ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Simultaneous measurement of pressure and temperature in a supersonic ejector using FBG sensors

Hegde, G and Himakar, B and Rao, SMV and Hegde, G and Asokan, S (2022) Simultaneous measurement of pressure and temperature in a supersonic ejector using FBG sensors. In: Measurement Science and Technology, 33 (12).

[img] PDF
mes_sci_tec_33-12_2022.pdf - Published Version
Restricted to Registered users only

Download (23MB) | Request a copy
Official URL: https://doi.org/10.1088/1361-6501/ac8a0a


In this work, we have demonstrated the use of fiber Bragg grating (FBG) sensors for simultaneous measurement of wall static pressure and temperature in a supersonic ejector. Supersonic ejectors are ground-based high-speed aerodynamic test facilities characterized by harsh conditions, such as high pressure and temperature gradients. An FBG-based sensor setup was developed consisting of a pressure measuring bare FBG and a specially designed pressure-insensitive FBG temperature probe that can be mounted on the wall of the supersonic ejector. The FBG temperature probe was used for temperature measurement as well as temperature compensation of the pressure measuring FBG sensor. Wall static pressure measurements in the supersonic ejector were carried out at different tank pressures and Mach number flows. The FBG pressure measurements were validated with those of standard piezoresistive-based sensor measurements. Both responses were found to match closely, with FBG sensors having a faster response time and higher pressure resolution. Fluid structure interaction simulation was carried out in Comsol Multiphysics to understand the interaction of high-speed turbulent flow with FBG sensor. The FBG strain profile due to flow-induced stress and its dependence on flow pressure was studied. A detailed analysis of the effect of preceding fiber length on FBG pressure measurement was carried out. FBG sensors, due to their miniature size, ability to withstand harsh environments and multi-parameter sensing capability, can be used in ground-based aerodynamic test facilities with minimal intrusion into the flow.

Item Type: Journal Article
Publication: Measurement Science and Technology
Publisher: Institute of Physics
Additional Information: The copyright for this article belongs to the Institute of Physics.
Keywords: Aerodynamics; Fiber Bragg gratings; Fluid structure interaction; Mach number; Probes; Temperature measurement; Test facilities, Fiber Bragg Grating Sensors; Ground based; Measurements of; Pressure and temperature; Pressure measuring; Simultaneous measurement; Static temperature; Supersonic ejector; Temperature compensation; Temperature probes, Pressure measurement
Department/Centre: Division of Mechanical Sciences > Aerospace Engineering(Formerly Aeronautical Engineering)
Division of Physical & Mathematical Sciences > Instrumentation Appiled Physics
Date Deposited: 04 Nov 2022 06:13
Last Modified: 04 Nov 2022 06:13
URI: https://eprints.iisc.ac.in/id/eprint/77618

Actions (login required)

View Item View Item