Formal Verification of Safety & Security Related Timing Constraints 213

(2)VieN*, c¢ RG) = HL(i+1) = H4(i); (3)V i€ N*, ce R(i) =
HS(i+1) = HE (i) + 1.

A probabilistic relation in PrCcsL is satisfied if and only if the probability of
the relation constraint being satisfied is greater than or equal to the probability
threshold p € [0, 1]. Given k runs = {Rjy,..., Rx}, the probabilistic subclock,
coincidence, exclusion and precedence in PrCcsL are defined as follows:

Probabilistic Subclock: ¢1C,c2 <= Prl[c1Cc2] > p, where Pr[clCc2] =
k

+ Y {R; [cl1Cc2}, representing the ratio of runs that satisfies the relation
j=1

out of k runs. A run R; satisfies the subclock relation between cl and ¢2 “if
cl ticks, ¢2 must tick” holds at every step i in Rj, s.t., (R; | c1Ce2) < (Vi
0<i<n, cle€R({E) = c2€ R(i)). “R; = clCc2” returns 1 if R; satisfies
c1Cc2, otherwise it returns 0.

Probabilistic Coincidence: c1=,c2 <= Pr[c1=c2] > p, where Pr[cl=c2| =

k
%jzl{Rj E c1=c2}, which represents the ratio of runs that satisfies the
coincidence relation out of k runs. A run, R; satisfies the coincidence relation on
¢l and ¢2 if the assertion holds: Vi, 0 < i < n, (cl € R(i) = ¢2 € R(i))A (2 €
R(i) = ¢l € R(4)). In other words, the satisfaction of coincidence relation is
established when the two conditions “if ¢l ticks, ¢2 must tick” and “if ¢2 ticks,
cl must tick” hold at every step.

Probabilistic Exclusion: cl#,c2 <= Pr[cl#c2] > p, where Pr[cl#c2] =
k

+ Y {R; [= cl#c2}, indicating the ratio of runs that satisfies the exclusion
j=1

relation out of k runs. A run, R;, satisfies the exclusion relation on cl and ¢2 if
Vi, 0<i<n, (cl € R(i) = ¢2¢ R(i)) N (c2€ R(i) = cl ¢ R(i)), i.e., for
every step, if ¢l ticks, ¢2 must not tick and vice versa.

Probabilistic Precedence: cl1<,c2 <= Pr[cl<c2] > p, where Pr[cl<c2] =
k
% > {R; = c1<c2}, which denotes the ratio of runs that satisfies the precedence

=1
refation out of k runs. A run R; satisfies the precedence relation if the condition
Vi, 0 <i<n, (HZ @) = HF (i) and (HE (i) = HE (1)) = (2 ¢ R(i)) hold,
i.e., the history of cl is greater than or equal to the history of ¢2, and ¢2 must
not tick when the history of the two clocks are equal.

2.2 UPPAAL-SMC

UPPAAL-SMC [31] performs the probabilistic analysis of properties by monitor-
ing simulations of the complex hybrid system in a given stochastic environment
and using results from the statistics to determine whether the system satisfies
the property with some degree of confidence. UPPAAL-SMC provides a number
of queries related to the stochastic interpretation of Timed Automata (STA)

214 L. Huang and E.-Y. Kang

[8] and they are as follows, where N and bound indicate the number of sim-
ulations to be performed and the time bound on the simulations respectively:
1. Probability Estimation estimates the probability of a requirement property
¢ being satisfied for a given STA model within the time bound: Prlbound] ¢;
2. Hypothesis Testing checks if the probability of ¢ is satisfied within a certain
probability Py: Prlbound] ¢ > Py; 3. Simulations: UPPAAL-SMC runs multiple
simulations on the STA model and the k (state-based) properties/expressions
@1, ..., are monitored and visualized along the simulations: simulate N [<

bound|{$1, ..., di }-

3 Running Example

A cooperative automotive system (CAS) [13] is adopted to illustrate our
approaches. CAS includes distributed and coordinated sensing, control, and actu-
ation over three vehicles (denoted as v;, where ¢ € {0,1,2}) which are running
in the same lane. As shown in Fig. 1, a lead vehicle (vg) runs automatically by
recognizing traffic signs on the road. The following vehicle must set its desired
velocity identical to that of its immediate preceding vehicle. Vehicles should
maintain sufficient braking distance to avoid rear-end collision while remaining
close enough to guarantee communication quality. Vehicle movement relies on
availability of environmental information, e.g., traffic signs, obstacles, etc. The
position of v; is represented by Cartesian coordinate (x;,y;), where x; and y; are
distances measured from the vehicle to the two fixed perpendicular lines, i.e.,
x-axis and y-axis, respectively.

Follgwer Safety Distance Folt)wer <<(Dﬂﬂ:z>zu Le:der
2Ry Iy (0080
\ ‘ u Traffic Sign Recognition

Fig. 1. Overview of Cooperative Automotive System

The cooperative driving of CAS requires prompt and secure information
transmission among vehicles. We adopt a roadside unit aided (RAISE) [33] com-
munication protocol in VANET to achieve the data transmission. Each vehicle
periodically broadcasts its own position and velocity to its immediate following
vehicle through wireless connection. The authentication of the identities of each
vehicle and verification of messages sent by the vehicles is performed by RSU.
For further details of RAISE, refer to Sect.4.1. The following S/S properties on
CAS are considered:

R1. The follower vehicle should not overtake its leading vehicle when the vehicles
run at a positive direction of x-axis.

R2. When the lead vehicle detects a stop sign, all the three vehicles must stop
within a given time, e.g., 2000 ms.

Formal Verification of Safety & Security Related Timing Constraints 215

R3. If the distance between a vehicle and its preceding vehicle is less than mini-
mum safety distance, the vehicle should decelerate within a certain time (200 ms).
R4. If the distance between a vehicle and its preceding vehicle is greater than
the maximum safety distance (e.g., 100m), the vehicle should accelerate within
a certain time, e.g., 300 ms.

R5. When the lead vehicle starts to turn left (or turn right), the two follower
vehicles should finish turning and run in the same lane within a given time.
R6. Authenticity: If a vehicle receives a message, its preceding vehicle must have
sent a corresponding message before, i.e., the protocol should be resistant to
message spoofing attack.

R7. Secrecy: Symmetric keys of vehicles should be kept confidential to attackers.
RS8. Integrity: The content of messages must not be modified during transmission,
i.e., the protocol should be resistant to message falsification attack.

R9. Freshness: The vehicles should not accept an “obsolete” message, namely, the
difference between the current time and the timestamp of the accepted message
should be less than the predefined time threshold.

R10. The symmetric key agreement (i.e., mutual authentication) process between
RSU and three vehicles should be completed within a certain time, e.g., 600 ms.
R11. A vehicle should send messages to its subsequent vehicle periodically with
a period 200 ms and a jitter 100 ms.

Among the above S/S requirements, R1-R5 are safety [20] properties, which
specify that the system should not cause undesirable results on its environment
and aim at protecting human lives, health and assets from being damaged. R6-
R11 are security properties, which refer to the inability of the environment to
affect the system in an undesirable way and aim to guarantee the confidential-
ity and integrity of transmitted information. The interdependencies among those
S/S properties are conditional dependencies [17], i.e., violations of security prop-
erties can lead to the violations on safety properties. The events associated with
those S/S properties can be interpreted as logical clocks in PrCcsL, which pro-
vides a way to express S/S properties in the logical time manner [16]. Therefore,
S/S properties can be interpreted as logical timing constraints, i.e., the temporal
and causality clock relations in PrCcsL.

The methodology for analysis of S/S related timing constraints in this paper
can be generalized in Fig. 2. First, on the basis of the existing behavioral model
of CAS described in [13], we enhance the CAS model by augmenting (paral-
lelly composing) it with models of RAISE protocol and malicious attacks, result-
ing in a refined CAS model regarding vehicular communication characteristics
and security-related adversary interference. Second, we specify S/S timing con-
straints (R1-R11) in PrCcsL and translate the PrCcsL specifications into corre-
sponding STA and probabilistic queries. Finally, we combine the model of CAS
and the STA of PrCcsL specifications, and perform formal verification based on
the combined model using UPPAAL-SMC.

216 L. Huang and E.-Y. Kang

Behavioral || Model of RAISE || Model of
Model of CAS Protocol Malicious Attack

UPPAAL-SMC

S/S Timing | Specify. PrCCSL
Constraints Specifications

Translate

STA & Queries

Fig. 2. Methodology for analysis of S/S timing constraints

4 Modeling and Refinement of CAS in UPPAAL-SMC

The behaviors of CAS are modeled as a network of stochastic timed automata
(NSTA) in UpPPAAL-SMC described in [13]. In this section, we refine the CAS
model by adding it with the models of RAISE protocol and security attacks.

4.1 Modeling of RAISE Protocol in UPPAAL-SMC

We present a simplified version of RAISE protocol [33] and its UPPAAL-SMC
model. The original RAISE protocol is modified to facilitate the communica-
tion mechanism of CAS, i.e., each follower vehicle receives messages from its
immediate preceding vehicle and RSU. Furthermore, timing constraints are also
appended to restrict the time duration of each step (e.g., encryption and decryp-
tion) during communication process. There are two phases in RAISE protocol,
i.e., symmetric key agreement and information transmission.

1. Symmetric key agreement (SKA) is performed to obtain symmetric key k;
for guaranteeing security of communication and generates pseudo identities I D;
of vehicles for covering their real identities. The shared symmetric key between
RSU and v; is k; = g%, where g, a, b are three positive random numbers. As
shown in Fig. 3, Encry(msg, k) (Decry(msg, k)) denotes the encryption (decryp-
tion) of message msg with key k, where k can be either a public key or symmetric
key. Sign(msg, k) generates signature of msg with a private key k. We use PK;
to denote the public key of v; and SK; to represent the corresponding private
key. “||” is the concatenation operation on messages.

Initially, v; randomly picks g and a (step 1), encrypts “g||a” and sends the
encrypted result (m;) to RSU (step 2). Upon receiving m;, RSU decrypts the
message (step 3). It then generates b and ID;, signs and sends the signed message
(rm;) to v; (step 4 and 5). v; verifies the rm;’s signature (step 6) and sends back
the signature of g||a||b||ID; (step 7). Finally, RSU verifies the signature s; (step
8). If all the steps are completed correctly, the key agreement process succeeds.

@ (({rsu»))
i

1. Randomly generate g,a

2. Compute m; = Encry(g||a, PKrsy) —m 3 Compute m = Decry(m;, SKgsy)

s 4. Randomly generate b, ID;
6. Verify(rm;, PKpsy) <———=*— 5. Compute rm; = m||b||ID;||Sign(m||b||ID;, SKgsy)
7. Compute s; = Sign(g||al|b||ID;, SK;) —Si—> 8. Verify(s; PK;)

Fig. 3. Symmetric key agreement in RAISE

Formal Verification of Safety & Security Related Timing Constraints 217

2. Information transmission (IT) initiates after the SKA is completed. The
traffic information (i.e, brake, direction, position and speed) of v; is integrated
into a message msg; = brake;||direction;||xz;||y;||speed;. As presented in Fig. 4,
initially, v; generates the message authentication code (MAC) of msg; with the
symmetric key k; (generated in SKA). Then, v; concatenates the MAC code with

‘ (([rsu)) —
Vi
f

2. Check freshness

1. Compute mac; = MAC(msg;, k;)
Encode vm; = msgyl{mac; Vlﬁmi 3. Verify(mac;, k;)
2. Compute h; = lHash(msgi)
5. Compute hm; = Encry(h;, PKgpsy) hmi} 6. Compute h = Decry(hm;, SKrsy)
7. Compute hcode = Hash(msg;)

8. Verify(hcode, h)

Fig. 4. Information transmission in RAISE

msg; and sends it to RSU and v;11 (step 1). Upon receiving vm;, v;+1 checks
the freshness of the message (step 2), i.e., if the time interval between the current
time and the time when vm,; is sent is greater than the predefined threshold,
vi+1 drops vm;. At the same time, RSU checks the authenticity of vm; (step
3). If mac; is correct, RSU computes the hash code h; of message msg; (step
4). Afterwards, it encrypts h; and sends the encrypted result hm; to v;11 (step
5). v;+1 decrypts him; and get the hash code h (step 6). Furthermore, to ensure
the consistency of the message, v;41 itself also computes the hash code of msg;
(step 7). It then verifies whether the hash code calculated by itself is the same
as the decrypted hash code and decides to accept or reject msg; (step 8).

To model RAISE in UPPAAL-SMC, interactions among vehicles and RSU (i.e.,
sending/receiving messages) are modeled by synchronization channels [31] and
global variables. The cryptographic operations in RAISE refer to public and pri-
vate key encryption and decryption, i.e., a message encrypted by public key can
be decrypted using the corresponding private key, and vice versa. The automaton
of cryptographic device [6] is adopted to model the encryption and decryption.
Figure5 presents the STA capturing behaviors of vehicle v; and RSU in SKA.
startEn (resp. startDe) and finDe (resp. finEn) are channels for indicating the
starting and finishing of encryption (resp. decryption). The encryption/decryp-
tion result is denoted en_res/de_res. In the STA, names of locations indicate the
corresponding steps pictured in Fig. 3.

IT phase from vy to vy is established with the help of RSU, modeled as the
STA shown in Fig. 6 (the transmission from vy to ve can be modeled similarly).
The behaviors of vy (sender), v, (receiver) and RSU in the IT phase are modeled
in IT_v0, IT_vl and IT_RSU STA, respectively.

The SKA (or IT) succeeds if each step of the SKA (IT) is completed correctly
within a given time interval, modeled by invariant “t <d” (the value of d varies
in different steps). If timeout occurs (i.e., “t >d”), fail location will be activated
and the procedure is restarted from the initial step.

218 L. Huang and E.-Y. Kang

glil=r1.a[i]=r2.Encry(r1,r2,PKrsu)
startEn! g_t,r2:a_t

OlaqreeSucess[ilT'\l sendsli]! t=0 C

step1 Done

t<=d — t<=d . _finEn?
miij=en_ re sli]=en_res
t>=d t<=d
p Encry(data,SK([i]),
t=0y, sendml[i]! N te= t=0 startEn!
@) startDe! finDe? bli]=de_res|2]

C " - - < <
SKA_vi t<=¢g sendrm([i]? S}e-#GDecry(rm[l],PKrsu),t=0 Uv=Ver|fy(defres,rm[|]) & ID[i]=de_res[3] V==1 step7

fé\ v=Verify(s[i].de_res Decry(s[i]. PRIi]).t=0 C

finDe? te=d startDe!
sendm([i]? . ten3 sendsl[i]?)
t>=d step
step3 t<=d
startDe! t<=d sendrm[i]! | t=0
@ ID[i]=pid. rb[i]=e1 finEn?
/ finDe? rgfil=de_res[0], _ = Encry(rg[i],ral.e1,ID[i],SKrsu) . rmli=en_res
t<=d : step4 gy | step5
SKA _RSU ra[i]=de_res[1] el:b_t, pid:pid_t startEn!
Fig. 5. UpPAAL-SMC model of SKA
IT_vO . IT_vl initial step7 IT_RSU initial
- s |n|t(;a7l @ v==1 (©)<_hcode=Hash(0 . step4 v=VerifyMac(vm[0])
agreeSucgess|0]? Acpt(vm[0]) v=Verify(h, hcode)f t<=q dvm[0]? v==
{<=300 sendvm[0]? a
step1 . IO . hed ole=o h=Hash(vm[0]),tt=>0_ e
t>=100 ime-ts[0]>thre ai =de_res[0]|t= tep5 =
encode_[vm(0),| tlizgi[e o= finDe?| Siep z
Mac(vm[0]),t=Q t=0 t=d N ST 420
sendvm[0]! sendhior?, @) startoe! \<=d Y, PRI =
<=d t=0 StepeDeCTY(fm[O]‘SK[ﬂ) t<=d finEn? hm[0]=en_res ‘==

Fig. 6. UrPPAAL-SMC model of IT

4.2 Modeling of Attacks in UPPAAL-SMC

We present the modeling of three types of attacks commonly used in the secu-
rity analysis, i.e., message falsification, message replaying and message spoofing
attacks [2]. The models of attacks are illustrated in Fig. 7, where the Is parame-
ter (Is € [0,100]) serves as an indicator of level of adversarial strength while gc
(¢gc €[0,100]) is an indicator of the adversarial channel quality.

Message Falsification Attack (MFA) aims to falsify messages transmitted
from v; to v;41, which is modeled as MFA STA in Fig.7. As described earlier, in
Raisg, RSU verifies the authenticity of messages by checking the correctness of
the MAC code of messages. To deceive the RSU on the validity of the modified
message and avoid exposing itself to RSU, MFA attempts to obtain the symmet-
ric key and utilizes the key to compute the MAC code of the falsified message. At
s1 state, MFA eavesdrops on rm; (generated at step 5 in Fig. 3), which contains
the information for symmetric key generation (i.e., g, a, b). It tries to decrypt rm;
when receiving it via sendrm[i]?. The probability that the decryption can suc-
ceed is 1s%, modeled by probabilistic choices [31] (dashed edges) with probability

weight as -5 and 10100515. If the decryption succeeds, MFA obtains the symmet-

100
ric key of v; based on the decrypted result (get Key(de_res)). Finally, it modifies
the content of message using the key, and tries to send the modified message to

vi+1 (sendvm[i]l). The probability that the message can be sent successfully is

Formal Verification of Safety & Security Related Timing Constraints 219

(100-¢gc)%. In our setting, MFA modifies the speed; field in the message into a
random value in [100, 120], and changes the direction as direction; = 4, which
indicates that the v; is running at the positive direction on y-axis.

MFA sendrm(i]? @ t>=d MRAdelay initial| [MSA encode(i)
52 109;L5,/7k/é1 . O ©) / O
Pt . t<= t<=d 100~Ispedry(rm(i], PKrsu
<7Js Decr rmli], PKrsu vm[i]= / : sendimlif? t=0 \ S
’ :

t=0 startDe!
s

Weﬂ(ey (deres)
endvm(i]? finDe?
aﬁaCKOk modify(vm[il)

Fig. 7. STA of attacks

Message Replaying Attack (MRA) targets to replay obsolete messages that
contain old information. The MRA STA represents an MRA that replays messages
sent by v;. Upon capturing a message (via sendvm][i]?), MRA stores the message
(m =wvmfi]) and tries to replay it at a later time (i.e., after 10 s). The probability
that the attacker can replay the message successfully is (100-¢c)%.

Message Spoofing Attack (MSA) impersonates a vehicle (v;) in order to
inject fraudulent information into its subsequent vehicle (v;11). Similar to MFA,
MSA STA first obtains the symmetric key of v; by detecting and decrypting
rm;. It then fabricates a new message whose content is “brake; = 0, speed; =
0, direction; = 4, x; = 0, y; = 10” (denoted “encode(i)”) and tries to send
the message to v;11 (sendvm]i]!), with the probability of the message being sent
successfully as (100-gc)%.

5 Representation of S/S Related Timing Constraints
in UPPAAL-SMC

To enable the formal verification of S/S related timing constraints (given in
Sect. 3), we first investigate how to specify those constraints in PrCcsL. Then,
translation from PrCcsL specifications of the constraints into verifiable STA is
demonstrated. Furthermore, a tool ProTL that supports the automatic trans-
formation based on the proposed translation rules is introduced.

5.1 Specifications of S/S Related Timing Constraints in PrCCSL

The specifications of R1-R11 are presented in Table 1, where ac is a clock that
always ticks while nc represents a clock that never ticks. R1 is specified as an
exclusion relation between zdir (the event that the vehicles are running at the
positive direction of x-axis) and ovtake (the event that the position of follower v;
on x-axis is greater than that of leader vg). Similarly, R7 and R9 can be specified
as exclusion relations.

In the specification of R2, stopD is a clock generated by delaying stopSign
(the event that the leader vehicle detects a stop sign) for 2000 ms. vstop refers

220 L. Huang and E.-Y. Kang

Table 1. PrCCSL specifications of R1-R11

Req PrCCSL Specification

R1 zdir £ dir =17 ac: nc, ovtake £ > xo 7 ac : nc, xdir #o.95 ovtake

R2 stopSign £ sign =5 ? signRec : nc, stopD = stopSign (2000) ~ ms,
vstop =o.95 stopD

R3 wUnsafeDe 2 vUnsafe (200) ~~ ms, vDec <o.05 vUnsafeDe

R4 wvFarDisDe £ vFarDis (300) ~ ms, startAcc <o.95 vFarDisDe
R5 w0TurnDe £ v0Turn (3000) ~ ms, finTurn =o.05 v0TurnDe
R6 msgRec Cp.95 msgSent

R7 leakK +#9¢.95 ac

R8 walidMsg 2 rMsg = sMsg ? msgRec : nc, msgRec =0.05 validM sg

R9 oldMsg £ time — ts > thre 7 msgAcpt : nc, msgAcpt #o.05 oldMsg
R10 startSKADe £ startSKA (600) ~ ms, finSKA <o.95 startSKADe
R11 fclk £ msgSent V01(1), sentDel £ msgSent (100) ~ ms,

sentDe2 £ msgSent (300) ~~ ms, sentDel <o.95 fclk,
felk <0.05 sentDe2

to the event that three vehicles are completely stopped, which should occur no
later than stopD. Hence, R2 is expressed as a causality relation between wvstop
and stopD. R3-R5 can be specified in a similar manner.

R6 (authenticity) is expressed as a subclock relation between msgRec and
msgSent, where msgRec (msgSent) represents the event that a message is
received (sent) by the follower (leader) vehicle. R8 is specified as a coincidence
relation between msgRec and wvalidMsg, where validMsg is a clock that ticks
with msgRec when the received message rMsg is identical with the sent message
sMsg (i.e., rMsg == sMsg). For R10, startSKA (finSKA) represents the starting
(completion) of SKA. startSKADe is a clock constructed by delaying startSKA
for 600 ms. R10 delimits that finSKA must occur before startSKADe. R11 states
that two consecutive occurrences of msgSent must has a interval of [period —
jitter, period + jitter)ms (i.e., [100, 300] ms). In the specification of R11, felk is
a clock generated by filtering out the 15 tick of msgSent. sentDel and sentDe2
are two clocks generated by delaying msgSent for 100 ms and 300 ms. R11 can
be interpreted as: Vi € N*, the i*" tick of felk should occur later than the t"
tick of sentDel but prior to the " tick of sentDe2.

5.2 Translation of PrCCSL into STA

We present how the S/S related timing constraints specified in PrCcsL can
be transformed into STA and probabilistic queries in UPPAAL-SMC. We first
describe how clock tick and history (introduced in Sect.2) can be represented in
UppPAAL-SMC. Using the mapping, we then demonstrate that expressions and
relations in PrCcsL can be translated into STA and queries.

Formal Verification of Safety & Security Related Timing Constraints 221

In the earlier work [14], the semantics of PrCcCSL operators are translated into
STA based on discrete time, i.e., the continuous physical time is discretized into
a set of equalized steps. As a result, two clock instants are still considered coinci-
dent even if they are one time step apart. To alleviate this restriction and enable
the representation of PrCcsL that pertains to continuous real-time semantics,
the mapping patterns are refined: two clock instants are coinstantaneous only if
the time difference between them is insignificant, i.e., the time difference between
them is less than a positive infinitesimal value e, e.g., e =0.000001.

In PrCcsL, a logical clock represents an event and the
instants of the clock correspond to the occurrences of the
event. A logical clock c is represented as a synchronization initial
channel ¢! in UPPAAL-SMC. The history of ¢ is modeled
as the STA shown in Fig.8: whenever ¢ occurs (c¢?), the
value of its history is increased by 1 (i.e., h++).

Based on the mapping patterns of tick and history, the PrCcsL ezpressions
(including ITE, DelayFor and filterBy), as well as relations (including subclock,
coincidence, exclusion and precedence)7 can be represented as STA and queries
shown in Fig.9.

The STA of expressions trigger the ticks of the new clock (denoted res!)
based on the occurrences of existed clocks. To represent relations, observer STA
that capture the semantics of standard subclock, coincidence, exclusion and
precedence relations are constructed. Each observer STA contains a “fail” loca-
tion (see Fig.9), which indicates the violation of the corresponding relation.
Recall the definition of PrCcsL in Sect. 2, the probability of a relation being
satisfied is interpreted as a ratio of runs that satisfies the relation among all
runs. It is specified as Hypothesis Testing queries in UPPAAL-SMC, Ho: 7 > p
against Hy: 7t < p, where m is the number of runs satisfying the given relation
out of all k£ runs. As a result, the probabilistic relations are interpreted as the
query (see Fig.9): Pr[bound|(]] =STA.fail) > p, which means that the proba-
bility of the “fail” location of the observer STA never being reached should be
greater than or equal to p. The STA of ezpressions and relations are composed to
the system NSTA in parallel. Then, the probabilistic analysis is performed over
the composite NSTA that enables us to verify the S/S related timing constraints
over the entire system using UPPAAL-SMC.

Fig. 8. History

Tool support: Manual translation of PrCcsL specifications into UPPAAL mod-
els for verification can be time-consuming and error-prone. To improve the accu-
racy and efficiency of translation, we implement a tool ProTL (Probabilistic-
Cost TransLator) [26] that provides a push-button transformation from PrCcsL
specifications into corresponding STA & queries. Furthermore, verification and
simulation support is provided in ProTL by employing the UPPAAL-SMC as the
backend analysis engine. ProTL encompasses the following features: (1) An edi-
tor for editing PrCcsL specification of requirements (stored as “tat” files); (2)
Automated transformation of PrCcsL specifications into UPPAAL-SMC STA;
(3) Integration of the STA and the system behavioral model (imported by users);
(4) A configuration palette for setting parameters (e.g., time bound of simula-

222 L. Huang and E.-Y. Kang

STA of PrCCSL Operators Remarks

[spawn DelayFor()} 8ase? DelayFor: res £ ref (d) ~ base

When ref occurs (ref?), its DelayFor STA is spawned by Detect STA. The spawned STA stays
in the detect location until base ticks d times. When base ticks d times (x == d), it transits to

@ the tick location and triggers res (res!). Then it becomes inactive (denoted “exit()”), i.e.,
Detect(ref) DelayFor(base,d,res) calculation of the current tick of res is completed.

— ITE (if-then-else): res2 b ? ¢l : c2
e‘eﬂres! ﬁC ITE generates a new clock res that behaves either as c1 or as c2 base on the value of
boolean variable b. If b is true (b == 1), the tick of res will be triggered (denoted res!)

5 . . . ; .
ITE(c1, c2, b, res) whenever c1 occurs (c1?). Otherwise, res ticks with c2 when b is false (b == 0).

FilterBy: res = base ¥ u(v)

FilterBy filters the instants of base based on a binary word w=u(v), i.e., Vk € N, if the kth
bitin wis 1, then at the kth tick of base, res ticks. u and v are two boolean arrays. lu and v
i==lua& |represent the size of u and v. As base ticks (base?), the STA firstly traverses the bits in u (at
V[j]==0 |prefix state) and then iterates the bits in v (at period state). If the present bit (indicated by
++ the index) of the binary word is 1, the STA triggers res (res!). Otherwise, it moves to the
initial state, updates the index to refer to the next bit of w (i++/j++) and repeats the process.

i==lu&&v[j|F
=%l res!

Probabilistic Coincidence: c1=,c2

When c1 (c2) ticks via c17? (c27?), the STA checks if the other clock, c2 (c1), ticks at the same
time. If c2 (c1) occurs within a positive infinitesimal value (t<=e), the STA transits to success
location. Otherwise, the coincidence relation is violated and STA transits to fail location.
Probabilistic coincidence is expressed as: Pr{bound]([] = Coincidence.fail) = p.

Probabilistic Subclock: ¢1C,,c2

The relation limits that c2 (superclock) must tick when c1 (subclock) ticks, i.e., when c1 ticks,
c2 must coincide with c1. When c1 (c2) occurs, the STA checks whether the other clock also
ticks at the same time. When c1 (subclock) ticks but c2 does not occur (within e time unit),
the relation is violated and the STA transits to fail location. Probabilistic subclock is
expressed as: Pr[bound]([] - Subclock.fail) = p.

Probabilistic Exclusion: c1#,c2

When c1 (c2) ticks via c17? (c2?), the STA checks if the other clock, c2 (c1), ticks at the same
tme, i.e., whether c1 (c2) occurs or not when t < e. If it occurs, the exclusion relation is
violated and STA moves to fail location. Probabilistic exclusion is expressed as: Pr[bound]([]

success - Exclusion.fail) = p.
Exclusion(c1, c2)

c22h1>h Probabilistic Precedence: c1<,,c2

ccess The relation states that cI must run faster than c2, i.e., the history of c1 (h1) must be

@ greater than or equal to the history of c2 (h2), and c2 must not tick when the histories of
the two clocks are equal. Therefore, if c1 ticks via c1? and c1 runs slower (i.e., h1<h2), or

c2?h1==h c2 ticks via c2? when their histories are equal (h1==h2), the precedence relation is violated

fail
Precedence(czaiwl h2) and fail location is activated. Probabilistic precedence is expressed as: Pr{bound]([] -

Precedence.fail) = p.

Fig.9. STA of PrCcsL operators

tion, number of simulations) used for verification and simulation; (5) Automatic
generation of probabilistic queries (introduced in Sect. 2) based on user-specified
parameters; (6) Capability of performing verification and simulation on PrCcsL
specifications against the integrated model and generated queries.

The GUI of ProTL is implemented by applying the Python package TKIN-
TER [27]. The implementation of Translator is achieved by the ANother Tool
for Language Recognition (ANTLR) [24], a parser generator that can constructs
lexical parsers for a language by analyzing user-defined syntax of the language.
We specified the syntax of PrCcsL in Backus-Naur Form (BNF) and apply
ANTLR to generate a parser that can analyze and recognize encodings in the
format of PrCcsL. The parser reads the PrCcsL specifications and generates
abstract syntax trees (AST), i.e., an intermediate form that has tree structures.

Formal Verification of Safety & Security Related Timing Constraints 223

By traversing AST, the information (i.e., operators and parameters) of PrCcsL
can be extracted and utilized for generation of corresponding STA.

6 Experiment

To identify vulnerabilities of system to external malicious attackers, we combine
the refined CAS system model (including the models of RAISE protocol) with
models of three different attackers. Formal verification on S/S related timing
constraints (R1-R11) for the combined model is performed by UpPAAL-SMC.
The combined CAS model contains the stochastic behaviors in terms of the
unpredictable environments (e.g., the traffic signs are randomly recognized by the
leader vehicle of CAS and the probability of each sign type occurring is equally
set as 16.7%), as well as the indeterministic behaviors modeled by weighted
probability choices in the STA of attacks (see Fig. 7). In our setting, Is and gc
are configured as 10 and 90, respectively. To estimate the probability of an attack
being launched on CAS successfully, Probability Estimation query is applied to
check the probability that the “attack” location in each attack STA is reachable
from the system NSTA. The time bound of the verification is set as 10000.
The probability of message falsification, message replaying and message spoofing
attack being successfully completed by the corresponding attacker is within the
range of [0.109, 0.209], [0.563, 0.663] and [0.143, 0.243], respectively.

In our experiments, S/S related timing constraints are specified in PrCcsL
and transformed into STA using ProTL. Each constraint is specified as a PrCcsL
relation (as described in Sect. 5.1) whose probability threshold is 95%. The verifi-
cation results are demonstrated in Table 2, in which “,/” denotes the correspond-
ing requirement is satisfied while “x” indicates the violation of the requirement:
Under the message replaying attack, all the S/S timing constraints are estab-
lished as valid with 95% level of confidence. In the message falsification attack,
the secrecy and integrity properties (R7 and R8), as well as three safety proper-
ties (R3-R5), are violated. The MSA damages the authenticity (R6) and secrecy
(R7) of communication, and leads to the violations of four safety properties, i.e.,
R1 and R3-R5.

Table 2. Verification results of timing constraints under different attacks

Attacks R1R2R3R4R5R6/R7R8RIR10R11/Average Time Mem (Mb)
Message Falsification| v/ | v/ | X | X | X /| x| X |/ |V | V/ 40.20 57.94
Message Replaying |/ |/ |V VIV IVIVIVIVI VIV 68.33 61.49
Message Spoofing | X [/ | X | X | x| X | X [/ |V |V 58.11 40.23

The experiment results indicate the severity of impacts on safety and security
caused by the demonstrated attacks on CAS: No requirement is violated under
MRA scenario while the MSA causes the violations of most safety properties.

	Formal Verification of Safety & Security Related Timing Constraints for a Cooperative Automotive System
	2 Preliminary
	2.2 UPPAAL-SMC

	3 Running Example
	4 Modeling and Refinement of CAS in UPPAAL-SMC
	4.1 Modeling of RAISE Protocol in UPPAAL-SMC
	4.2 Modeling of Attacks in UPPAAL-SMC

	5 Representation of S/S Related Timing Constraints in UPPAAL-SMC
	5.1 Specifications of S/S Related Timing Constraints in PrCCSL
	5.2 Translation of PrCCSL into STA

	6 Experiment

