, while principal eigenvalue is 
used to rank the factors (Saaty 1980; Carver 1991; Malc-
zewski 2006; Hajkowicz and Higgins 2008). All the inputs 
were integrated through the weighted overlay method after 
assigning weights and ranks to the parameters and their 
subclasses using Eq. (3):

(3)GWRP = GGxGGy + GMxGMy + SOxSOy + LULCxLULCy + DxDy + SLxSLy + LxLy + RxRy

where GWRP denotes groundwater recharge potential, 
‘x’ denotes factor class, and ‘y’ denotes factor subclass, 
respectively.

Results and discussion

Geology

Geology controls recharge through the nature of rocks at the 
outcrops and topography, slope, and nature of soils (Sim-
mers 1990; Freeze and Cherry 1979). The different struc-
tural entities in the basement rocks control the occurrence 
and movement of groundwater to a great extent (Pradhan 
and Biswal 2019). Based on the porosity and hydraulic 
conductivity of the rock types, the ranks are given for the 
various geological features (Earle 2015). In the study area, 
the rocks are highly foliated and deformed, so they have 
significant secondary porosity and permeability which plays 

Table 5  Weight assigned and 
pairwise comparison matrix of 
eight thematic layers influencing 
recharge in the study area

Parameter Assn. Wt GG SO LULC GM SL DD LD R

Geology (GG) 9 9/9 9/8 9/7 9/6 9/6 9/5 9/4 9/4
Soil (SO) 8 8/9 8/8 8/7 8/6 8/6 8/5 8/4 8/4
Land-use/cover (LULC) 7 7/9 7/8 7/7 7/6 7/6 7/5 7/4 7/4
Geomorphology (GM) 6 6/9 6/8 6/7 6/6 6/6 6/5 6/4 6/4
Slope (SL) 6 6/9 6/8 6/7 6/6 6/6 6/5 6/4 6/4
Drainage Density (DD) 5 5/9 5/8 5/7 5/6 5/6 5/5 5/4 5/4
Lineament Density (LD) 4 4/9 4/8 4/7 4/6 4/6 4/5 4/4 4/4
Rainfall (R) 4 4/9 4/8 4/7 4/6 4/6 4/5 4/4 4/4

Table 6  Standardized pairwise 
comparison matrix showing 
values of normal weight and λ

Parameter GG SO LULC GM SL DD LD R Nor.Wt. λ

Geology (GG) 1 1.13 1.29 1.5 1.5 1.8 2.25 2.25 0.19 7.69
Soil (SO) 0.89 1 1.14 1.33 1.33 1.6 2 2 0.17 7.63
Land-use/cover (LULC) 0.78 0.88 1 1.17 1.17 1.4 1.75 1.75 0.14 8.13
Geomorphology (GM) 0.67 0.75 0.86 1 1 1.2 1.5 1.5 0.12 8.13
Slope (SL) 0.67 0.75 0.86 1 1 1.2 1.5 1.5 0.12 8.13
Drainage Density (DD) 0.56 0.63 0.71 0.83 0.83 1 1.25 1.25 0.10 8.12
Lineament Density (LD) 0.44 0.5 0.57 0.67 0.67 0.8 1 1 0.08 8.12
Rainfall (R) 0.44 0.5 0.57 0.67 0.67 0.8 1 1 0.08 8.12

Table 7  Average random 
consistency (RI) for various 
matrix size

Size of matrix 1 2 3 4 5 6 7 8 9 10

Random consistency 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49
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an important role in the ranking of the geology. Chungth-
ang Formation is the oldest formation in the geological suc-
cession consisting of rock types such as Quartzite, Garnet 
kyanite sillimanite biotite schist/Garnetiferous mica schist, 
Calc-silicate, and carbonaceous schist (GSI 2012). Kanchen-
junga Gneiss/Darjeeling Gneiss consists of rock types such 
as Banded/streaky migmatite, Augen bearing (garnet) biotite 
gneiss with/ without kyanite, sillimanite with palaeosols of 
staurolite, kyanite, mica schist, and sillimanite granite gneiss 
GSI 2012). It is the highest-grade metamorphic rock of the 
Greater Himalayan Sequence (GHS) in the Darjeeling–Sik-
kim Himalaya. The rock types prevalent in Chungthang For-
mation and Kanchenjunga Gneiss have coarser grain size 
and penetrative foliation, so it is assigned the highest rank 
(6). Gorubathan Formation consists of rock types such as 
interbanded chlorite-sericite schist/phyllite and quartzite, 
meta-greywacke (quartzo-feldspathic greywacke), pyritif-
erous black slate, biotite phyllite/mica schist, biotite quartz-
ite, mica schist with garnet, with/without staurolite, chlorite 
quartzite (GSI 2012). Reyong Formation consists of varie-
gated cherty phyllite. The rock types in the Daling Group 
(Gorubathan and Reyong) have relatively finer grain sizes 
and are dominated by cleavage plains, so it is assigned a 
medium rank (4). Lingtse Granite Gneiss is a coarse-grained 
orthogneiss with less permeability and relatively less folia-
tion, and so it is assigned the lowest rank (2). The geological 
map of the study area is classified in six groups which is 
shown in Fig. 3.

Soil type

Soil covers the outermost layer of the earth’s crust, and 
hence, the initial infiltration capacity of a region is highly 

dependent on the prevalent soil type. The soil types of the 
region were grouped according to grain size. There are 14 
types of soils within the study area which are grouped into 
three, namely entisols, inceptisols, and mollisols (Fig. 4). 
Entisols are assigned the highest rank (7) because it consists 
mostly of coarser grains. Coarse-grained soils have higher 
infiltration capabilities than fine-grained soils. Hence they 
are assigned higher recharge potential values (FitzPatrick 
1986; Brady and Weil 2014). Further, inceptisols and mol-
lisols are assigned lower ranks of 5 and 3 because it consists 
mostly of medium and fine grains.

Land‑use/cover

For land-use/cover classification, a satellite image retrieved 
on January 2, 2018, from Landsat 8 was used. The various 
classifications are water bodies, built-up, barren, agriculture, 
dense forest, and sparse forest. For each classification, the 
various features considered are given in Table 8. The land-
use/cover classification is done by knowledge-based super-
vised classification technique and maximum likelihood clas-
sifier in ArcGIS 10.4.1. The barren land is mostly covered 
by snow in winter, and thus, the weightage of barren land 
is given considering the snow cover aspect also. The LULC 
classification map of the study area is shown in Fig. 5. Fur-
ther, the land-use/cover map generated was compared with 
the ground truth data and Google Earth image. The pho-
tographs taken in the field and the Google earth image are 
shown in Supplementary Sections, with the reference in the 
land-use/cover map shown in subset parallelogram A to J.

Fig. 3  Geological map of East 
Sikkim
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Geomorphology

Geomorphology represents the landform and topography of 
a region, and hence, it is an important parameter widely used 
for the delineation of water recharge zones (Arulbalaji et al. 
2019). The groundwater in the study area is mostly confined 
within the fracture zones in various lithological units and 
weathered residuum in gneisses, phyllite, schist, and quartz-
ite. Based on the geomorphology, the study area is classi-
fied into six different types as (i) structural origin-highly 
dissected hills and valleys, (ii) structural origin-moderately 
dissected hills and valleys, (iii) fluvial origin-younger allu-
vial plain, (iv) glacial origin-glacial terrain, (v) glacial ori-
gin-snow cover, and (vi) waterbodies accumulation (https:// 

Fig. 4  Soil map of East Sikkim

Table 8  The LULC types and their respective classes

Classes Features

Built-up land (BL) Residential, industrial, and roads
Agricultural land (AL) Cropland and pasture
Dense forest (DF) Thick tree canopy density
Open forest (OF) Sparse tree canopy density
Water (W) Rivers, streams and canals, lakes, reser-

voirs, bays, and estuaries
Barren land (BL) Bare exposed rock and mixed barren land

Fig. 5  Land-use/cover clas-
sification of the study area 
with various sections A to J. 
Field photographs and google 
imagery of sections A to J are 
included in Supplementary sec-
tions (Annexures 1 and 2)

https://bhuvan-app1.nrsc.gov.in/thematic/thematic/index.php#


Applied Water Science (2022) 12:248 

1 3

Page 11 of 18 248

bhuvan- app1. nrsc. gov. in/ thema tic/ thema tic/ index. php#). 
The study area is dominant of structural origin with high 
and moderately dissected hills and valleys (Fig. 6). Hills 
and valleys of structural origin are dissected by the drain-
age lines, and accordingly, it has been classified as highly 
and moderately dissected depending on the density of line-
aments, joints, and drainage. Thus, moderately dissected 
hills and valleys are assigned a slightly higher rank (3) than 
highly dissected hills and valleys (2). Fluvial-originated 
alluvial plains are those landforms that are formed by riv-
ers and streams. Among the classifications, waterbodies are 
assigned the highest rank (9) followed by fluvial-originated 
alluvial plain (7). The lowest rank of 2 each is assigned to 
the glacier-originated landforms and highly dissected hills 
and valleys of structural origin.

Slope

The slope of a region is defined as the angle between the tan-
gent plane and the horizontal plane which is given in degree 
(Maidment 1993). Slope influences the amount of infiltration 
and runoff to a great extent (Simmers 1990). Gently slop-
ing areas allows maximum infiltration, whereas areas with 
steeper slope lead to minimum recharge to the underlying 
aquifers (Rashid et al. 2012). It is observed that the slope 
parameter is ignored in some studies related to groundwater 
flow and storage conducted in less mountainous terrain (Al 
Saud 2010). However, in this study, the region being a hilly 
terrain, the slope of the region plays an important role in the 
water recharge. The slope map of the study area is given in 
Fig. 7 which was created from ASTER DEM using the slope 
tool in ArcGIS 10.4.1. The slope values were reclassified 

and categorized into five classes, namely very low (0–7.36), 
low (7.36–14.6), medium (14.6–24.4), high (24.4–41.2), and 
very high (> 41.2). The highest rank (9) is assigned for a 
very low slope, and likewise, the lowest rank (1) is assigned 
for a very high slope.

Drainage Density

A drainage network of a region can be expressed as drainage 
density. Drainage density is calculated as the total length of 
streams to the surface area (Schillaci et al. 2015). The drain-
age order map (Fig. 8) and drainage density map (Fig. 9) 
were extracted from ASTER DEM using the line hydrology 
tool of the Spatial Analyst tool in ArcGIS 10.4.1. The drain-
age density is calculated by dividing the length of the drain-
age line by the total area using the line density tool (ESRI 
2015). Areas with high drainage density are characterized 
by excessive runoff and are assigned a lower rank concern-
ing recharge. Thus, areas with less drainage density were 
assigned higher ranks. The red patches of the drainage den-
sity map represent higher stream density, while the yellow 
and green patches show moderate and low stream density.

Drainage density (DD) is an inverse function of perme-
ability which is shown in Eq. (4)

where ΣD is the total length of the streams i (km) and A is 
the surface area  (km2).

(4)DD =

∑
Di

A

Fig. 6  Geomorphology map of 
East Sikkim

https://bhuvan-app1.nrsc.gov.in/thematic/thematic/index.php#
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Lineaments density

Geological and structural features such as fractures or 
faults or joints create surficial expressions which are 
termed as lineament (O’Leary et al. 1976). Lineaments 
induce secondary porosity and permeability to the for-
mation of a region (Maidment 1993; Freeze and Cherry 
1979). In the present study, lineaments were extracted 
from Landsat 8 images. The extracted lineament map was 
used for generating lineament density. Lineament density 

is calculated as the total length of the lineaments to the 
total area (Edet et al. 1998). The calculation of lineament 
density (LD) is shown in Eq. (5):

where ΣLi is the total length of all lineaments (km) and A is 
the area of the grid  (km2).

(5)LD =

∑
Li

A

Fig. 7  Slope map of East Sik-
kim

Fig. 8  Stream order map of East 
Sikkim
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To extract the lineament of the study area, the PCI Geo-
matica 2013 version was used. PCI Geomatica can extract 
lineaments from images automatically with the line option 
(Kocal et al. 2004). The presence of lineaments indicates 
a permeable zone. Hence, the lineament density of an area 
can indirectly expose the water recharge potential. The areas 
with high lineament density offer better conditions for water 
recharge (Haridas et al. 1998). The linear structure derived 
was transformed into a lineament density map using the line 
density tool of Spatial Analyst Toolbox in ArcGIS 10.4.1 
(Fig. 10).

Rainfall

Rainfall is an important factor that initiates recharge in any 
area. The rainfall map is generated from IMD gridded data 
(0.25 × 0.25 degree). The NetCDF file is downloaded from 
the IMD site, and the spatial distribution map of rainfall 
was prepared by the inverse distance weighted (IDW) inter-
polation tool in ArcGIS 10.4.1. The total rainfall received 
in the region ranges from 3123 to 4086 mm/year. The rain-
fall map has been reclassified into five categories as ‘very 
high’ (3893–4086 mm), ‘high’ (3701–3893), ‘medium’ 
(3508–3701 mm), ‘low’ (3315–3508 mm), and ‘very low’ 
(3123–3315  mm). Accordingly, the highest rank (7) is 
assigned to the region receiving the highest rainfall, and the 
lowest rank (3) is assigned to the region receiving the least 
rainfall. The spatial distribution map of rainfall in the study 
area is given in Fig. 11.

Groundwater recharge potential map

The groundwater recharge potential map of the study area 
is shown in Fig. 12, which is the sum of the products of 
factor percentage influence and the reclassified map. A few 
significant locations in the study area are labeled on the 
groundwater recharge potential map. The water recharge 
potential map shows that high recharge is concentrated in 
the red sections; moderate recharge areas in yellow; and poor 
recharge potential in green. The groundwater recharge map 
is divided into five classes: very good (0.24 sq. km that cov-
ers 0.02%), good (13.11 sq. km that covers 1.38%), moderate 
(515.07 sq. km that covers 54.22%), poor (416.75 sq. km 
that covers 43.87%), and very poor (4.72 sq. km that covers 
0.49%). It is observed that a small region with good and 
very good groundwater recharge potential is in the central 
and southwestern parts of the study area which correspond 
to outcrops of the Chungthang and Gorubathan Formation. 
The region falls in agricultural area, forest cover, low to very 
low drainage density, and low to the very low slope. The low 
to very low recharge potential is in the outcrop of Lingtse 
Granite Gneiss and Kanchenjunga Gneiss. The zones are 
spread mainly in the region dominated by high to very high 
slope, low to very low lineament, and mollisols soil type. 
The moderate recharge potential zone, which has the maxi-
mum spatial cover, occurs predominantly in Chungthang 
Formation, Gorubathan Formation, low to medium slope, 
inceptisols, and entisols soil type. In this study, due to the 
non-availability of field data, validation of the results could 
not be done. However, the field validation in other studies 
using the same methodology has proved effective, reliable, 
and significant for groundwater management and planning 
artificial recharge (Patil and Mohite, 2014; Abijith et al. 

Fig. 9  Drainage density map of 
East Sikkim
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2020; Lentswe and Molwalefhe 2020; Fauzia et al. 2021a, 
b). Similar studies conducted in Ponnaniyaru watershed, 
Tamil Nadu, India, and Korba coastal area, Tunisia, were 
validated with observed well-yield data, water level depth, 
and predictive precision for AHP, and the observed accu-
racy was 75% and 75.6%, respectively (Abijith et al. 2020; 
Zghibi et al. 2020). Another study demarcating potential 
recharge zone in the Maheshwaram watershed, Telangana, 
India, gives significant validation results with pre- and post-
monsoon water level fluctuations (Fauzia et al. 2021a, b).

Conclusion

Springs and streams are the main water resources of East 
Sikkim which is one of the most populated districts of Sik-
kim. Although springshed development has been initiated 
in Sikkim, no such scientific study has been conducted in 
the region. This study is an attempt to identify potential 
zones for underground water recharge using GIS and RS 
approaches. Remote sensing data, meteorological data, and 
existing maps were used to create eight thematic maps, 

Fig. 10  Lineament density map 
of East Sikkim

Fig. 11  Rainfall map of East 
Sikkim
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which were then combined in a GIS model using AHP and 
weighted overlay analysis to produce five categories of 
GWPZs. The study demonstrates the following conclusions:

1. The delineation of potential watershed recharge zone 
using the Weighted Overlay method show that most of 
the major habitat settlements (e.g. Gangtok, Rumtek, 
Singtam, etc.) fall under moderate (54.22%) and poor 
(43.87%) recharge potential zones. However, due to the 
non-availability of groundwater data and spring dis-
charge, validation of the results is beyond the scope of 
this study.

2. Construction of rainwater harvesting structures, espe-
cially pits, trenches and surface check dams, to recharge 
the groundwater will be more effective in the central 
and southwestern zones of East Sikkim, especially the 
Pakyong settlement area.

3. This study highlights the various groundwater recharge 
potential zones which are necessary to revive the springs 
as well as make them perennial for sustainable liveli-
hood.
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