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A B S T R A C T

Drug repurposing is an approach to identify new medical indications of approved drugs. This work presents
a graph neural network drug repurposing model, which we refer to as GDRnet, to efficiently screen a large
database of approved drugs and predict the possible treatment for novel diseases. We pose drug repurposing
as a link prediction problem in a multi-layered heterogeneous network with about 1.4 million edges capturing
complex interactions between nearly 42,000 nodes representing drugs, diseases, genes, and human anatomies.
GDRnet has an encoder–decoder architecture, which is trained in an end-to-end manner to generate scores for
drug–disease pairs under test. We demonstrate the efficacy of the proposed model on real datasets as compared
to other state-of-the-art baseline methods. For a majority of the diseases, GDRnet ranks the actual treatment
drug in the top 15. Furthermore, we apply GDRnet on a coronavirus disease (COVID-19) dataset and show
that many drugs from the predicted list are being studied for their efficacy against the disease.
1. Introduction

Drug repurposing involves strategies to identify new medical indi-
cations of approved drugs. It includes identifying potential drugs from
a large database of clinically approved drugs and monitoring their in
vivo efficacy and potency against novel diseases. Drug repurposing is a
low-risk strategy as drugs to be screened have already been approved
with less unknown harmful adverse effects and requires less financial
investment compared to discovering new drugs [1]. Some of the suc-
cessful examples of repurposed drugs in the past are Sildenafil, which
was initially developed as an antihypertensive drug and later proved to
be effective also in treating erectile dysfunction [1] and Rituximab that
was originally used against cancer was proved to be effective against
rheumatoid arthritis [1]. Even during the coronavirus disease 2019
(COVID-19) pandemic, caused by the novel severe acute respiratory
syndrome coronavirus (SARS-CoV2), which has affected about 450 mil-
lion people with more than six million deaths worldwide as of February
2022, drug repurposing has been proved very beneficial. Approved
drugs like Remdesivir (a drug for treating Ebola virus disease), Iver-
mectin (anthelmintic drug), Dexamethasone (anti-inflammatory drugs)
are being studied for their efficacy against the disease [2–4].

Experimental and computational approaches are usually considered
for identifying the right candidate drugs, which is the most critical step
in drug repurposing. To identify the candidate drugs experimentally, a
variety of chromatographic and spectroscopic techniques are available
for target-based drug discovery. Phenotype screening is used as an
alternative to target-based drug discovery when the identity of the
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specific drug target and its role in the disease is not known [1].
Recently, computational approaches for identifying the candidates for
drug repurposing are gaining popularity due to the availability of large
biological data. Efficient ways to handle big data have opened up many
opportunities in the field of pharmacology. For instance, [5] elaborates
several data-driven computational tools using machine learning (ML)
and deep learning (DL) techniques to integrate large volumes of hetero-
geneous data and solve problems in pharmacology such as drug-target
interaction prediction and drug–drug interaction prediction [6], to list
a few. Drug repurposing has been studied using computational meth-
ods such as signature matching methods, molecular docking, matrix
factorization-based, and network-based approaches [7–13]. However,
signature matching approaches and molecular docking approaches rely
highly on knowing profiles and exact structures of the target genes,
that may not be always available. The matrix factorization-based mod-
els find new drug–disease interactions by quantifying the similarity
between drugs and disease causative viruses using their molecular
sequences. However, these approaches are restricted to pairwise sim-
ilarities and fail to capture the interactions at a global level [13].
The network proximity-based methods predict drugs for a disease by
calculating the network proximity scores between the target genes of
the drug and the target genes of the disease [9,10], but these methods
cannot easily account for the additional information in the network,
such as similarities between drugs or diseases. Recently, representa-
tion learning techniques (i.e., machine learning and deep learning)
have been gaining attention due to their accelerated and improved
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benefits for drug repurposing over the traditional non-deep learning
methods [14,15]. Existing deep learning techniques for drug repurpos-
ing can be categorized into sequence-based methods and graph-based
methods [15]. The sequence-based methods use the molecular struc-
tural sequences of drugs and the virus genome sequence of diseases
to encode their respective entity-specific information [16]. However,
these methods are highly dependent on the availability of the sequence
information for each entity. Also, these approaches focus on the con-
secutive one- or two-dimensional correlation in a sequence, but do not
capture the interactions at a global level between different biological
entities. On the other hand, the graph-based approaches capture the
structural connectivity information between different biological entities
and provide more flexible framework for modeling complex biological
interactions between the underlying entities [11,12,17].

A natural and efficient way to capture complex interactions be-
tween different biological entities like drugs, genes, diseases, etc., is
to construct a graph with nodes representing entities and edges repre-
senting interactions between these entities, e.g., interactions between
drugs and genes or between drugs and diseases. The graph-based
methods such as the deepwalk-based, or graph neural networks, that
are capable of processing such graph structured biological data have
been proposed for drug repurposing [11,12,17]. The deepwalk-based
architecture [17] independently generates the structural information
(using the deepwalk algorithm) and the self entity information due to
which the entity and the relational correspondence is not well captured.
Graph neural networks (GNNs) capture structural information in data
y accounting for interactions between various underlying entities
hile processing data associated with them, thus producing meaning-

ul low-dimensional embeddings for the entities that are useful for
ownstream machine learning tasks. However, the existing GNN-based
odels have a considerable computational overhead when processing
uge biological networks having interactions of high density. In this
ork, we address this problem and focus on drug repurposing using

omputationally-efficient GNNs. We provide a comparative analysis of
everal graph-based architectures for drug repurposing and showcase
he benefits of having a dedicated model through our experiments on
eal datasets.

.1. Main results and contributions

We construct a four-layered heterogeneous graph explaining inter-
ctions between the four entities, namely, drugs, genes, diseases, and
natomies in each layer. We propose a new dedicated GNN model
or drug repurposing, called GDRnet, which has an encoder–decoder
rchitecture. We formulate drug repurposing as a link prediction prob-
em and train GDRnet to predict unknown links between the drug and
isease entities, where a link between a drug–disease entity suggests
hat the drug treats the disease. Specifically, the encoder is based on the
calable inceptive graph neural network (SIGN) architecture [18] for
enerating the node embeddings of the entities. We propose a learnable
uadratic norm scoring function as a decoder to rank the predicted
rugs. The proposed norm scorer is particularly designed and tuned
or the drug repurposing task that learns correlations between the drug
nd disease pairs. The main contributions and results are summarized
s follows.

• We formulate drug repurposing as a link prediction problem and
propose a new dedicated GNN-based drug repurposing model. The
trainable encoder of GDRnet precomputes the neighborhood fea-
tures beforehand, thus, is computationally efficient with reduced
training and inference time. The trainable decoder scores a drug–
disease pair based on the low-dimensional embeddings obtained
from the encoder. The encoder and decoder are trained in an
2

end-to-end manner. g
• We validate GDRnet in terms of its link prediction accuracy and
how well it ranks the known treatment drug. For a majority of
diseases with known treatment in the test set, which were not
used while training, GDRnet ranks the approved treatment drugs
in the top 15. This suggests the efficacy of the proposed drug
repurposing model.

• We perform an ablation study to show the importance of genes
and anatomy entities, which model the indirect interactions be-
tween the drug and the disease entities.

• We provide a detailed computational runtime analysis of the
proposed GDRnet architecture against the existing GNN models.
We demonstrate the advantage of using SIGN as an encoder in
GDRnet through the performance gain achieved in terms of its
training and inference time.

• We apply GDRnet for COVID-19 drug repurposing by including
the COVID-19 interactome information from [19] in the dataset.
Many of the drugs predicted by GDRnet for COVID-19 are being
studied for their efficacy against the disease.

The software to reproduce the results are available in the github
repository: https://github.com/siddhant-doshi/GDRnet

2. Multilayered drug repurposing graph

In this section, we model the biological data as a multilayer graph to
capture the complex interactions between different biological entities.
We consider four entities that are relevant to the drug repurposing task.
The four entities are drugs (e.g., Dexamethasone, Sirolimus), diseases
(e.g., Scabies, Asthma), anatomies (e.g., Bronchus, Trachea), and genes1

(e.g., DUSP11, PPP2R5E). We form a four-layered heterogeneous graph
with these entities as layers; see the illustration in Fig. 1a.

In the multilayer graph, i.e., the interactome there are inter-layered
connections between the four layers and intra-layered connections
within each layer. The inter-layered connections are of different types.
The drug–disease links indicate treatment or palliation, i.e., a drug
treats or has a relieving effect on a disease. For example, interac-
tion between Ivermectin-Scabies (as seen in Fig. 1b) and Simvastatin-
Hyperlipidemia (as seen in Fig. 1d) are of type treatment, whereas
Atropine-Parkinson’s disease is of type palliation. The drug–gene and
disease–gene links are the direct gene targets of the compound and the
disease, respectively. NR3C2, RHOA, DNMT1 are some of the target
enes of the drug Dexamethasone (see Fig. 1b) and PPP1R3D, CAV3

are target genes of the disease Malaria. There are also indirect links
between target genes of a drug and a disease, referred to as the shared
target genes (see Fig. 1b). For example, genes like ATF3, UPP1, CTSD,
are the shared target genes of drug Ivermectin and disease Malaria.
The disease–anatomy and gene–anatomy connections indicate how the
diseases affect the anatomies and interactions between the genes and
anatomies. For example, GNAI2 and HMGCR belong to the cardiac
entricle anatomy (see Fig. 1d); disease Schizophrenia affects multiple

anatomies like the central nervous system (CNS) and optic tract.
The intra-layered drug–drug and disease–disease connections show

the similarity between a pair of drugs and diseases, respectively. The
gene–gene links describe the interaction between genes (e.g., epistasis,
complementation) and form the whole gene interactome network. The
anatomy information helps by focusing on the local interactions of
genes related to the same anatomy as the genes targeted by the new
disease. Some examples of the intra-layered connections are Simvas-
tatin-Lovastatin and POLA2-RAE1 as seen in Fig. 1d. This comprehen-
sive network serves as a backbone for our model, which predicts
the unknown inter-layered links between drugs and novel diseases by
leveraging the multi-layered graph-structured data.

1 All the genes are represented using the symbols according to the HUGO
ene nomenclature committee (HGNC) [20].

https://github.com/siddhant-doshi/GDRnet
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Fig. 1. Drug repurposing network. (a) Illustration of the four-layered heterogeneous graph with the inter-layer and the intra-layer connections. (b), (c) and (d) Subgraphs centered
around the drugs Dexamethasone, Ivermectin and Simvastatin, respectively, illustrate shared target genes between these drugs and COVID-19 disease nodes (see description later on
in Section 4.8).
3. Methods and models

Graph neural networks (GNNs) have become very popular for pro-
cessing and analyzing such graph-structured data in the last few years.
Compared to deep learning models such as convolutional neural net-
works (CNNs), GNNs offer extraordinary performance improvements
while dealing with graph-structured data commonly encountered in
social networks, biological networks, brain networks, and molecular
networks, to name a few. GNN models learn low-dimensional graph
representations or node embeddings that capture the nodal connec-
tivity information useful for solving graph analysis tasks like node
prediction, graph classification, and link prediction. In this section, we
describe the proposed GDRnet architecture for drug repurposing, which
is formulated as a link prediction problem.

3.1. Notation

Consider an undirected graph  = ( , ) with a set of vertices  =
{𝑣1, 𝑣2,… , 𝑣𝑁} and edges 𝑒𝑖𝑗 ∈  denoting a connection between nodes
𝑣𝑖 and 𝑣𝑗 . We represent a graph  using the adjacency matrix 𝐀 ∈
R𝑁×𝑁 , where the (𝑖, 𝑗)th entry of 𝐀, denoted by 𝑎𝑖𝑗 , is 1 if there exists
an edge between nodes 𝑣𝑖 and 𝑣𝑗 , and 𝑧𝑒𝑟𝑜 otherwise. To account for
the non-uniformity in the degrees of the nodes, we use the normalized
adjacency matrix denoted by 𝐀̃ = 𝐃− 1

2 𝐀𝐃− 1
2 , where 𝐃 ∈ R𝑁×𝑁 is the

diagonal degree matrix. Each node in the graph has attributes (referred
3

to as input features). Let us denote the input feature vector of node 𝑣𝑖
by 𝐱(0)𝑖 ∈ R𝑑 , which contains attributes of that node.

3.2. Graph neural networks

In most of the existing GNN architectures, the embedding of a node
is updated during training by sequentially aggregating information
from its 1-hop neighbor nodes, thereby accounting for local interactions
in the network. This is also referred to as a GNN layer. Several such
GNN layers are cascaded to capture interactions beyond the 1-hop
neighborhood. Specifically, by cascading 𝐾 such layers, node features
from its 𝐾-hop neighborhood are captured. For example, in Fig. 1c,
the drug Ivermectin is a 2-hop neighbor of the anatomy Lung and is
connected via STC2. Mathematically, the node feature vector updates
can be represented by the recursion

𝐱(𝑘+1)𝑖 = 𝑔𝑘
(

𝐱(𝑘)𝑖 , 𝑓𝑘
({

𝐱(𝑘)𝑗 , ∀𝑗 ∈  (1)
𝑣𝑖

}))

, (1)

where 𝐱(𝑘)𝑖 ∈ R𝑑𝑘 is the embedding for node 𝑣𝑖 at the 𝑘th layer
and  (𝑗)

𝑣𝑖 represents a set of 𝑗-hop neighbor nodes of node 𝑣𝑖. Local
aggregation function 𝑓𝑘(⋅) combines the neighbor node features (during
the training) and 𝑔𝑘(⋅) transforms it to obtain the updated feature
vector. Different choices of the aggregation function 𝑓𝑘(⋅) and the
transformation function 𝑔𝑘(⋅) lead to different GNN variants like the
graph convolutional networks (GCN) [21], GraphSAGE [22], and graph
attention networks (GAT) [23], to name a few. However, these GNN
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Fig. 2. The GDRnet architecture.
models do not scale well on large and dense graphs as their computa-
tional cost depends on the number of nodes and edges in the graph. To
reduce the runtime computations, a scalable GNN architecture called
SIGN [18] has been proposed, where the neighborhood aggregations at
various depths (till 𝐾-hop) are precomputed (before training), and the
node embeddings are generated non-iteratively, unlike the GNN models
in Eq. (1). As the node features updates are performed beforehand
outside the training procedure, these GNN variants easily scale on large
graphs, such as the multi-layered drug repurposing graph, as they are
independent of the number of edges in the graph. The proposed GDRnet
architecture has an encoder–decoder architecture, wherein the encoder
is based on the SIGN architecture due to its computational advantages.
While SIGN has been used for node classification [18], we utilize it here
for link prediction, i.e., to predict links between drugs and diseases.
Next, we describe the proposed GDRnet architecture.

3.3. The GDRnet architecture

The proposed GNN architecture for drug repurposing has two main
components, namely, the encoder and decoder. The encoder generates
the node embeddings of all the nodes in the four-layer graph. The
decoder scores a drug–disease pair based on the embeddings. The
encoder and decoder networks are trained in an end-to-end manner.
Next, we describe these two components of the GDRnet architecture,
which is illustrated in Fig. 2.

3.3.1. Encoder
The GDRnet encoder produces low-dimensional node embeddings

based on the input features and nodal connectivity information. Recall
that the matrix 𝐀̃ is the normalized adjacency matrix of the four-layered
graph . We use graph operators represented using matrices 𝐅𝑟 = 𝐀̃𝑟,
𝑟 = 1, 2,…, to aggregate information in the graph. Here, 𝐀̃𝑟 denotes
the 𝑟th matrix power. By choosing 𝐅𝑟 = 𝐀̃𝑟, we aggregate information
from the 𝑟-hop neighborhood. We assume that each node has its own
𝑑-dimensional feature, which we collect in the matrix 𝐗 ∈ R𝑁×𝑑 to
obtain the input feature matrix associated with the nodes of . We can
then represent the encoder as

𝐙 = 𝜎1
{[

𝐗𝜣0 ‖𝐅1𝐗𝜣1‖ … ∥ 𝐅𝑟𝐗𝜣𝑟
]}

and 𝐘 = 𝜎2 {𝐙𝐖} , (2)

where 𝐘 is the final node embedding matrix for the nodes in the graph
 and {𝜣0,… ,𝜣𝑟,𝐖} are the learnable parameters. Here, ∥ represents
concatenation, 𝜎1{⋅} and 𝜎2{⋅} are the nonlinear tanh and leaky rec-
tified linear unit (leaky ReLU) activation functions, respectively. The
matrix 𝐅𝑟𝐗 = 𝐀̃𝑟𝐗 aggregates node features from 𝑟-hop neighbors,
which can be related to the neighborhood aggregation performed at
the 𝑟th layer of GNN models that perform sequential neighborhood
4

aggregation as in Eq. (1). Fig. 2 shows the encoder architecture. The
main advantage of using SIGN over other models (e.g., GCN, GAT,
GraphSAGE) is that the matrix product 𝐅𝑟𝐗 is independent of the
learnable parameters 𝜣𝑟. Thus, this matrix product can be precomputed
before training the neural network model. Doing so reduces the com-
putational complexity while incorporating information from the graph
structure.

In our experiments, we choose 𝑟 = 2, i.e., the low-dimensional node
embeddings have information from 2-hop neighbors. Choosing 𝑟 ≥ 3 is
found to be not useful for drug repurposing, as we aim to capture the
local information of the drug targets such that a drug node embedding
should retain information about its target genes and the shared genes
in its vicinity. For example, the 1-hop neighbors of Dexamethasone as
shown in Fig. 1b, are the diseases it treats (e.g., Asthma), and the drugs
similar to Dexamethasone (e.g., Methylprednisolone) and its target genes
(e.g., DUSP11, RHOA). The 2-hop neighbors are the anatomies of the
target genes (e.g., Bronchus), and the drugs that have similar effects
on the diseases (e.g., Hydrocortisone and Dexamethasone have similar
effects on Asthma). While updating the node for the embedding related
to Dexamethasone, it is important to retain this local information for the
drug repurposing task.

3.3.2. Decoder
For drug repurposing, we propose a score function based on a

general dot-product that takes as input the updated embeddings of
drugs and diseases and outputs a score based on which we decide
if a certain drug treats the disease. Fig. 2 illustrates the proposed
learnable decoder. The columns of the embedding matrix 𝐘 contain
the embeddings of all the nodes in the four-layer graph, including
the embeddings of the disease and drug nodes. Let us denote the
embeddings of the 𝑖th drug as 𝐲𝑐𝑖 ∈ R𝑙 and the embeddings of the 𝑗th
disease as 𝐲𝑑𝑗 ∈ R𝑙. The proposed scoring function 𝚜𝚌𝚘𝚛𝚎(⋅) to infer
whether drug 𝑐𝑖 is a promising treatment for disease 𝑑𝑗 is defined as

𝑠𝑖𝑗 = 𝚜𝚌𝚘𝚛𝚎

(

𝐲𝑐𝑖 , 𝐲𝑑𝑗
)

= 𝜎
{

𝐲𝑇𝑐𝑖𝜱𝐲𝑑𝑗
}

, (3)

where 𝜎{⋅} is the nonlinear sigmoid activation function and 𝜱 ∈ R𝑙×𝑙 is
a learnable co-efficient matrix. We interpret 𝑠𝑖𝑗 as the probability that
a link exists between drug 𝑐𝑖 and disease 𝑑𝑗 . The term 𝐲𝑇𝑐𝑖𝜱𝐲𝑑𝑗 can be
interpreted as a measure of correlation (induced by 𝜱) between the
disease and drug node embeddings.

3.3.3. Training loss
The model is trained in a mini-batch setting in an end-to-end

fashion using stochastic gradient descent to minimize the weighted
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Table 1
Multi-layered graph data. The value in each cell represents the number of links between
the respective layers. NC represents no connection.

Drugs 6486
Diseases 6113 543
Genes 76 250 123 609 474 526
Anatomies NC 3602 726 495 NC

Drugs Diseases Genes Anatomies

cross-entropy loss, where the loss function for the sample corresponding
to the drug–disease pair (𝑖, 𝑗) is given by

𝓁(𝑠𝑖𝑗 , 𝑧𝑖𝑗 ) = 𝑤𝑧𝑖𝑗

(

log
(

1
𝜎(𝑠𝑖𝑗 )

))

+
(

1 − 𝑧𝑖𝑗
)

log
(

1
1 − 𝜎(𝑠𝑖𝑗 )

)

, (4)

where 𝑧𝑖𝑗 is the known training label associated with the score 𝑠𝑖𝑗
for the drug–disease pair (𝑐𝑖, 𝑑𝑗 ), 𝑧𝑖𝑗 = 1 indicates that drug 𝑖 treats or
palliates disease 𝑗, and 𝑧𝑖𝑗 = 0 otherwise. Here, 𝑤 is the weight on the
positive samples that we choose to account for the huge class imbalance
in the dataset. During training, we include no-drug–disease links, which
give us the negative control for learning. For example, there is no
link between the drug–disease pair Simvastatin-Scabies, i.e., Simvastatin
is not known to treat or suppress the effects of Scabies. The number
of no-drug–disease links is almost thirty times the number of positive
samples. To handle this class disparity, we explicitly use a weight 𝑤 > 0
on the positive samples.

4. Model evaluation and experiments

In this section, we evaluate GDRnet and discuss the choice of
various hyper-parameters. The model is evaluated based on two per-
formance measures. Firstly, we report the ability to classify the links
correctly, i.e., to predict the known treatments correctly for diseases in
the test set. Next, using the list of predicted drugs for the diseases in
the test set, we report the model’s ability to rank the actual treatment
drug as high as possible (the ranking is obtained by ordering the scores
in Eq. (3)). Finally, we also report prediction results for coronavirus
related diseases.

4.1. Dataset

We use information from the drug repurposing knowledge graph
(DRKG) [24] to form the multi-layered drug repurposing graph. DRKG
includes information about six drug databases, namely, Drugbank [25],
Hetionet [26], GNBR [27], STRING [28], IntAct [29], and DGIdb [30].
We construct a four-layered graph comprising the drug layer, disease
layer, gene layer, and anatomy layer. We extract the details about
these entities specifically from the Drugbank, Hetionet, and GNBR
databases. We leverage their generic set of low-dimensional embed-
dings that represent the graph nodes and edges in the Euclidean space
for training. The four-layered graph is composed of 8070 drugs, 4166
diseases, 29 848 genes, 400 anatomies, and a total of 1,417,624 links,
which include all the inter-layer and intra-layer connections (refer
Section 2 for the description of the multi-layered graph). Details about
the inter-layered and intra-layered links are given in Table 1.

4.2. Experimental setup and model parameters

The drug repurposing problem is formulated as a link prediction.
It can be viewed as a binary classification problem, wherein a positive
class represents the existence of a link between a drug and disease, and
otherwise represents a negative class. We have 6113 positive samples
(drug–disease links) in our dataset. To account for the negative class
samples, we randomly choose 200,000 no-drug–disease links (i.e., those
pairs with no link between these drugs and diseases). These links are
5

then divided into the training and testing set with a 90%−10% split.
We train the network using mini-batch stochastic gradient descent by
grouping the training set in batches of size 512 and train them for
nearly 20 epochs. Due to the significant class imbalance, we oversample
the drug–disease links while creating batches, thus maintaining the
class ratio (ratio of the number of negative samples to the number of
positive samples) of 1.5 in each batch. The additional hyperparameters
are set as follows. The intermediate embedding dimensions are fixed
to 250, the batch size and the learning rate (set to 10−4) are chosen
by performing a grid search over the hyperparameter space. Also, we
use the leaky rectified linear unit (Leaky-ReLU) as the intermediate
activation function. We use the Adam optimizer to perform the back
propagation and update the model parameters. The weight 𝑤 on the
ositive samples (cf. Eq. (4)) is also chosen to be the class imbalance
atio of each batch, i.e., we fix 𝑤 to be 1.5.

.3. Baselines

We perform experiments on the state-of-the-art network-based drug
epurposing methods, the network-proximity based [9], which is based
n the Z-scores computed using the permutation test, the HINGRL [17]
ethod based on the autoencoder and deepwalk algorithm, and the
ipartite-GCN method [31], which uses an attention-based GNN layer.
n addition, we also provide a comparison with three commonly used
NN encoder architectures, namely, GCN [21], GraphSAGE [22], and
AT [23] for the drug repurposing task, which we treat as a link pre-
iction problem, and compare the classification performance with the
DRnet architecture. Specifically, the encoder in GDRnet is replaced
ith GCN, GraphSAGE, and GAT to evaluate the model performance.
wo blocks of these sequential models are cascaded to maintain consis-
ency with 𝑟 = 2 of the GDRnet architecture. We evaluate these models
n the test set, which contains known treatments for diseases that are
ot shown to the model while training. To remain consistent, we use
he same initial embeddings for all the experiments.

.4. Classification performance

We measure the classification abilities of a model through the
eceiver operating characteristic (ROC) curve of the true positive rate
TPR) versus the false positive rates (FPR) and the precision–recall
PR) curve of the precision versus the recall. The area under the PR
urves (AUPRC) along with the area under the receiver operating
haracteristics (AUROC), would give a comprehensive view of the
erformance statistics of the encoders. Fig. 3a shows the ROC curves of
ifferent GNN models. We can see that all the models have very similar
UROC values. Also, all the AUPRC values, as shown in Fig. 3b are in
similar range. As compared to the baseline precision of 0.03, which

s calculated as the ratio of the minority class in the data, we see a
ignificant gain in the AUPRC values. Fig. 4a provides an illustration
f two-dimensional embeddings (from GDRnet), using the t-distributed
tochastic neighbor embedding (t-SNE), where we observe that dis-
ases that target certain anatomy or a drug that target certain gene
ave nearby representations in the embedding space demonstrating the
xpressive power of GDRnet.

.5. Ranking performance

We evaluate GDRnet in terms of ranks of the actual treatment drug
n the predicted list for a disease from the testing set, where the rank is
omputed by rank ordering the scores. Fig. 5 represents the histograms
f the ranks of the drug–disease pairs from the testing set for Graph-
AGE, GCN, GAT, HINGRL, and Bipartite-GCN compared with GDRnet.
o get the histograms, we compute the ranks of the actual treatment
rugs for the diseases from the test set and plot the frequencies of those
anks on the vertical axis corresponding to the ranks on the horizontal
xis. We see that GDRnet has a higher density of ranks in the top



Computers in Biology and Medicine 150 (2022) 105992S. Doshi and S.P. Chepuri
Fig. 3. Classification performance of GDRnet. (a) and (b) represent the receiver operating curves (ROC) and the precision–recall (PR) curves, respectively, depicting the classification
performance of different drug-repurposing models.
Fig. 4. Embedding visualization. (a) Two-dimensional t-SNE visualization of the high-dimensional embeddings generated by GDRnet for the nodes in the four-layered heterogeneous
graph. The left embedding plot shows the representation of all the nodes (around 42 000 nodes), which are colored according to their layer. The right plot focuses on the drugs
and diseases used for testing. (b) Embeddings of the COVID-19 disease nodes (27 SARS-CoV-2 proteins and 6 coronavirus related diseases) and the predicted drugs by GDRnet.
The drugs in the both the plots (a) and (b) are colored according to their first-level anatomical therapeutic chemical (ATC) categorization.
15 as compared to other models. This clearly illustrates that GDRnet
outperforms the other graph-based methods in terms of its ranking
abilities. In addition, we compute the network proximity scores [9] and
rank order the drugs based on network proximity scores to compare
with the GNN-based encoder models. These network proximity scores
are a measure of the shortest distance between drugs and diseases
through their target genes. They are computed as

𝑃𝑖𝑗 =
1

|| + | |

(

∑

𝑝∈
min
𝑞∈

𝑑(𝑝, 𝑞) +
∑

𝑞∈
min
𝑝∈

𝑑(𝑝, 𝑞)

)

, (5)

where 𝑃𝑖𝑗 is a proximity score of drug 𝑐𝑖 and disease 𝑑𝑗 . Here,  is the
set of target genes of 𝑐𝑖,  is the set of target genes of 𝑑𝑗 , and 𝑑(𝑝, 𝑞) is
the shortest distance between a gene 𝑝 ∈  and a gene 𝑞 ∈  in the gene
interactome. We convert these into Z-scores using the permutation test
𝑍𝑖𝑗 = (𝑃𝑖𝑗−𝜇)∕𝜔, where 𝜇 is the mean proximity score of the pair (𝑐𝑖, 𝑑𝑗 )
computed by randomly selecting subsets of genes with the same degree
distribution as that of  and  from the gene interactome, and 𝜔 is the
standard deviation of the scores generated in the permutation test of
these randomly selected subsets. Table 2 provides the rankings of a few
6

sample drug–disease pairs from the test set that were not shown during
the training. We can see that the GDRnet and the other GNN variants
result in better ranks on the unseen diseases than the network proximity
measure, which is solely based on the gene interactome, by a huge
margin. Also, determining the network proximity scores is extremely
computationally expensive due to the calculation of Z-scores using the
permutation test. For the same reasons we leave off the histogram
analysis for the network proximity approach, which evidently through
the examples in Table 2, results in poor ranking performance. The
diseases on which we evaluate are not confined to a single anatomy
(e.g., rectal neoplasms are associated to the rectum anatomy, whereas
pulmonary fibrosis is a lung disease), nor do they indicate a similar
family of drugs for their treatment (e.g., Fluorouracil is an antineoplastic
drug, and Prednisone is an anti-inflammatory corticosteroid). For a
majority of the diseases in the test set, GDRnet ranks the treatment
drug in the top 15 (as seen in Table 2). In the case of Leukemia, other
antineoplastic drugs like Hydroxyurea and Methotrexate are ranked high
(in top 10) and its known treatment drug Azacitidine is ranked 17.
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Fig. 5. Ranking histograms. The ranking performance of GDRnet compared with other GNN variants, namely, (a) GraphSAGE (b) GCN and (c) GAT (d) HINGRL (e) Bipartite-GCN.
Table 2
Ranking. A few examples of the ranks of the actual treatment drugs for the diseases from the testing set. There are no associated genes with some of the disease in our database,
which makes it impossible to rank them using the network proximity based method. These are indicated as ‘‘Not computable’’. The best ranks are highlighted in bold.

Disease Treatment drug Ranks

GDRnet GraphSAGE GCN GAT Network proximity HINGRL Bipartite-GCN

Encephalitis Acyclovir 10 35 35 295 5462 435 27
Rectal neoplasms Fluorouracil 9 421 16 231 2831 205 117
Pulmonary fibrosis Prednisone 5 3 10 9 2072 2 9
Atrioventricular block Atropine 6 79 8 14 4453 26 196
Pellagra Niacin 2 56 497 484 Not computable 460 288
Colic Hyoscyamine 1 1 501 205 Not computable 39 101
Leukemia Azacitidine 17 120 31 332 377 527 507
Table 3
Layer ablation study. The AUROC values for a link prediction task compared across different graph layers and different GNN models. Best performances are
indicated in bold.

Graph layers GDRnet GraphSAGE GCN GAT

Drugs, Diseases 0.61 ± 0.02 0.707 ± 0.02 0.692 ± 0.02 0.655 ± 0.01
Drugs, Diseases, Anatomies 0.652 ± 0.01 0.75 ± 0.01 0.728 ± 0.02 0.722 ± 0.01
Drugs, Diseases, Genes 0.845 ± 0.02 𝟎.𝟖𝟖𝟏 ± 𝟎.𝟎𝟐 0.833 ± 0.01 0.84 ± 0.01
Drugs, Diseases, Genes, Anatomies 𝟎.𝟖𝟓𝟓 ± 𝟎.𝟎𝟐 0.874 ± 0.01 𝟎.𝟖𝟒𝟐 ± 𝟎.𝟎𝟐 𝟎.𝟖𝟔𝟑 ± 𝟎.𝟎𝟏
4.6. Layer ablation study

To gain more insights on the importance of different entities,
namely, drugs, disease, genes, and anatomies for drug repurposing,
we perform an ablation study on the layers of the constructed graph.
We perform link prediction using considered GNN models on the
constructed graphs, starting with the only drug–disease two-layered
graph, followed by the individual addition of the gene and the anatomy
interactome, making it a three-layered graph, and eventually convert-
ing it to a four-layered graph by getting all the layers together. We
report the corresponding AUROC values in Table 3. We use the degree
information as the input features for these experiments to eliminate
any biases due to the pre-trained embeddings. As seen in Table 3, the
addition of the anatomy and the gene layer shows their importance
by giving a significant improvement in the classification performance,
demonstrating the significance of the indirect connections provided by
the anatomy and the gene layers between the drugs and diseases for
drug repurposing. Finally, when all the information from the four layers
used together, we see a clear boost in the performance.

In summary, GNNs perform better than the prior network-based
approaches in predicting the drugs for a disease. This also signifies
7

the importance of capturing the local interactions in complex biolog-
ical networks. These interactions are not sufficiently captured by the
network proximity methods that restrict their focus only on the target
genes of a drug and a disease. The proposed GNN-based GDRnet archi-
tecture is computationally attractive and better ranks known treatment
drugs for diseases than the popular sequential GNN variants.

4.7. Computational complexity

The time complexity of GNNs that perform aggregation sequentially
like GCN, GraphSAGE, and GAT, is (𝐿𝑁𝑑2+𝐿||𝑑) for a graph having
𝑁 nodes and || edges with 𝐿 sequential aggregation iterations [32].
The intermediate embedding dimensions are assumed to be 𝑑. Here,
the term 𝑁𝑑2 corresponds to the feature transformation, and ||𝑑 is
the additional computations performed to identify the neighborhood
for local aggregation during the training. GDRnet benefits itself in terms
of the training and inference time due to its parallel framework by pre-
computing this neighborhood aggregations. This results in the runtime
to be independent of the number of edges in the graph, having a time
complexity of (𝐿𝑁𝑑2), where 𝐿 is the number of parallel branches.
Fig. 6 illustrates the dependence of GNNs on the number of edges.
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Fig. 6. Computational complexity. Time plot showing the dependence of GNN
rchitectures on the number of edges.

Table 4
Drugs predicted by GDRnet for COVID-19.

COVID-19 node Drugs predicted by GDRnet ranked in top 10

SARS-CoV2-E Ivermectin, Spironolactone, Sirolimus
SARS-CoV2-M Ivermectin, Cyclosporine, Acyclovir
SARS-CoV2-N Rubella virus vaccine, Sirolimus, Hydralazine
SARS-CoV2-spike Crizanlizumab, Cyclosporine, Cidofovir, Nitazoxanide
CoV-NL63 Dexamethasone, Prednisolone, Celecoxib

The time taken for a single epoch (forward pass) on a graph having
the same number of nodes as in the constructed multilayered graph in
Section 2 (approximately 42 000) are plotted on the vertical axis for
varying number of edges on the horizontal axis. GCN, GraphSAGE, and
GAT clearly depict their linear dependence on ||, whereas GDRnet
verifies its independence by having a constant time, irrespective of
the number of edges. The Bipartite-GCN architecture uses an attention-
based graph layer similar to GAT. Thus it has the same complexity
as the sequential based GNNs. It is not straightforward to compare
the forward pass time complexity incurred by network proximity and
HINGRL methods. HINGRL pipeline involves multiple algorithms that
are trained independently, like the autoencoder, followed by deepwalk,
and finally the random forests, that incur more time complexity as
observed during our numerical experiments. For the network proximity
method, due to the involvement of the permutation test, it is extremely
computationally expensive as well.

4.8. COVID-19 drug repurposing

Next, we focus on drug repurposing for the four known human
coronaviruses (HCoVs), namely, SARS-CoV, MERS-CoV, CoV-229E and
oV-NL63, and two non-human coronaviruses, namely MHV, and IBV.
e consider interactions of these disease nodes with human genes.

here are 129 known links between these six disease nodes and gene
odes in the dataset [24]. In addition, we consider all the 27 SARS-
oV-2 proteins that include 4 structural proteins, namely, envelope
SARS-CoV2-E), membrane (SARS-CoV2-M), nucleocapsid (SARS-CoV2-
) and surface (SARS-CoV2-spike), 15 non-structural proteins (nsp)

nd 8 open reading frames (orf), and their 332 links connecting the
arget human genes [19]. We refer to these 33 nodes (6 disease nodes
nd 27 SARS-CoV2 proteins) as the COVID-19 nodes. In other words,
here are only disease–gene interactions available for these COVID-19
odes. Some of the genes targeted by the COVID-19 nodes are shown
n Fig. 1 (b, c and d), which are also the target genes for the drugs
8

e.g., Dexamethasone, Ivermectin, Simvastatin).
We individually predict the drugs for all these 33 COVID-19 nodes
s each protein in SARS-CoV-2 targets a different set of genes in
umans. We select the top 10 ranked predicted drugs out of 8070
linically approved drugs for each disease entity. Table 4 lists some
f the predicted drugs by GDRnet. A complete list of the predicted
rugs with their scores and ranks is available in our repository at: https:
/github.com/siddhant-doshi/GDRnet. Our predictions have corticos-
eroids like Dexamethasone, Methylprednisolone, antineoplastic drugs
ike Sirolimus, Anakinra, anti-parasitic drugs like Ivermectin, Nitazox-
nide, non-steroidal anti-inflammatory drugs (NSAIDs) like Ibuprofen,
elecoxib, ACE inhibitors and statin drugs like Simvastatin, Atorvastatin,
nd some of the vaccines discovered previously for other diseases
ike the Rubella virus vaccine. Fig. 4b gives a two-dimensional t-SNE
epresentation of the embeddings of a few predicted drugs and the
OVID-19 disease nodes, where we can see that the representation
f the predicted drugs is in the vicinity of the disease nodes in the
mbedding space.

. Conclusions and future work

We proposed a GNN model for drug repurposing model, called
DRnet, to predict drugs from a large database of approved drugs for

urther studies. We leverage a biological network of drugs, diseases,
enes, and anatomies and cast the drug repurposing task as a link
rediction problem. The proposed GDRnet architecture has a computa-
ionally attractive encoder to generate low-dimensional embeddings of
he entities and a decoder that scores the drug–disease pairs. Through
umerical simulations on real data, we demonstrate the efficacy of the
roposed approach for drug repurposing. We also apply GDRnet on
OVID-19 data.

This work can be extended along several directions. Considering
he availability of substantial biological data, the inclusion of infor-
ation like individual side effects of drugs, may further improve the
redictions. Considering the comorbidities of a patient would help
s analyze the biological process and gene interactions in the body
pecific to an individual and accordingly prescribe the line of treatment.
lso, including the edge specific information such as type of drug

nteractions could help us predicting a synergistic combination of drugs
or a disease.
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