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Abstract: A method for shock capturing by adaptive filtering for use with high-resolution, high-order
schemes for Large Eddy Simulations (LES) is presented. The LES method used in all the examples
here employs the Explicit Filtering approach and the spatial derivatives are obtained with sixth-order,
compact, finite differences. The adaptation is to drop the order of the explicit filter to two at gridpoints
where a shock is detected, and to then increase the order from 2 to 10 in steps at successive gridpoints
away from the shock. The method is found to be effective in a series of tests of common inviscid
1D and 2D problems of shock propagation and propagation of waves through shocks. As a prelude
to LES, the 3D Taylor–Green problem for the inviscid and a finite viscosity case were simulated.
An assessment of the overall performance of the method for LES was carried out by simulating an
underexpanded round jet at a Reynolds number of 6.09 million, based in centerline velocity and
diameter at nozzle exit plane. Very close quantitative agreement was found for the development of
centerline mean pressure when compared to experiment. Simulations on several increasingly finer
grids showed a monotonic extension of the computed part of the inertial range, with little change
to low frequency content. Amplitudes and locations of large changes in pressure through several
cells were captured accurately. A similar performance was observed for LES of an impinging jet
containing normal and curved shocks.
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1. Introduction

Large eddy simulation (LES) has now become a widely-used technique. The greater expense
in computing resources and time is justified when it provides accurate solutions, especially when
the more common RANS (Reynolds-averaged Navier–Stokes) methods yield qualitatively incorrect
solutions. From this general experience, practitioners have come to rely on their own set of
procedures—combinations of numerical method and sub-grid-scale (SGS) model—that they have
found to be reliable and accurate. Thus, several models co-exist, including the explicit filtering method.
This paper concerns a proposal to extend explicit filtering to compressible flows with shocks by filter
adaptation. Our results, from a sequence of elementary problems leading to a general turbulent flow
of an underexpanded jet, reveals its excellent potential.

A recent review of methods for direct numerical simulation (DNS) and LES of compressible flows
with shocks was provided by Pirozzoli [1]. There have been many efforts to devise methods that could
handle shocks in inviscid flows—to incorporate procedures or terms to obtain correctly the jumps
across shocks, and suppress oscillations at these jumps to avoid instability. The successes have carried
over to RANS computations as well. However, specific assessments of shock-capturing methods for
DNS/LES are far fewer, even though methods found to be successful for inviscid flows have been
employed for DNS/LES. Pirozzoli [1] noted that such methods “exhibit excessive numerical viscosity”
when combined with high-order methods designed for DNS/LES of smooth flows, and suggests that
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an optimal hybrid is needed for DNS/LES of flows with shocks. Typical hybrid schemes switch to
a shock-capturing scheme where indicated by a shock sensor, and over a small set of neighboring
gridpoints. Some examples are studies that employed a sixth-order compact scheme switching to
sixth-order essentially non-oscillatory (ENO) near the shock [2], compact upwind with fifth-order
ENO [3], and a fifth-order compact upwind with seventh-order weighted essentially non-oscillatory
(WENO) [4]. An alternative to discontinuous switching is to apply the same discretization scheme
with a continuously variable coefficient that adds artificial dissipation near shocks and nearly vanishes
in smooth regions [5]. Cook and Cabot [6,7] proposed an artificial stress tensor with both shear and
bulk viscosity. The generalization is to use artificial thermal conductivity and species diffusivity as
well [8]. It was observed that artificial bulk viscosity provided shock capturing without affecting the
vorticity field, but artificial shear viscosity damped vortical fluctuations. These artificial properties
were scaled with high-order derivatives of the flow field and are therefore continuous, but rapidly
changing, functions. Artificial diffusivity may also be suitable for dealing with other types of large
derivatives (e.g., mixing of fluids with large density differences) [9].

A recent examination of these several approaches by Johnsen et al. [10] did not find any of
the methods to be completely satisfactory: WENO provides sharp shocks but overwhelms physical
dissipation; artificial viscosity works well when shocks are not too close to each other, but can be
excessive when there are multiple shocks in the turbulent flow; and all methods exhibit post-shock
oscillations. It would thus appear that there is still a need to study variants and other strategies that
may yield reliable and accurate solutions. In this paper, we present studies with adaptive filtering.
It is a natural extension for the explicit filtering approach of Mathew et al. [11] because spatial,
low-pass filtering of transported fields after every time-step is an indispensable part of this LES
method. The extension is to change the filter-order alone in the vicinity of shocks. An advantage
is that there is no discontinuity due to switching numerical schemes since the same scheme is used.
Visbal and Gaitonde [12] examined this strategy. They compared results of two proposals against a
standard. In one, a 10th-order filter was applied at gridpoints away from shocks, while at the shock
and at adjacent (buffer) points the filter formula was dropped to second order, but with a very high
filter cutoff. At successive gridpoints away from the shock, filter order increased in steps to 10th order.
In the second method, the Roe scheme was applied at cells spanning the shock and adjacent ones.
Test cases included 1D and 2D inviscid flows and shock reflection from a laminar boundary layer.
They found that their adaptive filter method provided a significant improvement—oscillation-free
solution—over their baseline filter-stabilized compact scheme, but shocks were smeared over a few
cells; the hybrid compact-Roe scheme gave sharper shocks.

To the best of our knowledge, no further studies or applications of this technique have appeared.
However, the method is appealing for its simplicity and minimal overhead, thus seemed worth
re-visiting. Although the study reported here also employed filter-order adaptation, the adaptation
stencil is different. Here, as explained in Section 2.2, the lowest order filter was applied at only
one adjacent buffer point; adaptation in a direction was selected only when the angle between the
coordinate direction and the normal to the shock was not too large. Results from tests with usual
problems for shock capturing, and LES of two turbulent jets with multiple shock cells show much
promise. A possible criticism of this method is that the filtering seems to be ad hoc—none of filter type,
shape, or filter cut-off was obtained by some kind of optimization. We argue below that optimization
to arrive at the best filter is possible, but perhaps not essential.

Filter adaptation was tested in Bogey and Bailly [13] as well. Near shocks, they applied an
optimized, explicit second-order filter whose filter response function lies between those of standard
second- and fourth-order explicit filters. They varied the extent of the region where the lower-order
filter was applied. Test cases of 1D and 2D inviscid flows were presented.

In the following, first, we discuss the basic numerical method (sixth-order, Hixon–Turkel split
compact scheme for spatial derivatives, and fourth-order Runge–Kutta for time-stepping) and the
proposal for filter adaptation. Then, results of a sequence of 1D and 2D inviscid test cases are presented,
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followed by those for the Taylor–Green problem, and LES of underexpanded, free and impinging,
round jets. The five inviscid test cases reveal accurate evolution of the flow and crisp shock-capturing.
Quantitative errors are at least as small as other recent strategies. The Taylor–Green problem is
included to record the correctness of the code for viscous flows that develop a wide range of scales,
as well as the effectiveness as LES for the inviscid case. With these elements of flows completed,
we turned to LES of supersonic jets at Reynolds numbers of O(106) (based on jet diameter and jet
velocity at the nozzle exit). These are representative of applications where LES is needed since DNS
is prohibitive. With the free underexpanded jet, which develops a series of shock cells, we observed
close quantitative agreement with measured centerline pressure on a grid of about nine million points.
By simulating on successively larger grids, up to 200 million points, we observed the extension of the
computed part of the inertial range, with little change to low frequency content. The present proposal
for shock capturing by adaptive filtering showed no discernible adverse effects on the development
over several shock cells. The second LES of an impinging jet provides further support for the method
as a suitable approach for applications.

2. Numerical Method

The governing equations for compressible flow were cast in the strong conservation form

∂Û
∂t

+
∂F̂
∂ξ

+
∂Ĝ
∂η

+
∂Ĥ
∂ζ

= 0, (1)

in a curvilinear coordinate system (ξ, η, ζ). Here, Û = U/J, and U = (ρ, ρu, ρv, ρw, E) is the vector
of conserved variables with density ρ, Cartesian velocity components (u, v, w), and energy E =

p/(γ− 1)+ ρ(u2 + v2 +w2)/2; p is the pressure; and γ is the specific heat ratio. J = ∂(ξ, η, ζ)/∂(x, y, z)
is the Jacobian of the transformation between Cartesian and curvilinear coordinate systems. F̂,Ĝ, and Ĥ
include inviscid and viscous fluxes (see, for example, Tannehill et al. [14]). The fluid is Newtonian,
with viscosity as per Sutherland’s law, Fourier’s law for conduction applies, the Prandtl number is 0.7,
γ = 1.4, and specific heat cp = 1.005.

LES Model

The explicit filtering approach of Mathew et al. [11] was used for the LES presented here.
The essential requirements of this approach are that the numerical method used should consist of
high-resolution spatial approximations, and that a spatial, high-resolution, low-pass filter be applied to
transported fields after every time step. The high-resolution numerical method should ensure that the
evolution of a range of low wavenumber content is obtained accurately, while the high-resolution filter
removes only a small range of the smallest computed scales. Examples of high resolution numerical
methods are those that use spectral, implicit difference, or high-order explicit difference methods
for derivative evaluations. Typically, implicit difference formulas, also known as compact difference
formulas, have better resolution properties compared to explicit differences of the same order [15].
If explicit formulas are used instead of compact differences, they should be of higher order, and would
require large stencils [16]. Here, a procedure that is approximately equivalent to a sixth-order compact
scheme was used for first derivatives. Its resolution characteristics can be noted from its modified
wavenumber curve (6/2 curve) plotted in Figure 1a. Filter response functions of several implicit
filters of different orders and values of filter parameter are shown in Figure 3a. Either high values
of the filter parameter, or high order, results in a flat response (negligible filtering) over a range of
low wavenumbers. The arguments for the correctness of this approach have been given before [11,17].
LES of many different kinds of flows, by at least two other groups [18,19] who applied essentially
this approach, are available. Although originally devised for high accuracy by using compact
schemes [18], or unusually high-order explicit differences [16], with high wavenumber filtering for
stability, the authors then demonstrated that these methods were suitable for LES. The performance of
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computations with our method for incompressible, variable density and compressible flows has also
been documented [20–22].

2.1. Spatial Discretization

As noted above, an essential requirement of the LES approach adopted here is the use of
high-resolution numerical schemes. While resolution quality of difference formulas increases with
order, implicit difference formulas have smaller resolution error for a given order. Here, we use an
extension to sixth order of the splitting proposed by Hixon and Turkel [23]. A sixth-order compact
difference formula is

1
5

Di+1 +
3
5

Di +
1
5

Di−1 =
7
15

fi+1 − fi−1

∆x
+

1
60

fi+2 − fi−2

∆x
, (2)

where Di is the first derivative of the function fi. A MacCormack-like splitting

Di =
DF

i + DB
i

2
, (3)

leads to the two relations

(1− a)DF
i + aDF

i+1 =
1

∆x
(−m fi−1 + (l + m) fi − l fi+1) , (4)

aDB
i−1 + (1− a)DB

i =
1

∆x
(l fi−1 − (l + m) fi + m fi+1) . (5)

When

a =
1
2
−
√

5
10

, m =
1

3(5−
√

5)
, l =

3
√

5− 14
3(5−

√
5)

,

DF
i = fx + O(∆x), DB

i = fx + O(∆x), but (DF
i + DB

i )/2 = fx + O(∆x)6. In their terminology, this
would be a 6/2 scheme [23]. Equation (2) leads to a tridiagonal system, whereas Equations (4) and (5)
form bidiagonal systems. Instead of finding derivatives as the mean of DF and DB, we use either
alone as the estimate of the derivative in successive evaluations. Tests showed that the higher-order
truncation error was obtained when the time discretization error was small enough. The great
advantage in splitting is that the number of operations per derivative, per time step is roughly halved,
which is a tremendous saving for an LES or DNS.

Figure 1 shows the modified wavenumber k̃ of the 6/2 scheme. The fourth-order schemes 4/2 and
4/4 that Hixon and Turkel [23] studied are also shown. The 4/2 scheme has a first-order truncation
error for each split part, while 4/4 was designed for this error to be third order. To demonstrate that
higher-order behavior can be realized, we show the fall in error in solutions of the linear wave equation
with unit phase speed after unit time over the region [0,5]. The initial condition was the Gaussian
u = exp[−10(x − 1)2]. Solutions were obtained on grids with spacing 1/5, 1/10, 1/20 and 1/40,
and fourth-order Runge–Kutta time integration with CFL numbers 0.01 and 0.001. The fall in rms of
the difference between numerical solutions and the exact solution is shown in Figure 1b. Solutions with
the fourth-order (4/2) and sixth-order (6/2) schemes and lines with Slopes 4 and 6 are shown for
reference. Clearly, the order behavior of the equivalent symmetric compact scheme has been recovered.
Due to time-stepping error, the decay rate reduces at the higher CFL for the sixth-order scheme.
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Figure 1. (a) Modified wavenumber characteristics of Hixon–Turkel split derivative formulas.
(b) Effective orders of truncation error. (a) Modified wavenumber, (b) Order behavior.

2.2. Treatment of Regions with Shocks

An essential requirement of shock capturing methods is that the growth of oscillations in the
vicinity of the shock must be prevented. Visbal and Gaitonde [12] proposed an adaptive filtering
strategy, but do not seem to have pursued it further. It is an attractive strategy because it requires but a
simple modification of coefficients of a filter that is anyway applied for the LES. A 2Nth-order implicit
filter (denoted filter F2N) is represented by the relation

α f f̄i−1 + f̄i + α f f̄i+1 =
N

∑
n=0

an

2
( fi+n + fi−n) (6)

connecting filtered and unfiltered vectors, f̄ and f , respectively. As filter order increases, the response
function becomes flatter at low wavenumbers. As filter parameter α f is increased the spectral content
of the function that is filtered out is over a smaller range of high wavenumbers.

The explicit filtering LES sub-grid-scale (SGS) model prescribes that transported variables be
filtered with a high-resolution, low-pass, spatial filter after every time-step [11]. Accordingly, filter F10
was applied to all transported fields in all three directions, after every timestep, for LES of flows
without shocks. When there are shocks, filters of different orders were applied in the vicinity of
the shock. The effectiveness of the adaptive filter is dependent on the shock sensor. In fact, both a
review [1] and an assessment of methods [10] emphasize its importance in achieving good results.
Pirozzoli [1] examined the effectiveness of four types of sensors. The Ducros sensor [24] selected only
the shock, whereas other sensors selected parts of regions without shocks as well. Here, the sensor
proposed by Bhagatwala and Lele [25] was used. A shock was considered to be near a gridpoint if

1
2

(
1− tanh

(
2.5 +

10∆
c

(∇ · u)
))

(∇ · u)2

(∇ · u)2 + |∇ × u|2 + 10−32 > ε. (7)

From our numerical experiments, ε = 0.02 was found to work well for various flows containing
Mach waves to strong normal shocks. After a gridpoint was detected as being “in” a shock,
the inclination of the shock was determined to ensure filter adaptation was in required directions only.
The filter was adapted along a coordinate direction i if x̂i · ∇M/|∇M| or x̂i · ∇ρ/|∇ρ| > 1/

√
3 at that
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point, where x̂i is the unit vector along the ith coordinate direction. The second-order filter F2 was
applied at that point and at the two neighboring points. Filter order was increased progressively from
2 to 10, from shock to the smooth region, as shown in Figure 2a for a single shock and Figure 2b for
multiple nearby shocks. Then, all filter stencils (F4–F10) include the point detected by the shock sensor,
but do not straddle that point.

(a)

(b)

Figure 2. Scheme for changing filter order near isolated and proximate shocks: (a) isolated shock;
and (b) proximate shocks.

By testing with a normal shock, Visbal and Gaitonde [12] determined that filter order had to be
reduced to 2 to prevent the appearance of wiggles. However, the filter parameter could be set to a high
value α f = 0.498. From a large number of our own tests, we found the following parameter-order
combinations to provide wiggle-free shocks in several different simulations: filter parameter α f = 0.47
for filter F2; 0.48 for F4; and 0.498 for F6, F8 and F10. Filter response functions of filters of various orders
are shown in Figure 3a. Higher-order filters, F6–F10, remove very little of the solution over a small
range of the largest represented wavenumbers. A larger value of filter parameter for F2 may improve
solutions in some cases as discussed in Section 3.1. Another comparison of filter characteristics that
accentuates low wavenumber differences is obtained by plotting damping functions D(k) = 1− T(k)
(Figure 3b).
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The resolution error of a derivative formula is k̃/k − 1. To compare with filter characteristics,
the function k̃/k of the 6/2 derivative scheme has been included in Figure 3a, and k− k̃ in Figure 3b.
Even when filter F2 is applied, its significant effects are over a high wavenumber range comparable
to that of the sixth-order derivative formula. A formal optimization to obtain filter parameters was
not carried out. It has been our practice to use the values listed above for new problems as long as
stable solutions are obtained. Solution accuracy improves readily with grid refinement, thus it has not
seemed worthwhile to implement formal optimization procedures, which may be problem dependent,
especially when multiple interacting shocks are present.

0
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0.6

0.8

1

0 π/4 π/2 3π/4 π
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F6
F8

F10
S6

(a)
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1e-12

1e-08

1

π/4 π/2 3π/4 π
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F4
F6
F8

F10
S6

1e-04

(b)

Figure 3. Response and damping functions of filters and scheme. F2–F10 are filters of various orders,
and S6 is the sixth-order difference scheme. Filter parameters: α f (F2) = 0.47, α f (F4) = 0.48 and
α f (F6, F8, F10) = 0.498. (a) Filter response functions; and (b) filter damping functions.

The second-order explicit Runge–Kutta scheme was used for the time integration. For simplicity,
let us write the 1D version of Equation (1) in the form Ut + Finv

ξ + Fvis
ξ = 0, where Finv and Fvis are the

inviscid and viscous fluxes, respectively. Then, the field Un+1 at time-step tn+1 is obtained from the
field at tn as follows:

Un+1 = Un +
h(1)

2
+

h(2)

2
(8)

with,

h(1) = −∆t
∂F

∂ξ

[
Finv(Un) + Fvis,B(Un)

]
h(2) = −∆t

∂B

∂ξ

[
Finv(Un) + Fvis,F(Un)

]
The superscripts F and B signify the use of forward and backward relations (Equations (4) and (5)),

respectively. The expressions above can be denoted an FBBF rule. During integration, the sequence is
alternated after every time step, i.e., if FBBF is used at a time step, then at the following time step the
relations are BFFB.
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3. Basic Tests

Several tests were conducted to understand effects of adapting filtering in flows with shocks
and simple fluctuations. The first three are Riemann problems and the following two are of shocks
interacting with 1D and 2D waves sinusoidal incident waves.

3.1. Riemann Problems

Sod’s conditions for a 1D Riemann problem is a common example. The initial pressure ratio is 10
and density ratio is 8 across the initial discontinuity. The fluid is air. In the simulations, viscosity µ = 0,
and conduction terms also vanish. Grid spacing ∆x = 0.005. The numerical solution at t = 0.2 is
displayed as the density distribution in Figure 4a, with the analytical solution for comparison. The filter
order at the same gridpoints are also shown. Figure 4b shows the solution to Lax’s shock problem.
The initial conditions were ρ = 0.445, u = 0.698 and p = 3.528 for x < 0, and ρ = 0.5, u = 0.0 and
p = 0.571 for x > 0. The solution is everywhere very close to the exact solution. For both problems,
grid spacing and times at which their solutions have been presented are the same as those in Kawai and
Lele [26] for direct comparison against their artificial diffusivity solutions. They found that artificial
viscosity was enhanced at the shock and at the ends of the expansion, and artificial conductivity
was enhanced at the shock and contact surface. Here, filter order changes are near the shock only.
Small oscillations and a slight smearing at the shock are evident in the solution of the Lax problem.

0.2

0.4

0.6

0.8

1

-0.4 -0.2 0 0.2 0.4

2

4

6

8

10

(a)

0.4

0.6

0.8

1

1.2

1.4

-0.4 -0.2 0 0.2 0.4

2

8
10

4
6

(b)

Figure 4. Solution of shock tube problems. exact (——), numerical (– – –), filter order (•); α f (F2) =
0.47, α f (F4) = 0.48 and α f (F6, F8, F10) = 0.498. (a) Sod’s problem at t = 0.2; and (b) Lax’s problem at
t = 0.13.

The third basic test is with a 2D Riemann problem listed as Case 13 by Lax and Liu [27].
Initial conditions in the four quadrants are listed in Table 1. These conditions imply that there
are shocks along the line y = 0 which move to y < 0 but at different speeds, and a slip line along x = 0.
This case was used by Pirozzoli [1] to illustrate the relative performance of standard and hybrid WENO
schemes. Figure 5a shows the density distribution at time t = 0.3 on a grid with ∆x = ∆y = 1/1200.
Gridpoints where filter order has been lowered for treatment of shocks are marked in Figure 5b;
where shocks are nearly perpendicular to the y-axis, adaptation is along y only. The shocks are crisp.
The vortex sheet is unstable to perturbations of any wavelength. Here, the rolled-up vortices seen
along the slip line are selected by the grid spacing, which selects the smallest wavelength. Owing to
the high-resolution derivative formula and restriction of low-order filtering to the vicinity of shocks,
there is no discernible smearing of the vortices along the slip line. Flow features, especially shock
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locations, agree closely with the solution given in Lax and Liu [27] using their scheme. Shocks are
sharper in the present solution. In their solution, the slip line is thicker and, understandably for an
inviscid scheme, does not have any of the vortices shown here.

Table 1. Initial condition for 2D Riemann problem—Case 13 by Lax and Liu [27].

Quadrant ρ p v

I 1.0 1.0 −0.3
II 2.0 1.0 0.3
III 1.0625 0.4 0.8145
IV 0.5313 0.4 0.4276

(a) (b)

Figure 5. Solution at t = 0.3 for Case 13 by Lax and Liu [27], and filter adaptation: (a) Density; and (b)
Filter adaptation ((3) (cyan) adapted along x and y; (2) (red) along y only; and (1) (blue) along x only).

3.2. Interaction of Plane Waves with Shocks

In view of the intended application of the proposed method to LES, it is useful to examine its
performance on flows in which fluctuations pass through a shock wave. The Shu–Osher problem [28]
is initialized with a Mach 3 shock wave travelling into a quiescent region with sinusoidal density
variations. The initial conditions are

(ρ, p, u) =

{
(3.857143, 10.33333, 2.629369) (−5 < x < −4),
(1 + 0.2 sin 5x, 1, 0) (−4 ≤ x < 5).

A solution on a grid with spacing ∆x = 0.05 at t = 1.8 is shown in Figure 6. The reference solution
is that on a finer grid with spacing ∆x = 6.25× 10−3. These are the spacings used in Johnsen et al. [10].
The solutions are identical on the finer grid. At this time, acoustic waves have traveled farther into
the post-shock region than the entropy waves, and have themselves steepened into weak shocks
(in −2.5 < x < 0). The most noticeable differences between solutions on the two grids are in density
and entropy immediately downstream of the shock. Entropy fluctuations are damped at the shock
only, visible as a drop in amplitude at the peak adjacent to the one at the shock (Figure 6c). There is no
further loss to this wave as it propagates away from the shock. The present solution is comparable to
that with the Hybrid scheme (sixth-order central switching to fifth-order WENO over discontinuous
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regions) in Johnsen et al. [10]. It is slightly worse than the artificial diffusivity methods, but better than
WENO methods; entropy continues to decay along the wave for WENO methods.

1
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-5 -4 -3 -2 -1 0 1 2 3 4 5

(a)
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(b)
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(c)

2.45

2.5

2.55

2.6

2.65

2.7

2.75

-3 -2 -1 0 1 2

(d)

Figure 6. Shu–Osher problem at t = 1.8 (red dotted curve: ∆x = 0.05; black curve: ∆x = 6.25× 10−3).

A 2D version of the Shu–Osher problem can be posed as the interaction between a plane shock and
an inclined plane wave with sinusoidal vorticity and entropy variations. Johnsen et al. [10] examined
the performance of several schemes on this problem (considered earlier by Mahesh [29]). The region
of interest is 0 < x < 4π and −π < y < π. The solution is periodic in y with period 2π. There is a
supersonic inflow at x = 0, and a subsonic outflow. A buffer region over 4π < x < 5.2π ensured that
there were no reflections. An initial field was setup, representing steady flow separated by a plane
shock at Mach 1.5, given by left and right states

(ρ0, p0, u0) =

{
(ρL, pL, uL) = (1, 0.714286, 1.5) (0 ≤ x ≤ 3π/2),
(ρR, pR, uR) = (1.862069, 1.755952, 0.8055556) (3π/2 ≤ x ≤ 4π).
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To this, fluctuations

ρ′ = ρL Ae cos(kxx + kyy), p′ = 0,

u′ = uL Av sin ψ cos(kxx + kyy), v′ = −uL Av cos ψ cos(kxx + kyy),

representing a plane wave incident at angle ψ = tan−1 ky/kx were added. This wave enters at x = 0
from the unsteady boundary conditions

ρ = ρL + ρL Ae cos(kyy− kxuLt), p = pL,

u = uL + uL Av sin ψ cos(kyy− kxuLt), v = −uL Av cos ψ cos(kyy− kxuLt).

Grid spacings of ∆x = π/50, ∆y = π/32 are identical to those of Johnsen et al. [10]. The change
due to refinement along x alone (∆x = π/100, ∆y = π/32) and two levels of refinement in both
directions are presented below. Taking small values for amplitudes (Ae = Av = 0.025) allow
quantitative comparisons against linear theory (linearization of Rankine–Hugoniot jump conditions)
as in [29].

Contours of vorticity ωz for a wave train incident at angle ψ = 45◦ are shown in Figure 7a.
The wave refracts and its amplitude changes. The solution along a line (y = 0) is found to be free
of oscillations. On halving ∆x alone, a sharper jump is obtained at the shock. Oscillations appear in
the vicinity of the shock when the wave is incident at a higher angle (Figure 7c), and are carried into
the post-shock region. The grid refinement has confined significant oscillations to a smaller region,
and made the post-shock solution smoother. The differences in solution structure arise because the
post-shock wave is evanescent at ψ = 75◦ [29].

(a)
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1 1.5 2 2.5 3

(b)

-0.04

0

0.04

0.08

0.12

1 1.5 2 2.5 3

(c)

Figure 7. Shock-vorticity/entropy wave interaction. ∆y = π/32; Red curve: ∆x = π/50; black curve
(finer grid): ∆x = π/100. (a) Vorticity ωz contours at t = 25 for ψ = 45◦, ky = 1; (b) ωz along y = 0 for
ψ = 45◦, ky = 1 at t = 25; and (c) ωz along y = 0 for ψ = 75◦, ky = 1 at t = 32.

Quantitative comparisons against linear theory are shown in Figure 8. The amplification of the
mean enstrophy < ω2

z > across the shock is shown for ψ = 45◦, 75◦, and ky = 1, 2. Averaging is over the
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time period 2π/(kxuL). The amplification factor obtained in the simulation is slightly smaller than that
of linear analysis at ψ = 45◦, and slightly larger for ψ = 75◦. The differences increase as wavenumber
is increased. On halving grid spacing, in every case, there is a significant improvement as solution
comes closer to that of linear theory. In addition, the amplitude of the post-shock oscillations and the
extent of the region where these occur decrease significantly. With further refinement, the numerical
solution is essentially the same as that of linear theory for ψ = 45◦. When ψ = 75◦, there is further
improvement for ky = 2 although not significantly for ky = 1.
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(a)

0 1 2 3 4 5

4.2

4.4

4.6

4.8

5

5.2

5.4

(b)

0 1 2 3 4 5
4.4

4.6

4.8

5

5.2

5.4

(c)

0 1 2 3 4 5
4.4

4.6

4.8

5

5.2

5.4

(d)

Figure 8. Shock-vorticity/entropy wave interaction. Black dotted line: linear solution; black: grid as in
Johnsen et al. [10]; red: medium grid, ∆x, ∆y halved; blue: fine grid ∆x, ∆y halved again. (a) ψ = 45◦,
ky = 1; (b) ψ = 45◦, ky = 2; (c) ψ = 75◦, ky = 1; and (d) ψ = 75◦, ky = 2.



Fluids 2019, 4, 132 13 of 19

The solutions can be compared with the results of Johnsen et al. [10]. On the same grid as theirs,
the amplification factor in the present solutions differ more from the linear analysis solution than some
other methods (Hybrid WENO/central differences, WENO and ADPDIS3D). However, when the grid
was refined, the differences fell in all cases, and post shock oscillations also reduced in amplitude
and occurred over a smaller region. They supposed (Section 4.2.1 in Johnsen et al. [10]) that these
are post-shock oscillations owing to, generally, slowly moving shocks in shock-capturing schemes;
these oscillations would “not disappear under grid or time step refinement” [10]. In the present
simulations, the differences between numerical solutions and linear theory generally diminish with
grid refinement.

In all the tests reported above, the same adaptation of filter order as in Figure 2, and same set of
filter parameters as in Figure 3 was used. For a given problem, it is always possible to find a set of
filter parameters that result in a “better” solution on a given grid. Not only would the solutions look
more attractive because of reduced oscillation amplitudes, even accuracy can improve. For example,
in the 2D extension of the Shu–Osher problem, with slightly less filtering, the amplification factor
comes closer to that of linear theory. However, our proposal is not to seek a new, optimal set of filter
parameters for every problem, but to use, e.g., the set given here. Since the computations remained
stable for all the problems reported here with this set of parameters, and solutions tend to the reference
one (or DNS/experiment), this appears to be a reliable method for obtaining accurate solutions.

3.3. 3D Evolution

The Taylor–Green vortex problem evolves from a periodic initial field and develops smaller scales
due to nonlinearity. We consider both inviscid and viscous solutions. No shocks form in this problem.
It is included to demonstrate accuracy of the numerical scheme, and convergence with grid refinement
by comparisons with reference solutions.

For the inviscid case, there is no lower limit on the scale. An LES model and/or numerical method
must stabilize the computation beyond the time at which structures of the order of the grid spacing
appear. Excessive damping can be revealed by this test problem. The initial condition is

ρ = 1, p = 100 +
(cos 2z + 2)(cos 2x + cos 2y)− 2

16
,

u = sin x cos y cos z, v = − cos x sin y cos z, w = 0.

Simulations were carried out in a cube of edge length 2π on uniformly-spaced grids of 5123,
1283 and 643 points. The growth of enstrophy in the box is shown in Figure 9a. A semi-analytical
solution is included for comparison [30]. All simulations remained stable but departed from each
other when t > 4, approximately. As the grid is refined, the numerical solution agrees with enstrophy
of the reference solution to later times. The kinetic energy in the box should be preserved because
there is no viscous dissipation. Figure 9b shows the kinetic energy to begin to fall at t ≈ 4 on the 643

grid, and later on the finer grids. Comparisons at two times are shown in Table 2. The monotonic
convergence with grid refinement is evident. Owing to the flat filter characteristics, dissipation is
active only after small scales have grown.

The viscous Taylor–Green solution was found for Re = 1600 based on the initial length scale
(length of cube edge, 2π), and maximum velocity. The reference data for comparison are from
DeBonis [31] (available at https://eprints.soton.ac.uk/401892/1/512.dat). The simulation was carried
out for 0 ≤ t ≤ 20. Differences are evident on coarse grids, but diminishes with refinement.

https://eprints.soton.ac.uk/401892/1/512.dat
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Figure 9. Evolution of Taylor–Green vortex. Curves are from simulations on grids of 5123 (black),
2563 (blue), 1283 (green), and 643 (red) points. (a,b) Inviscid case with symbols from [30]; and (c,d)
viscous case with solid line, present LES and symbols from [31].

Table 2. Measures of Taylor–Green vortex solution.

643 1283 5123 Brachet et al. [30]

Inviscid
Energy (t = 5) 0.9846 0.9943 0.9992 1.00

Enstrophy (t = 3.5) 3.276 3.402 3.458 3.459
Viscous

Energy (t = 5) 0.9423 0.9468 0.9476
Enstrophy (t = 3.5) 3.080 3.145 3.154

4. Jet LES

Now that the performance of the proposed method has been evaluated carefully in canonical
problems of isolated shocks, wave refraction by a shock, and the evolution of a turbulent flow at
a moderate Reynolds number accessible to DNS, we turn to simulations of high Reynolds number,
turbulent, supersonic jets. Imperfectly expanded jets exhibit a train of shocks. As turbulent fluctuations
travelling through these shocks are distorted, turbulent dissipation and production can get affected.
Excessive numerical dissipation can then alter the jet’s development. The following two test cases
are model turbulent flows with stationary shocks that can indicate the accuracy that can be expected
from LES for compressible flow applications. Comparisons with experiments, and another LES for the
impinging case are shown. The Reynolds numbers are quite large, O(106). The intent is to examine the
usefulness of this method for practical applications. It is shown that, as the grid is refined, the energy
spectrum broadens by extending the computed part of the inertial range.
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4.1. Free, Underexpanded Round Jet

Large eddy simulations were performed on the supersonic round jet experiments of Norum
and Seiner [32]. A contoured C-D nozzle designed for exit plane Mach number ME = 2 was used.
The nozzle pressure ratio (NPR), which is the ratio of reservoir pressure to nozzle exit pressure,
was 9.187. Because the jet was slightly underexpanded, the fully expanded Mach number would be
Mj = 2.103. The Reynolds number based on these nozzle exit plane conditions, centerline velocity
Uj, and nozzle inner diameter d, was 6.09× 106. The simulation was set up in a rectangular domain
that was 7d along jet axis, and 4d in cross stream directions. Simulations were performed on a
sequence of grids. Each was distinguished by the number of uniformly spaced gridpoints across the
jet diameter. Outside the jet, the grid was stretched—spacing increased in geometric progression at 1%
in cross stream directions. A much milder stretching of 0.1% was used in the streamwise direction.
Buffer zones, with twenty points at the lateral and thirty points at the outflow boundaries, were added
with a stretching of 10%. On the coarsest grid there were 20 points across the jet diameter leading to
2.23× 106 gridpoints in total. A refined grid had 40 points across the jet and 9.3× 106 points in total
(medium grid). Finer grids had 23 million (fine), 43 million (finer), and 200 million (finest) points.

Boundary conditions at the inflow plane (x = 0) were obtained from radial profiles

u
Uj

=
1
2
+

1
2

tanh
( rj − r

2δθ

)
,

p
p∞

= 1 +
( pj

p∞
− 1
) [

1
2
+

1
2

tanh
( rj − r

2δθ

)]
,

T
Tj

=
T∞

Tj

(
1− u

Uj

)
+

u
Uj

+

(
γ− 1

2

)
M2

j
u

Uj

(
1− u

Uj

)
.

(9)

Here, rj = d/2 is the mean jet radius and δθ the momentum thickness of the jet (taken to be
rj/20). Subscripts j and ∞ denote jet centerline and ambient conditions, respectively. To anchor the
inflow profile, the following procedure proposed by Bogey and Bailly [19] was employed at every
time step. Flow variables U = {ρ, u, v, w, p} at the inflow plane, obtained after applying non-reflecting
conditions, were corrected to Uc = (1− σr)U + σrUref. Here, Ure f is the prescribed inflow profile
(Equation (9)), and σr = 5× 10−2 for r ≤ 2r0 and 5× 10−3 for r > 2r0. Within the jet shear layer alone,
small perturbations,

u′

Uj
= 10−1

[
4u
Uj

(
1− u

Uj

)]
6

∑
i=1

cos
(

Sti
Uj

d
+ φi

)
, (10)

were added to the inflow axial velocity to represent inflow turbulence of the nozzle boundary.
Strouhal numbers Sti and phase φi varied from 0.1 to 0.6 and 0 to 5π/6, respectively. The quantity
within square brackets ensures that fluctuations are added within the shear layer only.

Figure 10a is a visualization of the jet in terms of the mean pressure on a plane containing the jet
axis, showing the expected cell structures. Static pressure along the centerline in the experiment was
reported (page 27 [32]). Figure 10b shows solutions from the coarse, medium and finest grids along
with data from the experiment. There is little change in mean pressure between the medium (9 million
points) and the finest grid (200 million points). We can observe that both the locations and strengths of
the pressure variations through the cells have been captured accurately. On refining from coarse to
medium, pressure variations occur at the same places, but peaks are slightly sharper. The pressure
distribution at an instant is also shown. Significant fluctuations on the centerline appear only beyond
x/d > 3. Where such fluctuations are significant, we can observe that gradients at an instant are
slightly larger than in the mean (see pressure rise near x/d = 4 and 6). Contours of pressure on a
longitudinal plane also show that significant unsteadiness sets in the 3rd shock cell.

The effect of grids finer than the medium one can be seen in energy spectra. Figure 10b shows
spectra from the five simulations, calculated from time series at a point near the jet boundary at
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x/d = 5.7. As the grid spacing is reduced, a clear inertial range develops, and extends to smaller
scales. The magnitude of low frequency content changes little. At the Reynolds number of the flow,
the dynamically significant range of scales is still larger, but quantities such as the centerline mean
pressure can be obtained accurately in an LES, on a grid of moderate size. Especially, shock positions
and strengths change little with refinement. This serves as strong support for the adaptive filtering
method for shock capturing used in these simulations. The quality of the simulation was similar for an
overexpanded jet [33].
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Figure 10. LES of underexpanded jet for Mj = 2.103, p0/pa = 9.187. Experiment by Norum and
Seiner [32] (case on page 27 of their report). (a) Mean pressure on longitudinal plane. (b) Pressure along
jet axis. Curves for simulation data, symbol for experiment. (c) Instantaneous pressure on longitudinal
plane (Medium grid). (d) Energy spectra (at green dot in the left figure).

4.2. Impinging Round Jet

The second case, representative of flows of interest in applications, is the impinging jet experiment
of Henderson et al. [34]. Velocity data from PIV were reported. This is a sonic jet with NPR = 4.03
impinging on a flat wall placed at a distance of 4.16d from the nozzle exit. Dauptain et al. [35] reported
an LES of this problem. They used 7.5, 16 and 22 million tetrahedral volumes including a region
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within the nozzle as well. Here, two grids with 30 and 60 points across the jet at the inflow plane were
taken, with 5% stretching in the lateral direction. Only lateral buffer zones were used in the current
simulation. The total number of points were then 2.38× 106 for the coarse grid and 7.70× 106 for the
fine grid. The Reynolds number was 1.5× 106. A comparison of the mean streamwise velocity with the
experiment along the jet axis is shown in Figure 11a. The simulations are consistent among themselves:
on the finer grid, the gradients are sharper everywhere. Surprisingly, Dauptain et al. [35] found their
coarsest grid to be closest to the experiment. Especially in the vicinity of x/d ≈ 1, the velocity dropped
to about 150 m/s whereas in the experiment it is about 300 m/s. Smaller but significant differences
were found where flow decelerates again (x/d ≈ 3). They supposed that, in these strongly decelerating
regions, the measurement could be in error. Our simulations do not show such large differences
with experiment. Figure 11b compares present simulations with data from Dauptain et al. [35] of the
pressure along the centerline (experimental data of pressure were not available). Pressure data agree
quite closely with the other simulation. Since the pressure jump near x/d ≈ 1 is about the same, it is
surprising that the velocity jump could be different.

0
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400

600

0 1 2 3 4

(a)

0⋅100

1⋅105

2⋅105

3⋅105

0 1 2 3 4

(b)

Figure 11. Mean axial velocity and pressure along centerline of impinging jet. Coarse grid (black curve);
fine grid (red), experiment of Henderson et al. [34] (black circles), and simulation of Dauptain et al. [35]
(blue curve with filled symbol). (a) Velocity; and (b) Pressure.

Since the objective of this test was to determine the usefulness of the proposed shock-capturing
scheme, and not the other implications of this flow, such as impingement acoustics, the simulation
domain did not include the flow within the nozzle. There has not been any adverse effect on the
quantities that we could compare with experiment and another LES, such as any shift in locations of
Mach disk or extent of the cells. Indeed, the very close agreement between our simulations and the
one which included the nozzle flow [35] in the initial region (0 < x/d < 1) affirms this.

5. Conclusions

An explicit filtering approach to LES of flows has been extended to flows with shocks by filter
order adaptation. Although the usual treatment of flows with shock capturing is to reduce the order of
the spatial discretization in the vicinity of shocks, here, the discretization remains the same everywhere,
and was sixth-order. Instead, the order of the spatial filter was reduced from 10 in smooth regions
to 2 at gridpoints where a shock was detected. Filter order was increased in steps at neighboring
gridpoints. However, filtering is an essential part of this method for LES. Thus, the adaptation is a
convenience. Adaptive filtering had been proposed by Visbal and Gaitonde [12] earlier, but does not
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appear to have been taken forward either in method assessment or in applications. They lowered filter
order to 2 at a band of seven points spanning shocks. Here, it sufficed to use a band of three points.
It is not surprising that Bogey and Bailly [13], who also performed LES with an explicit filter, examined
filter adaptation briefly. We can expect that the studies presented here may invite its further use.

Although, generally, the results of adaptive filtering are very encouraging, quantitative
comparisons with the results in Johnsen et al. [10], for the 2D Shu–Osher problem (Section 3.2),
revealed that, on the same grid, some other methods have better performance. Nevertheless, close
quantitative agreement with the reference solution was readily obtained on grid refinement. Indeed,
it is a common experience in the problems considered here that solutions tend to the reference ones
as the grid is refined (explicitly included above for the 2D Shu–Osher, Taylor–Green and free jet
problems). For the 2D Shu–Osher problem, not only does the amplification factor approach the linear
analysis result, the post-shock oscillations diminish in amplitude and extent. Since computations were
stable for all these problems with the same set of parameters, and tend monotonically to reference or
exact solutions, we find this to be a reliable method. No search for an optimal set of parameters was
considered, since such an optimal set may offer small improvements in computation economy but may
be problem-dependent.

Although filter adaptation is but a small change in the LES method used in the examples presented
here, because there is always a filtering step, the adaptation strategy can also be used with any other
LES code. For example, it can be an alternative to other strategies for shock capturing such as adding
artificial diffusion in the vicinity of shocks.
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