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the backoff time is not increased exponentially, see [10,11,20,21,26]. In all these
approaches frame collisions have to be modelled explicitly, as part of the pro-
tocol description. In contrast, our approach handles collisions in the semantics;
thereby achieving a clear separation between protocol specifications and link
layer behaviour.

Duflot et al. [10,11] use probabilistic timed automata (PTAs) to model the
protocol, and use probabilistic model checking (PRISM) and approximate model
checking (APMC) for their analysis. The model explained in [26] is based on
PTAs as well, but uses the model checker Uppaal as verification tool. These
approaches, although formal, have very little in common with our approach. On
the one hand it is not easy to change the model from CSMA/CD to CSMA/CA,
as the latter requires unbounded data structures (or alike) to model the expo-
nential backoff. On the other hand, as usual, model checking suffers from state
space explosion and only small networks (usually fewer than ten nodes) can
be analysed. This is sufficient and convenient when it comes to finding counter
examples, but these approaches cannot provide guarantees for arbitrary network
topologies, as ours does.

Jensen et al. [20] use models of CSMA/CD to compare the tools SPIN and
Uppaal. Their models are much more abstract than ours. It is proven that no
collisions will ever occur, without stating the exact conditions under which this
statement holds.

To the best of our knowledge, Parrow [21] is the only one who used process
algebra (CCS) to model and analyse CSMA. His untimed model of CSMA/CD
is extremely abstract and the analysis performed is limited to two nodes only,
avoiding scenarios such as the hidden station problem.

There are far fewer formal analyses techniques available when it comes to
CSMA/CA (with and without virtual medium sensing). Traditional approaches
to the analysis of network protocols are simulation and test-bed experiments.
This is also the case for CSMA/CA (e.g. [4]). While these are important and
valid methods for protocol evaluation, in particular for quantitative performance
evaluation, they have limitations in regards to the evaluation of basic protocol
correctness properties.

Following the spirit of the above-mentioned research of model checking CSMA,
Fruth [15] analyses CSMA/CA using PTAs and PRISM. He considers properties
such as the minimum probability of two nodes successfully completing their
transmissions, and maximum expected number of collisions until two nodes have
successfully completed their transmissions. As before, this analysis technique
does not scale; in [15] the experiments are limited to two contending nodes only.

Beyond model checking, simulation and test-bed experiments, we are only
aware of two other formal approaches. In [1] Markov chains are used to derive
an accurate, analytical model to compute the throughput of CSMA/CA. Cal-
culating throughput is an orthogonal task to our vision of proving (functional)
correctness.

An approach aiming at proving the correctness of CSMA/CA with virtual
carrier sensing (RTS/CTS), and hence related to ours, is presented in [3]. Based
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on stochastic bigraphs with sharing it uses rewrite rules to analyse quantita-
tive properties. Although it is an approach that is capable to analyse arbitrary
topologies, to apply the rewrite rules a particular topology needs to be modelled
by a directed acyclic graph structure, which is part of the bigraph.

7 Conclusion

In this paper we have proposed a novel process algebra, called ALL, that can
be used to model, verify and analyse link layer protocols. Since we aimed at a
process algebra featuring aspects of the link layer such as frame collisions, as
well as arbitrary data structures (to model a rich class of protocols), we could
not use any of the existing algebras. The design of ALL is layered. The first
layer allows modelling protocols in some sort of pseudo code, which hopefully
makes our approach accessible for network and software researchers/engineers.
The other layers are mainly for giving a formal semantics to the language. The
layer of partial network expressions, the third layer, provides a unique and sophis-
ticated mechanism for modelling the collision of frames. As it is hard-wired in
the semantics there is no need to model collisions manually when modelling a
protocol, as it was done before [21]. Next to primitives needed for modelling link
layer protocols (e.g. transmit) and standard operators of process algebra (e.g.
nondeterministic choice), ALL provides an operator for probabilistic choice.

This operator is needed to model aspects of link layer protocols such as the
exponential backoff for the Carrier-Sense Multiple Access with Collision Avoid-
ance protocol, the case study we have chosen to demonstrate the applicability
of ALL. We have modelled and analysed two versions of CSMA/CA, without
and with virtual carrier sensing. Our analysis has confirmed the hidden station
problem for the version without virtual carrier sensing. However, we have also
shown that the version with virtual carrier sensing overcomes not only this prob-
lem, but also the exposed station problem with probability 1. Yet the protocol
cannot guarantee packet delivery, not even with probability 1.

To perform this analysis we had to formalise suitable liveness properties for
link layer protocols specified in our framework.
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Abstract. We consider a class of interrupt-driven programs that model
the kernel API libraries of some popular real-time embedded operating
systems and the synchronization mechanisms they use. We define a natu-
ral notion of data races and a happens-before ordering for such programs.
The key insight is the notion of disjoint blocks to define the synchronizes-
with relation. This notion also suggests an efficient and effective lockset
based analysis for race detection. It also enables us to define efficient
“sync-CFG” based static analyses for such programs, which exploit data
race freedom. We use this theory to carry out static analysis on the
FreeRTOS kernel library to detect races and to infer simple relational
invariants on key kernel variables and data-structures.

Keywords: Static analysis · Interrupt-driven programs · Data races

1 Introduction

Embedded software is widespread and increasingly employed in safety-critical
applications in medical, automobile, and aerospace domains. These programs
are typically multi-threaded applications, running on uni-processor systems, that
are compiled along with a kernel library that provides priority-based schedul-
ing, and other task management and communication functionality. The appli-
cations themselves are similar to classical multi-threaded programs (using lock,
semaphore, or queue based synchronization) although they are distinguished by
their priority-based execution semantics. The kernel on the other hand typically
makes use of non-standard low-level synchronization mechanisms (like disabling-
enabling interrupts, suspending the scheduler, and flag-based synchronization)
to ensure thread-safe access to its data-structures. In the literature such software
(both applications and kernels) are referred to as interrupt-driven programs. Our
interest in this paper is in the subclass of interrupt-driven programs correspond-
ing to kernel libraries.

Efficient static analysis of concurrent programs is a challenging problem. One
could carry out a precise analysis by considering the product of the control flow
graphs (CFGs) of the threads, however this is prohibitively expensive due to the
exponential number of program points in the product graph. A promising direc-
tion is to focus on the subclass of race-free programs. This is an important class
c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 697–723, 2019.
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of programs, as most developers aim to write race-free code, and one could try
to exploit this property to give an efficient way of analyzing programs that fall in
this class. In recent years there have been many techniques [7,11,12,18,21] that
exploit the race-freedom property to perform sound and efficient static analysis.
In particular [11,21] create an appealing structure called a “sync-CFG” which
is the union of the control flow graphs of the threads augmented with possi-
ble “synchronization” edges, and essentially perform sequential analysis on this
graph to obtain sound facts about the concurrent program. However these tech-
niques are all for classical lock-based concurrent programs. A natural question
asks if we can analyze interrupt-driven programs in a similar way.

There are several challenges in doing this. Firstly one needs to define what
constitutes a data race in a generalized setting that includes these programs.
Secondly, how does one define the happens-before order, and in particular the
synchronizes-with relation that many of the race-free analysis techniques rely
on, given the ad-hoc synchronization mechanisms used in these programs.

A natural route that suggests itself is to translate a given interrupt-driven
program into one that uses classical locks, and faithfully captures the interleaved
executions of the original program. One could then use existing techniques for
lock-based concurrency to analyze these programs. However, this route is fraught
with many challenges. To begin with, it is not clear how one would handle flag-
based synchronization which is one of the main synchronization mechanisms
used in these programs. Even if one could handle this, such a translation may
not preserve data races, in that the original program might have had a race but
the translated program does not. Finally, some of the synchronizes-with edges in
the translated program are clearly unnecessary, leading to imprecise data-flow
facts in the analyses.

In this paper, we show that it is possible to take a more organic route and
address these challenges in a principled way that could apply to other non-
standard classes of concurrent systems as well. Firstly, we propose a general
definition of a data race that is not based on a happens-before order, but on
the operational semantics of the class of programs under consideration. The def-
inition essentially says that two statements s and t can race, if two notional
“blocks” around them can overlap in time during an execution. We believe that
this definition accurately captures what it is that a programmer tries to avoid
while dealing with shared variables whose values matter. Secondly we propose
a way of defining the synchronizes-with relation, based on the notion of disjoint
blocks. These are statically identifiable pairs of path segments in the CFGs of dif-
ferent threads that are guaranteed to never overlap (in time) during an execution
of the program, much like blocks of code that lie between an acquire and release
of the same lock. This relation now suggests a natural sync-CFG structure on
which we can perform analyses like value-set (including interval, null-deference,
and points-to analysis), and region-based relational invariant analysis, in a sound
and efficient manner. We also use the notion of disjoint blocks to define an effi-
cient and precise lock-set-based analysis for detecting races in interrupt-driven
programs.
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We implement some of these analyses on the FreeRTOS kernel library [3]
which is one of the most widely used open-source real-time kernels for embed-
ded systems, comprising about 3,500 lines of C code. Our race-detection analysis
reports a total of 64 races in kernel methods, of which 18 turn out to be true
positives. We also carry out a region-based relational analysis using an imple-
mentation based on CIL [22]/Apron [15], to prove several relational invariants
on the kernel variables and abstracted data-structures.

2 Overview

We give an overview of our contributions via an illustrative example modelled
on a portion of the FreeRTOS kernel library. Figure 1 shows an interrupt-driven
program that contains a main thread that first initializes the kernel variables.
The variables represent components of a message queue, like msgw (the number
of messages waiting in the queue), len (max length of the queue), wtosend (the
number of tasks waiting to send to the queue), wtorec (the number of tasks
waiting to receive from the queue), and RxLock (a counter which also acts as
a synchronization flag that mediates access to the waiting queues). The main
thread then creates (or spawns) two threads: qsend which models the kernel
API method for sending a message to the queue, and qrec ISR which models
a method for receiving a message, and which is meant to be called from an
interrupt-service routine. The basic semantics of this program is that the ISR
thread can interrupt qsend at any time (provided interrupts are not disabled),
but always runs to completion itself. The threads use disableint/enableint
to disable and enable interrupts, suspendsch/resumesch to suspend/resume
the scheduler (thereby preventing preemption by another non-ISR thread), and
finally flag-based synchronization (using the RxLock variable), as different means
to ensure mutual exclusion.

Our first contribution is a general notion of data races which is applicable
to such programs. We say that two conflicting statements s and t in two dif-
ferent threads are involved in a data race if assuming s and t were enclosed in
a notional “block” of skip statements, there is an execution in which the two
blocks “overlap” in time. The given program can be seen to be free of races.
However if we were to remove the disableint statement of line 10, then the
statements accessing msgw in lines 12 and 42 would be racy, since soon after the
access of msgw in qsend at line 12, there could be preemption by qrec ISR which
goes on to execute line 42.

Next we illustrate the notion of “disjoint blocks” which is the key to defining
synchronizes-with edges, which we need in our sync-CFG analysis as well as to
define an appropriate happens-before relation. Disjoint blocks are also used in
our race-detection algorithm. A pair of blocks of code (for example any of the
like-shaded blocks of code in the figure) are disjoint if they can never overlap
during an execution. For example, the block comprising lines 11–14 in qsend and
the whole of qrec ISR, form a pair of disjoint blocks.

Next we give an analysis for checking race-freedom, by adapting the standard
lockset analysis [24] for classical concurrent programs. We associate a unique
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17
16 }
15

12

11

qsend:

10

18

if(msgw < len) {
disableint;

if(wtorec > 0)
msgw++;

wtorec−−;
enableint;

enableint;
suspendsch;
disableint;
RxLock++;

else { 48
47
46

if(msgw > 0) {

45
44

qrec_ISR:

49

msgw−−;
if(RxLock = 0) {
if(wtosend > 0)
wtosend−−;

}
else
RxLock++;

}

create(qrec_ISR);
create(qsend);
RxLock := 0;5

4
3

1
2

6
7

19
20
21
22
23
24
25
26
27

14
13

29
28

wtorec := 0;

len := 10;
msgw := 0;

enableint;
wtosend++;

RxLock := 0;30

resumesch;
}

31
31

disableint;
while(RxLock > 1) {

wtosend−−;

}

if(wtosend > 0)

RxLock−−;

41

43
42

wtosend := 0;

enableint;31

msgw ≤ len, 0 ≤ RxLock
0 ≤ wtorec, 0 ≤ wtosend

msgw ≤ len, 0 ≤ RxLock
0 ≤ wtorec, 0 ≤ wtosend

msgw ≤ len, 0 ≤ RxLock
0 ≤ wtorec, 0 ≤ wtosend

msgw ≤ len, 0 ≤ RxLock
0 ≤ wtorec, 0 ≤ wtosend

msgw ≤ len, 0 = RxLock
0 ≤ wtorec, 0 ≤ wtosend

msgw ≤ len, 0 < RxLock
0 ≤ wtorec, 0 ≤ wtosend

msgw ≤ len, 0 < RxLock
0 ≤ wtorec, 0 < wtosend

msgw ≤ len, 0 < RxLock
0 ≤ wtorec, 0 ≤ wtosend

msgw ≤ len, 0 ≤ RxLock
0 ≤ wtorec, 0 ≤ wtosend

msgw ≤ len, 0 ≤ RxLock
0 ≤ wtorec, 0 ≤ wtosend

0 = RxLock = msgw < len = 10

main:

Fig. 1. An interrupt-driven program modelled on the FreeRTOS kernel library. Simi-
larly shaded blocks denote disjoint blocks. Some of the sync-with edges are shown in
dashed lines. Some edges like 22 → 41 and 49 → 20 have been omitted for clarity.

lock with each pair of disjoint blocks, and add notional acquires and releases of
this lock at the beginning and end (respectively) of these blocks. We now do
the standard lockset analysis on this version of the program, and declare two
accesses to be non-racy if they hold sets of locks with a non-empty intersection.

Finally, we show how to do data-flow analysis for such programs in a sound
and efficient way. The basic idea is to construct a “sync-CFG” for the program
by unioning the control-flow graphs of the threads, and adding sync edges that
capture the synchronizes-with edges (going from the end of a block to the begin-
ning of its paired block), for example line 14 to line 41 and line 49 to line 11.
The sync-edges are shown by dashed arrows in the figure. We now do a standard
“value-set” analysis (for example interval analysis) on this graph, keeping track
of a set of values each variable can take. The resulting facts about a variable are
guaranteed to be sound at points where the variable is accessed (or even “owned”
in the sense that a notional read of the variable at that point is non-racy). For
example an interval analysis on this program would give us that 0 < msgw at
line 14. Finally, we could do a region-based value-set analysis, by identifying
regions of variables that are accessed as a unit – for example msgw and len could
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be in one region, while wtosend and wtorec could be in another. The figure
shows some facts inferred by a polyhedral analysis based on these regions, for
the given program.

3 Interrupt-Driven Programs

The programs we consider have a finite number of (static) threads, with a des-
ignated “main” thread in which execution begins. The threads access a set of
shared global variables, some of which are used as “synchronization flags”, using
a standard set of commands like assignment statements of the form x := e,
conditional statements (if-then-else), loop statements (while), etc. In addi-
tion, the threads can use commands like disableint, enableint (to disable
and enable interrupts, respectively), suspendsch, resumesch (to suspend and
resume the scheduler, respectively), while the main thread can also create a
thread (enable it for execution). Table 1 shows the set of basic statements cmdV,T

over a set of variables V and a set of threads T .
We allow standard integer and Boolean expressions over a set of variables V .

For an integer expression e over V , and an environment φ for V , we denote by
�e�φ the integer value that e evaluates to in φ. Similarly for a Boolean expression
b, we denote the Boolean value (true or false) that b evaluates to in φ by �b�φ.
For a set of environments Φ for a set of variables V , we define the set of integer
values that e can evaluate to in an environment in Φ, by �e�Φ = {�e�φ | φ ∈ Φ}.
Similarly, for a boolean expression b, we define the set of environments in Φ that
satisfy b to be �b�Φ = {φ ∈ Φ | �b�φ = true}.

Each thread is of one of two types: “task” threads that are like standard
threads, and “ISR” threads that represent threads that run as interrupt ser-
vice routines. The main thread is a task thread, which is the only task thread
enabled initially. The main thread can enable other threads (both task and ISR)
for execution using the create command. Task threads can be preempted by
other task threads (whenever interrupts are not disabled, and the scheduler is
not suspended) or by ISR threads (whenever interrupts are not disabled). On
the other hand ISR threads cannot be preempted and are assumed to run to
completion.

Only task threads are allowed to use disableint, enableint, suspendsch
and resumesch commands. Similarly, if flag-based synchronization is used, only
task threads can modify the flag variable, while an ISR can only check whether
the flag is set or not, and perform some actions accordingly.

Formally we represent an interrupt-driven program P as a tuple (V, T ) where
V is a finite set of integer variables, and T is a finite set of named threads. Each
thread t ∈ T has a type which is one of task or ISR, and an associated control-
flow graph of the form Gt = (Lt, st, inst t) where Lt is a finite set of locations of
thread t, st ∈ Lt is the start location of thread t, inst t ⊆ Lt × cmdV,T × Lt is a
finite set of instructions of thread t.

Some definitions related to threads will be useful going forward. We denote
by LP =

⋃
t∈T Lt the disjoint union of the thread locations. Whenever P is clear
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Table 1. Basic statements cmdV,T over variables V and threads T

Command Description

skip Do nothing

x := e Assign the value of expression e to variable x ∈ V

assume(b) Enabled only if expression b evaluates to true, acts like skip

create(t) Enable thread t ∈ T for execution

disableint Disable interrupts and context switches

enableint Enable interrupts and context switches

suspendsch Suspend the scheduler (other task threads cannot preempt the
current thread); Also sets ssflag variable

resumesch Resume the scheduler (other task threads can now preempt the
current thread); Also unsets ssflag variable

from the context we will drop the subscript of P from LP and its decorations.
For a location l ∈ L we denote by tid(l) the thread t which contains location l .
We denote the set of instructions of P by instP =

⋃
t∈T inst t. For an instruction

ι ∈ inst t, we will also write tid(ι) to mean the thread t. For an instruction
ι = 〈l , c, l ′〉, we call l the source location, and l ′ the target location of ι.

We denote the set of commands appearing in program P by cmd(P ). We will
consider an assignment x := e as a write-access to x, and as a read-access to
every variable that appears in the expression e. Similarly, assume(b) is considered
to be a read-access of every variable that occurs in expression b. We say two
accesses are conflicting accesses if they are read/write accesses to the same
variable, and at least one of them is a write. We assume that the control-flow
graph of each thread comes from a well-structured program. Finally, we assume
that the main thread begins by initializing the variables to constant values.
Figure 2 shows an example program and the control-flow-graphs of its threads.

We define the operational semantics of an interrupt-driven program using a
labeled transition system (LTS). Let P = (V, T ) be a program. We define an
LTS TP = (Q,Σ, s,⇒) corresponding to P , where:

– Q is a set of states of the form (pc, φ, enab, rt, it, id , ss), where pc ∈ T → L is
the program counter giving the current location of each thread, φ ∈ V → Z

is a valuation for the variables, enab ⊆ T is the set of enabled threads, rt ∈ T
is the currently running thread; it ∈ T is the task thread which is interrupted
when the scheduler is suspended; and id and ss are Boolean values telling us
whether interrupts are disabled (id = true) or not (id = false) and whether
the scheduler is suspended (ss = true) or not (ss = false).

– The set of labels Σ is the set of instructions instP of P .
– The initial state s is (λt.st, λx.0, {main},main,main, false, false). Thus all

threads are at their entry locations, the initial environment sets all variables
to 0, only the main thread is enabled and running, the interrupted task is
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main:
1. x := 0;
2. y := 0;
3. t := 0;
4. create(t1);
5. create(t2);
6.

t1: t2:
7. x := x + 1; 9. disableint;
8. 10. y := t;

11. t := x;
12. if(t > 0) {
13. y := y + 1;
14. }
15. else {
16. t := t + 1;
17. }
18. enableint;
19.

(a) Example program

t1 t2main

7

8

x := x + 1

9

10

11

12

18

19

disableint

y := t

t := x

enableint

assume(t>0)assume(t<=0)

skip skip

13

1417

16

t := t + 1 y := y + 1

1

2

3

4

5

6

x := 0

y := 0

t := 0

create(t1)

create(t2)

(b) Control-flow-graph representation

Fig. 2. An example program and its CFG representation.

set to main (this is a dummy value as it is used only when the scheduler is
suspended), interrupts are enabled, and the scheduler is not suspended.

– For an instruction ι = 〈l , c, l ′〉 in instP , with tid(ι) = t, we define

(pc, φ, enab, rt, it, id , ss) ⇒ι (pc′, φ′, enab′, rt′, it′, id ′, ss ′)

iff the following conditions are satisfied:
• t ∈ enab; pc(t) = l ; pc′ = pc[t �→ l ′];
• if id is true or rt is an ISR then t = rt;
• if ss is true, then either t = rt or t is an ISR thread;
• Based on the command c, the following conditions must be satisfied:

∗ If c is the skip command then φ′ = φ, enab′ = enab, id ′ = id , and
ss ′ = ss.

∗ If c is an assignment statement of the form x := e then φ′ = φ[x �→ �e�φ],
enab′ = enab, id ′ = id , and ss ′ = ss.

∗ If c is a command of the form assume(b) then �b�φ = true, φ′ = φ,
enab′ = enab, id ′ = id , and ss ′ = ss.

∗ If c is a create(u) command then t = main, φ′ = φ, enab′ = enab∪{u},
id ′ = id , and ss ′ = ss.

∗ If c is the disableint command then φ′ = φ, enab′ = enab, id ′ = true,
and ss ′ = ss.

∗ If c is the enableint command then φ′ = φ, enab′ = enab, id ′ = false,
and ss ′ = ss.

∗ If c is the suspendsch command then φ′ = φ[ssflag �→ 1], enab′ =
enab, id ′ = id , and ss ′ = true.

∗ If c is the resumesch command then φ′ = φ[ssflag �→ 0], enab′ = enab,
id ′ = id , and ss ′ = false.
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• In addition, the transitions set the new running thread rt′ and interrupted
task it′ as follows. If t is an ISR thread, ss is true, and ι is the first
statement of t then it′ = rt, rt′ = t. If t is an ISR thread, ss is true, and ι
is the last statement of t then it′ = it, rt′ = it. In all other cases, rt′ = t
and it′ = it.

An execution σ of P is a finite sequence of transitions in TP from the initial
state s: σ = τ0, τ1, . . . , τn (n ≥ 0) from ⇒, such that there exists a sequence
of states q0, q1, . . . , qn+1 from Q, with q0 = s and τi = (qi, ιi, qi+1) for each
0 ≤ i ≤ n. Wherever convenient we will also represent an execution like σ above
as a sequence of the form q0 ⇒ι0 q1 ⇒ι1 · · · ⇒ιn qn+1. We say that a state q ∈ Q
is reachable in program P if there is an execution of P leading to state q.

4 Data Races and Happens-Before Ordering

In this section we propose a definition of a data race which has general applicabil-
ity, and also define a natural happens-before order for interrupt-driven programs.

4.1 Data Races

Data races have typically been defined in the literature in terms of a happens-
before order on program executions. In the classical setting of lock-based syn-
chronization, the happens-before relation is a partial order on the instructions in
an execution, that is reflexive-transitive closure of the union of the program-order
relation between two instructions in the same thread, and the synchronizes-with
relation which relates a release of a lock in a thread to the next acquire of the
same lock in another thread. Two instructions in an execution are then defined
to be involved in a data race if they are conflicting accesses to a shared variable
and are not ordered by the happens-before relation.

We feel it is important to have a definition of a data race that is based on the
operational semantics of the class of programs we are interested in, and not on a
happens-before relation. Such a definition would more tangibly capture what it
is that a programmer typically tries to avoid when dealing with shared variables
whose consistency she is worried about. Moreover, when coming up with a defi-
nition of the happens-before order (the synchronizes-with relation in particular)
for non-standard concurrent programs like interrupt-driven programs, it is use-
ful to have a reference notion to relate to. For instance, one could show that a
proposed happens-before order is strong enough to ensure the absence of races.

We propose to define a race between two conflicting statements in a program
in terms of whether two imaginary blocks enclosing each of these statements can
overlap in an execution. Let us consider a multi-threaded program P in a class of
concurrent programs with a certain operational execution semantics. Consider a
block of contiguous instructions in a thread t of a program P and another block
in thread t′ of P . We say that these two blocks are involved in a high-level race
in an execution of P if they overlap with each other during the execution, in that
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one block begins in between the beginning and ending of the other. We say two
conflicting statements s and t in P are involved in a data race (or are racy), if
the following condition is true: Consider the program P ′ which is obtained from
P by replacing the statement s by the block “skip; s; skip”, and similarly for
statement t. Then there is an execution of P ′ in which the two blocks containing
s and t are involved in a high-level race. The definition is illustrated in Fig. 3.
We say a program P is race-free if no pair of instructions in it are racy.

t;
s; skip;

s;
skip;

skip;
t;
skip;

t1: t2: t1: t2:

t1 t2P ′P

Fig. 3. Illustrating the definition of a data race on statements s and t. A program P ,
its transformation P ′, and an execution of P ′ in which the blocks overlap.

The rationale for this definition is that the concerned statements s and t may
be compiled down to a sequence of instructions (represented by the blocks with
skip’s around s and t) depending on the underlying processor and compiler,
and if these instructions interleave in an execution, it may lead to undesirable
results.

To illustrate the definition, consider the program in Fig. 2a. The accesses to
x in line 7 and line 11 can be seen to be racy, since there is an execution of the
augmented program P ′ in which t1 performs the skip followed by the increment
to x at line 7, followed by a context switch to thread t2 which goes on to execute
lines 9 and 10 and then the read of x in line 11. On the other hand, the version
of the program in which line 7 is enclosed in a disableint-enableint block,
does not contain a race.

We note that for classical concurrent programs, it might suffice to define a
race as consecutive occurrences of conflicting accesses in an execution, as done in
[4,17]. However, this definition is not general enough to apply to interrupt-driven
programs. By this definition, the statements in lines 7 and 11 of the program in
Fig. 2a are not racy, as there is no execution in which they happen consecutively.
This is because the disableint-enableint block containing the access in line 11
is “atomic” in that the statements in the block must happen contiguously in any
execution, and hence the instructions corresponding to line 7 and line 11 can
never happen immediately one after another.

4.2 Disjoint Blocks and the Happens-Before Relation

Now that we have a proposed definition of races, we can proceed to give a
principled way to define the happens-before relation for our class of interrupt-
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driven programs. The main question is how does one define the synchronizes-
with relation. Our insight here is that the key to defining the synchronizes-with
relation lies in identifying what we call disjoint blocks for the class of programs.
Disjoint blocks are statically identifiable pairs of path segments in the CFGs of
different threads, which are guaranteed by the execution semantics of the class
of programs never to overlap in an execution of the program. Disjoint block
structures – for example in the form of blocks enclosed between locks/unlocks of
the same lock – are the primary mechanism used by developers to ensure race-
freedom. The synchronizes-with relation in an execution can then be defined as
relating, for every pair (A,B) of disjoint blocks in the program, the end of block
A to the beginning of the succeeding occurrence of block B in the execution. The
happens-before order for an execution can now be defined, as before, in terms
of the program order and the synchronizes-with order, and is easily seen to be
sufficient to ensure non-raciness.

Let us illustrate this hypothesis on classical lock-based programs. The disjoint
block pairs for this class of programs are segments of code enclosed between
acquires and releases of the same lock; or the portion of a thread’s code before it
spawns a thread t, and the whole of thread t’s code; and similarly for joins. The
synchronizes-with relation between instructions in an execution essentially goes
from a release to the succeeding acquire of the same lock. If two accesses are
related by the resulting happens-before order, they clearly cannot be involved
in a race.

We now focus on defining a happens-before relation based on disjoint blocks
for our class of interrupt-driven programs. We have identified eight pairs of
disjoint block patterns for this class of programs, which are depicted in Fig. 4.
We use the following types of blocks to define the pairs. A block of type D is
a path segment in a task thread that begins with a disableint and ends with
an enableint with no intervening enableint in between. A block of type S
is a path segment in a task thread that begins with a suspendsch and ends
with a resumesch with no intervening resumesch. An I block is an initial and
terminating path segment in an ISR thread (i.e. begins with the first instruction
and ends with a terminating instruction). Similarly, for a task thread t, Tt is
an initial and terminating path in t, while Mt is an initial segment of the main
thread that ends with a create(t) command. A block of type Cssflag is a path
segment in an ISR thread corresponding to the then block of a conditional that
checks if ssflag = 0. For a synchronization flag f , Cf is the path segment in
an ISR thread corresponding to the then block of a conditional that checks if
f = 0. Finally Ff is a segment between statements that set f to 1 and back to
0, in a task thread. We also require that an Ff segment be within the scope of
a suspendsch command.

We can now describe the pairs of disjoint blocks depicted in Fig. 4. Case (a)
says that two D blocks in different task threads are disjoint. Clearly two such
blocks can never overlap in an execution, since once one of the blocks begins exe-
cution no context-switch can occur until interrupts are enabled again. Case (b)
says that D and I blocks are disjoint. Once again this is because once the D block
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(a) (b) (c)

(f)(d) (e)

main:

// begin

t:

// begin

// end

task: task: task:task:

(g) (h)

task: task: task: ISR:

// begin

// end

ISR:

// begin

// end

ISR:

// begin

// end

ISR:

if(f = 0){

task:ISR:

if(ssflag = 0){

task:

f := 1;

f := 0;

} }

// suspended
// with scheduler

create(t)

suspendsch;

resumesch;

disableint;

enableint

suspendsch; suspendsch;

resumesch; resumesch;

suspendsch;

resumesch;

enableint

disableint; disableint;

enableint

disableint;

enableint

D D I I I

D S S S

S

Mt Tt

Ff

CfCssflag

D

Fig. 4. Disjoint blocks in an interrupt-driven program.

begins execution no ISR can run until interrupts are enabled again, and once
an ISR begins execution it runs to completion without any context-switches.
Case (e) says that S blocks in different task threads are disjoint, because once
the scheduler is suspended no context-switch to another task thread can occur.
Case (f) says that Mt and Tt blocks are disjoint, since a thread cannot begin
execution before it is created in main. Case (g) says that an S block is disjoint
from a Cssflag block. This is because once the scheduler is suspended by the
suspendsch command, and even if a context-switch to an ISR occurs, the then
block of the if statement will not execute. Conversely, if the ISR is running
there can be no context-switch to another thread. Finally, case (h) is similar to
case (g). We note that the disjoint block pairs are not ordered (the relation is
symmetric).

We can now define the synchronizes-with relation as follows. Let σ = q0 ⇒ι0

q1 ⇒ι1 · · · ⇒ιn qn+1 be an execution of P . We say instruction ιi synchronizes-
with an instruction ιj of P in σ, if i < j, tid(ιi) = tid(ιj), and there exists a pair
of disjoint blocks A and B, with ιi ending block A and ιj beginning block B. As
usual we say ιi is program-order related to ιj iff i < j and tid(ιi) = tid(ιj). We
define the happens-before relation on σ as the reflexive-transitive closure of the
union of the program-order and synchronizes-with relations for σ.

We can now define a HB-race in an execution σ of P as follows: we say that
two instructions ιi and ιj in σ are involved in a HB-race if they are conflicting
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instructions that are not ordered by the happens-before relation in σ. We say
that two instructions in P are HB-racy if there is an execution of P in which
they are involved in a HB-race. Finally, we say a program P is HB-race-free if
no two of its instructions are HB-racy.

Once again, it is fairly immediate to see that if two statements of a program
are not involved in a HB-race, they cannot be involved in a race. Further, if
two statements belong to disjoint blocks, then they are clearly happens-before
ordered in every execution. Hence belonging to disjoint blocks is sufficient to
ensure that the statements are happens-before ordered, which in turn ensures
that the statements cannot be involved in a race.

5 Sync-CFG Analysis for Interrupt-Driven Programs

In this section we describe a way of lifting a sequential value-set analysis in
a sound way for a HB-race free interrupt-driven program, in a similar way to
how it is done for lock-based concurrent programs in [11]. A value-set analysis
keeps track of the set of values each variable can take at each program point.
The basic idea is to create a “sync-CFG” for a given interrupt-driven program
P , which is essentially the union of the CFGs of each thread of P , along with
“may-synchronize-with” edges between statements that may be synchronizes-
with related in an execution of P , and then perform the value-set analysis on
the resulting graph. Whenever the given program is HB-race free, the result of
the analysis is guaranteed to be sound, in a sense made clear in Theorem 1.

5.1 Sync-CFG

We begin by defining the “sync-CFG” for an interrupt-driven program. It is
on this structure that we will do the value-set analysis. Let P = (V, T ) be
an interrupt-driven program, and let G be the disjoint union (over threads
t ∈ T ) of the CFGs Gt. We define a set of may-synchronize-with edges in G,
denoted MSW (G), as follows. The edges correspond to the pairs of disjoint blocks
depicted in Fig. 4, in that they connect the ending of one block to the beginning
of the other block in the pair. Consider two instructions ι = 〈l , c,m〉 ∈ inst t

and κ = 〈l ′, c′,m′〉 ∈ inst t′ , with t = t′. We add the edge (m, l ′) in MSW (G),
iff for some pair of disjoint blocks (A,B), ι ends a block of type A in thread t
and κ begins a block of type B in thread t′. For example, corresponding to a
(D,D) pair of disjoint blocks, we add the edge (m, l ′) when c is an enableint
command, and c′ is a disableint command.

The sync-CFG induced by P is the control flow graph given by G along with
the additional edges in MSW (G). Figure 6 shows a program P2 and its induced
sync-CFG.

5.2 Value Set Analysis

We first spell out the particular form of abstract interpretation we will be using.
It is similar to the standard formulation of [9], except that it is a little more
general to accommodate non-standard control-flow graphs like the sync-CFG.
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An abstract interpretation of a program P = (V, T ) is a structure of the form
A = (D,≤, do, F ) where

– D is the set of abstract states.
– (D,≤) forms a complete lattice. We denote the join (least upper bound) in

this lattice by �≤, or simply � when the ordering is clear from the context.
– d0 ∈ D is the initial abstract state.
– F : instP → (D → D) associates a transfer function F (ι) (or simply Fι) with

each instruction ι of P . We require each transfer function Fι to be monotonic,
in that whenever d ≤ d′ we have Fι(d) ≤ Fι(d′).

An abstract interpretation A = (D,≤, d0, F ) of P induces a “global” transfer
function FA : D → D, given by FA(d) = d0 �

⊔
ι∈instP

Fι(d). This transfer
function can also be seen to be monotonic. By the Knaster-Tarski theorem [28],
FA has a least fixed point (LFP) in D, which we denote by LFP(FA), and refer
to as the resulting value of the analysis.

A value set for a set of variables V is a map vs : V → 2Z, associating a
set of integer values with each variable in V . A value set vs induces a set of
environments Φvs in a natural way: Φvs = {φ | for all x ∈ V, φ(x) ∈ vs(x)}
(i.e. essentially the Cartesian product of the values sets). Conversely, a set of
environments Φ for V , induces a value set valset(Φ) given by valset(Φ)(x) =
{v ∈ Z | ∃φ ∈ Φ, φ(x) = v}, which is the “projection” of the environments to
each variable x ∈ V . Finally, we define a point-wise ordering on value sets as
follows: vs � vs ′ iff vs(x) ⊆ vs ′(x) for each variable x in V . We denote the least
element in this ordering by vs⊥ = λx.∅.

We can now define the value-set analysis Avset for an interrupt-driven pro-
gram P = (V, T ) as follows. Let Avset = (D,≤, d0, F ) where

– D is the set LP → (V → 2Z) (thus an element of D associates a value-set
with each program location)

– The ordering d ≤ d′ holds iff d(l) � d′(l) for each l ∈ LP

– The initial abstract value d0 is given by:

d0 = λl.

{
λx.{0} if l = smain

vs⊥ otherwise.

– The transfer functions are given as follows. Given an abstract value d, and
a location l ∈ LP , we define vsd

l to be the join of the value-set at l, and
the value-set at all may-synchronizes-with edges coming into l. Thus vsd

l =
d(l)��

⊔
(n,l)∈MSW (G) d(n). Below we will use Φ as an abbreviation of the set

Φvsdl
of environments induced by vsd

l . Let ι = 〈l , c, l ′〉 be an instruction in P .

• If c is the command x := e then Fι(d) = d′ where

d′(m) =
{
vsd

l [x �→ �e�Φ] if m = l ′

vs⊥ otherwise.
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• If c is the command assume(b), then Fι(d) = d′ where

d′(m) =
{
valset(�b�Φ) if m = l ′

vs⊥ otherwise.

• If c is any other command (skip, disableint, enableint, suspendsch,
resumesch, or create) then Fι(d) = d′ where

d′(m) =
{
vsd

l if m = l ′

vs⊥ otherwise.

Figure 6 shows the results of a value-set analysis on the sync-CFG of program
P2. The data-flow facts are shown just before a statement, at selected points in
the program.

Soundness. The value-set analysis is sound in the following sense: if P is a HB-
race free program, and we have a reachable state of P at a location l in a thread
where a variable x is read ; then the value of x in this state is contained in the
value-set for x, obtained by the analysis at point l. More formally:

Theorem 1. Let P = (V, T ) be an HB-race free interrupt-driven program, and
let d∗ be the result of the analysis Avset on P . Let l be a location in a thread
t ∈ T where a variable x is read (i.e. P contains an instruction of the form
〈l , c, l ′〉 where c is a read access of x). Let φ be an environment at l reachable
via some execution of P . Then φ(x) ∈ d∗(l)(x).

The proof of this theorem is similar to the one for classical concurrent pro-
grams in [11] (see [10] for a more accurate proof). The soundness claim can
be extended to locations where a variable is “owned” (which includes locations
where it is read). We say a variable x is owned by a thread t at location l, if an
inserted read of x at this point is non-HB-racy in the resulting program.

Region-Based Analysis. One problem with the value-set analysis is that it may
not be able to prove relational invariants (like x ≤ y) for a program. One way
to remedy this is to exploit the fact that concurrent programs often ensure race-
free access to a region of variables, and to essentially do a region-based value-set
analysis, as originally done in [21]. More precisely, let us say we have a partition
of the set of variables V of a program P into a set of regions R1, . . . , Rn. We
classify each read (write) access to a variable x in a region R, as an read (write)
access to region R. We say that two instructions in an execution of P are involved
in a HB-region-race, if the two instructions are conflicting accesses to the same
region R, and are not happens-before ordered in the execution. A program is
HB-region-race free if none of its executions contain a HB-region-race.

We can now define a region-based version of the value-set analysis for a
program P , which we call Arvset . The value-set for a region R is a set of valuations
(or sub-environments) for the variables in R. The transfer functions are defined
in an analogous way to the value-set analysis. The analogue of Theorem 1 for
regions gives us that for a HB-region-race free program, at any location where a
region R is accessed, the region-value-set computed by the analysis at that point
will contain every sub-environment of R reachable at that point.
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6 Translation to Classical Lock-Based Programs

In this section we address the question of why an execution-preserving trans-
lation to a classical lock-based program is not a fruitful route to take. In a
nutshell, such a translation would not preserve races and would induce a sync-
CFG with many unnecessary MSW edges, leading to much more imprecise facts
than the analysis on the native sync-CFG described in the previous section.
We also describe how our approach can be viewed as a lightweight translation
of an interrupt-driven program to a classical lock-based one. The translation
is “lightweight” in the sense that it does not attempt to preserve the execution
semantics of the given interrupt-driven program, but instead preserves races and
the sync-CFG structure of the original program.

6.1 Execution-Preserving Lock Translation

One could try to translate a given interrupt-driven program P into a classi-
cal lock-based program PL in a way that preserves the interleaved execution
semantics of P . By this we mean that every execution of P has a corresponding
execution in PL that follows essentially the same sequence of interleaved instruc-
tions from the different threads (modulo of course the synchronization state-
ments which may differ); and vice-versa. For example, to capture the semantics
of disableint-enableint, one could introduce an “execution” lock E which is
acquired in place of disabling interrupts, and released in place of enabling inter-
rupts. Every instruction in a task thread outside a disableint-enableint block
must also acquire and release E immediately before and after the instruction.
Note that the latter step is necessary if we want to capture the fact that once
a thread disables interrupts it cannot be preempted by any thread. Figure 5a
shows an interrupt-driven program P1 and its lock translation PL

1 in Fig. 5b.
There are still issues with the translation related to re-entrancy of locks and it
is not immediately clear how one would handle flag-based synchronization – but
let us keep this aside for now.

The first problem with this translation is that it does not preserve race infor-
mation. Consider the program P1 in Fig. 5a and its translation PL

1 . The original
program clearly has a race on x in statements 4 and 9. However the translation
PL
1 does not have a race as the accesses are protected by the lock E. Hence

checking for races in PL does not substitute for checking in P . An alternative
around this would be to first construct P ′ (recall that this is the version of P
in which we introduce the skip-blocks around statements we want to check for
races), then construct its lock translation (P ′)L, and check this program for
high-level races on the introduced skip-blocks. However this is expensive as it
involves a 3x blow-up in going from P to P ′ and another 3x blow-up in going
from P ′ to (P ′)L. Further, checking for high-level races (for example using a
lock-set analysis) is more expensive than just checking for races. In contrast, as
we show next, our lock-set analysis on the native program P does not incur any
of these expenses.



712 N. Chopra et al.

main:
1. x := y := t := 0;
2. create(t1);
3. create(t2);

t1: t2:
4. x := x + 1; 8. disableint;
5. disableint; 9. t := x;
6. x := y; 10. enableint;
7. enableint;

(a) Example program P1

main:
1. x := y := t := 0;
2. spawn(t1);
3. spawn(t2);

t1: t2:
4. lock(E) 10. lock(E);
5. x := x + 1; 11. t := x;
6. unlock(E) 12. unlock(E);
7. lock(E)
8. x := y;
9. unlock(E)

(b) Exec-preserving trans. PL
1

main:
1. x := y := t := 0;
2. spawn(t1);
3. spawn(t2);

t1: t2:
4. x := x + 1; 8. lock(A);
5. lock(A); 9. t := x;
6. x := y; 10. unlock(A);
7. unlock(A);

(c) Lightweight trans. PW
1

Fig. 5. Example program P1, and its lock and lightweight translations PL
1 , PW

1 .

The second problem with a precise lock translation is that the sync-CFG of
the translated program has many unnecessary MSW-edges, leading to impre-
cision in the ensuing analysis. Consider the program P2 in Fig. 6, and its lock
translation PL

2 in Fig. 7. P2 is similar to P1 except that line 4 is now an increment
of y instead of x, and the resulting program is race-free (in fact HB-race-free).
Notice that the may-sync-with edges from line 13 to 4, and line 6 to 10 in the
sync-CFG of PL

2 in Fig. 7 are unnecessary (they are not present in the native
sync-CFG) and lead to imprecise facts in an interval analysis on this graph. Some
of the final facts in an interval analysis on these graphs are shown alongside the
programs in Figs. 6 and 7. In particular the analysis on PL

2 is unable to prove
the assertion in line 10 of the original program.

6.2 A Lightweight Lock-Translation

Our disjoint block-based approach of Sect. 5 can be viewed as a lightweight lock
translation which does not attempt to preserve execution semantics, but pre-
serves disjoint blocks and hence also races and the sync-CFG structure of the
original interrupt-driven program.

create(t2);
create(t1);
x := y := t := 0;1

2
3

6

5

t1:

4
disableint;
y := y+1;

7
x := y;
enableint;

disableint;

t2:

8

10
9 t := x;

// assert(t<=1)
enableint;11

main:

x = y = t = 0

0 ≤ x, y, t ≤ 1

0 ≤ x, y, t ≤ 01 ≤ x, y, t ≤ 1

0 ≤ x, y, t ≤ 1

Fig. 6. Program P2 with its Sync-CFG and facts from an interval analysis



Static Analysis of Interrupt-Driven Kernels 713

spawn(t2);
spawn(t1);
x := y := t := 0;1

2
3

5

t1:

4
y := y+1;
lock(E); lock(E);

t2:

10

12
11 t := x;

// assert(t<=1)
unlock(E);13

unlock(E);6

unlock(E);
x := y;8

9

lock(E);7

0 ≤ x, t
1 ≤ y

main:

0 ≤ x, y, t

0 ≤ x, y, t 0 ≤ x, y, t

0 ≤ x, y, t

0 ≤ x, y, t

Fig. 7. Lock translation PL
2 of P2, with its Sync-CFG and interval analysis facts

Let us first spell out the translation. Let us fix an interrupt-driven program
P = (V, T ). The idea is simply to introduce a lock corresponding to each pattern
of disjoint block pairs listed in Fig. 4, and to insert at the entry and exit to these
blocks an acquire and release (respectively) of the corresponding lock. For each
of the cases (a) through (h) we introduce locks named A through H, with some
exceptions. Firstly, for case (f) regarding the create of a thread t, we simply
translate these as a spawn(t) command in a classical lock-based programming
language, which has a standard acquire-release semantics. Secondly, for case (h),
we need a copy of H for each thread t, which we call Ht. This is because the
concerned blocks (say between a set and unset of the flag f) are not disjoint
across task threads, but only with the “then” block of an ISR thread statement
that checks if f = 0. The ISR thread now acquires the set of locks {Ht | t ∈ T}
at the beginning of the “then” block of the if statement, and releases them at
the end of that block. We call the resulting classical lock-based program PW .
Figure 5c shows this translation for the program P1.

Figure 8 shows this translation along with the sync-CFG edges and some of
the final facts in an interval analysis for the program P2.

It is not difficult to see that PW allows all executions that are possible in P .
However it also allows more: for example the execution of PW

1 (Fig. 5c) in which
thread t1 preempts t2 at line 9 to execute the statement at line 4, is not allowed
in P1. Thus it only weakly captures the execution semantics of P . However, every
race in P is also a race in PW . To see this, suppose we have a race on statements
s and t in P . This means there is a high-level race on the two skip blocks around
s and t in the augmented program P ′. Since an execution exhibiting the high-
level race on these blocks would also be present in (P ′)W which is identical to
(PW )′, it follows that the corresponding statements are racy in PW as well.

Further, since our translation preserves disjoint blocks by construction, if s
and t are in disjoint blocks in P , the corresponding statements will be in disjoint
blocks in PW ; and vice-versa. It follows that the sync-CFGs induced by P and
PW are essentially isomorphic (modulo the synchronization statements). As a
result, any value-set-based analysis will produce identical results on the two
graphs.
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Finally, if statements s and t are HB-racy in P , they must also be HB-racy
in PW . This is because disjoint blocks are preserved and the synchronizes-with
relation is inherited from the disjoint blocks. Hence the execution witnessing the
HB-race in P would also be present in PW , and would also witness a HB-race
on the corresponding statements.

We summarize these observations below:

Proposition 1. Let P be an interrupt-driven program and PW the classical lock
program obtained using our lightweight lock translation. Then:

1. If statements s and t are racy in P , the corresponding statements are racy in
PW as well.

2. If statements s and t are HB-racy in P , the corresponding statements are
HB-racy in PW as well.

3. The sync-CFGs induced by P and PW are essentially isomorphic. As a result
the final facts in a value-set-based analysis on these graphs will be identical.

��

spawn(t2);
spawn(t1);
x := y := t := 0;1

2
3

6

5

t1:

4 y := y+1;

7
x := y;
unlock(A);

lock(A);

t2:

8

10
9 t := x;

// assert(t<=1)
unlock(A);11

lock(A);

main:

x = y = t = 0

0 ≤ x, y, t ≤ 1

0 ≤ x, y, t ≤ 01 ≤ x, y, t ≤ 1

0 ≤ x, y, t ≤ 1

Fig. 8. Our lightweight translation PW
2 of P2, with its Sync-CFG and interval analysis

facts

6.3 Lockset Analysis for Race Detection

For classical lock-based programs, the lockset analysis [24] essentially tracks
whether two statements are in disjoint blocks. Here two blocks are disjoint if
they hold the same lock for the duration of the block. When two statements are
in disjoint blocks, they are necessarily happens-before ordered, and hence this
gives us a way to declare pairs of statements to be non-HB-racy.

A lockset analysis computes the set of locks held at each program point as
follows: at program entry it is assumed that no locks are held. When a call to
acquire(l) is encountered, the analysis adds the lock l at the out point of the
call. When a call to release(l) is encountered the lockset at the out point of the
call is the lockset computed at the in point with the lock l removed. For any
other statement, the lockset from the in point of the statement is copied to its
out point. The join operation is the simple intersection of the input locksets.
Once locksets are computed at each point, a pair of conflicting statements s and
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t in different threads are declared to may HB-race if the locksets held at these
points have no lock in common.

Using our lock translation above, we can detect races as follows. Given an
interrupt-driven program P , we first translate it to the lock-based program PW ,
and do a lockset analysis on PW . If any pair of conflicting statements s and t
are found to be may-HB-racy in PW , we declare them to be may-HB-racy in P .
By Proposition 1(2), it follows that this is a sound analysis for interrupt-driven
programs.

7 Analyzing the FreeRTOS Kernel Library

We now perform an experimental evaluation of the proposed race detection algo-
rithm and sync-CFG-based relational analysis for interrupt-driven programs.
We use the FreeRTOS kernel library [3], on which our interrupt-driven pro-
gram semantics are based, to perform our evaluation. FreeRTOS is a collection
of functions mostly written in C, that an application developer compiles with
and invokes in the application code. We view the FreeRTOS kernel library as an
interrupt-driven program as follows: we build an interrupt-driven program out of

task: ISR:

main:

the FreeRTOS kernel as shown in the
figure alongside. The main thread is
responsible for initializing the kernel data
structures and then creating two threads:
a task thread which branches out calling
each task kernel API function, and loops
on this; and an ISR thread which similarly
branches and loops on the ISR kernel API
functions. FreeRTOS provides versions of
API functions that can be called from
interrupt service routines. These functions
have “FromISR” appended to their name.
While it is sufficient to have one ISR
thread, we assume (in the analysis) that
there could be any number of task threads
running. To achieve this we simply add sync-edges within each task kernel func-
tion, in addition to the usual sync-edges between task functions. We used FreeR-
TOS version 10.0.0 for our experiments. We conducted these experiments on an
Intel Core i7 machine with 32 GB RAM running Ubuntu 16.04.

7.1 Race Detection

We consider 49 task and queue API functions that can be called from an appli-
cation (termed top-level functions) for race detection. The functions operating
on semaphores and mutexes were not considered.
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We prepared the API functions for analysis, in two steps: (1) inlining and
(2) lock insertion, as follows: The function vTaskStartScheduler and the queue
initialization code in the function xQueueGenericCreate were treated as part of
the main thread, which initializes kernel data structures. All the helper function
calls made inside the top-level functions were inlined. After inlining, the functions
are modified to acquire and release locks using the strategy explained in Sect. 6.2.
We consider each pair of disjoint blocks as taking the same distinct lock. For
example, the pair of disjoint blocks protected by disableint-enableint take
lock A. That is disableint is replaced with acquire(A) and enableint is
replaced with release(A). A total of 9 locks corresponding to disjoint blocks
were employed in the modification of the FreeRTOS code. The two steps outlined
above are automated. Inlining is achieved using the inline pass in the CIL
framework [22]. Lock insertion is accomplished using a script.

The modified code, which has over 3.5K lines of code, is used for race detec-
tion. We tracked 24 variables and check whether the statements accessing them
are racy. These variables include fields in the queue data-structure, task con-
trol block, and queue registry, as well as variables related to tasks. FreeRTOS
maintains lists for the states of the tasks like “ready”, “suspended”, “waiting to
send”, etc. The pointers to these lists are also analysed. Access to any portion
of a list (like the delayed list) is treated as an access of a corresponding variable
of the same name.

Races are detected in this modified FreeRTOS code in three steps - (1) com-
pute locks held, (2) identify whether access of a variable is a read or write, and
(3) report potential races. First a lockset analysis, as explained in Sect. 6.3, to
compute locks held at each access to variables, is implemented as a pass in CIL.
The modified FreeRTOS code is analyzed using this new pass and the lockset at
each access to the 24 variables of interest is computed. Then, a writes pass to
identify whether accesses to variables are “read” or “write”, also implemented in
CIL, is run on the modified FreeRTOS code. Finally, a shell script to interpret
both the results in the previous steps and report potential races is employed.
The script identifies the conflicting access pairs (using the writes pass) and the
locks held by the conflicting accesses (using lockset pass).

Our analysis reports 64 pairs of conflicting accesses as being potentially
racy. On manual inspection we classified 18 of them are real races and the
rest as false positives. Table 2 summarizes our findings. The second column
in the table lists the variables of interest involved in the race, like various
task list pointers, queue registry fields pcQueueName and xHandle, task vari-
able uxCurrentNumberOfTasks, tick count xTickCount, etc. The third column
lists the functions in which the conflicting accesses are made and the fourth gives
the number of racing pairs. The fifth column assesses the potential races based
on our manual inspection of the code. The analysis took 3.91 s.

The false positives were typically due to the fact that we had abstracted
data-structures (like the delayed list which is a linked-list) by a synonymous
variable. Thus even if the accesses were to different parts of the structure (like
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the container field of a list item and the next pointer of a different list item) our
analysis flagged them as races.

We were in touch with the developers of FreeRTOS regarding the 18 pairs
we classified as true positives. The 14 races on the queue registry were deemed
to be non-issues as the queue delete function is usually invoked only once the
application is about to terminate. The 2 races on uxCurrentNumberOfTasks are
known (going by comments in the code) but are considered benign as the variable
is of “base type”. The remaining couple of races on the delayed task lists appear
to be real issues as they have been fixed (independent of our work) in v10.1.1.

7.2 Region-Based Relational Analysis

Our aim here is to do a region-based interval and polyhedral analysis of a region-
race-free subset of the FreeRTOS kernel APIs, and to prove some simple asser-
tions about the kernel variables in each region.

We first identified six regions for this purpose. One region corre-
sponds to variables protected by disabling interrupts (like xTickCount,
xNextTaskUnblockTime, etc.), while variables protected by suspend and resume
scheduler commands (like uxPendedTicks, xPendingReadyList, etc.) are in
another region. Fields of the queue structure like pcHead, pcTail, etc. are in
a third region, while the waiting lists for a queue form another region. The
queue registry fields like pcQueueName and xHandle are in region 5. The pointer
variable pxCurrentTCB, pointing to the current Task Control Block (TCB), is
put in the sixth region.

The FreeRTOS code was modified further to reflect access to regions. For
this new variables R1, . . . , R6, are declared. Wherever there is a write (or read)
access to a variable in region i an assignment statement that defines (or reads
from) variable Ri is inserted just before the access. This is done using a script
which takes the result of the writes pass to find where in the source code an
appropriate assignment statement has to be inserted. We selected 15 APIs that
did not contain any region races.

Next, we prepared the API functions for the analysis in two steps. They are
described below:

Abstraction of FreeRTOS API Functions. We abstracted the FreeRTOS source
code to prepare it for the relational analysis. In this abstraction, we basically
model the various lists (ready list, delayed list) by their lengths and the value at
the head of the list (if required). Using this abstraction, we are able to convert
list operations to operations on integers.

Similarly, to model insertion into a list, we abstract it by incrementing the
variable which represents the length of the list. We abstracted all the API func-
tions in a similar fashion.

Creation of the Sync-CFG. The next step is to create a sync-CFG out of the
abstracted program. For doing this, we used the abstracted version of the FreeR-
TOS code (along with acquire-release added as explained in Sect. 7.1).
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Table 2. Potential races

Variables Functions #Race pairs Remark

pxDelayedTaskList eTaskGetState

xTaskIncrementTick

1 Real race. Read of

pxDelayedTaskList in

eTaskGetState while it is written

to in xTaskIncrementTick

pxOverflowDelayedTaskList eTaskGetState

xTaskIncrementTick

1 Real race. (similar as above)

uxCurrentNumberOfTasks xTaskCreate

uxTaskGetNumberOfTasks

2 Real race. Unprotected read in

uxTaskGetNumberOfTasks while it is

written to in xTaskCreate

pcQueueName

xHandle

vQueueDelete

pcQueueGetName

vQueueAddToRegistry

14 Real race. Unprotected accesses in

queue registry functions

xTasksWaitingToSend

xTasksWaitingToReceive

eTaskGetState

xQueueGenericReset

2 False positive. Initialization of

vars when queue is created

pxDelayedTaskList

pxOverflowDelayedTaskList

xSuspendedTaskList

pxCurrentTCB

9 functions like

xTaskCreate,

eTaskGetState, etc.

11 False positive. Initialization of

vars when the first task is created

pxDelayedTaskList

pxOverflowDelayedTaskList

xSuspendedTaskList

xTasksWaitingToSend

xTasksWaitingToReceive

13 functions like

vTaskDelay,

eTaskGetState, etc.

33 False positive. The accesses are to

disjoint portions of the lists

Next, we used a script to insert non-deterministic gotos from the point of
release of a lock to the acquire of the same lock. Since we are using gotos for
creation of sync-CFG, we keep all the API functions in main itself and evaluate
a non-deterministic “if” condition before entering the code for an API function.

Results. For the purpose of analysis we listed out some numerical relations
between kernel variables in the same region, which we believed should hold.
We identified a total of 15 invariants including 4 invariants which involve rela-
tions between kernel variables. We then inserted assertions for these invariants
at the key points in our source code like the exit of a block protecting a region.

We have implemented an interval-based value-set analysis and a region-based
octagon and polyhedral analysis for C programs using CIL [22] as the front-end
and the Apron library (version 0.9.11) [16]. We represent the sync-with edges of
the sync-CFG of a program using goto statements from the source (release) to
the target (acquire) of the may-synchronizes-with (MSW) edges.

We ran our implementation on the abstracted version of the FreeRTOS kernel
library, with the aim of checking how many of the invariants it was able to prove.
The abstracted code along with addition of gotos is about 1500 lines of code.
We did a preliminary interval analysis on this abstracted sync-CFG and were
able to prove 11 out of these 15 invariants. With a widening threshold of 30,
the interval analysis takes under 5 min to run. As expected, the interval analysis
could not prove the relational invariants.
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