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ABSTRACT

In this paper, the focus is on the gain and phase calibration of
sparse sensor arrays to localize more sources than the number
of physical sensors. The proposed technique is a blind cali-
bration method as it does not require any calibrator sources.
Joint estimation of the gain errors, phase errors, and source
directions is a complicated non-convex optimization problem,
which is transformed into a convex optimization problem by
exploiting the underlying algebraic structure. It is shown that
the developed solver is suitable for analog as well as one-bit
measurements. Numerical experiments based on sparse rulers
are provided to illustrate the developed theory.

1. INTRODUCTION

To reduce the sensing and data processing costs, sparse sens-
ing methods [1] are gaining attention. For direction-of-arrival
(DOA) estimation in particular, by smartly placing sensor el-
ements, one can resolve as many as O(K2) sources using K
sensors. Examples of such sensor placements include sparse
rulers [2], minimum redundancy arrays (MRAs) [3], and co-
prime arrays [4], to name a few.

In recent times, the use of one-bit quantized data has
been gaining a lot attention in massive MIMO systems [5, 6].
Also in array processing, one-bit quantizers have been used
in DOA estimation with conventional [7, 9] as well as sparse
arrays [8].

In practice, each sensor in the array has a different gain
and phase response. The gain and phase mismatch might be
due to inherent uncertainties in the transducers (i.e., due to
the manufacturing) as well as in the receiver electronics (i.e.,
anti-aliasing filters, amplifiers and analog-to-digital convert-
ers). With the gain and phase errors, the DOA estimates are
significantly deteriorated and the array should be calibrated to
correct such errors.
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Existing calibration methods for non-sparse arrays either
exploit the Toeplitz structure of the covariance matrix re-
lated to the underlying linear array [10,11], or iteratively find
DOAs and calibrate, in an alternating manner for irregular
arrays [12].

The main goal of this paper is to blindly calibrate the
sparse arrays for DOA estimation with analog and one-bit
quantized measurements. Blind calibration of sparse arrays
for DOA estimation with analog measurements has been stud-
ied in [13], where the method proposed in [10] is used for esti-
mating the gain errors. Instead of estimating the phase errors,
they are modeled as a perturbation of the array manifold, and
the DOAs are estimated based on the sparse total least squares
(STLS), which is solved using an alternating minimization al-
gorithm leading to a suboptimal solution. To alleviate these
issues, we exploit the algebraic structure in the signal model
and develop a one-step convex solver for the rank-constrained
bilinear problem at hand. Unlike [13], for the infinite data
records case (i.e., with no finite sample noise), we show via
simulations that the proposed convex solver leads to the true
solution.

2. PROBLEM FORMULATION

Consider a scenario with D uncorrelated far-field narrow-
band sources located at angles θ = [θ1, θ2, . . . , θD]

T ∈ RD.
To compute these angles, we use an irregularly-spaced sparse
linear array consisting of K sensors. The measurement data
at time index t can be modeled as

x(t) = [x1(t), x2(t), . . . , xK(t)]T

= diag{g} [A(θ) s(t) + n(t)] ∈ CK , (1)

where g = ψ � φ = [ψ1e
jφ1 , ψ2e

jφ2 , . . . , ψKe
jφK ]T ∈ CK

(� is the element-wise product) is the vector that collects sen-
sor uncertainties with ψi and φi being the gain and phase error
of the ith sensor, respectively. The source signals are stacked
in the length-D vector s(t) and the noise in the length-K vec-
tor n(t). The dth column of the array manifold, A(θ) =
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[a(θ1), . . . ,a(θD)] ∈ CK×D, denotes the response of the ar-
ray towards the dth source and is given by

a(θd) =
[
ej

2πr
λ cos(θd)p1 , . . . , ej

2πr
λ cos(θd)pK

]T
,

where {p1 = 0, p2, · · · , pK} are the known sensor positions,
λ is the wavelength of the source signals and r is the smallest
inter-sensor spacing expressed in λ.

Let us assume that s(t) and n(t) are mutually uncorrelated
and have covariance matrices E

{
s(t)sH(t)

}
= diag(rs) and

E
{
n(t)nH(t)

}
= σnI. We can then express the covariance

matrix of x(t) as

Rx = E
{
x(t)xH(t)

}
∈ CK×K , (2)

= diag{g}
[
A(θ)diag(rs)A

H(θ) + σnI
]

diag{ḡ}

where (̄·) denotes complex conjugation. By vectorizing Rx,
we get

rx = diag{ḡ ⊗ g} [Ad(θ)rs + σne] , (3)

where Ad = Ā(θ) ◦A(θ) ∈ CK2×D is the array manifold
of the so-called difference coarray (hence the subscript “d”),
◦ is the Khatri-Rao product, and e is the vectorized identity
matrix. In this work, we will restrict ourselves to irregularly-
spaced sparse arrays such as MRAs [3], sparse rulers [2, 14],
or coprime arrays [4] that allow identification of more sources
than the number of physical sensors.

In practice, the sensor data are not analog as it is ac-
quired through analog-to-digital converters, hence are quan-
tized. One-bit quantizers are the most simple (in terms of
implementation and power consumption) quantizers, which
measure the sign of the real and imaginary parts using a com-
parator. For the analog measurements, x(t) described in (1),
quantized one-bit measurements are denoted as [5, 6]

y(t) = [y1(t), y2(t), . . . , yK(t)]T

= [Q{x1(t)} ,Q{x2(t)} , . . . ,Q{xK(t)}]T , (4)

whereQ{xk(t)} = 1√
2
sgn {Re(xk(t))}+ j√

2
sgn {Im{xk(t))}

with sgn{x} = 1 for x ≥ 0 and sgn{x} = −1 other-
wise. The covariance matrix of y(t) is denoted as Ry =
E
{
y(t)yH(t)

}
.

In this paper, we provide algorithms to jointly estimate K
complex calibration parameters, g, and D angles, θ, given (i)
the covariance matrix related to the analog measurements Rx

or (ii) the covariance matrix related to the one-bit quantized
measurements Ry . We will be particularly interested in the
case where D � K.

3. JOINT CALIBRATION AND DOA ESTIMATION

3.1. Analog measurements

In this section, we will consider an approach where both the
calibration errors (i.e.,gain and phase errors) and the source
DOAs will be estimated jointly from (3).

Multiplying both sides of (3) with the diagonal calibration
matrix diag{b̄⊗ b} = diag−1{ḡ ⊗ g}, we have

diag{b̄⊗b}rx = diag{rx}(b̄⊗b) = Ad(θ)rs+σne, (5)

where b = [b1, b2, . . . , bK ]T ∈ CK contains as its entries the
element-wise inverse of g.

Assuming that the directions are from a uniform grid
of N points, with N � D, i.e., we assume that θd ∈{

0, πN · · · ,
π(N−1)

N

}
, for d = 1, 2, . . . , D, we can approxi-

mate (5) as

diag{rx}(b̄⊗ b) = AD σs + σne. (6)

Here, AD is a K2 × N dictionary matrix that consists of
column vectors of the form ā(θ̄n) ⊗ a(θ̄n), with θ̄n being
the nth point of the uniform direction grid, i.e., θ̄n = πn

N ,
n = 0, 1, . . . , N − 1, and σs is a length-N vector containing
the source powers of the corresponding discretized directions.
It should be noted that finding the columns of AD that corre-
spond to the non-zero elements of σs corresponds to finding
the DOAs. We can now write (6) equivalently as

[
diag{rx} −AD −e

] b̄⊗ b
σs

σn

 = 0⇔ Gα = 0. (7)

This is an under-determined system of equations with K2

equations in (K2 +N + 1) unknowns in α.
We next exploit the structure in α to solve the above sys-

tem. Firstly, we have the rank-1 Kronecker structure b̄⊗b =
vec(B) with B = bbH ∈ CK×K . Secondly, since we know
that there are only D sources, we have ||σs||0 = D, where
‖ · ‖0 is the `0-norm that counts the number of non-zero en-
tries of its argument. Finally, σs and σn are positive.

From (3), it can be seen that ḡ⊗g and rs share a common
scalar factor and due to the Kronecker structure of ḡ⊗g there
is a phase ambiguity. To resolve these ambiguities, we require
two reference sensors. This observation is consistent with the
discussion in [10]. Without loss of generality, we choose gi =
bi = 1 for i = 1, 2.

Taking into account all the aforementioned constraints,
we can now formally pose the joint calibration and DOA es-
timator as the solution to

minimize
α,b,B

‖Gα‖22

subject to α = [vec(B)T ,σTs , σn]T

||σs||0 = D,σs � 0, σn ≥ 0

B = bbH , b1 = b2 = 1.

(8)

This is a non-convex optimization problem due to the `0-
norm cardinality constraint and rank-one quadratic equality
constraint on B. By replacing the `0-norm with its convex
approximation 1Tσs (recall that σs is positive) and replacing
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the quadratic equality constraint with the inequality constraint

B � bbH whose Schur complement is
[

B b
bH 1

]
� 0, we

get the following convex optimization problem

minimize
α,b,B

‖Gα‖22

subject to α = [vec(B)T ,σTs , σn]T

1Tσs ≤ D,σs � 0, σn ≥ 0[
B b
bH 1

]
� 0, b1 = b2 = 1.

(9)

This is a semidefinite programming problem that can be
solved with any of the off-the-shelf solvers. It should be noted
that the resolution of DOA estimates from the above solution
is restricted by the chosen grid and may suffer from grid mis-
match issues if the true directions are not in the predefined
grid. To avoid such issues, grid-free DOA estimation methods
such as spatial smoothing MUSIC (SS MUSIC) [15, 16] can
be used after applying the calibration estimates of b obtained
from (9).

3.2. One-bit measurements

The arcsine rule [17,18] for the complex Gaussian vectors re-
lates the covariance matrices of x(t) and its one-bit quantized
version y(t) as [19]:

Ry =
2

π
arcsin

(
Q−1/2RxQ

−1/2
)

(10)

where Q = P diag(ψ)2 is a diagonal matrix with [Q]i,i =

[Rx]i,i = ψ2
i

(∑D
d=1 [rs]d + σn

)
= ψ2

i P . We evaluate
arcsin(·) of a matrix element-wise and use the notation
arcsin(a) = arcsin(Re{a}) + jarcsin(Im{a}). The above
relationship enables DOA estimation with one-bit quantized
measurements [7, 19–21].

The matrix Q−1/2RxQ
−1/2 in (10) simplifies to

P−1diag{φ}
(
A(θ) diag{rs}AH(θ) + σnI

)
diag{φH},

where φ = [ejφ1 , . . . , ejφK ]T contains the phase errors. This
essentially means that with one-bit quantization, the gain er-
rors drop out and we are required to estimate only the phase
errors and the source directions. Using the above simplifica-
tion and vectorizing (10), we arrive at

r̃y = sin
(π

2
ry

)
= P−1 diag{φ̄⊗ φ} [Ad(θ)rs + σne] ,

which can be further approximated using the dictionary ma-
trix AD as in (6) to

diag{r̃y}(φ⊗ φ̄) = AD σ̃s + σ̃ne,

or equivalently to

[
diag(r̃y) −AD −e

] vec(Φ)
σ̃s

σ̃n

 = 0⇔ G̃α̃ = 0. (11)

Here, σ̃s = P−1σs, σ̃n = P−1σn, and vec(Φ) = φ ⊗ φ̄
with Φ = φ̄φT . Letting σ = [σ̃Ts , σ̃n]T , it is easy to see that
1Tσ = 1. Based on (11), the convex optimization problem
(9) for one-bit measurement simplifies to

minimize
α̃,φ,Φ

‖G̃α̃‖22

subject to α̃ = [vec(Φ)T , σ̃T ]T

1Tσ ≤ 1,σ � 0[
Φ φ̄

φT 1

]
� 0, [φ]1 = [φ]2 = 1,

(12)

where the rank-one relaxation for Φ = φ̄φT is derived simi-
lar to (9).

4. NUMERICAL EXPERIMENTS

In this section, we present numerical simulations to illustrate
the performance of the source DOA estimation based on the
proposed solver in (9) for the analog data and in (12) for the
one-bit quantized data. We consider a scenario with eight sen-
sors, i.e., K = 8 arranged in a linear array configuration with
r = 0.5λ and {0, 1, 2, 3, 4, 10, 15, 20} being the sensor po-
sitions. This forms a length-21 sparse ruler and has a hole-
free-uniform difference co-array. Twelve unit power sources,
i.e., D = 12 > K, whose DOAs are chosen uniformly in
the cosine space within the sector between 60◦ and 120◦ are
considered with signal-to-noise (SNR) being 10 dB for ana-
log and one-bit quantized data. We calibrate with respect to
the first two reference sensors in the array. The nominal gain
and phase for the reference sensors are considered as 1 and
0◦, respectively. The gain errors, ψ, and phase errors, φ, are
picked from a realization of a uniform distribution over the
interval of [−2, 2] dB and [−40◦, 40◦], respectively.

Once the calibration errors and grid-based DOA estimates
are obtained by solving (9) or (12), the array is calibrated and
the continuous (off-the-grid) DOAs may be obtained using
SS MUSIC. In Fig. 1, the SS MUSIC spectra based on the
analog and one-bit quantized data are presented. It is evident
that the DOA estimates of an uncalibrated array are not useful
with many unresolved sources. However, after calibrating the
analog and one-bit quantized data, we see that all the sources
are perfectly resolved with improved angular resolution and
comparable to the ideal scenario without any sensor errors. In
particular, for the case with infinite data records, we see that
in Fig. 1(a) and Fig. 1(b) we in fact obtain the true solution
for both the analog and one bit measurements suggesting the
exactness of the convex approximation in (9).

On the other hand, following the STLS calibration ap-
proach [13] for analog measurements leads to a sub optimal
solution, where source DOAs are not perfectly recovered as
well as more number of sources are identified, even for in-
finite data records as seen in Fig. 1(a). Further in Fig. 1(c),
for finite data records with 1000 snapshots, the performance
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(b) One-bit quantized measurements with infinite snapshots.
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(d) One-bit quantized measurements with 1000 snapshots.

Fig. 1. SS MUSIC spectra for K = 8, D = 12 and SNR = 10 dB. The
black grid lines denote the true source directions.

of our proposed method is better than the STLS calibration
approach [13].

In Fig. 2, the root mean squared error (RMSE) of the DOA
estimates obtained using SS MUSIC for different SNRs and
for different number of data snapshots are shown. Here, we
use K = 8 with sensors placed as before and D = 3 with
θ = [78◦, 90◦, 102◦]. The RMSE is computed for the source
at 90◦ using 1000 independent Monte-Carlo trials, but with
fixed gain and phase errors that were chosen as mentioned
before. From Fig. 2(a), we can observe that as the number
of snapshots increases for both analog and one-bit data, the
RMSE of the DOA estimate after calibration approaches the
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(a) SNR = 10 dB.

-10 -5 0 5 10 15 20 25 30

0
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2
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(b) Snapshots = 1000.

Fig. 2. RMSE of the DOA estimates for the source at 90◦ obtained from
SS MUSIC with K = 8, D = 3 atθ = [78◦, 90◦, 102◦].

ideal scenario without any sensor errors.
Finally, Fig. 2(b) shows the RMSE for different SNRs.

For analog data, similar to Fig. 2 (a), the RMSE of the DOA
estimate after calibration decreases and approaches the sce-
nario without any sensor errors. However for SNR above 15
dB, we see that the RMSE saturates as expected for the con-
sidered sparse arrays [22]. On the other hand for the one-bit
quantized data, the reduction in the RMSE after calibration
is not significant suggesting that the finite sample errors are
dominant and require more snapshots for improved behavior.
Furthermore, the RMSE for the STLS calibration saturates
both with increase in the number of snapshots as well as in-
crease in the SNR, as it converges to a sub-optimal solution.

5. CONCLUSIONS

In this paper, we proposed a blind calibration technique for
sparse arrays based on analog as well as one-bit data. Based
on the proposed approach, we showed that it is indeed pos-
sible to jointly estimate calibration errors and source direc-
tions using a one-step approach by exploiting the underlying
algebraic structure and convex optimization techniques. It is
shown that for both analog as well as one-bit data with infinite
data records, we in fact obtain the optimal solution suggesting
the exactness of the convex relaxations. Furthermore, through
simulation, we show that even for finite data records we are
able to recover all the source DOAs.

In the future, it is of considerable interest to improve the
performance of the proposed approach especially for the finite
data record scenario with a relatively low number of snap-
shots.

4188

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on October 18,2022 at 05:21:25 UTC from IEEE Xplore.  Restrictions apply. 



6. REFERENCES

[1] S. P. Chepuri and G. Leus, “Sparse sensing for statisti-
cal inference,” Foundations and Trends R© in Signal Pro-
cessing, vol. 9, no. 3–4, pp. 233–368, 2016.

[2] D. Romero, D. D. Ariananda, Z. Tian, and G. Leus,
“Compressive covariance sensing: Structure-based
compressive sensing beyond sparsity,” IEEE signal pro-
cessing magazine, vol. 33, no. 1, pp. 78–93, Jan 2016.

[3] A. Moffet, “Minimum-redundancy linear arrays,” IEEE
Transactions on Antennas and Propagation, vol. 16, pp.
172–175, Mar. 1968.

[4] P. Pal and P. P. Vaidyanathan, “Coprime sampling and
the MUSIC algorithm,” in Digital Signal Processing
Workshop and IEEE Signal Processing Education Work-
shop (DSP/SPE), 2011, pp. 289–294.

[5] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and
R. Zhang, “An overview of massive MIMO: Benefits
and challenges,” IEEE journal of selected topics in sig-
nal processing, vol. 8, no. 5, pp. 742–758, 2014.

[6] C. Risi, D. Persson, and E. G. Larsson, “Massive MIMO
with 1-bit adc,” arXiv preprint arXiv:1404.7736, 2014.

[7] O. Bar-Shalom and A. J. Weiss, “DOA estimation using
one-bit quantized measurements,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 38, no. 3, pp.
868–884, 2002.

[8] C.-L. Liu and P. Vaidyanathan, “One-bit sparse array
DOA estimation,” in Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2017 IEEE International Conference
on. IEEE, 2017, pp. 3126–3130.
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