
J. Math. Cryptol. 2019; 13(3–4): 197–228

Research Article

Mridul Nandi and Tapas Pandit*

Predicate signatures from pair encodings via
dual system proof technique
https://doi.org/10.1515/jmc-2017-0007
Received February 27, 2017; revised April 16, 2019; accepted May 21, 2019

Abstract: Recently, Attrapadung (Eurocrypt 2014) proposed a generic framework for fully (adaptively) secure
predicate encryption (PE) based on a newprimitive, called pair encodings. The author shows that if the under-
lying pair encoding scheme is either perfectly secure or computationally (doubly-selectively) secure, then
the PE scheme will be fully secure. Although the pair encodings were solely introduced for PE, we show
that these can also be used to construct predicate signatures, a signature analogue of PE. More precisely, we
propose a generic construction of predicate signature (PS) frompair encoding schemes. Our construction pro-
vides unconditional signer privacy, and unforgeability in the adaptivemodel. Thereafter, we instantiatemany
PS schemes with new results, e.g., the first practical PS schemes for regular languages, the first attribute-
based signature (ABS) scheme with constant-size signatures in the adaptive model, unbounded ABS with
large universes in key-policy flavor, etc.

Keywords: Pair encodings, predicate signatures, perfect privacy, adaptive unforgeability

MSC 2010: 11T71, 94A60, 94A62, 14G50
||
Communicated by: Carlo Blundo

1 Introduction
The dual system methodology of Waters [37] is a well-known tool for constructing adaptively secure predi-
cate encryption schemes. But, for some predicates, e.g., regular languages, the adaptively secure predicate
encryption was not known, even though their selectively secure version was available. Therefore, for those
classes of predicates, the dual system technique of Waters [37] was unreachable. Recently, Attrapadung [1]
introduced a new primitive, called pair encoding schemes, which are implicitly contained in many predicate
encryption schemes. Using pair encodings, the author proposed a generic framework [1] for adaptively secure
predicate encryption, which captures the core technique of the dual system methodology [37]. He showed
that, by applying the generic approach on pair encodings, adaptively secure PE is possible. Their conver-
sion assumes either the perfect security or computational (doubly-selective) security of the underlying pair
encoding scheme. Using this framework, the author constructed the first fully secure predicate encryption
schemes for which only selectively secure schemes were known. He instantiated some surprising results,
e.g., PE for regular languages, unbounded ABE for large universes, ABE with constant-size ciphertexts, etc.
Concurrently and independently, Wee [39] proposed the notion of predicate encodings, which is exactly
identical to the perfectly secure pair encodings of [1]. Some of the instantiations in [39] are similar to [1],
viz., ABE for small universes with improved efficiency and doubly spatial encryption. Later, Attrapadung
and Yamada [5] showed a conversion for obtaining the dual of a computationally secure pairing encoding

*Corresponding author: Tapas Pandit, Department of CSA, Indian Institute of Science, Bangalore, India,
e-mail: tapasgmmath@gmail.com
Mridul Nandi, Applied Statistics Unit, Indian Statistical Institute, Kolkata, India, e-mail: mridul@isical.ac.in

198 | M. Nandi and T. Pandit, Predicate signatures from pair encodings

scheme. The authors considered this conversion to construct the dual of a predicate encryption scheme based
on a computational pair encoding scheme.

Predicate signature (PS) [3] is a signature analogue of predicate encryption (PE), where Alice signs a doc-
ument under an associated data index (policy), provided Alice’s key index x ∈ X is related to the associated
data index y ∈ Y. The term “related” is defined by a binary relation ∼, called predicate defined over X × Y,
where X and Y are respectively called key space and associated data space. Sometimes, we call the tuple
(∼,X, Y) predicate tuple. Attribute-based signature (ABS) [28] is a larger subclass of PS. Like ABS, predicate
signature schemes are available in two forms, key-policy predicate signature (KP-PS) and signature-policy
predicate signature (SP-PS). If the contents of X have more complex representations than the contents of Y,
then the predicate signature is called KP-PS; otherwise, it is SP-PS. Similar to ABS, we have two types of secu-
rity, unforgeability and signer privacy. The former ensures that signatures are generated by a valid user, and
the latter protects from revealing the key index of the signer.

Motivation. The available pair encoding schemes of [1, 5, 39] have been reached out to most of the practical
predicate families. Therefore, it is interesting to see a framework of predicate signatures from pair encoding
schemes which were solely introduced for predicate encryptions.

Question. Is it possible to construct a generic predicate signature scheme from pair encoding scheme, and at
the same time, it enjoys all the features analogous to those of [1]?

Our Result. Affirmatively, we answer the above question. That is, we provide a generic construction of pred-
icate signature schemes from pair encoding schemes. If the underlying pair encoding scheme has a least
security¹ and fulfills some natural conditions, then the PS scheme will achieve unconditional signer privacy,
and unforgeability in the adaptive model. The construction is given in the setting of composite order bilin-
ear groups. The unforgeability of the proposed construction is proven under three subgroup assumptions
DSG1, DSG2, DSG3, and extra hardness assumption(s) required for the CMH-security of the underlying pair
encoding scheme. If the primitive pair encoding scheme has PMH-security, then we do not need any extra
hardness assumption. In this case, we say that the corresponding PS scheme is cost free. Through this generic
construction, what we achieved is summarized below.

All the pair encoding schemes of [1, 5, 39] possess the least security and satisfy the natural condi-
tions (see Conditions 3.1 of Section 3.1). Therefore, the resultant predicate signature schemes are adaptively
unforgeable and perfectly private. Our generic predicate signature can be used to derive the following new
results (see Table 2 in Section 5).
∙ PS for regular languages. Predicate signature schemes for regular languages in both the forms, key policy

and signature policy, are provided in this paper. Both the schemes support a large universe alphabet.
To the best of our knowledge, these are the first practical constructions of predicate signature schemes
beyond ABS.

∙ Unbounded KP-ABS. We present an unbounded KP-ABS scheme with large universes, where the size of
the universe is super-polynomial and no restriction has been imposed on the access polices and sets of
attributes. To the best of our knowledge, this is the first large universes KP-ABS construction with the
feature unbounded.

∙ Constant-size signatures and constant-size keys. Till date, the only available ABS scheme [3] with con-
stant-size signatures for general access structures is known to be unforgeable in the selective model.
We propose the first KP-ABS with constant-size signature, where unforgeability is proven in the adaptive
model. A dual version, SP-ABS with constant-size keys, is also provided in this paper.

∙ Cost free signatures. The following instantiations of predicate signature are cost free as the underlying
pair encoding schemes are PMH secure.

1 We consider two notions of security [1] for pair encoding scheme, perfect and computational. The perfect security is called per-
fectlymaster-key hiding (PMH). The computational security is of two types, selectivelymaster-key hiding (SMH) and co-selectively
master-key hiding (CMH). By least security, we mean either PMH or CMH.

M. Nandi and T. Pandit, Predicate signatures from pair encodings | 199

(1) ABS for large universes,
(2) predicate signature scheme for policy over doubly spatial predicate,
(3) predicate signature schemes with constant-size keys and constant-size signatures, respectively, for

both zero inner product and non-zero inner product predicates,
(4) predicate signature schemes for doubly spatial predicate and negated spatial predicate,
(5) spatial signature schemes with constant-size keys and constant-size signatures, respectively.

Outline of our construction. Let (N := p1p2p3,𝔾,𝔾T , e) denote composite order bilinear groups, where
e : 𝔾 ×𝔾→ 𝔾T is a bilinear map and𝔾 and𝔾T are cyclic groups of order N. Note that𝔾 = 𝔾p1 ×𝔾p2 ×𝔾p3 ,
where 𝔾pi is subgroup of 𝔾 of order pi. Let gT := e(g, g), where g ∈ 𝔾p1 . For X, Y ∈ 𝔾n, the notation
X ⋅ Y represents the pairwise group operations, and therefore X ⋅ Y ∈ 𝔾n. The notation e(X, Y) stands for
∏n

i=1 e(Xi , Yi).
In brief, a pair encoding scheme [1] consists of four deterministic algorithms,Param, Enc1, Enc2 andPair.

Let N ∈ ℕ.
∙ Param(j)→ n, where j is the index for the system parameter and n describes the length of the common

parameters h ∈ ℤnN ,
∙ Enc1(x)→ (kx ,m2), where kx is a sequence of polynomials overℤN with |kx| = m1 and m2 is the length

of the random coin r ∈ ℤm2
N ,

∙ Enc2(y)→ (cy , ω2),where cy is a sequenceof polynomials overℤN with |cy| = ω1 andω2 + 1 is the length
of the random coin s = (s0, . . . , sω2) ∈ ℤ

ω2+1
N ,

∙ Pair(x, y)→ E ∈ ℤm1×ω1
N .

The correctness says that, for x ∼ y, (kx ,m2)← Enc1(x), (cy , ω2)← Enc2(y) and E ← Pair(x, y), we have

kx(α, r, h)Ec⊤y (s, h) = αs0.

Before describing the outline of our predicate signature, we state the following two facts:
Fact 1. A signature is nothing but a diluted key for a policy y computed from an actual (strong) key SKx with

x ∼ y, where the message m and the policy y are to be committed.
Fact 2. To maintain signer privacy, the signature is to be labeled with policy y, at least not labeled with the

key index x.
The above facts are implicitly used in many predicate signatures and also provide insight to predicate sig-
nature. In the following, we first give an outline of the initial structure of our predicate signature using the
structure of predicate encryption of [1] based on pair encodings. Recall that SKx = gkx(α,r,h) ⋅ R3 ∈ 𝔾m1 with
R3 ∈ 𝔾m1

p3 is the key structure of [1] for the key index x.
∙ Signature generation. Suppose Alice is playing the role of a sender. Let SKx = gkx(α,r,h) ⋅ R3 ∈ 𝔾m1 be

the key of Alice. To sign a message m under a policy y with x ∼ y, Alice first runs E ← Pair(x, y).
Then it generates the signature as δy := SKEx ⋅ R3 ∈ 𝔾ω1 , where R3

U← 𝔾ω1
p3 . On simplification, we have

δy = gkx(α,r,h)E ⋅ R̃3, where R̃3 := RE3 ⋅ R3. The signature δy plays the role of a diluted key, derived from
the actual key SKx.

∙ Signature verification. The verification process considered here is a probabilistic one as it is performed
by running some routines which are similar to the encryption and decryption of the predicate encryp-
tion of [1]. Since a signature is a poor or diluted key, verifying a signature is nothing but checking its
capability to extract out some information from the part of a ciphertext. Therefore, to verify a signa-
ture δy, we first prepare a verification text (that is same as the ciphertext, but without the message m)
V := (VINT := gαs0T ,Vy := gcy(s,h)). The signature is accepted if e(δy ,Vy) = VINT, else rejected.Wenote that
the 𝔾p3 part of δy gets canceled in the verification due to the orthogonal property of composite order
bilinear groups.

∙ Correctness. For x ∼ y, we have e(δy ,Vy) = e(g, g)kx(α,r,h)Ec
⊤
y (s,h) = gαs0T , where the last equality is ob-

tained from the correctness of the pair encoding scheme.

Limitations of the initial structure of the signature. The above initial structure of the signature only shows
that Alice is capable to generate such a signature. We note that neither the message nor the policy is commit-
ted to the above signature, and this is very crucial to guarantee unforgeability. Although the above signature

200 | M. Nandi and T. Pandit, Predicate signatures from pair encodings

is not labeled with the key index x, it misses a very important property of predicate signature, perfect privacy
of the signer.

To overcome the limitations of the above signature, we have to modify the initial structure. The modifi-
cations are explained briefly in the following two steps.
Step 1. The initial structure of the signature is δy = gkx(α,r,h)E ⋅ R̃3 ∈ 𝔾ω1 . To ensure unforgeability, the mes-

sage m and the policy y are to be committed to δy. The binding is to be done in such a way that the
binding part of the signature cannot be updated once the signature has been generated. The binding is
made in the following way. A collision resistance hash function H : {0, 1}∗ → ℤN and two others param-
eters gθ1 , gθ2 are added to the public parameters PP. A group element gτ(θ1ℏ+θ2) is composed with the
first component of gkx(α,r,h)E, where τ U← ℤN and ℏ = H(m, y). Additionally, g−τ is given as a part of the
signature. In other words, the modified signature becomes δy = gv ⋅ R̃3 ∈ 𝔾ω1+1, where v is implicitly set
to v := (−τ,ψ + kx(α, r, h)E) ∈ ℤω1+1

N and ψ := (τ(θ1ℏ + θ2), 0, . . . , 0) ∈ ℤω1
N .

To verify this signature, the verification text is to be changed to V := (VINT := gαs0T ,Vy := gc
M
y (s,θ1 ,θ2 ,h)),

where
cMy (s, θ1, θ2, h) := (c0(s0, θ1, θ2, ℏ), cy(s, h)) ∈ ℤ

ω1+1
N ,

c0(s0, θ1, θ2, ℏ) := s0(θ1ℏ + θ2) and ℏ := H(m, y).

The verification is the same as before, i.e., the signature is accepted if e(δy ,Vy) = VINT, else rejected. For
correctness of the verification, we assume that cy,ι(s, h) = s0 for some ι ∈ [ω1].

Step 2. For perfect privacy, the authors of [29] assume the perfectly hiding property of the underlying
non-interacting witness-indistinguishable (NIWI) scheme. For the ABS schemes of [31–33], an addi-
tional secret sharing (0-sharing) was used to assure perfect privacy. For perfect privacy of the proposed
signature, we explore a novel approach (for details, refer to Section 3.4) which works irrespective
of the predicate families. This is done by uniformly sampling from the orthogonal space (VM)⊥ of
VM := {cMy (s, θ1, θ2, h) ∈ ℤ

ω1+1
N | s := (s0, . . . , sω2) ∈ ℤ

ω2+1
N }. The final signature of the proposed con-

struction (for a complete description, refer to Section 3.3) has the form δy = gv+vsp ⋅ R̃3 ∈ 𝔾ω1+1, where
vsp U← (VM)⊥. The verification is the same as before, where vsp gets canceled due to the orthogonality of
vsp and cMy (s, θ1, θ2, h).
We show that uniformly sampling from (VM)⊥ is done by solving the homogeneous system A⊤X = 0,
where A ∈ ℤω1×(ω2+1)

N . For 1 ≤ ι ≤ ω1 and 0 ≤ j ≤ ω2, the (ι, j)-th entry of the matrix A is of the form
aι,j +∑i∈[n] aι,j,ihi, where aι,j and aι,j,i are coefficients of the ι-th polynomial of cy. The only available
information to solve the system are aι,j, aι,j,i and ghi for 1 ≤ ι ≤ ω1, 0 ≤ j ≤ ω2 and i ∈ [n]. Since hi are
not given explicitly, applying Gaussian elimination on A is troublesome. Although hi are not given explic-
itly, wemanage to solve the system A⊤X = 0 perfectly. For that, we impose a restriction on the underlying
pair encoding scheme, which is very natural. This restriction is given as condition (3) in Section 3.1. To
the best of our knowledge, most of the pair encodings (in fact, all the pair encodings of [1, 5, 39]) satisfy
this condition.

One of the motivations of this paper is to achieve adaptive security. We utilize the dual system proofs of [37]
in a novel way to guarantee adaptive unforgeability of the proposed construction. For the proof of adaptive
unforgeability of the proposed signature, we abstract out the dual system proof technique as a signature
analogue of [1]. Hybrid arguments over the sequence of games considered in this signature analogue follow
the style of [31, 33]. However, the hybrid arguments in [31, 33] were handled for a particular ABS through
linear secret sharing scheme (LSSS). But here, we manage the dual system proof technique generically for
arbitrary predicates. In this style, we consider semi-functional (mimic) forms of the original objects, viz.,
verification text, signatures and keys. Using hybrid arguments, we finally reach a game where VINT is chosen
independently and uniformly at random from 𝔾T . This ensures that the forgery will be invalid with respect
to the verification text V.

Relatedworks. In addition to the fully CPA-secure construction of PE, Attrapadung [1] showed a dual conver-
sion for pair encodings. If the source pair encoding P is perfectly secure, then the dual of P, denoted by𝔻(P)
is also perfectly secure encoding. Using this conversion, full security of the dual of PE, denoted by𝔻(PE), is
guaranteed if the underlying pair encoding P has perfect security. However, there are many PE schemes for

M. Nandi and T. Pandit, Predicate signatures from pair encodings | 201

which perfectly secure encodings were not known, so the fully secure realizations of their dual form were
unsolved. Later, Attrapadung and Yamada [5] showed that the same dual conversion of [1] actually works for
the computationally secure encodings. By applying this conversion on the underlying pair encoding of the
previously proposed KP-ABE [1], the authors achieved the first fully secure unbounded CP-ABE and a CP-ABE
with short keys for Boolean formulas. Recently, Chen, Gay and Wee [16] and Attrapadung [2] proposed new
generic frameworks for achieving adaptively secure ABE in the prime order bilinear groups, which are noth-
ing but the prime order version of [39] and [1], respectively. The main difference between the frameworks
of [16] and [2] is that the former deals with only perfectly secure encodings, whereas the latter can deal with
computationally secure encodings.

Attribute-based signature. In the literature, many ABS schemes [19, 27–29, 31, 32, 35, 36, 36, 40, 40]
have been studied. Among them, only the schemes of [19, 29, 31] were known to achieve signer privacy,
adaptive unforgeability in the standardmodel and support general access structures. In [29], the authors pro-
posed a general framework for ABS using a credential bundle and a NIWI scheme as primitives. This general
framework provides the attribute-based signatures for monotone span programs in signature-policy form.
The authors showed two practical instantiations of ABS in the standard model using Groth–Sahai proof sys-
tem [21] for satisfiability of pairing product equations. In the first instantiation, they used a Boneh–Boyen
signature [9] as the candidate for a credential bundle, whereas, in the second instantiation, another Boneh–
Boyen signature [8] was used. The ABS construction of [31] is based on the concept of the dual pairing vector
space of [30] and relies on the DLIN assumption. The authors first utilized the dual systemmethodology [37]
inABS for adaptiveunforgeability. TheABSof [31] ismore efficient than theoneof [29] since the latter uses the
Groth–Sahai non-interactive zero-knowledge (NIZK) proof systems [21] as building blocks. Although the per-
formance of the ABS construction [31] defeats that of [29], the scheme of [31] has the following drawbacks.
The size of the public parameters is linear to the size of the sub-universe, and a bound is imposed on the
number of times an attribute could appear in a policy. The ABS schemes of [19, 29, 31] have signature-policy
form; among them, the schemes of [29, 31] support large universes.

Functional signature. Bellare and Fuchsbauer [6] proposed a notion of policy-based signature which unifies
the existing signatures, e.g., group signatures [15], mess signatures [12], attribute-based signatures [29], etc.
For a policy-based signature (PBS) scheme, the authors defined the policy language L to be any member of
the complexity class NP. In this scheme, a key SKp which is associated with policy p can sign a message m
(without revealing p) if (p,m) ∈ L. SinceL ∈ NP, themessagem together with thewitness w is to be supplied
while generating the signature. If we restrict the policy language to come from the complexity class P (⊆ NP),
then what we have is nothing but the predicate signatures, where the witness is computed in polynomial
time. At the same time, Boyle, Goldwasser and Ivan [13] introduced a concept of functional signatures. In
this signature, a key SKf is associated with a function f , and the key SKf has the power to sign a message m
if m belongs to its range. This can be considered as a special case of PBS, in which the policy language L is
the set of all pairs (f,m) such that m is in the range of f and the witness for (f,m) is a pre-image m under f .

The authors in [6] showed a generic construction of attribute-based signature from PBS, but they did
not explicitly mention the practical instantiation of ABS. If we instantiate the ABS of [6] using the Groth–
Ostrovsky–Sahai proof system [20] for NP-complete languages such as circuit satisfiability, then there is
a huge blowup in the size of the signature due to Karp reduction. On the other hand, if we use the Groth–
Sahai proof system [21] for satisfiability of pairing product equations, then ABS supports only the restricted
predicate family, viz., conjunctionanddisjunctionof pairingproduct equations. Recently, Sakai, Attrapadung
andHanaoka [34] proposed an efficient ABS for arbitrary circuits from the symmetric external Diffie–Hellman
assumption. Their ABS construction is based on the efficiency of the Groth–Sahai proof system [21] and the
expressiveness of the Groth–Ostrovsky–Sahai proof system [20].

Organization. This paper is organized as follows. Basic notations, composite order bilinear groups, hardness
assumptions, the syntaxes and security definitions of predicate signature and pair encoding schemes and
other related things are given in Section 2. Framework, security and instantiations of predicate signature are
respectively provided in Sections 3, 4 and 5.

202 | M. Nandi and T. Pandit, Predicate signatures from pair encodings

2 Preliminaries

2.1 Notations

For a set X, x R← X denotes that x is randomly picked from X according to the distribution R. Likewise, x U← X
indicates that x is uniformly selected from X. For an algorithm A and variables x, y, the notation x ← A(y)
(or A(y)→ x) carries the meaning that, when A is run on the input y, it outputs x. The symbol PPT stands for
probabilistic polynomial-time. For a, b ∈ ℕ, define [a, b] := {i ∈ ℕ | a ≤ i ≤ b} and [b] := [1, b].

Throughout this paper, bold characters denote vector objects. For h ∈ ℤnN and p | N, we define

h mod p := (h1 mod p, . . . , hn mod p).

For a vector x (resp. xk), the i-th component is denoted by xi (resp. xki). For x, y ∈ ℤnN , we define

⟨x, y⟩ :=
n
∑
i=1

xi ⋅ yi .

For S ⊂ ℤnN and α ∈ ℤnN , we define α + S := {α + β | β ∈ S}.
For a matrix M, the notations M⊤ and Mij denotes the transpose of M and an entry of M at the (i, j)-th

position, respectively. The notation Mi denotes the i-th row of the matrix M, and Null(M) represents the
nullity of the matrixM. The notation 0m×n stands for an m × nmatrix with all the entries as 0. For a group𝔾
and n ∈ ℕ, the entries from𝔾n are assumed to be the row vectors.

Let 𝔾 be a cyclic group of order N with respect to the group operation “⋅”. For g ∈ 𝔾 and h ∈ ℤnN ,
we define gh := (gh1 , . . . , ghn). For X, Y ∈ 𝔾n, the notation X ⋅ Y stands for component-wise group oper-
ations, i.e., X ⋅ Y := (X1 ⋅ Y1, . . . , Xn ⋅ Yn) ∈ 𝔾n. For W ∈ 𝔾n and E ∈ ℤn×mN , we define WE := z ∈ 𝔾m, where
zi := WE1i

1 ⋅ ⋅ ⋅WEnin . IfW = gw, for g ∈ 𝔾 and w⊤ ∈ ℤnN , then we can writeW
E = gwE.

For a matrix A ∈ ℤℓ×ϑq , we define the linear space Ker(A) := {u ∈ ℤℓq | u⊤A = 0}. For (X, x) ∈ ℤℓ×ϑq ×ℤ
ℓ
q,

an affine space generated by (X, x) is defined byAff(X, x) := {Xu + x | u ∈ ℤϑq} ⊂ ℤℓq. The nullity of amatrix A
is defined by Null(A), which is the dimension of Ker(A⊤).

2.2 Composite order bilinear groups

Composite order bilinear groups [10, 26] are defined to be a tuple J := (N := p1p2p3,𝔾, 𝔾T , e), where
p1, p2, p3 are three distinct primes and 𝔾 and 𝔾T are cyclic groups of order N and e : 𝔾 ×𝔾→ 𝔾T is a map
with the following properties:
(1) Bilinear. For all g, h ∈ 𝔾 and all s, t ∈ ℤp, we have e(gs , ht) = e(g, h)st.
(2) Non-degenerate. There exists an element g ∈ 𝔾 such that e(g, g) has order N in𝔾T .
(3) Computable. There is an efficient algorithm for computing e(g, h) for all g, h ∈ 𝔾.
Let Gcbg denote an algorithm which takes 1κ as a security parameter and returns a description of compos-
ite order bilinear groups J = (N = p1p2p3,𝔾,𝔾T , e). Composite order bilinear groups enjoy the orthogonal
property defined below.

Definition 2.1 (Orthogonal property). Let 𝔾p1 , 𝔾p2 and 𝔾p3 denote subgroups of 𝔾 of order p1, p2 and p3,
respectively. The subgroups 𝔾p1 , 𝔾p2 and 𝔾p3 are said to have orthogonal property if, for all hi ∈ 𝔾pi and
hj ∈ 𝔾pj with i, j ∈ {1, 2, 3} and i ̸= j, it holds that e(hi , hj) = 1.

Additional notations. Let 1𝔾 and 1 denote the identity elements of𝔾 and𝔾T , respectively. For X, Y ∈ 𝔾n, we
define e(X, Y) := ∏n

i=1 e(Xi , Yi). For three distinct primes, p1, p2 and p3, a cyclic group𝔾 of orderN = p1p2p3
can be written as 𝔾 = 𝔾p1𝔾p2𝔾p3 , where 𝔾pi are subgroups of 𝔾 of order pi. So each element X ∈ 𝔾 can be
expressed as X = X1X2X3, where Xi ∈ 𝔾pi . For X ∈ 𝔾, the notation X|𝔾pi means the projection of X over𝔾pi ,
i.e., Xi = X|𝔾pi . For Y ∈ 𝔾

n, let Y |𝔾pi denote (Y1|𝔾pi , . . . , Yn|𝔾pi). Let gT stand for the element e(g, g), where
g ∈ 𝔾p1 .

M. Nandi and T. Pandit, Predicate signatures from pair encodings | 203

2.3 Hardness assumptions in composite order bilinear groups

We describe here three decisional subgroup (DSG) assumptions [25] for 3 primes, DSG1, DSG2 and DSG3, in
composite order bilinear groups. Let J := (N = p1p2p3,𝔾,𝔾T , e) U← Gcbg(1κ) be the common parameters for
each assumptions. In the following, we define an instance for each assumption.
DSG1. Let g U← 𝔾p1 , Z3

U← 𝔾p3 , T0
U← 𝔾p1 , T1

U← 𝔾p1p2 . DefineD := (J, g, Z3).
DSG2. Let g, Z1 U← 𝔾p1 , Z2,W2

U← 𝔾p2 ,W3, Z3 U← 𝔾p3 , T0
U← 𝔾p1p3 , T1

U← 𝔾. Define

D := (J, g, Z1Z2,W2W3, Z3).

DSG3. Let α, s U← ℤN , g U← 𝔾p1 ,W2, Y2, g2 U← 𝔾p2 , Z3
U← 𝔾p3 , T0 := e(g, g)αs, T1

U← 𝔾T . Define

D := (J, g, gαY2, gsW2, g2, Z3).

The advantage of an algorithm A in breaking DSGi, for i = 1, 2, 3 is defined by

AdvDSGiA (κ) = |Pr[A (D, T0) = 1] − Pr[A (D, T1) = 1]|.

We say that the DSGi assumption holds in J if, for every PPT algorithm A , the advantage AdvDSGiA (κ) is
negligible in the security parameter κ.

2.4 Some results of linear algebra

We recall the three types of elementary row operations (for details, refer to [23]) on a matrix.
Type 1. Interchange rows i and j (in short, we write Ri ↔ Rj).
Type 2. Multiply row i by k, with k ̸= 0 (in short, Ri ← kRi).
Type 3. Add k-times row j to row i (in short, Ri ← Ri + kRj).
Similarly, we can define three types of elementary column operations. LetE be amatrix obtained by applying
a single elementary row operation on the identity matrix, called elementary matrix. Note that the effect of
a single elementary row (resp. column) operation on a matrix B can also be obtained by pre- (resp. post-)
multiplying the matrix B by the corresponding elementary matrix E (resp. E⊤).

Definition 2.2. A matrixM is said to be row (resp. column) equivalent to a matrix B ifM is obtained from B
by applying a finite sequence of elementary row (resp. column) operations.

Definition 2.3. A non-zero row of amatrix R is said to be row-reduced if (1) the first non-zero entry of the row
is equal to 1 (called leading 1) and (2) the column containing the leading 1 has all its other entries 0.

Definition 2.4. A matrix R is said to be row-reduced if each of its non-zero rows is row-reduced.

A well-known result that will be used very often is given below.

Theorem 2.1. If twomatrices B andM are row equivalent, then the systems BX = 0 andMX = 0 have the same
solutions.

But the scenario is slightly changed in case of column equivalence.

Theorem 2.2. Suppose the matrix M is obtained from B by applying n elementary column operations, i.e.,
BE⊤1E

⊤
2 ⋅ ⋅ ⋅E

⊤
n = M, where Ei are elementary matrices. Then v is a solution of the system MX = 0 if and only

if E⊤1E
⊤
2 ⋅ ⋅ ⋅E

⊤
n v is a solution of BX = 0.

Theorem 2.3. Let R be a ring with 1. Let B ∈ Rm×n be a matrix such that, for i ∈ [m], Bi1 = 1 if i = 1, else 0.
For t ∈ R, define ̃t := (t, 0, . . . , 0)⊤ ∈ Rm×1, and let BM := [̃t : B] ∈ Rm×(n+1) be the augmented matrix. Then
(v1, . . . , vn)⊤ is a solution of BX = 0 if and only if, for each v0 ∈ R, (v0, −tv0 + v1, v2, . . . , vn)⊤ is a solution of
the system BMX = 0.

Proof. The proof is straightforward.

Remark 2.1. From the above theorem, we have Null(BM) = Null(B) + 1.

204 | M. Nandi and T. Pandit, Predicate signatures from pair encodings

Assumption: The factorization problem is intractable. For our purpose, wemainly apply the elementary row
operations of type 2 and type 3. However, for simple representation of the solutions, onemay use elementary
row and column operations of type 1. Theorems 2.1 and 2.2 assume the fact that k ̸= 0 (involved in type 2
operation) which implies that k is invertible. When matrices are considered over a field, then k ̸= 0 implies
that k is invertible. But if the matrices are not defined over the underlying field, then we may be in trouble.
Here we consider the matrix A over ℤN with N = p1p2p3, which is not a field. Since we assume that the fac-
torization problem is intractable, perhaps it can help out from the said trouble. Let 0 ̸= k ∈ ℤN . It is sufficient
to show that k is co-prime to N. If k is not a co-prime to N, then we can establish an algorithm for breaking
the factorization problem in polynomial time of the parameter κ. In fact, gcd(k, N) is a non-trivial factor of N,
which is a contradiction.

2.5 Predicate family

To define a predicate-based cryptosystem, we have to define a predicate family. The predicate family is
defined for an index set Λ. For most of the predicate families, the index sets are considered to be subsets of
{j : j ∈ ℕi and i ∈ ℕ}. The following definition of a predicate family is adopted from [1, 7].

Definition 2.5 (Predicate family). Wedefine the predicate family to be∼ := {∼j}j∈Λ for an arbitrary index setΛ,
where ∼j : Xj × Yj → {0, 1} is an indicator function, andXj and Yj are respectively called key space and asso-
ciative data space.

The function ∼j is also called predicate or binary relation over Xj × Yj. For (x, y) ∈ Xj × Yj, we write x ∼j y if
∼j(x, y) = 1, else x ≁j y. For a predicate family, the corresponding index set Λ is called system-index space.
A member j of the index space Λ is called index for the system parameter or simply system index. To design
a predicate-based scheme for some predicate family, first a system index j is fixed for that family. Then this
index will define a predicate tuple (∼j ,Xj , Yj) for the corresponding predicate-based scheme. For example,
the system indices for predicate families, regular languages, circuits, access structures, inner product and
doubly spatial relation are respectively alphabet,maximumdepth andnumber variables for circuits, attribute
universe or size of the attribute universe, length of vectors and dimension of affine space.

In the current study, there aremany predicate familieswhich are used to provide access control over data.
In the following, we describe some of the predicates. Note that, for most of the relations described below, the
system indices are not given explicitly as it will be understood from the context.
∙ Equality relation. Let X = Y = {0, 1}∗. For x, y ∈ {0, 1}∗, we define x ∼ y if and only if x = y. The well-

known predicate encryption for the equality relation is called identity-based encryption (IBE).
∙ Inner product relation. LetX = Y = ℤℓq. For x = (x1, . . . , xℓ) ∈ X and y = (y1, . . . , yℓ) ∈ Y, we define x ∼ y

if and only if ⟨x, y⟩ = 0. This relation is called zero inner product relation. Similarly, a non-zero inner
product relation is defined by x ∼ y if and only if ⟨x, y⟩ ̸= 0. The corresponding encryption schemes are
known as inner-product encryption (IPE).

∙ (Doubly) spatial relation. X = Y := {Aff(A, a) | (A, a) ∈ ℤℓ×kq ×ℤ
ℓ
q , 0 ≤ k ≤ ℓ}. For x ∈ X and y ∈ Y, a dou-

bly spatial relation is defined by x ∼ds y if and only if y ∩ x ̸= 0. For the spatial relation, we restrict Y to be
ℤℓq. In [17], the doubly spatial relation was defined overX × Y, whereX := {Ker(X) | X ∈ ℤℓ×kq , 0 ≤ k ≤ ℓ}
and Y := {Aff(A, a) | (A, a) ∈ ℤℓ×kq ×ℤ

ℓ
q , 0 ≤ k ≤ ℓ}. The predicate encryption using the (doubly) spatial

relation is called (doubly) spatial encryption ((D)SE). The authors in [17] showed that predicate encryp-
tion for the doubly spatial relation defined later generalizes the predicate encryption for the formerly
defined doubly spatial relation.

∙ Access structure based relation. Let U be a universe of attributes. Define X = 2U and Y to be the set of all
access structures over U. For A ∈ X and Γ ∈ Y, we define a binary relation A ∼ Γ if and only if A ∈ Γ. The
encryption scheme realizing this relation is called attribute-based encryption (ABE) for access structures.

∙ Policy over doubly spatial relation. We have defined the access structure based relation above through
the equality relation over a universe of attributes. Here we define a new access structure based relation
of [1], called policy over doubly spatial relation, using the doubly spatial relation over a universe of affine

M. Nandi and T. Pandit, Predicate signatures from pair encodings | 205

subspaces. This predicate generalizes the former access structure based relation. Let ℓ be a system index
for this new access structure based relation. We define U := {Aff(A, a) | (A, a) ∈ ℤℓ×kq ×ℤ

ℓ
q , 0 ≤ k ≤ ℓ}.

Let X := 2U and Y be the set of all policies of the form (M, ρ), where M ∈ ℤd×rq and ρ : [d]→ U is a row
labeling function. For S := {Y1, . . . , Yt} ∈ X and𝔸 := (M, ρ) ∈ Y, we define S ∼ 𝔸 if and only if there exist
coefficients {μi}i∈Iwith I = {i ∈ [d] | there exists Yj ∈ S with ρ(i) ∼ds Yj} such that∑i∈I μiMi = (1, 0). The
encryption scheme realizing this relation is called policy over doubly spatial encryption [1, 5].

∙ Acceptance relation in regular language. A deterministic finite automatonM is defined to be a quintuple
(Q, Σ, δ, q0, F), where Q is a finite set of states, Σ is a finite set of symbols, called alphabet, q0 ∈ Q is
called the start state, F ⊆ Q is called the set of final states and δ : Q × Σ → Q is called transition function.
The language, also called regular language, recognized by a deterministic finite automaton (DFA) M, is
defined as

L(M) = {σ1σ2 ⋅ ⋅ ⋅ σn ∈ Σ∗ | δ(⋅ ⋅ ⋅ δ(δ(q0, σ1), σ2) ⋅ ⋅ ⋅ σn) ∈ F}.

Let Tr denote the set of all transitions (qx , qy , σ) ∈ Q × Q × Σwith the understanding that δ(qx , σ) = qy. If
we identify the δ by Tr, then a DFAM can always be represented by (Q, Σ, Tr, q0, F). Let Σ be an alphabet,
and let X := Σ∗ and Y be the set of all DFAs with the same alphabet Σ. For w ∈ X and M ∈ Y, we define
a binary relation w ∼ M if w ∈ L(M). We also call this relation a DFA-based relation. The corresponding
encryption scheme is known as functional encryption (FE) [38] for regular languages.

A relation defined over X × Y is called symmetric if X = Y and x ∼ y ⇔ y ∼ x for all x, y ∈ X; otherwise, it is
called asymmetric. For an asymmetric relation, we can define its dual relation as follows.

Definition 2.6 (Dual predicate). For a predicate tuple (∼,X, Y), its dual predicate tuple (∼̄, X̄, Ȳ) is defined by
X̄ := Y, Ȳ := X, and for (x, y) ∈ X̄ × Ȳ, x ∼̄ y holds if and only if y ∼ x holds. The predicate ∼̄ is called dual
predicate of ∼.

Remark 2.2. In this paper, we consider a predicate signature for all the relations described above and their
dual (for asymmetric relations). If the underlying predicate or relation of the PS is not clearly stated, we
assume that the PS stands for one of the aforementioned relations.

Here we are interested to design a predicate signature over composite order bilinear groups (CBG) and let N
be the order of the groups. This N describes some domain; for example, the domain of IBE isℤN with equality
predicate.We therefore reserve the first entry of j to beN as described in [1]. For notational simplicity, we omit
j and write (∼N ,XN , YN) or simply (∼,X, Y) depending upon requirements.

Definition 2.7 (Domain-transferable [1]). We say that ∼ is domain-transferable if, for p dividing N, the pro-
jection maps f1 : XN → Xp and f2 : YN → Yp such that, for all (x, y) ∈ XN × YN , we have
∙ Completeness. If x ∼N y, then f1(x) ∼p f2(y).
∙ Soundness. (1) If x ≁N y, then f1(x) ≁p f2(y), or (2) there exists an algorithm which takes (x, y) as input,

where (1) does not hold, outputs a non-trivial factor F such that p | F | N.

Remark 2.3. Attrapadung [1] showed that the equality predicate (for IBE) is domain-transferable. Since
all other predicates are defined through the equality predicate, all the predicates of [1, 39] are domain-
transferable.

2.6 Predicate signature

A predicate signature (PS) scheme for a predicate family ∼ consists of four PPT algorithms – Setup, KeyGen,
Sign and Ver.
∙ Setup takes a security parameter κ and a system index j as input and outputs public parameters PP and

master secret keyMSK.
∙ KeyGen takes PP,MSK and a key index x ∈ X as input and outputs a secret key SKx corresponding to x.
∙ Sign takes PP, a message m ∈M, a secret key SKx and an associated data index y ∈ Y with x ∼ y and

returns a signature δ.

206 | M. Nandi and T. Pandit, Predicate signatures from pair encodings

∙ Ver receivesPP, amessagem ∈M, a signature δ and a claimed associated data index y as input. It returns
a Boolean value 1 for acceptance or 0 for rejection.

Correctness. For all (PP,MSK)← Setup(1κ , j), all m ∈M, all x ∈ X, SKx ← KeyGen(PP,MSK, x) and all
y ∈ Y with x ∼ y, it is required that Ver(PP,m, Sign(PP,m, SKx , y), y) = 1.

Remark 2.4. As in ABS of [29], we assume that the signer sends both signature and data index y to the
receiver.

Public data index PS. The predicate signature defined above allows the data index to be publicly available to
the receiver. This form of predicate signature is called public data index PS or PSwith public data index. From
now onwards, by predicate signature, we mean the predicate signature with public data index.

Form of PS. A predicate signature for the access structure based relation is called signature-policy attribute-
based signature (SP-ABS) for access structures, and its dual form is called key-policy attribute-based signature
(KP-ABS) for access structures. A predicate signature for the acceptance relation in regular languages is called
SP-PS for regular languages, and its dual form is called KP-PS for regular languages. A predicate signature for
the policy over doubly spatial relation is called signature policy over doubly spatial signature (SP-DSS), and
its dual form is called key policy over doubly spatial signature (KP-DSS).

2.7 Security of predicate signature

Definition 2.8 (Signer privacy). A PS scheme is called perfectly private if, for all (PP,MSK)← Setup(1κ , j),
all x1, x2 ∈ X, SKx1 ← KeyGen(PP,MSK, x1), SKx2 ← KeyGen(PP,MSK, x2), all m ∈M and all y ∈ Y with
x1 ∼ y and x2 ∼ y, the distribution of Sign(PP,m, SKx1 , y) and the distribution of Sign(PP,m, SKx2 , y) are
identical, where the random coins of the distribution are only the random coins involved in the Sign algo-
rithm.

Note that the signer privacy defined above is also called perfect privacy. A predicate signature scheme with
signer privacy is called perfectly private.

Definition 2.9 (Adaptive unforgeability). A PS scheme is said to be existential unforgeable in adaptive model
(or Ad-EUF-CMA) if, for all PPT algorithms A , the advantage

AdvAd-EUF-CMAA ,PS (κ) := Pr[Ver(PP,m∗, δ∗, y∗) = 1 ∧ NRn]

in ExpAd-EUF-CMAA ,PS (κ) defined in Figure 1 is a negligible function in κ, whereA is provided access to the KeyGen
oracle OK and the Sign oracle OSg (described below), and NRn is a natural restriction that (m∗, x, y∗) with
x ∼ y∗ was never queried to OSg oracle, and for each key index x queried to OK, it holds that x ≁ y∗.
∙ KeyGen oracle OK. Given a key index x, the oracle returns SKx ← KeyGen(PP,MSK, x).
∙ Sign oracle OSg. Given (m, x, y), it runs SKx ← KeyGen(MSK, x) if SKx has not been generated previ-

ously² and then returns Sign(PP,m, SKx , y).

We may refer the above security model as the Ad-EUF-CMA security model in this paper.

ExpAd-EUF-CMAA ,PS (κ)

∙ (PP,MSK)← Setup(1κ , j)
∙ (δ∗,m∗, y∗)← A {OK ,OSg}(PP)

Figure 1: Experiments for unforgeability.

2 The challenger maintains a log for storing the pairs of the forms (x, SKx). Before generating a key for an index x, it searches
x in the log. If x is not found, then it runs SKx ← KeyGen(PP,MSK, x) and inserts (x, SKx) in the log; otherwise, it answers the
query using SKx available in the log.

M. Nandi and T. Pandit, Predicate signatures from pair encodings | 207

2.8 Pair encoding scheme

A pair encoding scheme P (see [1]) for a predicate family ∼ consists of four deterministic algorithms, Param,
Enc1, Enc2 and Pair.
∙ Param(j)→ n ∈ ℕ, where n describes the number of common variables involved in Enc1 and Enc2. Let

h := (h1, . . . , hn) ∈ ℤnN denote the common variables in Enc1 and Enc2.
∙ Enc1(x ∈ X, N)→ (kx := (k1, . . . , km1),m2), where kι for ι ∈ [m1] are polynomial over ℤN and m2 ∈ ℕ

specifies the number of its own variables. We require that each polynomial kι is a linear combination of
monomials α, rj , hirj, where α, r1, . . . , rm2 , h1, . . . , hn are variables. In other words, it outputs a set of
coefficients {bι , bι,j , bι,j,i}ι∈[m1],j∈[m2],i∈[n] which define the sequence of polynomials

(kι(α, r, h) := bια + (∑
j∈[m2]

bι,jrj) + (∑
j∈[m2]
i∈[n]

bι,j,ihirj))
ι∈[m1]

, where r := (r1, . . . , rm2).

∙ Enc2(y ∈ Y, N)→ (cy := (c1, . . . , cω1), ω2), where cι for ι ∈ [ω1] are polynomial over ℤN and ω2 ∈ ℕ
specifies the number of its own variables. We require that each polynomial cι is a linear combination
of monomials sj , hisj, where s0, . . . , sω2 , h1, . . . , hn are variables. In other words, it outputs a set of
coefficients {aι,j , aι,j,i}ι∈[ω1],j∈[0,ω2],i∈[n] which define the sequence of polynomials

(cι(s, h) := ∑
j∈[0,ω2]

aι,jsj + ∑
j∈[0,ω2]
i∈[n]

aι,j,ihisj)
ι∈[ω1]

, where s := (s0, . . . , sω2).

∙ Pair(x, y, N)→ E ∈ ℤm1×ω1
N .

Correctness. For all N ∈ ℕ, (kx ,m2)← Enc1(x, N), (cy , ω2)← Enc2(y, N) and E ← Pair(x, y, N), we have
kx(α, r, h)Ec⊤y (s, h) = αs0 if x ∼ y.

Properties of pair encoding scheme. We define two properties of a pair encoding scheme as follows:
∙ param-vanishing: k(α, 0, h) = k(α, 0, 0),
∙ linearity: k(α1, r1, h) + k(α2, r2, h) = k(α1 + α2, r1 + r2, h) and c(s1, h) + c(s2, h) = c(s1 + s2, h).

2.9 Security of pair encoding scheme

We consider two forms of security, viz., perfect security and computational security as defined in [1].

Perfect security. Apair encoding scheme is said to be perfectly master-key hiding (PMH) if, for N ∈ ℕ, x ≁N y,
n← Param(j), (kx ,m2)← Enc1(x, N) and (cy , ω2)← Enc2(y, N), the following two distributions are identical:

{cy(s, h), kx(α, r, h)} and {cy(s, h), kx(0, r, h)},

where the random coins of the distributions are α U← ℤN , h U← ℤnN , s
U← ℤω2+1

N and r U← ℤm2
N .

Computational security. Here we consider two types of computational security, viz., selectively master-key
hiding (SMH) and co-selectively master-key hiding (CMH). A pair encoding scheme is said to have G security
for G ∈ {SMH, CMH} if, for b U← {0, 1}, all PPT adversaries A := (A1,A2), the advantage

AdvGA ,P(κ) := |Pr[ExpGA ,0(κ) = 1] − Pr[Exp
G
A ,1(κ) = 1]|

in the experiment ExpGA ,b(κ) defined below is a negligible function in the security parameter κ,

ExpGA ,b(κ) :=
(((

(

(N := p1p2p3,𝔾,𝔾T , e)← Gcbg(1κ),
(g, g2, g3)

u
← 𝔾p1 ×𝔾p2 ×𝔾p3 ,

α U← ℤN , n ← Param(j), h U← ℤnN ,
st ← A

O1
G,b,α,h(⋅)

1 (g, g2, g3),
b ← A

O2
G,b,α,h(⋅)

2 (st)

)))

)

,

where A is provided access to two oracles O1
G,b,α,h(⋅) and O2

G,b,α,h(⋅) defined below.

208 | M. Nandi and T. Pandit, Predicate signatures from pair encodings

∙ For selective security, O1 is allowed only once, while O2 is allowed to query polynomially many times.
– O1

SMH,b,α,h(y
∗) runs (cy∗ , ω2)← Enc2(y∗, p2), picks s U← ℤω2+1

N and returns Cy∗ := gcy
∗ (s,h)

2 .
– O2

SMH,b,α,h(x) returns ⊥ if x ≁p2 y
∗, runs (kx ,m2)← Enc1(x, p2), picks r U← ℤm2

N and then returns

Kx :=
{
{
{

gkx(0,r,h)2 if b = 0,
gkx(α,r,h)2 if b = 1.

∙ For co-selective security, both the oracles O1 and O2 are allowed to query only once.
– O1

CMH,b,α,h(x
∗) runs (kx∗ ,m2)← Enc1(x∗, p2), picks r U← ℤm2

N and then returns

Kx∗ :=
{
{
{

gkx∗ (0,r,h)2 if b = 0,
gkx∗ (α,r,h)2 if b = 1.

– O2
CMH,b,α,h(y) returns ⊥ if x

∗ ≁p2 y, runs (cy , ω2)← Enc2(y, p2), picks s U← ℤω2+1
N and then returns

Cy := gcy(s,h)2 .

Remark 2.5. In the above definition of computational security, if the oraclesO1 andO2 are allowed to access
respectively t1 and t2 times, then SMH (resp. CMH)-security, will be referred to as (t1, t2)-SMH (resp. (t1, t2)-
CMH) security. What is considered in [1] are (1, poly)-SMH and (1, 1)-CMH security, respectively, for selec-
tively and co-selectively master-key hiding. It is clear from the definitions of PMH and CMH-security that the
PMH-security of a pair encoding scheme implies the CMH-security.

3 Framework for predicate signature
For better explanation of the uniform sampling process used in theSign algorithm,we define a h-free variable
for the random variables appearing in Enc2 as follows.

Definition 3.1. A variable (or coin) sj for some j ∈ [0, ω2] appearing in Enc2 of a pair encoding scheme is
called “h-free” variable (or coin) if there exists a unique ι ∈ [ω1] such that cι(s, h) = aι,jsj; otherwise, it is
called “non-h-free” variable (or coin).

3.1 Natural requirements on pair encodings

For the correctness of the proposed construction, we keep a restriction on the underlying pair encoding
scheme. Condition (1) defined in Conditions 3.1 is such a restriction on pair encodings. Condition (1) is also
used in the security proof to ensure perfectness of the simulation.

One of the important features considered in the proposed predicate signature is signer privacy. To ensure
perfect privacy of the signer in the proposed construction, we have to uniformly sample from

V⊥ := {v ∈ ℤω1
N | ⟨v, u⟩ = 0 for all u ∈ V},

where V := {cy(s, h) ∈ ℤω1
N | s := (s0, . . . , sω2) ∈ ℤ

ω2+1
N }. Now finding elements of V⊥ is nothing but solv-

ing the system A⊤X = 0, where A is a matrix of dimension ω1 × (ω2 + 1). More precisely, the matrix A is
completely given by

A := (aι,j + ∑
i∈[n]

aι,j,ihi)1≤ι≤ω1
0≤j≤ω2

.

Note that hi are not given explicitly, but available in the form of ghi , where g is a generator for the under-
lying group. To solve the system A⊤X = 0, we will apply the Gaussian elimination method, which is simply
a sequence of elementary row (and/or column) operations. Since hi are not known, it is difficult to find the
inverses of some elements of A which are required for the elementary operations of type 2. So, to smooth

M. Nandi and T. Pandit, Predicate signatures from pair encodings | 209

∙ Param→ 6. Let h := (h0, h1, ϕ1, ϕ2, ϕ3, η).
∙ Enc1(Γ := (M, ρ))→ k(α, r, h) = (k1, k2, k3, {k4,i , k5,i , k6,i}i∈[ℓ]), where k1 := α + rϕ1 + uη, k2 := u,

k3 := r, k4,i := Miv⊤ + riϕ3, k5,i := ri, k6,i := ri(h0 + h1ρ(i)) and v1 := rϕ2, r := (r, u, r1, . . . , rℓ,
v2, . . . , vk), v := (v1, . . . , vk).

∙ Enc2(S ⊆ ℤN)→ c(s, h) = (c1, c2, c3, c4, {c5,y}y∈S , {c6,y}y∈S), where c1 := s, c2 := sη, c3 := sϕ1 + wϕ2,
c4 := w, c5,y := wϕ3 + sy(h0 + h1y), c6,y := sy and s := (s, w, {sy}y∈S).

∙ Correctness: If x ∼ y, i.e., Γ(S) = True, there exist reconstruction coefficients {μi}i∈I, with
I := {i ∈ [ℓ] | ρ(i) ∈ S} such that∑i∈I μiMiv⊤ = v1 = rϕ2. So the following linear combination reveals αs
as k1c1 − k2c2 − k3c3 +∑i∈I μi(k4,ic4 − k5,ic5,ρ(i) + k6,ic6,ρ(i)) = αs − rwϕ2 +∑i∈I μi(Miv⊤w) = αs.

Figure 2: Pair Encoding Scheme 4 used in unbounded KP-ABE with large universes.

the process of elementary operations, we impose a restriction on pair encodings. Condition (3) given in
Conditions 3.1 is such a restriction of pair encodings.

The security of the proposed construction is proven using the dual system methodology of Waters [37].
In this methodology, by applying hybrid arguments over a sequence of games, we reach a final game. The last
game change (fromprevious to final game) relies on the DSG3 assumption. In the final game change, tomain-
tain the correct distribution of semi-functional signatures, we impose condition (2) defined in Conditions 3.1
on pair encodings.

A pair encoding which satisfies condition (1) is referred to as normal in [5]. The authors of [14] used
conditions (1) and (2) for showing CCA-security of their predicate encryption based on pair encodings. Con-
dition (3) is newly introduced here for the predicate signature. For simplicity of explanation, we keep all of
them under Conditions 3.1 defined next.

Conditions 3.1 (Sufficient). We have the following conditions:
(1) cι(s, h) = s0 for some ι ∈ [ω1]. Without loss of generality, assume that c1(s, h) = s0.
(2) For (x, y) ∈ X × Y with x ∼ y, (kx ,m2)← Enc1(x, N) and E ← Pair(x, y, N), we require that

kx(α, 0, 0)E := (∗, 0, . . . , 0) ∈ ℤω1
N , where ∗ is any entry fromℤN .

(3) For j ∈ [0, ω2],
(a) either (sj is h-free) there is a unique ι ∈ [ω1] such that cι(s, h) = aι,jsj,
(b) or (sj is non-h-free): first, case (a) has not happened; then if aι,j,i ̸= 0 (appearing at the (ι, j)-th posi-

tion of thematrix A) for some ι ∈ [ω1], i ∈ [n], we require that imust be unique, and for all ι ∈ [ω1],
i ∈ [n] with i ̸= i, aι,j,i = 0, aι,j = 0 (appearing at the (ι, j)-th position of the matrix A), and hi is
co-prime to N.

We note that the first and third conditions are put on Enc2 and the second condition is imposed on Enc1 and
Pair. Most of the pair encoding schemes considered in [1, 5, 39] satisfy condition (3) (a), i.e., for j ∈ [0, ω2],
the coin sj is h-free. For better understanding, we work out the following pair encoding schemes of [1].

The pair encoding scheme given in Figure 2 was used to realize unbounded KP-ABE with large universes.
We show that this pair encoding satisfies Conditions 3.1. Condition (1) is obvious. To verify condition (3),
we see that, for each random variable si, there is a component cι such that cι(s, h) = si. Therefore, this is an
example, where all the coins are h-free. For verifying condition (2), we first notice that kx(α, 0, 0) = (α, 0, 0).
Hence we have to show that E1j = 0 for j ∈ [2, ω1]. From the correctness of the scheme, we find that the
monomials containing k1 that appear in the correctness are exactly k1c1, so the first row of the matrix E
must be (1, 0). Hence we are done.

Attrapadung [1] extracted Pair Encoding Scheme 10 (given in Figure 3) from the fully secure CP-ABE
[25]. Again, condition (1) is obvious. For the random variables s, s1, . . . , sℓ, condition (3) (a) holds. But,
for v2, . . . , vk, condition (3) (b) holds. For all vj, the unique hi is ϕ (for a clear view, see the matrix A⊤ in
Example 3.7). Sowe require that, during setup, ϕ is chosen to be co-prime to N. Condition (2) works similarly
to Pair Encoding Scheme 4.

210 | M. Nandi and T. Pandit, Predicate signatures from pair encodings

∙ Param(|U|)→ |U| + 1. Let h := (ϕ, {hi}i∈U).
∙ Enc1(S ⊆ U)→ k(α, r, h) = (k1 := α + ϕr, {k2,x := rhx}x∈S , k3 := r), where r := r.
∙ Enc2(Γ := (M, ρ))→ c(s, h) = (c1, {c2,i , c3,i}i∈[ℓ]), whereM ∈ ℤℓ×kN , c1 := s, c2,i := ϕMiv⊤ + sihρ(i),

c3,i := si and s := (s, v2, . . . , vk , s

1, . . . , sℓ), v := (s, v2, . . . , vk).

∙ Correctness: If Γ(S) = True, we have∑i∈I μiMiv⊤ = α. So the following linear combination reveals αs
as k1c1 +∑i∈I μi(k3c2,i − k2,ρ(i)c3,i) = αs.

Figure 3: Pair Encoding Scheme 10 used in CP-ABE with small universes.

3.2 Dual conversion of pair encodings

We illustrate the dual conversion technique [1, 5] for converting a pair encoding for ∼ to another pair encod-
ing for its dual predicate ∼̄ (Definition 2.6). For a pair encoding scheme P, its dual pair encoding scheme is
denoted by𝔻(P).

LetPbe a givenpair encoding scheme for the predicate∼. A pair encoding scheme𝔻(P) for the predicate ∼̄
is constructed as follows: For (n, h)← Param, we defineParam := (n + 1, h̄), where h̄ := (h, ϕ) andϕ is a new
variable.
∙ Enc1(x, N) runs (cx(s, h), ω2)← Enc2(x, N), where s := (s0, . . . , sω2), then sets

r := s and kx(α, r, h̄) := (cx(s, h), α + ϕ.s).

Finally, it outputs (kx(α, r, h̄), ω2), where α is a new variable.
∙ Enc2(y, N) runs (ky(α, r, h),m2)← Enc1(y, N), then sets

s := (s0, r) and cy(s, h̄) := (ky(ϕ.s0, s, h̄), s0)

and returns (cy(s, h̄),m2), where s0 is a new variable.
The correctness is verified as follows: If x ∼̄ y, then y ∼ x, so, from the correctness of P, we have

ky(α, r, h)Ec⊤x (s, h) = αs0 = (ϕ ⋅ s0)s0.

Then, using the additional components, we have (α + ϕ ⋅ s0)(s0) − (ϕ ⋅ s0)s0 = αs0.

Proposition 3.1 ([1]). If a pair encoding scheme P for ∼ is perfectly master-key hiding, then the pair encoding
scheme𝔻(P) for ∼̄ is also perfectly master-key hiding.

Proposition 3.2 ([5]). If a pair encoding scheme P for ∼ is normal and (1, 1)-co-selectively master-key hiding,
then the pair encoding scheme𝔻(P) for ∼̄ is (1, 1)-selectively master-key hiding.

Proposition 3.3 ([5]). If a pair encoding scheme P for ∼ is normal and (1, 1)-selectively master-key hiding, then
the pair encoding scheme𝔻(P) for ∼̄ is (1, 1)-co-selectively master-key hiding.

Observation 3.2. We first note that the pair encoding scheme𝔻(P) satisfies condition (1) of Conditions 3.1
due to the newly added variable s0. Let us examine condition (2). Without loss of generality, we set cy,1 = s0
and kx,1 = α + ϕ ⋅ s0. The correctness of𝔻(P) says that

kx(α, r, h)Ec⊤y (s, h) = kx,1 ⋅ cy,1 − ky(α, r, h)Ec⊤x (s, h) = αs0.

If E has dimension (m1 × ω1), then the dimension of E is (m1 × ω1), where m1 = ω1 + 1 and ω1 = m1 + 1.
Hence the matrix E has the form

Eij :=

{{{{{{
{{{{{{
{

1 if i = 1, j = 1
0 if i = 1, j ∈ [2, ω1]

0 if i ∈ [2,m1], j = 1
−E(j−1)(i−1) if i ∈ [2,m1], j ∈ [2, ω1].

M. Nandi and T. Pandit, Predicate signatures from pair encodings | 211

Therefore, it is straightforward to check that the dual pair encoding scheme 𝔻(P) satisfies condition (2) of
Conditions 3.1.We note that condition (3) of Conditions 3.1 is imposed on Enc2; similarly, it could be defined
over Enc1, and let us call it condition (3̄). One can verify that if a pair encoding schemeP for predicate∼ fulfills
condition (3̄), then its dual𝔻(P) for ∼̄ satisfies condition (3). So far, we have checked that duals of all the pair
encoding schemes [1, 5, 39] satisfy Conditions 3.1. Therefore, all the pair encoding schemes of [1, 5, 39] and
their duals satisfy Conditions 3.1 and have either computational security (CMH and SMH) or PMH security.

3.3 Predicate signature from pair encoding scheme

Terminology. For fixed θ1, θ2, ℏ ∈ ℤN and h ∈ ℤnN , we define

hM := (θ1, θ2, h), θ := (θ1, θ2, ℏ) and c0(z, θ) := z(θ1ℏ + θ2),

where z is an independent variable. Note that θ1, θ2, ℏ and h will be understood from the context. For
(cy , ω2)← Enc2(y, N), define

cMy (s, hM) = (c0(s0, θ), cy(s, h)),

where s := (s0, . . . , sω2) ∈ ℤ
ω2+1
N . We set cMy := (c0, cy); then |cMy | = ω1 + 1 if |cy| = ω1. We define³

VM := {cMy (s, hM) ∈ ℤ
ω1+1
N | s := (s0, . . . , sω2) ∈ ℤ

ω2+1
N }.

Now we define an orthogonal set to be (VM)⊥ := {vsp ∈ ℤω1+1
N | ⟨vsp, u⟩ = 0 for all u ∈ VM}. The process of

sampling from (VM)⊥ is given in Section 3.4.
Let P := (Param, Enc1, Enc2, Pair) be a primitive pair encoding scheme which satisfies Conditions 3.1.

∙ Setup(1κ , j) executes J := (N := p1p2p3,𝔾,𝔾T , e)← Gcbg(1κ) and chooses g U← 𝔾p1 ; Z3
U← 𝔾p3 , then

runs n ← Param(j) and picks h U← ℤnN , again picks α, θ1, θ2
U← ℤN and sets hM := (θ1, θ2, h) ∈ ℤn+2N . Let

H : {0, 1}∗ → ℤN be a hash function. The public parameters and master secret key are given by

PP := (J, g, ghM , gαT := e(g, g)
α , Z3, H) and MSK := (α).

∙ KeyGen(PP,MSK, x) runs (kx ,m2)← Enc1(x, N). Let |kx| = m1. It picks r U← ℤm2
N and R3 U← 𝔾m1

p3 and
outputs the secret key

SKx := (x, Kx := gkx(α,r,h) ⋅ R3).

∙ Sign(PP,m, SKx , y) returns ⊥ if x ≁ y. Let SKx = (x, Kx). It runs⁴

Kx := gkx(α,r,h) ⋅ R3 ← Re-Randomize(Kx) and Pair(x, y)→ E ∈ ℤm1×ω1
N ,

then computes ℏ := H(m, y). It picks τ U← ℤN , vsp U← (VM)⊥ and R3
U← 𝔾ω1+1

p3 and sets

v := (−τ,ψ + kx(α, r, h)E) ∈ ℤω1+1
N ,

where ψ := (τ(θ1ℏ + θ2), 0, . . . , 0) ∈ ℤω1
N . The signature is given by

δy := gv+vsp ⋅ (1𝔾, RE3) ⋅ R3 ∈ 𝔾ω1+1,

where 1𝔾 is the zero element of the source group 𝔾. We note that δy can be easily computed from SKx,
ghM , E and the random coins involved in the sign algorithm. In fact, δy is computed as follows:

δy = (g−τ , 1𝔾, . . . , 1𝔾)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝔾ω1+1

⋅ (1𝔾, (gθ1)τℏ ⋅ (gθ2)τ , 1𝔾, . . . , 1𝔾)⏟⏟⏟
𝔾ω1+1

⋅ (1𝔾, KEx)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝔾ω1+1
⋅ gvsp⏟⏟⏟⏟⏟⏟⏟
𝔾ω1+1
⋅ R3⏟⏟⏟⏟⏟⏟⏟
𝔾ω1+1

.

3 We note that the set VM depends on cMy . A natural notation for the set could be VcMy , but for simplicity, we use VM.
4 The linear property of the pair encodings guarantees the re-randomization of the keys. In fact, let Kx = gkx(α, ̃r,h) ⋅ R̃3, where
̃r ∈ ℤm2

N , R̃3 ∈ 𝔾m1
p3 and (kx ,m2)← Enc1(x, N). Re-Randomize picks r U← ℤm2

N and R3
U← 𝔾m1

p3 , and sets

Kx := gkx(α, ̃r,h) ⋅ R̃3 ⋅ gkx(0,r
 ,h) ⋅ R3 = g

kx(α,r,h) ⋅ R3 ,

where r := ̃r + r ∈ ℤm2
N and R3 := R̃3 ⋅ R3 ∈ 𝔾

m1
p3 .

212 | M. Nandi and T. Pandit, Predicate signatures from pair encodings

∙ Ver(PP,m, δy , y) runs (cy , ω2)← Enc2(y, N) and picks s := (s0, s1, . . . , sω2)
U← ℤω2+1

N , computes

cMy (s, hM) := (c0(s0, θ), cy(s, h)) ∈ ℤ
ω1+1
N ,

where |cy| = ω1, θ := (θ1, θ2, ℏ), ℏ := H(m, y) and c0(s0, θ) := s0(θ1ℏ + θ2), then computes a verification
text V := (VINT := gαs0T ,Vy := gc

M
y (s,hM)). It returns 1 if e(δy ,Vy) = VINT, else 0.

Correctness. For x ∼N y (⇒ x ∼p1 y by domain-transferability), we have

e(δy ,Vy) = g⟨v+vsp ,c
M
y (s,hM)⟩

T (by orthogonality of CBG)

= g⟨v,c
M
y (s,hM)⟩

T (since vsp ∈ (VM)⊥)

= g⟨(−τ,0,...,0)+(0,ψ)+(0,kx(α,r,h)E),c
M
y (s,hM)⟩

T (by definition of v)

= g−τc0(s,θ)+τ(θ1ℏ+θ2)cy,1(s,h)+⟨kx(α,r,h)E,cy(s,hM)⟩T

= g−τs0(θ1ℏ+θ2)+τs0(θ1ℏ+θ2)+kx(α,r,h)Ec
⊤
y (s,hM)

T (since cy,1(s, h) = s0)

= gαs0T (by correctness of P)

Remark 3.3. In the Sign algorithm, two random coins τ and vsp are used; among them, vsp is assigned only
for signer privacy, and τ is the only coin that provides randomness in unforgeability. If signer privacy is not
required, we can ignore vsp.

Fact 3.4. We note that the size of the signature for a message (m, y) is ω1 + 1, where |cy| = ω1, and the num-
ber of pairings in Ver is ω1 + 1. Therefore, if cy of the underlying pair encoding scheme is of constant size, then
the corresponding signature will be of constant size and the number of pairings in verification will be of constant
size. One example of such pair encodings is [1, Pair Encoding Scheme 5].

3.4 How to uniformly sample from (VM)⊥
LetV := {cy(s, h) ∈ ℤω1

N | s := (s0, . . . , sω2) ∈ ℤ
ω2+1
N } andV⊥ := {v ∈ ℤ

ω1
N | ⟨v, u⟩ = 0 for all u ∈ V}. Note that

there is no known method to sample uniformly from V⊥ for arbitrary pair encoding schemes. However,
it is possible if we put a condition on Enc2 of P. Condition (3) of Conditions 3.1 is such a condition. Let
s = (s0, . . . , sω2) and h = (h1, . . . , hn). Write cy(s, h) = c(s, h) = (c1(s, h), . . . , cω1 (s, h)), where cι(s, h) is
given by

cι(s, h) := ∑
j∈[0,ω2]

aι,jsj + ∑
j∈[0,ω2]
i∈[n]

aι,j,ihisj .

Then c⊤y (s, h) can be written as c⊤y (s, h) = As⊤, where the matrix A ∈ ℤω1×(ω2+1)
N is given by

A := (aι,j + ∑
i∈[n]

aι,j,ihi)1≤ι≤ω1
0≤j≤ω2

.

For simplicity of the description, we assign labels for the columns of A from 0 to ω2. We call the matrix A
associated matrix for cy(s, h). The matrix A is described by aι,j, aι,j,i and hi, where ι ∈ [ω1], j ∈ [0, ω2] and
i ∈ [n]. Note that aι,j and aι,j,i are the coefficients of the polynomials cι with (cy , ω2)← Enc2(y, N). Therefore,
the matrix A is completely determined by y ∈ Y and h. Since the part h is fixed, we say that A is associated
with y ∈ Y. Then, from the definition of V⊥, we have

V⊥ = {v ∈ ℤω1
N | ⟨v, u⟩ = 0 for all u ∈ V}

= {v ∈ ℤω1
N | vc

⊤
y (s, h) = 0 for all s ∈ ℤ

ω2+1
N }

= {v ∈ ℤω1
N | vAs

⊤ = 0 for all s ∈ ℤω2+1
N }

= {v ∈ ℤω1
N | vA = 0}

= {v ∈ ℤω1
N | A

⊤v⊤ = 0}.

M. Nandi and T. Pandit, Predicate signatures from pair encodings | 213

Now sampling from V⊥ boils down to solving the homogeneous system A⊤X = 0 with X⊤ := (x1, . . . , xω1).
Before proceeding further, we note that sampling of V⊥ gives rise to the sampling of (VM)⊥ if c1(s, h) = s0. This
is assured using Theorem 2.3, where A⊤M is defined from A⊤ and t := θ1ℏ + θ2.

Our goal is to compute gv, where v U← V⊥. Note that gh is given but not h. If each component vj of v is
a linear combination of hi, then we will be able to compute gv. In fact, for each ι ∈ [ω1], if vι = ∑ni=1 χι,ihi,
where χι,i ∈ ℤN for i ∈ [n], then gvι can be computed as (gh1)χι,1 ⋅ ⋅ ⋅ (ghn)χι,n .

Since hi are not known, we are not able to compute h−1i required for the elementary operations of type 2
(for details of the elementary operations, refer to Section 2.4). It may even happen that hi are not invertible
inℤN . So the only information of A available in the process of elementary operations are aι, aι,i, aι,j and aι,j,i.
Therefore, throughout the elementary operations, we treat hi as symbols, where the symbols h−1i are not
known.But ifwefind some rowofA⊤ is amultiple of hi, thenwe canmultiply the rowby h−1i (provided it exists
inℤN) to make the row hi-free. Under these multiplications, the solution of the system remains unchanged.

SupposeM is obtained by applying say n elementary column operations on A⊤. Then we have

A⊤E⊤1E
⊤
2 ⋅ ⋅ ⋅E

⊤
n = M,

where Ei are elementary matrices. If the column operations are other than the type 1 operation, then there
is a chance that hi may appear in the elementary matrix E⊤j . Since, for each solution v := (v1, . . . , vω1)

⊤ of
MX = 0, E⊤1E⊤2 ⋅ ⋅ ⋅E⊤n v is a solution of A⊤X = 0 and vι are a linear combination of hi, terms like hi1hi2 ⋅ ⋅ ⋅ hik
may appear in v to complicate things. For this reason, we avoid the elementary column operations in the
sampling process.

Below, we define the leading h-free column of a matrix which comes in connection with h-free coins
(Definition 3.1). The definition says that, for each h-free coin sj, there is a unique leading h-free column of
the matrix A⊤.

Definition 3.2. A ι-th column of A⊤ is said to be a “leading h-free” column if there exists a j ∈ [0, ω2] such
that all the entries of the ι-th column of A⊤ are 0 except A⊤j,ι = aι,j.

For Examples 3.6 and3.7, the leading h-free columns ofA⊤ are {1, 4, 6, 8, 10} and {1, 3, 5, 7, 9}, respectively.

More notations. We define
Shf := {ι ∈ [ω1] | there exists j ∈ [0, ω2] such that cι(s, h) = aι,jsj},
Thf := {j ∈ [0, ω2] | there exists ι ∈ [ω1] such that cι(s, h) = aι,jsj}.

We remark that Shf and Thf are respectively the collection of indices for h-free columns and h-free coins. Let
Snon-hf := [ω1] \ Shf and Tnon-hf := [0, ω2] \ Thf . The main task is to find which variables are free and which
are not among x1, . . . , xω1 with X := (x1, . . . , xω1)

⊤ for the homogeneous system A⊤X = 0. Let Sfv and Snon-fv
respectively represent the indices for free variables and non-free variables.

Remark 3.5. Since the factorization problem is assumed to be intractable, all aι,j appearing in condi-
tion (3) (a) are invertible in ℤN (as discussed in Section 2.4). For most of the existing pair coding schemes,
aι,j are found to be 1. When all the variables are h-free, then Tnon-hf = 0.

Algorithm for sampling. As discussed above, the sampling from V⊥ boils down to solving A⊤X = 0 with
X⊤ = (x1, . . . , xω1). The matrix A is completely determined by aι,j, aι,j,i and hi, where ι ∈ [ω1], j ∈ [0, ω2]
and i ∈ [n]. Since hi are not known, the inputmatrix A to the algorithm is supplied by aι,j, aι,j,i and ghi , where
ι ∈ [ω1], j ∈ [0, ω2] and i ∈ [n]. We call this form of input for the matrix A implicit form of A. The algorithm
returns (gx1 , . . . , gxω1), where (x1, . . . , xω1) is a uniform solution of A⊤X = 0, which we call implicit form of
solution for the system. We describe Algorithm 1 for sampling in detail, which takes as input the matrix A
in implicit form associated with some y ∈ Y and outputs a uniform solution in implicit form of the system
A⊤X = 0. Algorithm 1 separately handles two cases, all sj are h-free and not all sj are h-free. The additional
comments for the statements of Algorithm 1 are described in detail below.
∙ All sj are h-free. Lines 2–11 represent the case that all sj involved in cy(s, h) are h-free. For this case, we

donot require any elementary operation. In this case,Null(A⊤) = ω1 − (ω2 + 1). For better understanding
this case, we refer to Example 3.6.

214 | M. Nandi and T. Pandit, Predicate signatures from pair encodings

Input: aι,j, aι,j,i and ghi , where ι ∈ [ω1], j ∈ [0, ω2] and i ∈ [n] (A in implicit form).
Output: g(x1 ,...,xω1), where (x1, . . . , xω1)

⊤ is a uniform solution of the system A⊤X = 0.
1 Compute the sets Shf, Snon-hf and Tnon-hf ;
2 if all sj are h-free then
3 Snon-fv := Shf and Sfv := [ω1] \ Snon-fv ;
4 for i ∈ Sfv do
5 xi := χi U← ℤN ; // free variables are assigned uniformly
6 end
7 for ι ∈ Snon-fv do
8 xι := −a−1ι,j ∑i∈Sfv A

⊤
j,iχi ; // for each ι ∈ Snon-fv, there is a unique j ∈ [0, ω2]

9 end
10 return (gx1 , . . . , gxω1) ; // refer to Example 3.6
11 end
12 else
13 for j ∈ Tnon-hf do
14 A⊤j ← h−1i A

⊤
j ; // j-th row of A⊤ is multiplied by h−1i

15 end
16 for j ∈ Tnon-hf do
17 k := the first non-zero (leading) element of the j-th row ;
18 if gcd(k, N) > 1 then
19 return gcd(k, N) ; // solves factorization problem for N
20 end
21 else
22 A⊤j ← k−1A⊤j ; // change the leading element to 1
23 all other elements of the column containing the leading 1 are changed to 0 ;
24 end
25 end //M :=matrix obtained by applying above operations on A⊤

26 Snew := {ι ∈ Snon-hf | there exists j ∈ Tnon-hf such that Miι = δi,j} ;
27 Snon-fv := Shf ∪ Snew ; // set of non-free variables forMX = 0
28 Sfv := [ω1] \ Snon-fv ; // set of free variables forMX = 0
29 for i ∈ Sfv do
30 xi := χi U← ℤN ; // free variables are assigned uniformly
31 end
32 for ι ∈ Snon-fv do
33 xι := −(Mj,ι)−1∑i∈Sfv Mj,iχi ; // for each ι ∈ Snon-fv there is a unique j ∈ [0, ω2]
34 end
35 return (gx1 , . . . , gxω1) ; // refer to Example 3.7
36 end

Algorithm 1: An algorithm for uniform sampling from V⊥.

– Lines 7–9: For each ι ∈ Shf, there is a unique j ∈ [0, ω2] such that cι(s, h) = aι,jsj by condition (3) (a).
Condition (3) (a) guarantees that no non-free variable contributes during the computation of others.

∙ Not all sj are h-free. Lines 12–36 represent the case that not all sj involved in cy(s, h) are h-free. In this
case, Null(A⊤) ≤ ω1 − (ω2 + 1). For better understanding, we refer to Example 3.7.
– Line 14: For each j ∈ Tnon-hf, there is a unique i such that aι,j,i ̸= 0, and for all ι ∈ [ω1], i ∈ [n]

with i ̸= i, aι,j,i = 0, aι,j = 0 by condition (3) (b). On line 14, the j-th row of A is multiplied by h−1i
symbolically to make each element of the j-th row free from the h-term. Under these changes, the
h-free variables remain h-free as the corresponding leading h-free columns are unaffected. Since hi
is invertible (by condition (3) (b)), the solutions of the system A⊤X = 0 remain unaltered.

M. Nandi and T. Pandit, Predicate signatures from pair encodings | 215

– Line 16–25 apply the elementary row operations of type 2 and 3 until each row j ∈ Tnon-hf becomes
row-reduced.

– Lines 18–20 solve the factorization problem in polynomial time in κ and aborts. In this case,
gcd(k, N) is a factor of N.

– Line 23 applies the elementary row operations of type 3 to reduce all other elements of the column
containing the leading 1 to 0.

– Line 25:Under the elementary rowoperations of type 2 and3used in lines 22 and23, the h-free vari-
ables remain h-free as the corresponding leading h-free columns are unaffected, but somenon-h-free
variables become h-free. These new h-free variables change the free variables to non-free variables.

– Line 26: Snon-fv is the set of new non-free variables.
– Lines 32–34: Note that the set of non-free variables to the system MX = 0 is Snon-fv := Shf ∪ Snew.

As in the first case, for each ι ∈ Shf, there is a unique j ∈ [0, ω2] such that cι(s, h) = aι,jsj by condi-
tion (3) (a). For each ι ∈ Snew, there is a unique j ∈ [0, ω2] such that cι(s, h) = aι,jsj by lines 16–25.

Example 3.6. For better understanding of Algorithm 1, we work out Pair Encoding Scheme 4 (given in Sec-
tion 3.1). We customize a set of attributes to be S := {y2, y3, y4} ⊂ ℤN .

Enc2(S)→ c(s, h) = (c1 := s, c2 := sη, c3 := sϕ1 + wϕ2, c4 := w, {c5,y , c6,y}y∈S),

where c5,y := wϕ3 + sy(h0 + h1y), c6,y := sy and s := (s0 := s, s1 := w, s2, s3, s4) with si := syi for i ≥ 2. The
matrix⁵ of the system A⊤X = 0 is given by

A⊤ = (

c1 c2 c3 c4 c5,y2 c6,y2 c5,y3 c6,y3 c5,y4 c6,y4
s0 1 η ϕ1 0 0 0 0 0 0 0
s1 0 0 ϕ2 1 ϕ3 0 ϕ3 0 ϕ3 0
s2 0 0 0 0 h0 + h1y2 1 0 0 0 0
s3 0 0 0 0 0 0 h0 + h1y3 1 0 0
s4 0 0 0 0 0 0 0 0 h0 + h1y4 1

).

This is a case where all the coins are h-free. Here ω1 = 10, ω2 = 4, Shf := {1, 4, 6, 8, 10}, Thf := {0, 1, 2, 3, 4}.
Therefore, Snon-fv := Shf = {1, 4, 6, 8, 10} and Sfv := [10] \ Snon-fv = {2, 3, 5, 7, 9}. For each i ∈ Sfv, we have
xi := χi U← ℤN . The non-free variables are computed as x1 := −ηχ2 − ϕ2χ3, x4 := −ϕ2χ3 − ϕ3(χ5 + χ7 + χ9),
x6 := −(h0 + h1y2)χ5, x8 := −(h0 + h1y3)χ7, x10 := −(h0 + h1y4)χ9. Therefore, (x1, . . . , x10)⊤ is a solution of
the system A⊤X = 0. If v = (x1, . . . , x10), then gv is computed as

gx1 := (gη)−χ2 .(gϕ2)−χ3 , gx2 := gχ2 , gx3 := gχ3 , gx4 := (gϕ2)−χ3 .(gϕ3)−(χ5+χ7+χ9),
gx5 := gχ5 , gx6 := (gh0)−χ5 .(gh1)−y2χ5 , gx7 := gχ7 , gx8 := (gh0)−χ7 .(gh1)−y3χ7 ,

gx9 := gχ9 and gx10 := (gh0)−χ9 .(gh1)−y4χ9 .

Example 3.7. We also consider Pair Encoding Scheme 10 (described in Section 3.1) which explains other
case of Algorithm 1. Let Γ := (M, ρ) be a span program, where ρ : [4]→ U is some row labeling function and
M is given by

M =(

1 2 3
2 3 4
3 2 1
3 1 3

) .

If we run Enc2 of Pair Encoding Scheme 10 on Γ, we have the output c(s, h) = (c1, {c2,i , c3,i}i∈[4]), where
c1 := s, c2,i := ϕMiv⊤ + sihρ(i), c3,i := s

i and

s := (s0 := s, s1 := v2, s2 := v3, s3 := s1, s4 := s2, s5 := s3, s6 := s4), v := (s, v2, v3).

5 The box in the j-th row indicates that the coin sj is h-free and the corresponding column containing the box is leading h-free
column.

216 | M. Nandi and T. Pandit, Predicate signatures from pair encodings

The matrix of the system A⊤X = 0 is given by

A⊤ =
(((((

(

c1 c2,1 c3,1 c2,2 c3,2 c2,3 c3,3 c2,4 c3,4
s0 1 ϕ 0 2ϕ 0 3ϕ 0 3ϕ 0
s1 0 2ϕ 0 3ϕ 0 2ϕ 0 ϕ 0
s2 0 3ϕ 0 4ϕ 0 ϕ 0 3ϕ 0
s3 0 hρ(1) 1 0 0 0 0 0 0
s4 0 0 0 hρ(2) 1 0 0 0 0
s5 0 0 0 0 0 hρ(3) 1 0 0
s6 0 0 0 0 0 0 0 hρ(4) 1

)))))

)

.

This is a case, where all the coins are not h-free. For all the non-h-free coins (there are only two non-
h-free coins, v2 and v3), there is a unique h-term which is ϕ. Here ω1 = 9, ω2 = 6, Shf := {1, 3, 5, 7, 9},
Snon-hf := [9] \ Shf = {2, 4, 6, 8}, Thf := {0, 3, 4, 5, 6} and Tnon-hf := [0, 6] \ Thf = {1, 2}. Note that the label-
ing of the rows starts with 0. For each j ∈ Tnon-hf, the j-th row is multiplied by ϕ−1 to make the j-th row
free from ϕ. We now apply the following elementary row operations of type 2 and type 3 to make each row
j ∈ Tnon-hf of A⊤ row-reduced: R2 ← 2−1R2, R1 ← R1 + (−ϕ)R2, R3 ← R3 + (−3)R2, R4 ← R4 + (−hρ(1))R2,
R3 ← (−2)R3, R1 ← R1 + (−ϕ/2)R3, R2 ← R2 + (−3/2)R3, R4 ← R4 + 3hρ(1)/2R3 and R5 ← R5 + (−hρ(2))R3.
Let M (given below) be the matrix obtained from A⊤ after applying the above elementary row operations.
The elements appearing in the double boxes of the row-reduced rows of M are the new leading elements of
the corresponding rows.

M =
((((((

(

1 0 0 0 0 0 0 4ϕ 0
0 1 0 0 0 −5 0 5 0
0 0 0 1 0 4 0 −3 0
0 0 1 0 0 5hρ(1) 0 −5hρ(1) 0
0 0 0 0 1 −4hρ(2) 0 3hρ(2) 0
0 0 0 0 0 hρ(3) 1 0 0
0 0 0 0 0 0 0 hρ(4) 1

))))))

)

.

Then Snew := {2, 4}, so Snon-fv := Shf ∪ Snew = {1, 2, 3, 4, 5, 7, 9} and Sfv := {6, 8}. For each i ∈ Sfv, we have
xi := χi U← ℤN . The non-free variables are computed as x1 := −4ϕχ8, x2 := 5(χ6 − χ8), x3 := −5hρ(1)(χ6 − χ8),
x4 := −4χ6 + 3χ8, x5 := hρ(2)(4χ6 − 3χ8), x7 := −hρ(3)χ6 and x9 := −hρ(4)χ8. Thus (x1, . . . , x10)⊤ is a solution
of the systemMX = 0 and hence a solution of A⊤X = 0. If v = (x1, . . . , x9), then gv is computed as

gx1 := (gϕ)−4χ8 , gx2 := g5(χ6−χ8), gx3 := (ghρ(1))−5(χ6−χ8), gx4 := g−4χ6+3χ8 ,
gx5 := (ghρ(2))4χ6−3χ8 , gx6 := gχ6 , gx7 := (ghρ(3))−χ6 , gx8 := gχ8 , gx9 := (ghρ(4))−χ8 .

4 Security proof of the proposed predicate signature

4.1 Signer privacy

Theorem 4.1. Our proposed PS scheme in Section 3.3 is perfectly private (Definition 2.8).

Proof. For s := (s0, . . . , sω2) ∈ ℤ
ω2+1
N ,wedefine (VM)αs0 := {v ∈ ℤ

ω1+1
N | ⟨v, cMy (s, hM)⟩ = αs0}. One can easily

check that for arbitrary ṽ ∈ (VM)αs0 , ṽ + (VM)⊥ = (VM)αs0 . Since the distribution of a signature for (m, y) is

δy = gv+vsp ⋅ R3 ∈ 𝔾ω1+1,

where v ∈ (VM)αs0 for some s = (s0, . . . , sω2) ∈ ℤ
ω2+1
N , it is sufficient to prove that v + vsp is uniformly dis-

tributed over (VM)αs0 for each s ∈ ℤ
ω2+1
N . Since vsp is chosen uniformly and independently from (VM)⊥ and

v + (VM)⊥ = (VM)αs0 , we are done.

M. Nandi and T. Pandit, Predicate signatures from pair encodings | 217

4.2 The proof of adaptive unforgeability

To prove unforgeability of the proposed construction in Section 3.3, we apply a signature variant of the
dual system methodology [37] deployed in [1]. This signature variant of dual system is similar to the style
of [31, 33]. In this variant, the original unforgeability game is changed to the final game through some
intermediate hybrid games. These changes are made under three subgroup decision problems and CMH or
PMH-security of the underlying pair encoding scheme. To smooth hybrid arguments over the consecutive
games, we use the natural restrictions defined in Conditions 3.1. We note that condition (2) is only used (in
Lemma A.8) for reaching the final game from the previous game. In the final game, VINT of the verification
text is sampled uniformly and independently from𝔾T . Therefore, the forgery in the final gamewill be invalid.
If ν1 and ν2 are respectively the number of key queries and signature queries made byA , then the reduction
cost isO(ν1 + ν2). We use the abbreviations “vText” and “sf-type”, respectively, for verification text and semi-
functional type. For all the games defined in Theorem 4.2, the following algorithms will be used to define
normal verification text, and semi-functional verification text, keys and signatures:
∙ SFSetup(1κ , j) runs (PP,MSK)← Setup(1κ , j) and, in addition, returns the semi-functional parameters

g2 U← 𝔾p2 , ̂θ1, ̂θ2
U← ℤN and ĥ U← ℤnN . We set ĥM := (̂θ1, ̂θ2, ĥ).

∙ SFKeyGen(PP,MSK, x, g2, type, ̂α, ĥ) runs (kx ,m2)← Enc1(x, N) with |kx| = m1, chooses r, ̂r U← ℤm2
N

and R3 U← 𝔾m1
p3 and outputs the semi-functional key SKx := (x, Kx), where Kx is given by

Kx :=
{{{{
{{{{
{

gkx(α,r,h) ⋅ gkx(0, ̂r,ĥ)2 ⋅ R3 if type = 1,
gkx(α,r,h) ⋅ gkx(̂α, ̂r,ĥ)2 ⋅ R3 if type = 2,
gkx(α,r,h) ⋅ gkx(̂α,0,0)2 ⋅ R3 if type = 3.

∙ SFSign(PP,m, SKx , y, g2, type) returns ⊥ if x ≁ y. It runs δy ← Sign(PP,m, SKx , y). Note that

δy = gv+vsp ⋅ R3 with R3 ∈ 𝔾ω1+1
p3 .

It picks b, ι U← ℤN and returns the semi-functional signature δy ⋅ g ̂v2, where ̂v ∈ ℤ
ω1+1
N is given by

̂v :=
{
{
{

(b, ι, 0, . . . , 0) if type = 1,
(0, ι, 0, . . . , 0) if type = 2.

∙ VText(PP,m, y) runs (cy , ω2)← Enc2(y, N), picks s := (s0, . . . , sω2) and ̂s := (̂s0, . . . , ̂sω2)
U← ℤω2+1

N and
computes cMy (s, hM) := (c0(s0, θ), cy(s, h)) ∈ 𝔾ω1+1, where |cy| = ω1, θ := (θ1, θ2, ℏ), ℏ := H(m, y) and
c0(s0, θ) := s0(θ1ℏ + θ2). It returns the verification text

V := (VINT := gαs0T ,Vy := gc
M
y (s,hM)).

∙ SFVText(PP,m, y, g2, type, ĥM) is similar to VText, except it additionally computes

cMy (̂s, ĥM) := (c0(̂s0, θ̂), cy(̂s, ĥ)) ∈ 𝔾ω1+1,

where θ̂ := (̂θ1, ̂θ2, ℏ) and c0(̂s0, θ̂) := ̂s0(̂θ1ℏ + ̂θ2). It returns the semi-functional verification text

V :=
{
{
{

(VINT := gαs0T , Vy := gc
M
y (s,hM) ⋅ gc

M
y (̂s,ĥM)
2) if type = 1,

(VINT
U← 𝔾T , Vy := gc

M
y (s,hM) ⋅ gc

M
y (̂s,ĥM)
2) if type = 2.

Theorem 4.2. Let P be a pair encoding scheme for a predicate ∼ which satisfies Conditions 3.1, where ∼ is
domain-transferable. Suppose P has CMH-security, the assumptions DSG1, DSG2 and DSG3 hold in J and H is
a collision-resistant hash function. Then the proposed predicate signature scheme PS in Section 3.3 for the
predicate ∼ is adaptively existential unforgeable (Definition 2.9).

Proof. Suppose an adversary A makes at most ν1 key queries and ν2 signature queries. Then the security
proof consists of a hybrid argument over a sequence of 3ν1 + 2ν2 + 4 games. Let GameReal be the orig-
inal Ad-EUF-CMA game of the predicate signature scheme. By applying hybrid arguments on GameReal
through the sequence of intermediate games GameRes, Game0, {Game1-k-1, Game1-k-2, Game1-k-3}k∈[ν1] and

218 | M. Nandi and T. Pandit, Predicate signatures from pair encodings

Game Verification text Key Signature

Real VText(m∗ , y∗) KeyGen(xi) Sign(mj , SKxj , yj)
(xi ≁N y∗)

Res VText(m∗ , y∗) KeyGen(xi) Sign(mj , SKxj , yj)
(xi ≁p2 y∗)

0 SFVText(m∗ , y∗ , g2 , 1, ĥM) KeyGen(xi) Sign(mj , SKxj , yj)

1-k-1 SFVText(m∗ , y∗ , g2 , 1, ĥM) ̂αi U← ℤN for all i ∈ [k − 1]; Sign(mj , SKxj , yj)
(1 ≤ k ≤ ν1) SFKeyGen(xi , g2 , 3, ̂αi , 0) if i < k

SFKeyGen(xi , g2 , 1, 0, ĥ) if i = k
KeyGen(xi) if i > k

1-k-2 SFVText(m∗ , y∗ , g2 , 1, ĥM) ̂αi U← ℤN for all i ∈ [k]; Sign(mj , SKxj , yj)
(1 ≤ k ≤ ν1) SFKeyGen(xi , g2 , 3, ̂αi , 0) if i < k

SFKeyGen(xi , g2 , 2, ̂αi , ĥ) if i = k
KeyGen(xi) if i > k

1-k-3 SFVText(m∗ , y∗ , g2 , 1, ĥM) ̂αi U← ℤN for all i ∈ [k]; Sign(mj , SKxj , yj)
(1 ≤ k ≤ ν1) SFKeyGen(xi , g2 , 3, ̂αi , 0) if i < k

SFKeyGen(xi , g2 , 3, ̂αi , 0) if i = k
KeyGen(xi) if i > k

2-k-1 SFVText(m∗ , y∗ , g2 , 1, ĥM) ̂αi U← ℤN for all i ∈ [ν1]; SFSign(mj , SKxj , yj , g2 , 2) if j < k
(1 ≤ k ≤ ν2) SFKeyGen(xi , g2 , 3, ̂αi , 0) SFSign(mj , SKxj , yj , g2 , 1) if j = k

Sign(mj , SKxj , yj) if j > k

2-k-2 SFVText(m∗ , y∗ , g2 , 1, ĥM) ̂αi U← ℤN for all i ∈ [ν1]; SFSign(mj , SKxj , yj , g2 , 2) if j < k
(1 ≤ k ≤ ν2) SFKeyGen(xi , g2 , 3, ̂αi , 0) SFSign(mj , SKxj , yj , g2 , 2) if j = k

Sign(mj , SKxj , yj) if j > k

Final SFVText(m∗ , y∗ , g2 , 2, ĥM) ̂αi U← ℤN for all i ∈ [ν1]; SFSign(mj , SKxj , yj , g2 , 2)
SFKeyGen(xi , g2 , 3, ̂αi , 0)

Table 1: The description of hybrid games used in the security proof.

{Game2-k-1, Game2-k-2}k∈[ν2], we finally reach GameFinal. GameRes is the same as GameReal, except the natural
restriction x ≁N y∗ is replaced by x ≁p2 y∗ for each key query x made by A . Game0 is just like GameRes,
except the vText is of sf-type 1. In Game1-k-ι (1 ≤ ι ≤ 3), the verification text is of sf-type 1, the first (k − 1)
keys are of sf-type 3, the k-th one is of sf-type ι and the remaining keys are normal, and all the signatures are
normal. In Game2-k-ι (1 ≤ ι ≤ 2), the verification text is of sf-type 1, all the keys are of sf-type 3 and the first
(k − 1) signatures are of sf-type 2, the k-th signature is of sf-type ι and the remaining signatures are normal.
GameFinal is the same as Game2-ν2-2, except the vText is of sf-type 2. A concrete description of the games
is given in Table 1, where we mention the exact distribution of verification text, keys and signatures. The
expression in the box indicates the modification from the previous game. For simplicity, PP and MSK are
omitted from the respective algorithms appearing in the table.

In GameFinal, the part VINT is chosen independently and uniformly at random from𝔾T . This implies that
the forgerywill be invalidwith respect to the vText. Therefore, the adversaryA hasnoadvantage inGameFinal.
The outline of the hybrid arguments over the games is given below:

Real

Lemma A.1
|

DSG2
|
⇒ Res

Lemma A.2
|

DSG1
|
⇒ 0 . . . 1-(k − 1)-3

Lemma A.3
|

DSG2
|
⇒ 1-k-1

Lemma A.4
|

CHM
|
⇒ 1-k-2

Lemma A.5
|

DSG2
|
⇒ 1-k-3 . . . 1-ν1-3 . . .

. . . 2-(k − 1)-2

Lemma A.6
|

DSG2, CRH
|
⇒ 2-k-1

Lemma A.7
|

DSG2
|
⇒ 2-k-2 . . . 2-ν2-2

Lemma A.8
|

DSG3
|
⇒ Final .

M. Nandi and T. Pandit, Predicate signatures from pair encodings | 219

Using the lemmas referred to above (for details, see Appendix A), we have the reduction

AdvAd-EUF-CMAA ,PS (κ) ≤ AdvDSG1B1
(κ) + (2ν1+2ν2+1)AdvDSG2B2

(κ) + ν1AdvCMHB3 ,P(κ) + ν2Adv
CRH
B4
(κ) + AdvDSG3B5

(κ),

where AdvCRHB4
(κ) is the advantage of B4 in breaking the collision-resistant property of H and B1, B2, B3,

B4, B5 are PPT algorithms whose running times are the same as that of A .

Theorem 4.3. Let P be a pair encoding scheme for a predicate ∼ which satisfies Conditions 3.1, where ∼ is
domain-transferable. Suppose P has PMH-security, the assumptions DSG1, DSG2 and DSG3 hold in J and H is
a collision-resistant hash function. Then the proposed predicate signature scheme PS in Section 3.3 for the
predicate ∼ is adaptively existential unforgeable.

Proof. The proof is similar to that of Theorem 4.2. The reduction of the proof is given by

AdvAd-EUF-CMAA ,PS (κ) ≤ AdvDSG1B1
(κ) + (2ν1 + 2ν2 + 1)AdvDSG2B2

(κ) + ν2AdvCRHB3
(κ) + AdvDSG3B4

(κ),

where B1,B2,B3 and B4 are PPT algorithms whose running times are the same as that of A .

5 Instantiations of predicate signature
In this section, we instantiate different predicate signature schemes from various pair encoding schemes.
The different variants of PS with many new features which did not exist earlier in the literature are pre-
sented here. Also we show that some existing PS schemes can be obtained by applying our framework. If the
underlying pair encoding scheme with either PMH or CMH-security satisfies the sufficient conditions (Condi-
tions 3.1), then our construction of predicate signature in Section 3.3 guarantees signer privacy and adaptive
unforgeability. For instantiations, we consider only the pair encoding schemes⁶ presented in [1, 5, 39] as
they have either PMH or CMH-security and satisfy the aforementioned conditions. Other reasons for con-
sidering the pair encoding schemes mainly from [1, 5, 39] are that they are available in ready-made forms,
and many PS schemes with new features can be derived from them. In the following, we briefly describe the
instantiations of predicate signature using the pair encodings of [1, 5, 39].

Our framework provides a predicate signature scheme for regular languages in key-policy and signature-
policy forms. The KP-PS and SP-PS for regular languages are instantiated from [1, Pair Encoding Schemes 3
and 7], respectively. These are the first non-trivial practical schemes beyond ABS.

We can derive an unbounded KP-ABS with large universes from [1, Pair Encoding Scheme 4]. Here
unbounded means there is no restriction on the sizes of policies and attribute sets and the repetition of
attributes in a policy. An ABS with large universes will have a super-polynomial size attribute universe. The
universe of attributes is considered to be ℤN , and the size of the public parameters is constant. The only
known adaptively unforgeable ABSs with large universes available in the literature are the construction
of [29, 31]; among them, only the ABS of [29] has the feature unbounded. However, these constructions are
known to have signature-policy form. Therefore, the proposed ABS scheme is the first unbounded KP-ABS
with large universes which is unforgeable in the adaptive model. We can also instantiate an unbounded
SP-ABS with large universes from the dual [5] of [1, Pair Encoding Scheme 4], but it is less efficient than the
SP-ABS of [29].

We can achieve a KP-ABS with constant-size signatures using [1, Pair Encoding Scheme 5]. The unforge-
ability of the only known constant-size signature [3] for non-monotone access structures was proven in the
selective model. Therefore, the proposed ABS scheme is the first ABS with constant-size signature which is
existential unforgeable in the adaptivemodel. Similarly, by applying our framework on the dual [5] of [1, Pair
Encoding Scheme 5], we achieve an adaptively unforgeable SP-ABS with constant-size keys.

6 Since the predicate encodings of [39] have a structure similar to the pair encodings of [1], w.l.o.g., we refer to the predicate
encodings of [39] as pair encodings in the paper. All the pair encoding schemes of [39] are perfectly master-key hiding.

220 | M. Nandi and T. Pandit, Predicate signatures from pair encodings

The authors of [1, 5] proposed new encryption schemes for policy over doubly spatial relation (see Sec-
tion 2.5) in key-policy and ciphertext-policy forms. These predicate encryption schemes are called key pol-
icy over doubly spatial encryption (KP-DSE) and ciphertext policy over doubly spatial encryption (CP-DSE),
respectively. These predicate encryption schemes work in a similar manner to ABE, except the equality rela-
tion is replaced by a doubly spatial relation [22]. The signature analogues of KP-DSE and CP-DSE are called
key policy over doubly spatial signature (KP-DSS) and signature policy over doubly spatial signature (SP-
DSS), respectively. If we apply our framework on Pair Encoding Scheme 6 and its dual, we can obtain KP-DSS
and SP-DSS, respectively. Similar to KP-DSE (resp. CP-DSE), KP-DSS (resp. SP-DSS) generalizes the existing
class KP-ABS (resp. SP-ABS).

By applying our framework on [1, Pair Encoding Schemes 8 and 9], we can obtain KP-ABS and SP-ABS
with small universes, respectively, where a restriction is imposed only on the polices. Since the underlying
pair encodings are perfectly master-key hiding, both the ABS schemes are cost free. The SP-ABS of [33] can
be viewed by the proposed SP-ABS.

Attrapadung [1] constructednewcost-freeABE schemeswith largeuniverses in key-policy and ciphertext-
policy forms. The KP-ABE and CP-ABEwere constructed from Pair Encoding Schemes 12 and 13, respectively.
These pair encoding schemes were constructed based on cover-free families [18, 24]. Analogously, by apply-
ing our framework on Pair Encoding Schemes 12 and 13, we obtain cost-free KP-ABS and SP-ABS with large
universes. Unlike ABS with small universes, bounds on both the sizes of attribute sets and the sizes of access
structures are imposed.

We also instantiate many other cost-free predicate signatures as follows. A doubly spatial signature
(DSS) scheme (as a signature analogue of DSE [22]) can be derived using [1, Pair Encoding Scheme 14]. The
signature analogue of negated spatial encryption [4] is called negated spatial signature (NSS). An NSS can
be instantiated from [1, Pair Encoding Scheme 15]. Using the pair encodings of [39] for the inner-product
predicate, we can obtain inner-product signature (IPS) schemes with constant-size keys and constant-size
signatures, respectively. We can also instantiate non-zero inner-product signature (NIPS) schemes with
constant-size keys and constant-size signatures, respectively, using the pair encodings of [39] for the non-
zero inner-product predicate. We note that a non-zero inner-product predicate is a special case of a negated
spatial predicate. We can also obtain a spatial signature scheme with constant-size signatures using the pair
encoding of [39].

PS Form Feature Pair encoding SPES

PS KP Regular languages PES 3 [1] CMH
PS SP Regular languages PES 7 [1] CMH
ABS KP Unbounded, large universes PES 4 [1] CMH
ABS SP Unbounded, large universes Dual [5] of PES 4 [1] CMH
ABS KP Constant-size signatures PES 5 [1] CMH
ABS SP Constant-size keys Dual [5] of PES 5 [1] CMH
KP-DSS KP It generalizes KP-ABS PES 6 [1] CMH
SP-DSS SP It generalizes SP-ABS Dual [5] of PES 6 [1] CMH
ABS KP Cost free PES 8 [1] PMH
ABS SP Cost free PES 10 [1] PMH
ABS KP Cost free, large universes PES 12 [1] PMH
ABS SP Cost free, large universes PES 13 [1] PMH
IPS NA Cost free, constant-size signatures PES [39] PMH
IPS NA Cost free, constant-size keys PES [39] PMH
NIPS NA Cost free, constant-size signatures PES [39] PMH
NIPS NA Cost free, constant-size keys PES [39] PMH
SS KP Cost free, constant-size signatures PES [39] PMH
SS SP Cost free, constant-size keys Dual [1] of PES [39] PMH
DSS NA Cost free PES 14 [1] PMH
NSS NA Cost free PES 15 [1] PMH

Table 2: Instantiations of predicate signature using existing pair encodings.

M. Nandi and T. Pandit, Predicate signatures from pair encodings | 221

A summary of the instantiations of the predicate signature using the pair encodings of [1, 5, 39] is pro-
vided in Table 2. The abbreviations NA, KP, SP, PES and SPES stand for not applicable, key policy, signature
policy, pair encoding scheme and security of pair encoding scheme, respectively. All the pair encodings
shown in Table 2 are either perfectly (PMH) secure or computationally (both SMH and CMH) secure. The
rightmost column stands for the security of the corresponding pair encoding scheme. The security given in
Table 2 is used for unforgeability of the predicate signatures. The notations DSS, KP-DSS, SP-DSS, IPS, NIPS,
SS and NSS respectively denote doubly spatial signature, key policy over DSS, signature policy over DSS,
inner-product signature, non-zero IPS, spatial signature and negated spatial signature.

6 Conclusion
In this paper, for the first time, we showed that pair encodings provide adaptively unforgeable predicate
signatures with prefect privacy. We have instantiated many schemes with new features using the existing
pair encoding schemes, e.g., the first practical construction of PS schemes for regular languages, the first
attribute-based signature scheme with constant-size signatures in the adaptive model, unbounded ABS with
large universes in key-policy flavor, etc.

A Lemmas used in the proof of Theorem 4.2
Lemma A.1. GameReal and GameRes are indistinguishable under DSG2 assumption. That is, for every adver-
sary A , there exists a PPT algorithm B such that

|AdvRealA ,PS(κ) − Adv
Res
A ,PS(κ)| ≤ Adv

DSG2
B (κ).

Proof. Suppose an adversary can distinguish the games with a non-negligible probability. Then we will
establish a PPT simulator B for breaking the DSG2 assumption with the same probability. An instance of
DSG2, (J, g, Z1Z2,W2W3, Z3, Tβ) with β U← {0, 1}, is given to B. The only difference between the games
GameReal and GameRes is that if x is a queried key index and y∗ is a challenge associated data index, then
x ∼p2 y∗, but x ≁N y∗. We show that the above scenario will not happen. In fact, from the soundness of
domain transferability of ∼, we can find a factor F such that p2 | F | N. There are three possibilities of F:
(1) F = p2, (2) F = p1p2 and (3) F = p2p3. We remark that the aforesaid cases are recognized using the
parameters of the given instance of DSG2. Suppose F = p2. Let B := N/F = p1p3, and then, by checking
TBβ

?= 1𝔾, B can break the DSG2 assumption. Now suppose F = p1p2 or F = p2p3. Let B := N/F. If B = p3,
it computes Y2 := (W2W3)B = Wp3

2 , else Y2 := (Z1Z2)B = Zp12 . In both case, we have Y2 ∈ 𝔾p2 . Then, by
checking e(Tβ , Y2) ?= 1, B can break the DSG2 assumption.

Lemma A.2. GameRes andGame0 are indistinguishable underDSG1assumption. That is, for every adversaryA ,
there exists a PPT algorithm B such that

|AdvResA ,PS(κ) − Adv
0
A ,PS(κ)| ≤ Adv

DSG1
B (κ).

Proof. We establish a PPT simulator B which receives an instance of DSG1, (J, g, Z3, Tβ) with β U← {0, 1},
and depending on the distribution of β, it simulates either GameRes or Game0.

Setup. B chooses α, θ1, θ2 U← ℤN , h U← ℤnN and sets hM := (θ1, θ2, h). Let H : {0, 1}∗ → ℤN be a hash func-
tion. Then it providesPP := (J, g, ghM , gαT := e(g, g)α , Z3, H) toA and keepsMSK := (α) to itself. It implicitly
sets ĥM := hM mod p2. By the Chinese remainder theorem (CRT), ĥM is independent from hM mod p1, so ĥM
is perfectly distributed.

Query phase. This consists of the following queries in adaptive manner:
∙ KeyGen(x) is a query for a normal key. The algorithm B can handle the key query of A since MSK is

known to it.

222 | M. Nandi and T. Pandit, Predicate signatures from pair encodings

∙ Sign(m, x, y) returns ⊥ if x ≁ y. This is a query for a normal signature. The algorithm B can answer the
query of A since it can construct SKx using theMSK known to it.

Forgery. A outputs a signature δy∗ for (m∗, y∗). Then B prepares a vText for (m∗, y∗) as follows: It com-
putes ℏ∗ := H(m∗, y∗), runs (cy∗ , ω2)← Enc2(y∗, N) with |cy∗ | = ω1 and sets cMy∗ := (c0, cy∗), then picks
s := (s0, . . . , sω2)

U← ℤω2+1
N . Finally, it computes the vText as

V := (VINT := e(gα , Tβ)s

0 , Vy∗ := Tc

M
y∗ (s

 ,hM)
β).

It returns 1 if e(δy∗ ,Vy∗) = VINT, else 0.

Analysis. We will show that all the objects are perfectly distributed as required. The algorithm B implicitly
sets gt1 := Tβ|𝔾p1 and, for β = 1, g

t2
2 := Tβ|𝔾p2 . Then, by linearity of P, we have

gt1c
M
y∗ (s

 ,hM) = gc
M
y∗ (t1s

 ,hM) and gt2c
M
y∗ (s

 ,hM)
2 = gc

M
y∗ (t2s

 ,ĥM)
2 .

It implicitly sets s := t1s mod p1 and, for β = 1, ̂s := t2s mod p2. By CRT, s mod p1 is independent from
s mod p2, and therefore s and ̂s are perfectly distributed as required. Altogether, we have that the joint
distribution of all the objects simulated by B is identical to that of GameRes if β = 0, else Game0.

Lemma A.3. Game1-(k−1)-3 and Game1-k-1 are indistinguishable under DSG2 assumption. That is, for every
adversary A , there exists a PPT algorithm B such that

|Adv1-(k−1)-3A ,PS (κ) − Adv
1-k-1
A ,PS(κ)| ≤ Adv

DSG2
B (κ) for 1 ≤ k ≤ ν1.

Proof. We establish a PPT simulator B which receives an instance of DSG2, (J, g, Z1Z2,W2W3, Z3, Tβ) with
β U← {0, 1}, and depending on the distribution of β, it simulates either Game1-(k−1)-3 or Game1-k-1.

Setup. B chooses α, θ1, θ2 U← ℤN , h U← ℤnN and sets hM := (θ1, θ2, h). Let H : {0, 1}∗ → ℤN be a hash func-
tion. Then it providesPP := (J, g, ghM , gαT := e(g, g)α , Z3, H) toA and keepsMSK := (α) to itself. It implicitly
sets ĥM := hM mod p2. By CRT, ĥM is independent from hM mod p1, so ĥM is perfectly distributed.

Query phase. This consists of the following queries in adaptive manner:
∙ KeyGen(x): Let xj be the j-th query key index. The algorithm B answers the key SKxj as follows:

– If j > k, then B runs the KeyGen algorithm and gives the normal key to A .
– If j < k, then it is an sf-type 3 key, and B runs (kxj ,m2)← Enc1(xj , N) with |kxj | = m1 and picks

αj
U← ℤN , rj U← ℤm2

N and R3 U← 𝔾m1
p3 . It computes the sf-type 3 key as

SKxj := gkxj (α,rj ,h) ⋅ (W2W3)kxj (α

j ,0,0) ⋅ R3.

It implicitly sets ̂αj := w2αj , whereW2W3 = gw2
2 gw3

3 . So SKxj is a properly distributed sf-type 3 key.
– If j = k, then it is either a normal or an sf-type 1 key, and B runs (kxk ,m2)← Enc1(xk , N) with
|kxk | = m1 and picks rk , ̂r

k

U← ℤm2
N and R3 U← 𝔾m1

p3 . It generates the following SKxj using Tβ of the
instance of DSG2:

SKxk := gkxk (α,r

k ,h) ⋅ Tkxk (0, ̂r

k ,h)

β ⋅ R3.

It implicitly sets gt1 := Tβ|𝔾p1 and, for β = 1, g
t2
2 := Tβ|𝔾p2 . Then, by linearity of P, we have

gkxk (α,r

k ,h) ⋅ gt1kxk (0, ̂r

k ,h) = gkxk (α,r

k+t1 ̂r

k ,h) and gt2kxk (0, ̂r

k ,h)

2 = gkxk (0,t2 ̂r

k ,ĥ)

2 .

It implicitly sets rk := rk + t1 ̂r

k and ̂rk := t2 ̂r

k. Since r

k and ̂r

k are chosen uniformly and indepen-

dently from ℤm2
N , then so are rk and ̂rk. Therefore, SKxk is a perfectly distributed normal (resp.

sf-type 1) key if β = 0 (resp. β = 1).
∙ Sign(m, x, y) returns ⊥ if x ≁ y. This is a query for a normal signature, andB can answer the query ofA

asMSK is known to it.

Forgery. A outputs a signature δy∗ for (m∗, y∗). Then B prepares a vText for (m∗, y∗) as follows: It com-
putes ℏ∗ := H(m∗, y∗), runs (cy∗ , ω2)← Enc2(y∗, N) with |cy∗ | = ω1 and sets cMy∗ := (c0, cy∗), then picks

M. Nandi and T. Pandit, Predicate signatures from pair encodings | 223

s := (s0, . . . , sω2)
U← ℤω2+1

N . Finally, it computes

V := (VINT := e(gα , Z1Z2)s

0 , Vy∗ := (Z1Z2)c

M
y∗ (s

 ,hM)).

It returns 1 if e(δy∗ ,Vy∗) = VINT, else 0.

Analysis. We will show that all the objects are perfectly distributed as required. Let Z1Z2 = gz1gz22 . Then, by
linearity of P, we have

gz1c
M
y∗ (s

 ,hM) = gc
M
y∗ (z1s

 ,hM) and gz2c
M
y∗ (s

 ,hM)
2 = g c

M
y∗ (z2s

 ,ĥM)
2 .

The algorithm B implicitly sets s := z1s mod p1 and ̂s := z2s mod p2. By CRT, s mod p1 is independent
from s mod p2, and therefore s and ̂s are perfectly distributed as required. Altogether, we have that the joint
distribution of all the objects simulated byB is identical to that of Game1-(k−1)-3 if β = 0, else Game1-k-1.

Lemma A.4. Game1-k-1 and Game1-k-2 are indistinguishable under the CMH security of primitive pair encoding
scheme P. That is, for every adversary A , there exists a PPT algorithm B such that

|Adv1-k-1A ,PS(κ) − Adv
1-k-2
A ,PS(κ)| ≤ Adv

CMH
B,P (κ) for 1 ≤ k ≤ ν1.

Proof. Suppose A can distinguish Game1-k-1 and Game1-k-2 with non-negligible probability. Then we will
construct a PPT simulator B for breaking the CMH security of P with the same probability.

Setup. The challenger CH of P gives (g, g2, g3) ∈ 𝔾p1 ×𝔾p2 ×𝔾p3 to B. Then B chooses α, θ1, θ2 U← ℤN ,
h U← ℤnN and sets hM := (θ1, θ2, h). Let H : {0, 1}∗ → ℤN be a hash function. Then it provides

PP := (J, g, ghM , gαT := e(g, g)
α , Z3 := g3, H)

to A and keepsMSK := (α) and g2 to itself.

Query phase. This consists of the following queries in adaptive manner:
∙ KeyGen(x): Let xj be the j-th query key index. The algorithm B answers the key SKxj as follows:

– If j > k, then B runs the KeyGen algorithm and gives the normal key to A .
– If j < k, then it is an sf-type 3 key. Using PP,MSK and g2, B can generate the required key.
– If j = k, then it is either an sf-type 1 or an sf-type 2 key, and B runs (kxk ,m2)← Enc1(xk , N) with
|kxk | = m1 and picks rk U← ℤm2

N and R3 U← 𝔾m1
p3 . It makes a query with xk to CH. Let T := gkxk (β, ̂rk ,ĥ)2

be the reply, where β = 0 or a random element fromℤN . Then B returns the following key to A :

SKxk := gkxk (α,rk ,h) ⋅ T ⋅ R3.

Therefore, SKxj is a perfectly distributed sf-type 1 key if β = 0, else sf-type 2.
∙ Sign(m, x, y) returns ⊥ if x ≁ y. This is a query for a normal signature, andB can answer the query ofA

asMSK is known to it.

Forgery. A outputs a signature δy∗ for (m∗, y∗). Then B prepares a vText for (m∗, y∗) as follows: It com-
putes ℏ∗ := H(m∗, y∗), runs (cy∗ , ω2)← Enc2(y∗, N) with |cy∗ | = ω1 and sets cMy∗ := (c0, cy∗), then picks
s := (s0, . . . , sω2)

U← ℤω2+1
N . Then it makes a query with y∗ to CH. Let D := gcy∗ (̂s,ĥ)2 be the reply. Finally, it

computes a vText as

V := (VINT := e(g, g)αs0 , Vy∗ := gc
M
y∗ (s,hM) ⋅ gc

M
y∗ (̂s,ĥM)
2), where gc

M
y∗ (̂s,ĥM)
2 := (g ̂s(θ1ℏ

∗+θ2)
2 , D).

It returns 1 if e(δy∗ ,Vy∗) = VINT, else 0.

Analysis.
∙ Correctness. B follows the restriction of the CMH security game (while interacting with CH) as long as

A does so in the unforgeability game with B. In fact, by natural restriction, for all key queries x made
by A , we have x ≁p2 y∗, in particular, for the k-th query, xk ≁p2 y∗. Therefore, B does not violate the
restriction of the CMH security game with CH.

224 | M. Nandi and T. Pandit, Predicate signatures from pair encodings

∙ Perfectness. By the assumption cy∗ ,1(̂s, ĥ) = ̂s0, the first component of D is g ̂s02 . So the first component
of gc

M
y∗ (̂s,ĥM)
2 can be computed as g ̂s0(θ1ℏ∗+θ2)2 = (g ̂s02)θ1ℏ

∗+θ2 . The algorithm B implicitly sets

(̂θ1, ̂θ2) := (θ1, θ2) mod p2.

By CRT, (̂θ1, ̂θ2) is independent from (θ1, θ2) mod p1, and therefore V is a perfectly distributed sf-type 1
vText. Altogether, we have that the joint distribution of all the objects simulated byB is identical to that
of Game1-k-1 if β = 0, else Game1-k-2.

Lemma A.5. Game1-k-2 and Game1-k-3 are indistinguishable under DSG2 assumption. That is, for every adver-
sary A , there exists a PPT algorithm B such that

|Adv1-k-2A ,PS(κ) − Adv
1-k-3
A ,PS(κ)| ≤ Adv

DSG2
B (κ) for 1 ≤ k ≤ ν1.

Proof. We establish a PPT simulator B which receives an instance of DSG2, (J, g, Z1Z2,W2W3, Z3, Tβ)with
β U← {0, 1}, and depending on the distribution of β, it simulates either Game1-k-2 or Game1-k-3. The description
of the simulation is the same as that of Lemma A.3 except for answering the k-th key query. Below, we only
describe the simulation of the k-th query.

The k-th key is either sf-type 2 or sf-type 3. The algorithmB runs (kxk ,m2)← Enc1(xk , N)with |kxk | = m1
and picks rk , ̂r

k

U← ℤm2
N and R3 U← 𝔾m1

p3 . It generates the following SKxk using Tβ of the instance of DSG2:

SKxk := gkxk (α,r

k ,h) ⋅ (W2W3)kxk (α

k ,0,0) ⋅ Tkxj (0, ̂r

k ,h)β ⋅ R3.

If W2W3 = gw2
2 gw3

3 and Tβ = gt1gt22 g
t3
3 (for β = 1), then B implicitly sets ̂αk := w2αk, rk := r

k + t1 ̂r

k and

̂rk := t2 ̂rk. Note that here we use the linearity and param-vanishing properties of the pair encoding P. Since
rk and ̂rk are chosen uniformly and independently from ℤm2

N , then so are rk and ̂rk. Therefore, SKxk is
a perfectly distributed sf-type 2 (resp. sf-type 3) key if β = 1 (resp. β = 0).

Lemma A.6. Game2-(k−1)-2 and Game2-k-1 are indistinguishable under DSG2 assumption and the collision-
resistant property of H. That is, for every adversary A , there exists a PPT algorithm B such that

|Adv2-(k−1)-2A ,PS (κ) − Adv
2-k-1
A ,PS(κ)| ≤ Adv

DSG2
B (κ) + Adv

CRH
B (κ) for 1 ≤ k ≤ ν2.

Proof. We establish a PPT simulator B which receives an instance of DSG2, (J, g, Z1Z2,W2W3, Z3, Tβ) with
β U← {0, 1}, and depending on the distribution of β, it simulates either Game2-(k−1)-2 or Game2-k-1.

Setup. This is the same as for Lemma A.3.

Query phase. This consists of the following queries in adaptive manner:
∙ KeyGen(x): Here all the keys are of sf-type 3, and the simulation of the keys is the same as that of the

sf-type 3 keys of Lemma A.3.
∙ Sign(m, x, y) returns ⊥ if x ≁ y. Let (mj , xj , yj) be the j-th signature query made by A . Then B answers

the signature δyj as follows:
– If j > k, it is a normal signature, and B can answer the queries of A asMSK is known to it.
– If j < k, it is an sf-type 2 signature, and B first computes the normal signature δyj , picks ιj

U← ℤN
and then returns

δ̃yj := δyj ⋅ (W2W3)
(0,ιj ,0,...,0).

IfW2W3 = gw2
2 gw3

3 , then B implicitly sets ιj := w2ιj . So δ̃yj is a properly distributed sf-type 2 signa-
ture.

– If j = k, it is either a normal signature or an sf-type 1 signature. ThenB runs (kxk ,m2)← Enc1(xk , N)
and Pair(xk , yk)→ E ∈ ℤm1×ω1

N and picks vsp U← (VM)⊥, r U← ℤm2
N and R3 U← 𝔾ω1+1

p3 . It computes
ℏk := H(mk , yk) and then returns the signature

δyk := g(0,kxk (α,r,h)E) ⋅ gvsp ⋅ T
(−1,0,...,0)
β ⋅ T(0,θ1ℏk+θ2 ,...,0)β ⋅ R3.

Let gτ := Tβ|𝔾p1 and, for β = 1, g
t2
2 := Tβ|𝔾p2 . Then the𝔾p1 component of δyk can bewritten as gv+vsp ,

where v := (−τ,ψ + kxk (α, r, h)E) and ψ := (τ(θ1ℏk + θ2), 0, . . . , 0). If β = 1, the 𝔾p2 component

M. Nandi and T. Pandit, Predicate signatures from pair encodings | 225

of δyk is expressed as g ̂v2, where B implicitly sets b := −t2 mod p2 and ι := t2(θ1ℏk + θ2) mod p2.
Since θ1ℏk + θ2 mod p1 is independent from θ1ℏk + θ2 mod p2 by CRT, therefore δyk is a perfectly
distributed signature unless some correlation with vText is found later.

Forgery. A outputs a signature δy∗ for (m∗, y∗). Then B prepares a vText for (m∗, y∗) as follows: It com-
putes ℏ∗ := H(m∗, y∗), runs (cy∗ , ω2)← Enc2(y∗, N) with |cy∗ | = ω1 and sets cMy∗ := (c0, cy∗), then picks
s := (s0, . . . , sω2)

U← ℤω2+1
N . It computes a vText as

V := (VINT := e(gα , Z1Z2)s

0 , Vy∗ := (Z1Z2)c

M
y∗ (s

 ,hM)).

It returns 1 if e(δy∗ ,Vy∗) = VINT, else 0.

Analysis. Now we mainly concentrate on the joint distribution of the k-th signature and vText as there may
be a correlation between them. More precisely, we observe the distributional relation between

c∗0(̂s0, θ̂) := ̂s0(̂θ1ℏ∗ + ̂θ2) := ̃s0(θ1ℏ∗ + θ2) mod p2 and cy∗ ,1(̂s, ĥ) := ̂s0 := ̃s0 mod p2

with ̃s0 := z1s0 involved in cMy∗ (̂s, ĥM) of vText. Unfortunately, a similar kind of relation is found in ̂v, viz.,
between b := −t2 mod p2 and ι := t2(θ1ℏj + θ2) mod p2. But that correlation does not hamper our life: since
H has collision resistant property and (mj , yj) ̸= (m∗, y∗), we have ℏj ̸= ℏ∗. By applying the argument of [26],
we have that θ1ℏj + θ2 and θ1ℏ∗ + θ2 are independently and uniformly distributed⁷ over ℤp2 . Therefore,
(̃s0, ̃s0(θ1ℏ∗ + θ2)) mod p2 is uncorrelated from (b, ι). Altogether, we have that the joint distribution of all
the objects simulated by B is identical to that of Game2-(k−1)-2 if β = 0 else Game2-k-1.

Lemma A.7. Game2-k-1 and Game2-k-2 are indistinguishable under DSG2 assumption. That is, for every adver-
sary A , there exists a PPT algorithm B such that

|Adv2-k-1A ,PS(κ) − Adv
2-k-2
A ,PS(κ)| ≤ Adv

DSG2
B (κ) for 1 ≤ k ≤ ν2.

Proof. We establish a PPT simulator B which receives an instance of DSG2, (J, g, Z1Z2,W2W3, Z3, Tβ) with
β U← {0, 1}, and depending on the distribution of β, it simulates either Game2-k-1 or Game2-k-2. The simulation
is similar to that of Lemma A.6 except for answering k-th signature query. Note that, in this case, we do not
require the collision-resistant property of H. We only illustrate here the k-th signature. The k-th signature is
either of sf-type 1 or sf-type 2. The algorithmB runs (kxk ,m2)← Enc1(xk , N) and Pair(xk , yk)→ E ∈ ℤm1×ω1

N ,
picks ιk

U← ℤN , vsp U← (VM)⊥, r U← ℤm2
N and R3 U← 𝔾ω1+1

p3 . It computes ℏk := H(mk , yk) and then returns the
signature as

δyk := g(0,kxk (α,r,h)E) ⋅ gvsp ⋅ T
(−1,0,...,0)
β ⋅ T(0,θ1ℏk+θ2 ,...,0)β ⋅ (W2W3)(0,ι

k ,0,...,0) ⋅ R3.

Let W2W3 = gw2
2 gw3

3 . Let gτ := Tβ|𝔾p1 and, for β = 1, g
t2
2 := Tβ|𝔾p2 . Then the 𝔾p1 component of δyk can

be written as gv+vsp , where v := (−τ,ψ + kxk (α, r, h)E) and ψ := (τ(θ1ℏk + θ2), 0, . . . , 0). If β = 1 (resp.
β = 0), the 𝔾p2 component of δyk is expressed as g ̂v2 with ̂v := (b, ι, 0, . . . , 0) ∈ ℤ

ω1+1
N , where B implicitly

sets b := −t2 mod p2 (resp. b := 0 mod p2) and ι := t2(θ1ℏk + θ2) + w2ιk mod p2 (resp. ι := w2ιk mod p2).
Therefore, δyk is a perfectly distributed sf-type 1 (resp. sf-type 2) signature if β = 1 (resp. β = 0).

Lemma A.8. Game2-ν2-2 and GameFinal are indistinguishable under DSG3 assumption. That is, for every adver-
sary A , there exists a PPT algorithm B such that

|Adv2-ν2-2A ,PS (κ) − Adv
Final
A ,PS(κ)| ≤ Adv

DSG3
B (κ).

Proof. We establish a PPT simulator B which receives an instance of DSG1, (J, g, gαY2, gs0W2, g2, Z3, Tβ)
with β U← {0, 1}, and depending on the distribution of β, it simulates either Game2-ν2-2 or GameFinal.

7 To apply [26], we require that ℏj − ℏ∗ ̸= 0 mod p2. From ℏj − ℏ∗ ̸= 0 mod N, we have ℏj − ℏ∗ ̸= 0 mod p for at least one p such
that p ∈ {p1 , p2 , p3}. One can show that ℏj − ℏ∗ ̸= 0 mod p for all p with p ∈ {p1 , p2 , p3} assuming the factorization problem is
hard. However, if ℏj − ℏ∗ = 0 mod p2, we can find a factor F of N with p2 | F and which leads to breaking the DSG2 assumption,
a contradiction.

226 | M. Nandi and T. Pandit, Predicate signatures from pair encodings

Setup. B chooses θ1, θ2 U← ℤN , h U← ℤnN and sets hM := (θ1, θ2, h). Let H : {0, 1}∗ → ℤN be a hash function.
Then it providesPP := (J, g, ghM , gαT := e(g, gαY2), Z3, H) toA and implicitly sets ĥM := hM mod p2. By CRT,
ĥM is independent from hM mod p1, so ĥM is perfectly distributed.

Query phase. This consists of the following queries in adaptive manner:
∙ KeyGen(x): It is an sf-type 3 key. The algorithmB runs (kx ,m2)← Enc1(x), thenpicks r U← ℤm2

N , ̂α U← ℤN
and R3 U← 𝔾m1

p3 . Finally, it returns

SKx := (gαY2)kx(1,0,0) ⋅ gkx(0,r,h) ⋅ gkx(
̂α ,0,0)

2 ⋅ R3.

If Y2 = gy22 , then B implicitly sets ̂α := y2 + ̂α mod p2, so SKx is a perfectly distributed sf-type 3 key.
∙ Sign(m, x, y) returns ⊥ if x ≁ y. This is a query for an sf-type 2 signature. As above, B first creates

the sf-type 3 key SKx := (x, Kx := gkx(α,r,h) ⋅ gkx(
̂α,0,0)

2 ⋅ R3), and then, using SKx, it can compute the
sf-type 2 signature δy as follows: It computes δy := (g−τ ,Ψ ⋅ KEx) ⋅ gvsp ⋅ g(0,ι

 ,0,...,0)
2 ⋅ R̃3 ∈ 𝔾ω1+1, where

τ, ι U← ℤN , R̃3 U← 𝔾ω1+1
p3 , Ψ := gψ with ψ := (τ(θ1ℏ + θ2), 0, . . . , 0) ∈ ℤω1

N , ℏ := H(Ccpa), vsp U← (VM)⊥

and E ← Pair(x, y).

δy|𝔾p2 = (g
0
2, g

kx(̂α,0,0)E
2) ⋅ g(0,ι

 ,0,...,0)
2

= (g02, g
(∗,0,...,0)
2) ⋅ g(0,ι

 ,0,...,0)
2 (by Conditions 3.1 (2))

= g(0,ι,0,...,0)2 (where ι := ∗ ⋅ ι).

This shows that δy is a perfectly distributed sf-type 2 signature.

Forgery. A outputs a signature δy∗ for (m∗, y∗). Then B prepares a vText for (m∗, y∗) as follows: It com-
putes ℏ∗ := H(m∗, y∗), runs (cy∗ , ω2)← Enc2(y∗, N) with |cy∗ | = ω1 and sets cMy∗ := (c0, cy∗), then picks
(s1, . . . , sω2)

U← ℤω2
N and sets s := (1, s1, . . . , sω2) ∈ ℤ

ω2+1
N . Finally, it computes a vText as

V := (VINT := Tβ , Vy∗ := (gs0W2)c
M
y∗ (s

 ,hM)).

It returns 1 if e(δy∗ ,Vy∗) = VINT, else 0.
The algorithm B implicitly sets s := s0s mod p1 and ̂s := s0s mod p2. By CRT, s mod p1 is indepen-

dent from s mod p2, so s and ̂s are perfectly distributed as required. Therefore, V is a perfectly distributed
sf-type 1 vText if β = 0, else sf-type 2.

Analysis. All the components simulated above are perfectly distributed as required. Therefore, the joint
distribution of all the objects simulated by B is identical to that of Game2-ν2-2 if β = 0, else GameFinal.

References
[1] N. Attrapadung, Dual system encryption via doubly selective security: Framework, fully secure functional encryption for

regular languages, and more, in: Advances in cryptology—EUROCRYPT 2014, Lecture Notes in Comput. Sci. 8441, Springer,
Heidelberg (2014), 557–577.

[2] N. Attrapadung, Dual system encryption framework in prime-order groups, Cryptology ePrint Archive (2015),
https://eprint.iacr.org/2015/390.pdf.

[3] N. Attrapadung, G. Hanaoka and S. Yamada, Conversions among several classes of predicate encryption and applications
to ABE with various compactness tradeoffs, in: Advances in Cryptology—ASIACRYPT 2015. Part I, Lecture Notes in Comput.
Sci. 9452, Springer, Heidelberg (2015), 575–601.

[4] N. Attrapadung and B. Libert, Functional encryption for inner product: Achieving constant-size ciphertexts with adaptive
security or support for negation, in: Public Key Cryptography—PKC 2010, Lecture Notes in Comput. Sci. 6056, Springer,
Berlin (2010), 384–402.

[5] N. Attrapadung and S. Yamada, Duality in ABE: converting attribute based encryption for dual predicate and dual policy via
computational encodings, in: Topics in Cryptology—CT-RSA 2015, Lecture Notes in Comput. Sci. 9048, Springer, Cham
(2015), 87–105.

[6] M. Bellare and G. Fuchsbauer, Policy-based signatures, in: Public-key Cryptography—PKC 2014, Lecture Notes in Comput.
Sci. 8383, Springer, Heidelberg (2014), 520–537.

https://eprint.iacr.org/2015/390.pdf

M. Nandi and T. Pandit, Predicate signatures from pair encodings | 227

[7] J. Blömer and G. Liske, Construction of fully CCA-secure predicate encryptions from pair encoding schemes, in: Topics in
Cryptology—CT-RSA 2016, Lecture Notes in Comput. Sci. 9610, Springer, Cham (2016), 431–447.

[8] D. Boneh and X. Boyen, Efficient selective-ID secure identity-based encryption without random oracles, in: Advances in
Cryptology—EUROCRYPT 2004, Lecture Notes in Comput. Sci. 3027, Springer, Berlin (2004), 223–238.

[9] D. Boneh and X. Boyen, Secure identity based encryption without random oracles, in: Advances in Cryptology—CRYPTO
2004, Lecture Notes in Comput. Sci. 3152, Springer, Berlin (2004), 443–459.

[10] D. Boneh, E.-J. Goh and K. Nissim, Evaluating 2-DNF formulas on ciphertexts, in: Theory of Cryptography, Lecture Notes in
Comput. Sci. 3378, Springer, Berlin (2005), 325–341.

[11] D. Boneh, A. Sahai and B. Waters, Functional encryption: Definitions and challenges, in: Theory of Cryptography, Lecture
Notes in Comput. Sci. 6597, Springer, Heidelberg (2011), 253–273.

[12] X. Boyen, Mesh signatures: How to leak a secret with unwitting and unwilling participants, in: Advances in
Cryptology—EUROCRYPT 2007, Lecture Notes in Comput. Sci. 4515, Springer, Berlin (2007), 210–227.

[13] E. Boyle, S. Goldwasser and I. Ivan, Functional signatures and pseudorandom functions, in: Public-key Cryptography—PKC
2014, Lecture Notes in Comput. Sci. 8383, Springer, Heidelberg (2014), 501–519.

[14] S. Chatterjee, S. Mukherjee and T. Pandit, CCA-secure predicate encryption from pair encoding in prime order groups:
Generic and efficient, in: Progress in Cryptology—INDOCRYPT 2017, Lecture Notes in Comput. Sci. 10698, Springer, Cham
(2017), 85–106.

[15] D. Chaum and E. van Heyst, Group signatures, in: Advances in Cryptology—EUROCRYPT ’91volume, Lecture Notes in
Comput. Sci. 547, Springer, Berlin (1991), 257–265.

[16] J. Chen, R. Gay and H. Wee, Improved dual system ABE in prime-order groups via predicate encodings, in: Advances in
Cryptology—EUROCRYPT 2015. Part II, Lecture Notes in Comput. Sci. 9057, Springer, Heidelberg (2015), 595–624.

[17] J. Chen and H. Wee, Doubly spatial encryption from DBDH, Theoret. Comput. Sci. 543 (2014), 79–89.
[18] P. Erdős, P. Frankl and Z. Füredi, Families of finite sets in which no set is covered by the union of r others, Israel J. Math. 51

(1985), no. 1–2, 79–89.
[19] A. Escala, J. Herranz and P. Morillo, Revocable attribute-based signatures with adaptive security in the standard model, in:

Progress in Cryptology—AFRICACRYPT 2011, Lecture Notes in Comput. Sci. 6737, Springer, Heidelberg (2011), 224–241.
[20] J. Groth, R. Ostrovsky and A. Sahai, New techniques for noninteractive zero-knowledge, J. ACM 59 (2012), no. 3, Article ID

11.
[21] J. Groth and A. Sahai, Efficient non-interactive proof systems for bilinear groups, in: Advances in Cryptology—EUROCRYPT

2008, Lecture Notes in Comput. Sci. 4965, Springer, Berlin (2008), 415–432.
[22] M. Hamburg, Spatial encryption, Cryptology ePrint Archive (2011), https://eprint.iacr.org/2011/389.pdf.
[23] K. Hoffman and R. Kunze, Linear Algebra, Prentice-Hall Math. Ser., Prentice-Hall, Englewood Cliffs, 1961.
[24] R. Kumar, S. Rajagopalan and A. Sahai, Coding constructions for blacklisting problems without computational

assumptions, in: Advances in Cryptology—CRYPTO’ 99, Lecture Notes in Comput. Sci. 1666, Springer, Berlin (1999),
609–623.

[25] A. Lewko, T. Okamoto, A. Sahai, K. Takashima and B. Waters, Fully secure functional encryption: Attribute-based
encryption and (hierarchical) inner product encryption, in: Advances in Cryptology—EUROCRYPT 2010, Lecture Notes in
Comput. Sci. 6110, Springer, Berlin (2010), 62–91.

[26] A. Lewko and B. Waters, New techniques for dual system encryption and fully secure HIBE with short ciphertexts, in:
Theory of Cryptography, Lecture Notes in Comput. Sci. 5978, Springer, Berlin (2010), 455–479.

[27] J. Li, M. H. Au, W. Susilo, D. Xie and K. Ren, Attribute-based signature and its applications, in: ACM Conference on Computer
and Communications Security, ACM, New York (2010), 60–69.

[28] H. Maji, M. Prabhakaran and M. Rosulek, Attribute-based signatures: Achieving attribute-privacy and collusion-resistance,
Cryptology ePrint Archive (2008), http://eprint.iacr.org/2008/328.

[29] H. K. Maji, M. Prabhakaran and M. Rosulek, Attribute-based signatures, in: Topics in Cryptology—CT-RSA 2011, Lecture
Notes in Comput. Sci. 6558, Springer, Heidelberg (2011), 376–392.

[30] T. Okamoto and K. Takashima, Hierarchical predicate encryption for inner-products, in: Advances in
Cryptology—ASIACRYPT 2009, Lecture Notes in Comput. Sci. 5912, Springer, Berlin (2009), 214–231.

[31] T. Okamoto and K. Takashima, Efficient attribute-based signatures for non-monotone predicates in the standard model, in:
Public Key Cryptography—PKC 2011, Lecture Notes in Comput. Sci. 6571, Springer, Heidelberg (2011), 35–52.

[32] T. Okamoto and K. Takashima, Decentralized attribute-based signatures, in: Public-Key Cryptography—PKC 2013, Lecture
Notes in Comput. Sci. 7778, Springer, Berlin (2013), 125–142.

[33] T. Pandit, S. K. Pandey and R. Barua, Attribute-based signcryption: Signer privacy, strong unforgeability and IND-CCA2
security in adaptive-predicates attack, in: Provable security, Lecture Notes in Comput. Sci. 8782, Springer, Cham (2014),
274–290.

[34] Y. Sakai, N. Attrapadung and G. Hanaoka, Attribute-based signatures for circuits from bilinear map, in: Public-key
Cryptography—PKC 2016. Part I, Lecture Notes in Comput. Sci. 9614, Springer, Cham (2016), 283–300.

[35] S. F. Shahandashti and R. Safavi-Naini, Threshold attribute-based signatures and their application to anonymous
credential systems, in: Progress in Cryptology—AFRICACRYPT 2009, Lecture Notes in Comput. Sci. 5580, Springer, Berlin
(2009), 198–216.

https://eprint.iacr.org/2011/389.pdf
 http://eprint.iacr.org/2008/328

228 | M. Nandi and T. Pandit, Predicate signatures from pair encodings

[36] G. Shaniqng and Z. Yingpei, Attribute-based signature scheme, in: International Conference on Information Security and
Assurance–ISA 2008, IEEE Press, Piscataway (2008), 509–511.

[37] B. Waters, Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions, in: Advances in
Cryptology—CRYPTO 2009, Lecture Notes in Comput. Sci. 5677, Springer, Berlin (2009), 619–636.

[38] B. Waters, Functional encryption for regular languages, in: Advances in Cryptology—CRYPTO 2012, Lecture Notes in
Comput. Sci. 7417, Springer, Heidelberg (2012), 218–235.

[39] H. Wee, Dual system encryption via predicate encodings, in: Theory of Cryptography, Lecture Notes in Comput. Sci. 8349,
Springer, Heidelberg (2014), 616–637.

[40] P. Yang, Z. Cao and X. Dong, Fuzzy identity based signature, Cryptology ePrint Archive (2008),
https://eprint.iacr.org/2008/002.pdf.

https://eprint.iacr.org/2008/002.pdf

	Predicate signatures from pair encodings via dual system proof technique
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Composite order bilinear groups
	2.3 Hardness assumptions in composite order bilinear groups
	2.4 Some results of linear algebra
	2.5 Predicate family
	2.6 Predicate signature
	2.7 Security of predicate signature
	2.8 Pair encoding scheme
	2.9 Security of pair encoding scheme

	3 Framework for predicate signature
	3.1 Natural requirements on pair encodings
	3.2 Dual conversion of pair encodings
	3.3 Predicate signature from pair encoding scheme
	3.4 How to uniformly sample from $(\mathbf{V}_{\mathrmM})^{\perp}$

	4 Security proof of the proposed predicate signature
	4.1 Signer privacy
	4.2 The proof of adaptive unforgeability

	5 Instantiations of predicate signature
	6 Conclusion
	A Lemmas used in the proof of Theorem 4.2

