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ABSTRACT

Rain gauges are considered the most accurate method to estimate rainfall and are used as the ‘‘ground

truth’’ for a wide variety of applications. The spatial density of rain gauges varies substantially and hence

influences the accuracy of gridded gauge-based rainfall products. The temporal changes in rain gauge density

over a region introduce considerable biases in the historical trends in mean rainfall and its extremes. An

estimate of uncertainty in gauge-based rainfall estimates associated with the nonuniform layout and place-

ment pattern of the rain gauge network is vital for national decisions and policy planning in India, which

considers a rather tight threshold of rainfall anomaly. This study examines uncertainty in the estimation of

monthly mean monsoon rainfall due to variations in gauge density across India. Since not all rain gauges

providemeasurements perpetually, we consider the ensemble uncertainty in spatial average estimation owing

to randomly leaving out rain gauges from the estimate. A recently developed theoretical model shows that the

uncertainty in the spatially averaged rainfall is directly proportional to the spatial standard deviation and

inversely proportional to the square root of the total number of available gauges. On this basis, a new

parameter called the ‘‘averaging error factor’’ has been proposed that identifies the regions with large

ensemble uncertainties. Comparison of the theoretical model with Monte Carlo simulations at a monthly

time scale using rain gauge observations shows good agreement with each other at all-India and subregional

scales. The uncertainty in monthly mean rainfall estimates due to omission of rain gauges is largest for

northeast India (;4% uncertainty for omission of 10% gauges) and smallest for central India. Estimates of

spatial average rainfall should always be accompanied by a measure of uncertainty, and this paper provides

such a measure for gauge-based monthly rainfall estimates. This study can be further extended to de-

termine the minimum number of rain gauges necessary for any given region to estimate rainfall at a certain

level of uncertainty.

1. Introduction

An accurate estimate of rainfall at various spatio-

temporal resolutions is vital for several applications

ranging from hydrology to climatology, and for veri-

fying numerical model outputs. Rainfall is generally

measured using rain gauges, radars, and satellites, and

each have their respective advantages and limitations

(Bell and Kundu 2003; Kucera et al. 2013; Sun et al.

2018). Ground-based rain gauges typically provide the

most accurate observations of rainfall for a specific

location and are used as reference for calibration and

validation of remotely sensed rainfall measurements

such as from satellites andweather radars (Collier 1986).Corresponding author: Satya Prakash, satyaprakash@iisc.ac.in
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The density of rain gauges is generally not sufficient

everywhere, being limited by various constraints such as

accessibility, maintenance, and logistics (Schneider et al.

2014; Kidd et al. 2017).

With the advent of Earth-observation satellites, re-

mote sensing techniques have advanced quite rapidly in

the recent three decades, contributing significantly to

the monitoring of extreme weather events (Srinivasan

and Joshi 2007; Sorooshian et al. 2011; Kucera et al.

2013; Gairola et al. 2014). Ground-based rain gauge

observations play a crucial role in evaluating satellite-

derived rainfall products as well as in improving satellite

retrieval algorithms. Therefore, the density and distri-

bution of gauges over any region of interest are impor-

tant, and their effects must be carefully considered (Bell

and Kundu 2003; Villarini et al. 2008; Piyush et al. 2012;

Mishra 2013; Dai et al. 2017).

The determination of the optimal rain gauge den-

sity and its design remains challenging to hydrologists

and meteorologists due to complexity of the problem.

Several factors such as topography, accessibility, cost

of installation and maintenance, regional climate, and

purpose of the network are crucial for any rain gauge

network design. The accuracy of gauge-based rainfall

estimates generally reduces with the decrease in rain

gauge density. Mishra (2013) studied the error char-

acteristics in daily accumulated rainfall as a function of

gauge spacing and reported an increase in absolute

error of rainfall measurement from 15% to 64%, when

the number of gauges was reduced from 7 to 1 in a

0.58 3 0.58 grid box. However, this study was restricted

to a small region of southern peninsular India. Such

empirical results are very important but cannot be di-

rectly generalized for other regions due to differences

in spatial variability of rainfall associated with distinct

geography, topography, and nature of rainfall vari-

ability. Similarly, the effect of rain gauge network

configurations on the spatial mean precipitation has

been investigated at catchment scale (e.g., Xu et al.

2013; Girons Lopez et al. 2015). Recently, Dai et al.

(2017) proposed a sophisticated method based on

principal component analysis to determine the optimal

rain gauge density, and also suggested a scheme based

on cluster analysis for determination of potential lo-

cations for installation of gauges over southwestern

England.

In contrast, this paper considers the effects of rain

gauge density on uncertainty in monthly estimates of

spatial average rainfall in the context of missing obser-

vations. The Indian subcontinent contains substantial

heterogeneity in terms of geography, topography, and

climate, and comes under the influence of two large-

scale monsoon systems each year—the southwest and

northeast monsoon systems, both of which exhibit con-

siderable spatiotemporal rainfall variability (Gadgil

2003; Rajeevan et al. 2012). The India Meteorological

Department (IMD) has a large network of rain gauges

across the country. Rainfall observations from these

gauges are used for several operational hydrometeoro-

logical and climatological applications. In addition, long-

term daily gridded rainfall products at different spatial

resolutions [e.g., 18 latitude–longitude (Rajeevan et al.

2006, 2008, 2010), 0.58 latitude–longitude (Rajeevan and

Bhate 2009), 0.258 latitude–longitude (Pai et al. 2014)]

have been developed using these gauge observations.

These gridded datasets were developed by using an

inverse distance weighted interpolation scheme with

weighted average of observations (Shepard 1968). These

gauge-based gridded products are widely used as refer-

ence for the evaluation of both satellite-based rainfall

estimates and numerical model simulations over India

(Mitra et al. 2013; Prakash et al. 2015, 2018). The number

of reporting gauges generally varies from day to day (e.g.,

Fig. 1a). Furthermore, these gauges are not uniformly

distributed across the country, or allocated in accordance

to spatiotemporal variability of rainfall, and this could

influence the quality of these gauge-based gridded prod-

ucts in some regions more than in others.

An inadequate rain gauge density as well as choice of

interpolation method could substantially impact the

accuracy of gridded rainfall products (Bastin et al. 1984;

Morrissey et al. 1995). Recently, Lin andHuybers (2019)

replicated the interpolation method, used for the de-

velopment of IMD gauge-based gridded rainfall da-

tasets, at a multisatellite precipitation product, and

reported that temporal changes in the gauge density

would bias the historical trends in the southwest

monsoon rainfall extremes over India. They also no-

ticed that the use of a variable network of gauge sta-

tions would introduce bias in the mean monsoon

rainfall. Moreover, rain gauge observations from the

IMD network are used for several socioenvironmental

purposes and for the national decisions. For instance,

IMD rain gauge observations are utilized for the as-

sessment of meteorological drought, and all-India

drought is declared when the monsoon rainfall is

below a rather tight threshold of 10% of the long-period

mean rainfall. If the uncertainty in the gauge-based

mean rainfall estimates is too high, a false deficit de-

cision could be made. Hence, it is important to know the

associated uncertainties in gauge-based rainfall esti-

mates owing to the nonuniform layout and placement

pattern of the rain gauge network. Reliable estimates of

uncertainty in observational rainfall datasets are also

critical for evaluating any numerical model output and

satellite-derived precipitation product for agriculture,
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water resources management, and precipitation-induced

natural hazards preparedness (Krajewski 2007; Collins

et al. 2013).

In view of the above, the key objectives of this study

are to address the following questions:

1) What is the uncertainty in the spatially averaged

estimates of monthly rainfall over a region due to

temporal changes in rain gauge density?

2) Which regions need augmentation of the rain gauge

network to attain similar uncertainties in gridded

rainfall data over the entire country?

For addressing these issues, we consider the impact of

gauge density on statistics of monthly mean monsoon

rainfall at four homogeneous regions within the country

in addition to the all-India scale. It is also important to

develop a theoretical model for the uncertainty in esti-

mating mean rainfall that can be applied to different

situations. A recently developed theoretical model of

uncertainty in estimating the spatial average owing to

missing rain gauges (Seshadri 2018) has been applied,

and sensitivity analyses have been reported based on

rain gauge observations across the country during each

month of the southwest monsoon season. The theo-

retical model is also verified with Monte Carlo simu-

lations using rain gauge observations at a monthly time

scale. Section 2 describes the dataset and method of

analysis. Section 3 provides a brief description of the

theoretical model. Results are presented and discussed

in section 4, and major conclusions of this study are

outlined in section 5.

2. Data and methods

We obtained daily rainfall observations from a fixed

rain gauge network of IMD. A total of 2140 rain gauge

stations across India were considered under this fixed

gauge network and observations were used for the

development of 18 latitude–longitude gridded long-

term rainfall data (Rajeevan et al. 2010). The quality-

controlled gauge observations for five southwest monsoon

seasons (e.g., June to September months) of 2002, 2003,

2007, 2009, and 2010 were chosen for the analysis.

According to the IMD monsoon reports, all-India sea-

sonal monsoon rainfall was deficit during 2002 and 2009,

whereas it was above normal during 2007 and normal

during 2003 and 2010 with respect to long period aver-

age of the monsoon rainfall.

The analyses in this paper were performed using

monthlymeans of daily rainfall from this gauge network.

The variation in the rain gauge density is less than 10%

across the nation for these selected 20 months (Fig. 1b).

The spatial distribution of the quality-controlled rain

gauges over India for June 2007 is shown in Fig. 2. The

distribution of gauges is not uniform across the country,

and the density of the gauge network is highest in

southern peninsular India and lowest over northeast

India. The boundaries of four selected relatively ho-

mogeneous regions of India are also shown in Fig. 2.

These four homogeneous regions have distinct monsoon

rainfall characteristics in terms of mean rainfall and its

spatial variability.

The arithmeticmeans ofmonthlymonsoon rainfall for

the selected years are presented in Fig. 3 for all-India

and four homogeneous regions. It can be seen from this

figure that the deficit in all-India seasonal rainfall during

2002 was primarily due to a rainfall deficit in July,

whereas the deficit in all-India seasonal rainfall during

2009 was due to a rainfall deficit in June and August.

Even though northeast India receives higher rainfall

than other three homogeneous regions during the

monsoon season, its year-to-year variability is out of

phase with that of rainfall over other parts of the

country.

To assess the impact of rain gauge density on un-

certainty in the estimates of spatial average rainfall,

domain-meanmonthly rainfall was computed for these

homogeneous regions as well as for all-India after

omitting individual rain gauges with a given probability.

The choice of omitting individual rain gauges was based

on generating statistically independent and identically

distributed Bernoulli random variables. If the random

variable corresponding to a gauge was equal to zero, the

corresponding gauge was omitted from calculation. The

Monte Carlo simulations involved the following steps:

FIG. 1. (a) Daily variation in the number of IMD rain gauge

observations from the fixed network over India for the period

1998–2013. (b) Variation in the number of IMD rain gauge

observations from the fixed network over India for the selected

southwest monsoon months.
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1) Generate Bernoulli random variables with values

being either zero or one for each rain gauge, with f

being the probability of being zero. Only those rain

gauges for which the corresponding variable equals

one were considered for the calculation of spatial

average monthly rainfall.

2) Estimate the spatial average of the included gauges,

which were decided based on random variables gen-

erated in step 1.

3) Repeat steps 1 and 2 for an ensemble having 5000

different realizations, with each realization taking a

new set of the Bernoulli random variables indicat-

ing whether each gauge was present or not in the

computation of spatial average monthly rainfall.

Estimate mean rainfall for each realization.

4) Modify the probabilities of the Bernoulli random

variables taking the values of one and zero, and

repeat steps 1–3. This corresponds to the fraction of

omitted gauges, as described below.

For each realization in an ensemble, we estimated

mean rainfall and then computed statistics (e.g., mean

and standard deviation) across the ensemble. Differ-

ent ensembles were generated, one for each fraction

of omitted rain gauges. The probability of individual

gauges being included in the estimate of spatial average

for each realization was approximately equal to the

fraction of omitted gauges owing to the law of large

numbers. This result in statistics states that the sample

average of a collection of independent and identically

distributed random variables converges to the expected

value as the number of variables increases. The fraction

of omitted gauges in any given realization was sample

average of the Bernoulli random variables, whereas

the probability of gauges being included equals its ex-

pected value.

For a given ensemble, corresponding to a given

probability of omitted rain gauges, the uncertainty in

domain-mean rainfall was measured by standard de-

viation of the mean rainfall estimated for each of the

5000 realizations, normalized by mean rainfall calcu-

lated using all the gauges and expressed as percentage.

For regions where this uncertainty is large, not only do

unreported gauge measurements have a larger impact

but also augmenting the rain gauge network in that re-

gion would bemore beneficial. An ensemble size of 5000

has been chosen for the Monte Carlo simulations in this

study. The differences in ensemble mean approach

closely to zero for 5000 or more simulations, when uni-

formweights were chosen. This is close to the theoretical

FIG. 2. Spatial distributions of IMD rain gauges over India in June 2007. Four homogenous

regions within India considered for the analysis are shown by rectangular boxes.
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mean of zero for uniform weights, as discussed in the

next section, and hence this choice was made for the

ensemble size.

3. Theoretical model to account for effects of
omitting rain gauges

We have used a statistical model proposed by

Seshadri (2018) to assess the effects of changing rain

gauge density on ensemble mean and standard de-

viation. He estimated variance and bias in the estimate

of a spatially averaged quantity in the presence of

missing data. The average was calculated only over

those observations which were reported. There were

four contributions to variance of the spatial average

in the presence of missing data: 1) temporal variance,

2) temporal covariance between locations, 3) mea-

surement error, and 4) effects of missing data itself.

Assuming perfect measurements, using only a subset

of available rain gauges is analogous to the missing

data problem, and the variance in the spatial average

owing to omitting a certain fraction of randomly cho-

sen rain gauges can be deduced from the results in

Seshadri (2018) as

Var5
f

12 f

�
b
1

� � � b
N

�

3

2
664
(m

r
2 r

1
)2 0 0

0 � � � 0

0 0 (m
r
2 r

N
)2

3
775
2
6664
b
1

..

.

b
N

3
7775 , (1)

where f is the probability of any individual rain gauge

being absent from the calculation (and also corre-

sponding to the expected fraction of omitted gauges),

b1, b2, . . . , bN are the weights given to each of the N

available gauges that could be used, r1, r2, . . . , rN are the

corresponding rainfall observations, and mr 5�N

i51biri
is the weighted average.

If we do not assume perfect measurements, then we

must take into account the contribution of measurement

error to the variance, which is [f /(12 f )]s2
«�

N

i51 b
2
i ,

where s2
« is the measurement error variance from each

individual rain gauge, and the gauges have been assumed

to be identical in this aspect with their measurement er-

rors being statistically independent (Seshadri 2018). Since

the interpolation scheme (e.g., Shepard 1968) used for

the development of gridded gauge-based rainfall prod-

ucts involves linear weights of rain gauges that sum to

FIG. 3. Mean monthly rainfall over India and four homogeneous regions for (a) June, (b) July, (c) August, and

(d) September months of the selected years.
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one, Eq. (1) can be used to estimate ensemble standard

deviation, and hence uncertainty in the resulting gridded

rainfall products.

The weights must sum to one, in the case where all

rain gauges are used, so that in case of uniform weights

involving simply the arithmetic average of the rain

gauges, these weights are bi 5 1/N and weighted av-

erage becomes mr 5 (1/N)�N

i51ri 5 r0, the arithmetic

mean of all rain gauge observations. Then Eq. (1)

simplifies to

Var5
1

N2

f

12 f
�
N

i51

(r
i
2 r0)2 , (2)

and using (1/N)�N

i51(ri 2 r0)2 5s2
s , the spatial variance

estimated using all the rain gauges, the ensemble stan-

dard deviation of estimation due to omitting fraction f

of rain gauges is

s
f
5

ffiffiffiffiffiffiffiffiffi
Var

p
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

f

12 f

s
s
s
, (3)

which increases proportionally to spatial standard de-

viation ss. For a given period of time, the spatial stan-

dard deviation is assumed to be known for a specific

region and estimated using all available rain gauge ob-

servations. Therefore, changing the omitted fraction of

gauges changes only the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f /(12 f )

p
. For small

f, we can approximate using first-order Taylor series

1/(12 f ) ffi 11 f so that, to first order in f , sf ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1/N)f

p
ss, and the ensemble standard deviation in-

creases with square root of the omitted fraction of rain

gauges. Because of proportionality in spatial standard

deviation ss within the region, the uncertainty in mea-

suring spatially averaged rainfall sf is larger where this

quantity is higher. This effect can be compensated by

higher density of coverage owing to the dependence on

square root of N in Eq. (3).

For uniform weights with bi 5 1/N, the contribution

of measurement error to the variance becomes [ f /(12
f )]s2

«�
N

i51(1/N)2 5 (1/N)[f /(12 f )]s2
«. Combining the

results with Eq. (3), total variance in the presence of

measurement error becomes

s2
f 5

1

N

f

12 f
(s2

s 1s2
«) . (4)

The contribution of measurement error can be ne-

glected if the error variance from each individual gauge

is much lower than the spatial variance over the region,

that is, for s2
« � s2

s . This is generally the case for the

regions considered in this study, and hence we have

omitted the term arising frommeasurement error in our

calculations.

Omitting rain gauges also contributes to bias in esti-

mates of the spatial average. However, for the special

case of arithmetic averaging this bias is zero. From

Seshadri (2018), the contribution of missing or omitted

observations to bias in estimating the spatial average is

given by

bias5
f

12 f

 
m

r �
N

i51

b2
i 2 �

N

i51

b2
i ri

!
, (5)

with mr 5�N

i51biri as noted previously, and with bi 5
1/N, we obtain

bias5
f

12 f

 
1

N2 �
N

i51

r
i
2 �

n

i51

1

N2
r
i

!
5 0, (6)

so that with arithmetic averaging, the bias vanishes. This

property is unique to arithmetic averaging schemes, and

in case of more general nonuniform weights, the bias

due to missing data does not necessarily vanish. How-

ever, missing observations do not alter the ensemble

mean with the use of arithmetic averaging to estimate

the spatial average. In other words, the bias associated

with leaving some of the gauges would theoretically be

zero as all gauges are treated equally.

4. Results and discussion

For demonstrating the relevance and implications of

this type of analysis, we first considered gauge-based

daily mean rainfall for the month of June 2007 over a

1.58 3 1.58 grid box bounded by 208–21.58N and 758–
76.58E. This grid box has 22 gauge observations for this

period (Fig. 4), and is located in the northern plains of

India (or central India) where the spatial variability of

the seasonal monsoon rainfall is rather small (Gadgil

2003). The domain-mean daily rainfall estimates over

the month following random omission of successive

gauges are presented in Fig. 4. Although the ensemble

mean rainfall does not vary considerably, the error in

daily mean rainfall over the month increases consis-

tently when the number of gauge observations is re-

duced. For instance, about 10% error in daily mean

rainfall (as a fraction of the spatial average) is evident

following the omission of only three gauges from this

analysis. However, the error increasesmore rapidly if we

choose the grid box over the regions having larger spa-

tial variability of the monsoon rainfall. In general, such

errors posed by finite sampling and missing data can be

significant for rainfall analysis as well as development of

gauge-based gridded rainfall products that are based

on averaging rain gauges over small grid boxes, even

smaller than 1.58 latitude3 1.58 longitude. The resulting
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uncertainties could be higher over orographic re-

gions because of a larger spatial variation of rainfall.

The number of daily gauge observations over India

shows large variations even from the fixed network

(Fig. 1a), which could have a significant influence on

spatial averages. Hence, time series of the spatial

average rainfall should be interpreted with caution,

especially when estimates of uncertainty have not been

provided.

The theoretical development in section 3 suggests that

spatial variance and number of gauges across a region

are the two main factors controlling uncertainty in es-

timates of spatial average rainfall. The relevant di-

mensionless quantity describing effects of changing

gauge density is the spatial standard deviation divided

by the spatial average rainfall, that is, ss/ms, termed as the

spatial coefficient of variation. We define the ‘‘averaging

error factor’’ as ss/(
ffiffiffiffi
N

p
ms), following Eq. (3). This av-

eraging error factor indicates the combined influence of

spatial variability and rain gauge density, and a higher

magnitude indicates larger uncertainty in the rainfall

estimate and suggests the need for more gauge observa-

tions in that region. Multiplying the averaging error

factor by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f /(12 f )

p
, with f being the fraction of omitted

gauges, would yield the uncertainty in the spatial aver-

age rainfall estimates.

We examined the uncertainty in monthly mean rain-

fall, after omitting a fraction of gauge observations, us-

ing the theoretical model as well as Monte Carlo

simulations. The uncertainty in all-India mean rainfall

for each month of the southwest monsoon season is

presented in Fig. 5 as a function of the fraction of

omitted rain gauges. Monte Carlo simulations described

in section 2 are shown together with results fromEq. (3),

which explains simulations rather well. As expected, the

uncertainty in spatially averaged monthly rainfall in-

creases with the omitted fraction of rain gauges. How-

ever, the uncertainty increases more rapidly with

omission of gauges during the month of June as com-

pared to other monsoon months. For all-India rainfall,

omission of about 10% rain gauges lead to 1% un-

certainty in the estimate of the spatial averaged rainfall

for June. This is due to large spatial variability in June

rainfall associated with high rainfall over the southern

peninsular and northeast India than that in central and

northwest India (e.g., Fig. 3) associated with successive

progress of the southwest monsoon. Similarly, the un-

certainty shows anomalous increase with omission in

gauges in July during deficit monsoon years of 2002 and

2009 due to relatively larger spatial variability of rain-

fall. These differences in uncertainties at intraseasonal

and interannual scales are primarily due to differences

in the spatial variance in rainfall, because the gauge

density is almost invariable during these periods. This

analysis is repeated with 16 years (1998–2013) of mon-

soon datasets, and similar characteristics of uncertainty

were evident. As compared to uncertainties during the

normal monsoon months, dry monsoon months have

about 10% more uncertainties and the wet monsoon

months have about 15% less uncertainties.

FIG. 4. Mean daily rainfall over a 1.58 3 1.58 grid box in India and associated errors with

reduction in randomly chosen gauge observations for June 2007. The distribution of 22 rain

gauges over the selected grid box bounded by 208–21.58Nand 758–76.58E is shown at the bottom

left of the figure.
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It is to be noted that limiting uncertainty in the esti-

mates of all-Indiameanmonthly rainfall to around 1% is

important for several applications such as for studying

interannual variability of all-India monsoon rainfall

adequately. For instance, IMD declares an all-India

deficit monsoon if seasonal rainfall across the country

is 10% below the long period average, an above normal

rainfall if seasonal rainfall is 10% above the long pe-

riod average, and a normal monsoon rainfall otherwise.

For a given year, if the all-India monsoon rainfall is

9% below the long period average as per gauge-based

rainfall estimates, to infer this as a normal monsoon

year would require the uncertainty to be less than 1% in

the all-India rainfall estimate. If the uncertainty in the

mean rainfall estimate is too high, a false deficit decision

could be made. This suggests a rather tightly bound

threshold for an acceptable level of uncertainty. Fur-

thermore, an estimate of uncertainty accompanied with

the spatial mean rainfall is crucial for the verification of

precipitation forecasts from numerical models and for

the assessment of reliable historical trends in mean

rainfall and extremes.

Figure 6 presents the uncertainty in monthly mean

rainfall over northeast India for each month of the

southwest monsoon season as a function of the fraction

of omitted rain gauges. Northeast India shows a larger

increase in uncertainty with decrease in gauge obser-

vations as compared to all-India. Omission of 10% of

rain gauges leads to approximately 4% uncertainty in

the estimate of the spatial average rainfall. There are

few years between 1998 and 2013 (e.g., 1998, 1999, 2000),

when the number of reporting rain gauges decreased

by about 40% of the total number of available gauges

of the fixed network. Hence, the uncertainty estimates

associated with spatial mean rainfall are crucial for

its integration in any application. The theoretical and

FIG. 5. Uncertainty in mean monthly rainfall over India with reduction in gauge density from the theoretical

model (solid lines) and Monte Carlo simulations using gauge observations (open circles) for (a) June, (b) July,

(c) August, and (d) September of 2002, 2003, 2007, 2009, and 2010.
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simulated uncertainties generally agree well with

each other. However, there are some differences be-

tween them when the omission of gauges is more than

30% of the total gauges. One of the reasons behind this

discrepancy might be a smaller number of gauges over

the northeast region (Fig. 2). Additionally, the theoret-

ical model is also an approximation, and variance is

derived by truncating the Taylor series of a ratio and

considering suitable expectations known as the ‘‘delta

method’’ (Seshadri 2018). Generally, the uncertainty

from omitting rain gauges would be larger at smaller

spatial (e.g., statewise, meteorological subdivisional

scale) and temporal (e.g., weekly, daily, and subdaily)

scales. It is important to undertake analysis and develop

theory for a wide range of relevant scales. Even though

four homogeneous regions within India showed similar

behavior of increase in uncertainty due to decrease in

gauges, the uncertainty inmonthly rainfall estimates due

to changes in gauge density is the largest for northeast

India and smallest for central India among four homo-

geneous regions. Southern India showed larger range of

uncertainty than northwest India.

Figure 7 illustrates the effects of spatial coefficient of

variation of available rain gauges on the averaging error

factor for each month of the monsoon season. This

analysis would be useful for deciding which regions re-

quire augmentation of the rain gauge networks. Al-

though spatial variability of rainfall is rather small over

northeast India, it shows the largest averaging error

factor due to the smaller number of gauges, and hence

the analysis suggests that this region should be given

priority for the installation of additional gauges. For

instance, about 200 gauges are required over north-

east India to attain a 5% averaging error factor at 70%

spatial coefficient of variation. In case the fraction of

missing gauges is limited to 10% so that f 5 0:10, the

factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f /(12 f )

p
5 0:33, and the uncertainty in the

spatial mean with about 200 gauges becomes around

FIG. 6. Uncertainty in mean monthly rainfall over northeast India with reduction in gauge density from the

theoretical model (solid lines) and Monte Carlo simulations using gauge observations (open circles) for (a) June,

(b) July, (c) August, and (d) September of 2002, 2003, 2007, 2009, and 2010.
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1.7% of the spatial average. However, this estimate of

number of required gauges can vary due to variability in

the spatial standard deviation of rainfall, and further

analysis should account for both interannual variability

in the spatial standard deviation and dependence of its

estimation on the available rain gauge density. Pre-

liminary analysis suggests that the spatial standard devi-

ation of rainfall is generally smaller than the observed

value if the number of gauges increases substantially

over a data-sparse region. However, the objective of

the present study is not to estimate the optimal number

of gauges over India, but to verify the recently proposed

theoretical model of uncertainty with Monte Carlo

simulations and quantify the uncertainty in monthly

mean rainfall due to changes in gauge density.

FromFig. 7, it can be seen that although the number of

gauges is larger over southern India than central India,

larger spatial variability of rainfall across southern

India associated with the complex topography of the

Western Ghats leads to a larger averaging error factor

in southern India when compared to central India.

Northwest India shows larger spatial variability during

July and September, and hence a higher averaging error

factor. In general, larger spatial variability of rainfall

during the deficit months as compared to normal rainfall

months leads to larger averaging error factors. Fur-

thermore, the averaging error factor shows consider-

able interannual and intraseasonal variations due to

remarkable changes in the spatial variability of mon-

soon rainfall, even while the number of gauges is al-

most invariable.

Another source of uncertainty in estimates of spatial

mean rainfall is the uncertainty in the gauge observa-

tions themselves. However, this kind of uncertainty is

small or negligible in the case of a good network of rain

gauges, especially at larger spatial or temporal scales of

integration (Seshadri 2018; Krajewski 2007). As shown

in section 3, the contribution of the measurement error

to uncertainty in the spatial mean can be neglected if

the error variance of individual gauges is small com-

pared to the spatial variance over the region, obeying

s2
« � s2

s . Even assuming a conservative error variance

FIG. 7. Percentage averaging error factor [ss/(
ffiffiffiffi
N

p
ms)3 100] in mean monthly rainfall as a function of spatial

coefficient of variation (ss/ms) for all-India and four homogeneous subregions for (a) June, (b) July, (c) August, and

(d) September months of the selected years.
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from individual gauges of about 1mmday21, this re-

lation is generally obeyed for the regions that we have

considered, and hence our calculations have omitted the

contribution of measurement error to uncertainties in

the estimates of spatial average. However, the uncer-

tainty frommeasurement error can become pronounced

at smaller spatial scales, for which the spatial standard

deviation of spatial rainfall is comparable with the

standard deviation of rain gauge errors.

5. Conclusions

The uncertainty in monthly mean monsoon rainfall

due to changes in rain gauge density over India was

quantitatively assessed based on a theoretical model

and Monte Carlo simulations. The theoretical model

considered ensemble standard deviation in the spatial

average of rainfall estimated using rain gauge obser-

vations, if gauges were randomly omitted from the

calculation. The theoretical model agreed reasonably

well with Monte Carlo simulations using monthly rain

gauge observations. The analysis using gauge-based

rainfall observations from a fixed network across India

revealed an uncertainty of about 4% in monthly mean

rainfall over northeast India upon omission of about

10% of the available gauges. Northeast India showed

substantial variations in rain gauge density between

1998 and 2013, which could lead to considerable un-

certainty in monthly mean rainfall estimates. The in-

crease in uncertainty due to decrease in rain gauges was

largest for northeast India and smallest for central

India among the four homogeneous regions. Such un-

certainty estimates are vital for accurate inference

about time series analysis of spatially averaged rainfall.

However, there were considerable intraseasonal and

interannual variations in uncertainties for all-India and

four homogeneous regions.

The large uncertainty in northeast India was mainly

due to a small number of rain gauges, whereas the larger

spatial variance of the monsoon rainfall was responsible

for higher uncertainty in monthly rainfall estimates over

southern India. There was a substantial variation in the

number of reporting rain gauges across India, and hence

it is important to consider the effects of missing rain

gauges on the uncertainty in estimates of regional mean

rainfall. A new parameter called the ‘‘averaging error

factor,’’ based on the spatial variance of rainfall in re-

lation to its spatial mean as well as the current number of

gauges, was proposed to identify the regions requiring

augmentation of rain gauges. The averaging error factor

can be large if either the spatial variance is high or the

number of rain gauges is small. The analysis showed that

northeast India needs augmentation of the rain gauge

network (about 200 gauges to attain a 5% averaging

error factor at 70% spatial variability) to study the inter-

annual variability of monsoon rainfall adequately by

limiting the uncertainty in the spatial average to an

acceptable range.

The present study has focused on India due to avail-

ability of station data. However, results of this study

would be valid for other parts of the globe as well,

because the proposed averaging error factor depends

primarily on the spatial variability of rainfall and the

number of rain gauge observations. The optimal gauge

density would vary based on specific applications, due to

variability in the spatial statistics at intraseasonal and

interannual scales, as well as the spatial and temporal

resolutions of interest. With subsequent advancements

in remote sensing technologies, several multisatellite

rainfall products at finer spatial and temporal resolu-

tions are available to end-users. Gauge-based rain-

fall observations play a critical role in evaluation of

satellite-based estimates. However, the density of

gauges and uncertainty in gauge-based rainfall estimates

should be cautiously considered along with other topo-

graphical and geographical factors for the assessment of

gridded rainfall products. As noted earlier, meteoro-

logical observations are usually made with the goal of

supporting societal and policy decisions. To support

decision-making, the statistics of rainfall must be ac-

companied by uncertainty estimates. While the level of

precision that is required can vary by situation, this

paper provides an approach for quantifying the un-

certainty in rainfall estimates from rain gauge obser-

vations. This study can be extended to examine the

minimum density of rain gauges essential for estimat-

ing rainfall over any given region to a desired level of

accuracy.
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