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Abstract
Experience mapping based predictive controller (EMPC) is a recently developed controller based on the concepts of Human
Motor Control. It has been demonstrated to out-perform other classical controllers like proportional-derivative (PD), model
reference based adaptive controller (MRAC), linear quadratic regulator (LQR) and the linear quadratic Gaussian (LQG) for
both Type-1 and Type-0 systems. This paper analyses the stability and efficiency of EMPC for Type 1 systems. EMPC uses
rectangular pulse input as control action for well-damped Type 1 systems and a first order decay input for under-damped
Type 1 systems . The simulation results of EMPC for position control of a DC motor with a load coupled through a flexible
shaft are presented as a case study to derive and prove the stability criterion. The efficiency of EMPC on a practical system
is analysed in terms of energy dissipated in the armature resistance of the motor and the same is compared with PD, MRAC,
LQR, LQG controller. Further, the computational cost of EMPC is discussed and compared with traditional controllers from
the point of view of implementation.

Keywords Optimal control system · Experience mapping based predictive controller · Position control · Flexible shaft · DC
motor · Stability · Efficiency · Computational cost

1 Introduction

Stability analysis of controllers is a important requirement to
prove the usage of the controller in various applications.

Linear control theory use tools like root locus, Nyquist or
Bode plots to prove the stability of the controller. In mod-
ern control systems, digital controller algorithms like linear
quadratic regulator (LQR), linear quadratic Gaussian (LQG),
model reference adaptive controller (MRAC) [1], sliding
mode control (SMC), fuzzy control [2] and neural networks
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[3] use more complex theory like linear matrix inequalities
(LMI) based on Lyapunov’s stability criterion [4,5] to prove
stability. These controllers require the plantmodel and a set of
state space equations that govern the system transfer function
[6]. Complex systems such as those involving flexible shafts,
have complicated equations and involve numerous state vari-
ables that need to be measured. Designing a control system
which is stable for an open loop under-damped system or a
non-minimum phase system or one that have many poles or
zeros is a difficult task. The cost of the implementation of
such digital controllers is high.

In literature, certain controllers are also modified to
improve stability by using feed-forward control [7]. When
the system to be controlled consists of higher order poles, PID
controller will be the easiest to implement by using simple
techniques like pole-placement based on the required perfor-
mance criteria as opposed to state based controllers which
require higher order matrices to be constructed. PID has also
been improved upon by controlling the PID gains usingmod-
ified LQR or LQG controllers [8,9] to give better response to
noise and disturbance. To adapt these controllers for change
in system parameters, estimators like an extended Kalman
Filter is used so that the system does not become unstable
for a greater range of parameter changes [10,11].
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In the case of advanced non-linear controllers applied
on non-minimum phase systems, equations for stability are
derived from Lyapunov-Krasovskii and applied on Fuzzy
based [12] and Neural network based [13] controllers. Thus,
design of a controller for a given system requires the knowl-
edge of the stability criterion so that we can be confident
that the closed-loop system will remain stable for predefined
conditions.

Recently, a new control algorithm called the experience
mapping based predictive controller (EMPC) was developed
for position control [14–17] and speed control [18,19] of a
DC motor and shown to outperform other robust controllers.
The concepts were further improved to extend the control for
under-damped Type-1 systems in [20,21].

1.1 Experiencemapping based predictive control
(EMPC)

EMPC is inspired from human motor control (HMC).
Humans develop skills by practice and interaction with the
surrounding environment [22,23]. They can adapt to changes
in the environment and improve their motor control skills.
The experiences of these interactions are mapped in the brain
as input-output relationships. Repeated interaction results in
improved experiences, which are stored as motor memories.
These motor memories allow the HMC to operate in quasi-
open loop, by providing the necessary action to achieve a
desired response, based on past experiences [24,25].

EMPC closely follows the following principles. Dur-
ing the learning phase, the system steady state outputs are
mapped to the applied inputs and stored in an experience
mapped knowledge base (EMK). For a given demand, the
control action required is then evaluated from the EMK and
applied to the system.

EMPC is capable of handling minor errors introduced due
to sensor or system noise and disturbances through the use
of Iterative Predictive Action. These errors can also occur
due to small changes in the system parameters. However,
significant changes in system parameters can result in large
errors, oscillations and even instability. Stability analysis of
controllers is one of the important aspects of controls theory
and various approaches have been used for the same with
different controllers. Hence, it is important to analyze and
establish the stability conditions of EMPC under changing
system conditions.

In this paper, we introduce the basics of EMPC based
on earlier literature and build upon the stability criteria for
the same. Section 2 derives the stability criteria for EMPC
applied for a well-damped Type-1 system. In Sect. 3, we
derive the stability criteria for EMPC applied to an under-
damped Type-1 system. Section 4 compares EMPC with PD
controller for stability. Section 5 the efficiency of EMPCwith
PD, MRAC and LQG when applied to position control of a

DC motor connected to a load through a flexible shaft based
on the energy dissipated by the armature resistance. Section 6
compares the efficiencywhen non-linearities like dry friction
are introduced into the motor-load system. In Sect. 7, com-
putational cost and controller memory usage of EMPC is
compared with other controllers practical implementation.

2 EMPC for the well-damped Type 1 system

EMPC has been developed for a well damped nth order Type
1 system and implemented on a PMDC motor position con-
trol system [15]. The general form of the well-damped Type
1 system is described by Eq. 1

G(s) = (s + z1)(s + z2) · · · (s + zm)

s(s + p1)(s + p2) · · · (s + pn)
(1)

where (zi , p j ) ∈ �, i ∈ [1,m], j ∈ [1, n], m ≤ n for a
causal system. EMPC proposes a control action consisting
of a rectangular pulse of fixed amplitude with varying pulse-
width duration which are mapped to corresponding steady
state responses using an EMK [14]. The output Y (s) of the
system G(s) when a rectangular input of amplitude Am and
time width Ton is applied is defined by Eq. 2

Y (s) = Am

(
1 − e(−sTon)

)

s
G(s) (2)

The steady state response for the rectangular input usingFinal
Value Theorem is given by Eq. 3

Yss = b0
a0

AmTon (3)

where b0 = ∏m
i=1(−zi ) and a0 = ∏n

i=1(−pi ). From Eq. 3,
it is seen that the steady state output of the system G(s) is
reached by applying a rectangular input of width Ton from
fixed steady state initial condition. The steady state value Yss
is directly proportional to Ton if the parameters that define
the system (a0, b0, Am) are constant. Therefore Eq. 3 is sim-
plified as Eq. 4

Yss = KsaTon (4)

where Ksa = b0
a0
Am is the constant of proportionality for the

given system determined by G(s). Am is considered to be
constant since the input to the system can be considered to
be normalized to have an maximum amplitude of 1, which is
then amplified by some drive circuitry by a value of Am and
applied to the system G(s). Figure 1 shows the response of
a Type 1 system for the application of a standard rectangular
input from steady state.
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Fig. 1 Standard rectangular input action of EMPC and response of a
Type 1 system G(s) = s+10

s(s2+6s+5)
with Am = 1, Ksa = 2 and Ton = 2

Equation 4 establishes that there is a linear relation
between the parameter Ton and the steady state response Yss
for a fixed plant defined by G(s). For a given Demand D,
EMPC proposes a predictive action where the input pulse
width parameter for the control action, Ton is given by Eq. 5
[14]

Ton = |D|
Ksa

(5)

For negative values of D, a rectangular input of negative
amplitude can be applied to the system with the width of the
input determined using the absolute value of D. Equation 5
canbeused to calculate precisely the control action parameter
in the absence of any system changes and/or sensor noise and
disturbances. Assuming that the system G(s) is unchanging,
the presence of small system/sensor noise can result in the
expected system steady state output Yss predicted by Eq. 5,
to deviate from the expected value.

EMPC further improvises the control action in response to
deviations by using the concept of iterative predictive action.
In this algorithm, multiple rectangular inputs can be used to
achieve zero steady state error. In each iteration, the rectan-
gular input width is predicted using Eq. 5 for the new value of
D, where demand D is difference between the current steady
state value and the required original demand. The control
action is applied to the system when the system is at steady
state. Due to the use of multiple iterations, EMPC ensures
zero steady state error.

2.1 Stability analysis

Let G(s) be a system whose constant of proportionality has
been estimated to be K = Ksa using a single input-output
mapping. This value of K is used for prediction of rectangu-
lar pulse width Ton using Eq. 5 to achieve the required steady
state output determined by the demand D. Let us assume that
the system G(s) undergoes a change resulting in K chang-
ing from Ksa to K

′
sa . Since, EMPC uses Iterative Predictive

Action for control without any adaptation mechanism for

changes in the system, it continues to use K = Ksa in Eq. 5
for prediction and control and this will result in errors.

Consider that the current system steady state output Yss is
zero and the system is given a new reference value R > 0.
Then the demand D = R − Yss = R can be considered as
the error e0 at the end of the 0th iteration. Then,

e0 = R (6)

The width of the rectangular input is predicted using Eq. 5
as

Ton1 = |e0|
K

(7)

Since the current system proportionality constant is K
′
sa , the

steady state output of the system for this input is given by

Y1 = Ton1K
′
sa = e0

K
′
sa

Ksa
(8)

Then the steady state error at the end of the first iteration is
given as

e1 = R − Y1 = e0 − Y1 = e0

(

1 − K
′
sa

Ksa

)

(9)

The iterative predictive action considers this error e1 as the
new demand in the next iteration and hence results in two
main cases.
Case 1When K

′
sa < Ksa , e1 > 0 and e1 < e0. Iterative pre-

dictive action is used to calculate the width of the rectangular
input to be fed in the second iteration to correct the error e1.
This value of Ton2 is given by Eq. 10

Ton2 = |e1|
K

(10)

This results in

Y2 = Y1 + Ton2K
′
sa (11)

Therefore, steady state error at the end of the second iteration
is given by

e2 = R − Y2 = e0

(

1 − K
′
sa

Ksa

)2

(12)

This results in e2 > 0 and e2 < e1 < e0. This can be repeated
to obtain the steady state error at the end of the nth iteration
as en where,

en = e0

(

1 − K
′
sa

Ksa

)n

(13)
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Fig. 2 Simulated response of G(s) for K
′
sa < K

In this case, en > ∀n ∈ N and en < en−1. The system
response is similar to that of an over-damped system as y(t)
converges to the required steady state value with each itera-
tion. Figure 2 shows typical response for K

′
sa = 1.

Case 2 When K
′
sa > K . This results in e1 < 0. In the

next iteration, e1 is the new demand D and since e1 < 0,
a rectangular input of negative amplitude is applied to the
system and the width of the input is predicted with Eq. 10
resulting in,

Y2 = Y1 − Ton2K
′
sa (14)

The error at the end of the second iteration is given by Eq. 12,
which is same as before. Therefore the nth iteration error for
this case is also calculated from Eq. 13. However, since the
sign of en alternates in Case 2, the magnitude of the steady
state error at the end of each iteration is considered and given
by Eq. 15

|en| = e0

∣∣
∣∣1 − K

′
sa

K

∣∣
∣∣

n

(15)

The requirement to ensure stability with the change in the
system parameters is that the magnitude of the error given
by Eq. 15 should asymptotically go towards zero. This is
possible when,

∣∣∣∣1 − K
′
sa

K

∣∣∣∣

n

< 1 => −1 <

(
1 − K

′
sa

K

)n

< 1 (16)

Since K
′
sa
K > 0, it is implied that (1 − K

′
sa
K ) � 1. Hence,

(1− K
′
sa
K ) > −1 is the necessary condition. This can be sim-

plified to obtain the stability criterion for EMPC for changes
in system parameters in the absence of adaptation as shown
in Eq. 17

K
′
sa < 2K (17)

Fig. 3 Simulated response of G(s) for K < K
′
sa < 2K

Fig. 4 Simulated response of G(s) for K
′
sa = 2K

Fig. 5 Simulated response of G(s) for K
′
sa > 2K

K
′
sa < K results in case 1 whose response is seen in Fig. 2.

This is a stable scenario with an over-damped response.
K

′
sa < 2K is another stable scenario with an under-damped

response as seen in Fig. 3. Although, the system response
oscillates around the required steady state value, the response
slowly converges towards the required steady state valuewith
each iteration. K

′
sa = 2K results in the boundary condi-

tion for the stability of EMPC where the system response
oscillates with the magnitude of the error at the end of each
iteration remaining constant throughout as seen in Fig. 4.
K

′
sa > 2K results in instability as seen in Fig. 5.
The stability condition of Eq. 17 shows that EMPC is

capable of controlling systems for a large range of Ksa val-
ues using the iterative predictive action control technique.
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However, without any adaptation there is a deterioration in
the performance as the value of K

′
sa moves further away

from Ksa , with multiple iterations and possible overshoots
and oscillations being part of the response. Hence, it is nec-
essary for EMPC to adapt to system parameter changes and
improve the overall performance.

EMPC proposes an adaptation technique called on-job
relearning (OJR) which improves upon the iterative pre-
dictive action to overcome these problems [15]. In this
algorithm, at the end of an iteration, a ratio called param-
eter correction coefficient (PCC) is calculated as shown in
Eq. 18

PCC = |D|
Yss − Yss0

(18)

where Yss is the current steady state output of the system
after the predicted rectangular input is applied and Yss0 is
the steady state output value before the application of the
rectangular input. The parameter correction coefficient can
beused to adaptEMPC to correct the prediction appropriately
for the next iteration. This is achieved by modifying Eq. 5
which is used to predict the width of the rectangular input to
consist of the PCC term as given below

Ton = |D|
K

PCC (19)

The value of PCC is initially set to 1 and remains unchanged
till EMPC needs to adapt to system changes. When the sys-
temparameters change and this results in a deviation between
expected and obtained steady state response, PCC is calcu-
lated based on Eq. 18 accordingly. Due to this change in
PCC in each iteration of control action, in some subsequent
iteration of input, the system response will converge towards
the demand. It is seen that when error finally reaches zero at
some iteration, Eq. 18 will revert PCC back to 1. Therefore
a more general form of PCC is proposed given by Eq. 20.

PCCi = |Di |
Yi − Yi−1

PCCi−1 (20)

Stability of OJR based adaptation using PCC can be eval-
uated by modifying the criteria for stability given by Eq. 17

When K = K
′
sa , the steady state value Y1 is given by

Eq. 8. PCC is calculated using Y1 as

PCC1 = |D|
Y1 − Y0

PCC0 (21)

where PCC0 = 1, D = R,Y0 = 0. This simplifies as,

PCC1 = R

Y1
= TonKsa

TonK
′
sa

= Ksa

K ′
sa

(22)

Fig. 6 Simulated response of G(s) for K < K
′
sa < 2K

Fig. 7 Simulated response of G(s) for K < K
′
sa < 2K

Equation 10 is now modified as,

Ton2 = |e1|
K

PCC1 = |e1|
K ′
sa

(23)

The steady state output obtained at the end of the second
iteration is given by Eq. 24, resulting in e2 = 0.

Y2 = Y1 + Ton2K
′
sa = Y1 + e1 = R (24)

Figures 6, 7, 8 and 9 show simulated response for EMPC
with OJR. It can be seen that OJR is capable of adapting
and controlling systems even when the parameter changes
result in a violation of the earlier stability criterion of Eq. 17.
Although, significant overshoot is present in the response
of the system in these cases, the stability of the system is
assured.

3 EMPC for the under-damped Type 1 system

An under-damped system has at least one complex conju-
gate pole pair. The general form of the under-damped Type
1 system is described by Eq. 25

H(s) = 1

s(as2 + bs + c)
× (s + z1)(s + z2) · · · (s + zm)

(s + p1)(s + p2) · · · (s + pn)
(25)
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Fig. 8 Simulated response of G(s) for K
′
sa = 2K

Fig. 9 Simulated response of G(s) for K
′
sa > 2K

where (zi , p j ) ∈ �, i ∈ [1,m], j ∈ [1, n],m ≤ (n+3) for a
causal system, b2 < 4ac for existence of complex conjugate
poles and b

2a < p j ∀ j ∈ [1, n] for the conjugate poles to
dominate the system response.

When a rectangular pulse is applied to an under-damped
system, oscillations are caused due to the dominant complex
conjugate poles. Hence EMPC proposed in the previous sec-
tion is modified to reduce overshoots and oscillations.

EMPC therefore, proposes a control action c(t) defined
by Eq. 26, for the control of a Type 1 under-damped system
[20]

c(t) = Am

[
1 −

{(
1 − e−α(t−T0)

)
u(t − T0)

}]
u(t) (26)

where Am is the maximum allowed amplitude, α is a positive
decay constant and T0, analogous to Ton used for well-
damped systems is the time-shift parameter. The Laplace
Transform of c(t) is given in Eq. 27

C(s) =

⎧
⎪⎪⎨

⎪⎪⎩

Am

[
(1−e−T0s )

s + e−T0s

s+α

]
, T0 ≥ 0

Am

(
eαT0

s+α

)
, T0 < 0

(27)

Fig. 10 Control input waveforms—first order decay signals shifted in
time
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Fig. 11 Response of systemH(s)= 17
s(s2+2s+17)

to first order decay input
[α = 1]

The output Y (s) of a system H(s), when the control input
C(s) is applied to it is given by Eq. 28

Y (s) = C(s)H(s) (28)

Assuming zero initial conditions, the steady state value Yss
can be obtained as in Eq. 29, using the final value theorem.

Yss =

⎧
⎪⎨

⎪⎩

Am
b0
a0

(T0 + 1
α
) T0 ≥ 0

Am
b0
a0

eαT0

α
T0 < 0

(29)

where, b0 = ∏m
i=1(−zi ) and a0 = ( c

a

) × ∏n
i=1(−pi )

Similar to thewell-damped system, for a given plant H(s),
a0 and b0 are constant. Am is the maximum amplitude of
input that can be applied to the system which is normalized
for further analysis. Equation 29 can be simplified as,

Yss =
⎧
⎨

⎩

Ksa(T0 + 1
α
) T0 ≥ 0

Ksa
eαT0

α
T0 < 0

(30)

Varying T0 while keeping α constant results in the control
input waveforms being shifted in time as shown in Fig. 10.
The dotted lines represent the truncated portion of the expo-
nential decay for T0 < 0. The result of the control action on
an under-damped system is shown in Fig. 11.

123



458 M. A. Aravind et al.

Time (s)
0 2 4 6 8 10

A
m

pl
itu

de

0

0.5

1

1.5
Response to First Order Decay Input

Input( =4)
Output( =4)
Input( =2)
Output( =2)
Input( =1)
Output( =1)
Input( =0.6)
Output( =0.6)
Input( =0.4)
Output( =0.4)

Fig. 12 Responses of system H(s)= 17
s(s2+2s+17)

to first order decay
inputs [T0 = 0] of various α

3.1 Choosing the decay constant˛

In any system, the real part of the dominant pole determines
the time constant of the system. The time constant of the
under-damped system in Eq. 25 is 2a

b . It can be seen that for
α < b

2a , the system shows no overshoot, as shown in Fig. 12.
It may also be observed that the system rise time increases for
smaller values of α [20,21]. For the learning phase, a value
of α is chosen which satisfies the condition mentioned, and
for which the system meets the rise time requirements.

3.2 Control action

For a given demand, the control action parameter T0 is deter-
mined by modiyfing Eqs. 30–31

T0 =

⎧
⎪⎨

⎪⎩

D
Ksa

− 1
α

D ≥ Ksa
α

ln αD
Ksa
α

D ≤ Ksa
α

(31)

α is fixed according to the conditions mentioned in Sect. 3.1.
From Eq. 29, it is understood that for constant Am , b0, a0
and α, the steady state position value Yss is dependent only
on T0.

It can be seen in Eq. 29, that for T0 ≥ 0, Yss has a linear
relationship with T0, but for T0 < 0, Yss varies non-linearly
with respect to T0.

3.3 Stability analysis

For a given demand R, error e0 is given byEq. 15. The control
action parameter T01 is calculated from Eq. 31. If the sys-
tem proportionality constant changes to K

′
sa , the steady state

output of the system can be either of two cases as in Eq. 32,
depending on the conditions of Eq. 31. Iterative predictive
action is used here as well in cases of external disturbance or
plant parameter changes.

Fig. 13 Simulated response of H(s) for K < K
′
sa < 2K

Fig. 14 Simulated response of H(s) for K < K
′
sa < 2K

Fig. 15 Simulated response of H(s) for K
′
sa = 2K

Yss =

⎧
⎪⎨

⎪⎩

K
′
sa(T0 + 1

α
) T0 ≥ 0

K
′
sa

eαT0

α
T0 < 0

(32)

Substituting Eq. 31 in Eq. 32 results in the earlier equa-
tion of Y1 given by Eq. 8. Therefore, the stability criteria
for the under-damped case will be the same as that of the
well-damped case given by Eq. 17.

Figures 13, 14, 15 and 16 show simulated response for
EMPC applied to the under-damped system H(s) without
adaptation.

Similar to the case of well-damped system, EMPC pro-
poses OJR for the case of under-damped system as well by
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Fig. 16 Simulated response of H(s) for K
′
sa > 2K

Fig. 17 Simulated response with OJR for H(s) for K < K
′
sa < 2K

using the parameter correction co-efficient(PCC) shown in
Eq. 33.

T0 =

⎧
⎪⎪⎨

⎪⎪⎩

|D|
K PCC − 1

α
|D|
Ksa

PCC ≥ 1
α

ln
(

α|D|
Ksa

PCC
)

α
|D|
Ksa

PCC < 1
α

(33)

Figures 17, 18, 19 and 20 show simulated response
for EMPC applied to the under-damped system H(s) =

17
s(s2+2s+17)

with adaptation. EMPC with OJR converges to
zero steady state even in the case of K > 2Ksa which sur-
mounts the earlier set stability criterion and stability of the
system is assured.

In both the well-damped and the under-damped case,
EMPC with OJR results in a stable response to a given sys-
tem. The results presented in this section have demonstrated
that for change in system parameters EMPCwith OJR is able
to adapt. Since the adaptation occurs only in steady state, it
is assumed that the system parameters do not change during
the application of the control action. In the event of system
parameter changes during the application of control action,
EMPC with OJR will consider the average effect of these
changes since it only records the final steady state value to
calculate PCC. Hence EMPCmight require more than 1 iter-
ation to settle to zero steady state error.

Fig. 18 Simulated response with OJR for H(s) for K < K
′
sa < 2K

Fig. 19 Simulated response with OJR for H(s) for K
′
sa = 2K

Fig. 20 Simulated response with OJR for H(s) for K
′
sa > 2K

4 Comparision of EMPC and PD for stability

The PD controller is a closed loop error based classical con-
troller that uses fixed gains on the error to give the control
action. Typical PD transfer function is of the form,

P = Kp + sKd

s + β
(34)

where Kp is the proportional constant and Kd is the differen-
tial constant. β is a far away pole to account for the causality
of the controller and to attenuate high frequency noise from
the feedback sensor.
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Fig. 21 Comparison of EMPC and PD for G(s) =
1000

s(s2+60s+500)(s2+60s+500)

For the well damped system defined byG(s), the poles are
all on the real axis and on the left hand of the s-domain. The
PD gains Kp, Kd ∈ � can be chosen such that the system
response is stable. But changes in a well-damped plant may
result in the PDcontroller becoming unstable. Since PD is not
an adaptive controller, it is not expected to perform optimally
for a plant parameter change.

To illustrate the strength of the stability of the controller, a
4 pole system is considered for simulation as shown in Eq. 35

G(s) = 1000

s(s2 + 60s + 500)(s2 + 60s + 500)
(35)

PD controller is critically tuned to get the best possible well
damped response. The tuning is done to achieve least steady
state error and minimum rise time for a given step input. and
EMPC is also made to learn for this system and during the
learning phase, the value of Ksa is determined to be 4. The
first 40 seconds of Fig. 21 shows that both PD and EMPC
perform optimally to give the best response. At the end of
the 40th second, the system is changed to Eq. 36

G1(s) = 1000

s(s2 + 30s + 200)(s2 + 30s + 200)
(36)

which is a fairly big change. For this, PD fails to converge
and goes into sustained oscillations as shown in Fig. 21. Due
to OJR, EMPC is able to adapt by using PCC and determin-
ing the new K

′
sa and is able to converge as shown in the

figure. Thus EMPC with OJR is stable even in regions con-
sidered unstable for a traditional closed loop well damped
stable system.

Consider the case of G
′
(s) to have a right hand plane zero

as in the case of a non-minimum phase system, given by
Eq. 37

G
′
(s) = 0.5(0.2 − s)

s(s2 + 2s + 1)
(37)

Fig. 22 Comparison of EMPC and PD for G
′
(s) = 0.5(0.2−s)

s(s2+2s+1)

Fig. 23 Comparison of EMPC and PD for G
′
1(s) = 0.5(0.4−s)

s(s2+2s+1)

Figure 22 shows comparison of system responses to PD
and EMPC when the system contains a RHP zero. PD con-
troller is tuned to get the best response for system G

′
(s).

EMPC in the first iteration gives the input as learnt for the
minimum phase system. At the end of the first iteration, the
parameter correction co-efficient is calculated from Eq. 18.
Adaptation due to OJR gives the correct input in the sec-
ond iteration to reach steady error of zero. Figure 22 shows
EMPC settles to the reference with zero steady state error in
two iterations. For the next set of references, since EMPC has
adapted well, it performs as good as a very well tuned PD in
terms of rise time and initial overshoot. Figure 23 compares
PD and EMPC for change in system parameter K = 2Ksa .
It can be seen from the figure that initially both well tuned
PD and EMPC with initial learning give the best compara-
ble response. At t = 100 s, system parameter K is changed
to twice its original value. Since PD is not an adaptive con-
troller, it results in overshoots. On the other hand, EMPC
in the first iteration overshoots since adaptation due to OJR
occurs only at steady state. Once adapted, in the next and
subsequent iterations, it is seen that EMPC controller results
in optimal response for the changed system.

Consider an under-damped system defined by Eq. 38

H(s) = 17

s(s2 + 2s + 17)
(38)
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Fig. 24 Comparison of EMPC and PD for under-damped system
H(s) = 17

s(s2+2s+17)

Fig. 25 Comparison of EMPC and PD for under-damped system
H

′
(s) = 17

s(s2+0.5s+16.0625)

consisting of at least two open-loop poles in the S domain and
these two poles being dominant poles in the system response.
From the root locus analysis, it is seen that the gain for the PD
system has to be small < 2. Figure 24 shows the comparison
of EMPC and PD for the system H(s). For higher gain, the
system response will be unstable. Also, any change in the
plant parameter will affect the system response significantly
especially if the conjugate poles move more closer to the
imaginary axis.

Figure 25 shows the comparison of system response for
H

′
(s) = 17

s(s2+0.5s+16.0625)
to EMPC and PD. It can be seen

that PD is tending towards instability whereas EMPC using
OJR has brought the system to zero steady state.

5 Control of a flexible shaft coupled to a DC
motor based positioning system

A DC motor based positioning system with the load cou-
pled through a flexible shaft, is a Type 1 systemwith complex
conjugate poles. The mathematical model of this system is
represented in Fig. 26. The typical transfer function for such
a system is given by,

Fig. 26 Model of a DC motor position system coupled to a load with a
flexible shaft

P(s) = KsKm

s
[
(Rm + sLm)(s Jl + Bl)(s2 Jm + sBm + Ks)

+KsK 2
m + sK 2

m(s Jl + Bl)
+ Ks(Rm + sLm)(s Jm + Bm)

]

(39)

where Ks is spring constant of the shaft coupling, Km is the
motor torque constant, Rm is the armature resistance, Lm

is the armature inductance, Jl is the load inertia, Bl is the
viscous friction at the load, Jm is the motor inertia and Bm is
the viscous friction at the motor shaft.

It can be seen from Eq. 39 that the system has five poles.
The system, belonging to Type 1 family, has a pole at the
origin. The electrical pole is located to the far left on the s-
plane. The complex conjugate poles are contributed by the
spring - inertia combination. The system is chosen such that
the pole due to the motor mechanical time constant is faster
in comparison to the complex conjugate poles, allowing the
complex poles to dominate the system response. This system
can be approximated to a second order Type 1 under-damped
system.

5.1 Comparison of efficiency of different controllers

EMPC proposes two distinct control actions based on
whether the system is well-damped or under-damped. There-
fore we compare the two cases where the spring con-
stant Ks � 1000mNm/rad (well-damped) and Ks <<

100mNm/rad (under-damped)

5.1.1 Well-damped system

Table 1 is a typical well-damped setup. Since the spring con-
stant is very high, there is stiff coupling between motor and
load . Therefore Eq. 39 can be approximated to a Type-1
second order system defined by Eq. 40

P(s) = Km

s
[
(Rm + sLm)(s(Jl + Jm) + (Bl + Bm))

] (40)

For the specifications mentioned in Table 1, the poles of
the system will lie at −1000,−25. Figure 27 compares the
responses of a PD controller tuned for a critically damped
response with that of EMPC. The tuning is done to achieve
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Table 1 System specifications used for the Simulink model

Parameter Value Unit

Rm 2 �

Lm 2 mH

Jm 20 × 10−7 Kgm2

Bm 10−4 Nm/(rad/s)

Jl 20 × 10−7 Kgm2

Bl 10−4 rad/s

Ks 2000 mNm/rad

Km 20 mNm/A

least steady state error and minimum rise time for a given
step input. The input to the system shown in the subplot is
normalised for easy representation. Substituting the specifi-
cation values of the system into Eq. 40, it can be seen that
Ksa = 4. Therefore EMPC calculates a control action pulse
width of duration 0.25. From the system response it is seen
that PD has a marginally lesser rise time than EMPC. The
second subplot showing the control action input to the sys-
tem clearly indicates that PD controller applies more input
than EMPC to give the same response. To better understand
the energy exchange, the third subplot shows the I 2R energy
losses in the armature resistor due to application of control
input. PD controller applies a brake by giving negative volt-
age input. this will result in more I 2R losses in the system.
Hence EMPC is more efficient than PD.

In Fig. 27, the rise time of EMPC is more than that of PD.
In [16], EMPC proposes another control action termed bipo-
lar action. Here, during the learning phase, EMPC applies
a pulse width of fixed duration followed by another pulse
width in the negative direction until the motor stops mov-
ing. This effect of “braking” the system allows EMPC to
give a longer pulse width to reach the demand faster than the
unipolar case. The effective change for the given setup can
be seen in Fig. 28. The second subplot of the figure shows the
zoomed in view of the first subplot and it is seen that EMPC
in bipolar mode has a rise time which is almost the same as
that of critically damped response due to PD controller. Also,
since EMPC now gives a negative voltage as well, the overall
energy dissipation across the armature resistor has increased
and almost the same as that of PD controller.

Figure 29 shows the comparison of PD and EMPC con-
troller responses for a large inertia systemwhere J

′
l = Jl∗10.

Here, PD controller is retuned to get the critical damped
response for the new system. Though the PD input changes
significantly, the unipolar EMPC control action remains the
same. This is because the system proportionality constant
Ksa remains the same. Thus, with the same EMPC control
action as before, the system is able to reach the required
demand but at a much slower rate since the inertia dominates
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of motor for large inertia system J
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l = Jl ∗ 10

the response and the pole is now ten times nearer to the origin.
On the other hand, bipolar mode of EMPC require relearn-
ing. Figure 29 shows that bipolarmode response is faster than
PD since EMPC now has a larger control over the braking
period. As expected, the energy losses in the armature resis-
tance now reflect these input changes. EMPC in unipolar is
the most efficient use of input energy though it has a larger
rise time. PD comes second andEMPC in bipolarmode dissi-
pates largest energy due to the initial high pumping of energy
into the inertia and later applying a large brake to get the best
rise time.

Figure 30 shows comparison of system response of EMPC
and MRAC controllers applied to the same system whose
specifications are mentioned in Table 1 both of which have
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Fig. 31 Comparison of EMPC and MRAC for well-damped position
control of motor for large inertia system J

′
l = Jl ∗ 10

been previously put through their respective learning phases
and adapted to get the best response. The MRAC model and
tuning were presented earlier in [14,15] and the same has
been used here for comparison with EMPC. It can be seen
that system response due to MRAC has a higher rise time
than EMPC. Also, the energy losses in the armature resistor
of EMPC and MRAC are in a comparable range. The higher
dissipation by EMPC controller can be attributed to more
energy input provided to the system to improve the rise time.

Figure 31 compares the system response of EMPC and
MRAC controllers applied to a modified system where J

′
l =

Jl ∗10.MRAC now has better rise time compared to unipolar
EMPC control but still lesser than EMPC in bipolar mode.
The energy dissipated by MRAC controller in the armature
resistor is greater than EMPC in unipolar mode but lesser
than EMPC in bipolarmode. EMPC therefore provides away
to compromise on either a good rise time by using Bipolar
control action or a energy efficient input by using anUnipolar
control action.

5.1.2 Under-damped system

For the under-damped system we consider Eq. 39. The
various parameters are as per Table 2. EMPC for the under-
damped system proposes a first order decaying input to be
the control action to the system [20]. The parameters for con-
trol have been discussed in [20] and for the system simulated
here, the parameters are learnt based on previous literature.

Table 2 Under damped system specifications used for the Simulink
model

Parameter Value Unit

Rm 3 �

Lm 3 mH

Jm 1 × 10−7 Kgm2

Bm 10−3 Nm/(rad/s)

Jl 200 × 10−7 Kgm2

Bl 10−4 rad/s

Ks 20 mNm/rad

Km 20 mNm/A
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Fig. 33 Comparison of EMPC and PD for under-damped position con-
trol of motor for large inertia system J

′
l = Jl ∗ 10

It is seen from Figs. 32 and 33, that tuning PD for an
open loop under-damped system is difficult to get a critical
damping in the system response. Especially the final tuning
is very sensitive to change in system parameters and can
lead to unstable outputs if not tuned well. Figures shows that
EMPC for under-damped system gives a smooth response
unlike that of PD. Though the subplots indicating the energy
dissipated in the armature resistors show that the efficiency
is the same, PD controller can cause more transient noise
and high frequency noises maybe introduced into the driver
circuit unlike EMPC which gives a smooth decaying input.
Hence EMPC would give a better motor driver performance
compared to that of PD controller.

123



464 M. A. Aravind et al.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
ad

ia
ns

0
0.5

1
MRAC response
EMPC Response
Demand

Time(s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

V
ol

ta
ge

-1

0

1 MRAC Input
EMPC Input

Time(s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
ne

rg
y 

D
is

si
pa

te
d

 (J
ou

le
s)

0

0.05

0.1
MRAC
EMPC

Fig. 34 Comparison of EMPC and MRAC for under-damped position
control of motor
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Fig. 36 Comparison of EMPC and LQG for under-damped position
control of motor

Figures 34 and 35 compare the MRAC and EMPC for the
sameunder-damped system.When the load inertia is very low
as mentioned in Table 2, MRAC gives a good control action
which results in a steady state response which has a smooth
rise shown in Fig. 34. But the rise time of the system due to
MRAC is higher than that of EMPC. Since MRAC does not
give any sudden changes in input voltage, it performs almost
as efficiently as EMPC for this system.

In Fig. 35, it can be seen that MRAC is unable to give an
optimal input to the system even after sufficient iterations of
learning. Further, the input given is chopping in nature and
causes heavy losses in both armature resistance as well as the
inductive losses in the coil.

Figures 36 and 37 compares linear quadratic Gaus-
sian(LQG) controller with EMPC. The LQG controller
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Fig. 37 Comparison of EMPC and LQG for under-damped position
control of motor for large inertia system J

′
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Fig. 38 Simulationmodel of a load coupled to amotor through aflexible
shaft

consists of a linear quadratic regulator(LQR) controller along
with a state estimator to predict required states fromonemea-
sured state. The LQR controller was constructed based on
the model from [15] and motor values changed to reflect the
specifications in Table 1.The matrices Q and R were tuned
manually to get the best possible response. EMPC has better
performance than LQG in terms of the rise time. The energy
dissipated also matches closely with that of LQG.

6 Control of a non-linear systemDCmotor
based positioning system

Figure 38 shows a simulation model on SIMULINK of prac-
tical non-linear setup consisting of a load coupled to a motor
through a flexible shaft. The model consists of a rotational
spring placed in between the motor and an inertial element.
Rotational elements RFrictionM and RFrictionL consisting
of a dry friction component and a viscous friction component
are placed on either side of the rotational spring to create an
under-damped response. The values chosen for the simula-
tion model are shown in Table 2. The additional frictions
added have values shown in Table 3.

6.1 Design of EMPC

For practical systems which are based on the transfer func-
tion model shown in Eq. 39, [15,16,20] show that system
constant of proportionality Ksa varies with demand and con-
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Table 3 Friction specifications used for the Simulink model

Parameter Value Unit

RFrictionM − Dry 10 mNm

RFrictionL − Dry 2 mNm

RFrictionM − V iscous 1e−03 mNm

RFrictionL − V iscous 1e−04 mNm

Fig. 39 ComparisonofEMPCandPDforwell-dampedposition control
of a practical motor system

trol action parameter T0. The non-constant value of Ksa can
be attributed to the non-linearities present in practical sys-
tems like dry friction and stiction.

Therefore, EMPC proposes the use of an Experience
MappedKnowledge(EMK)which is a one to onemapping of
the control action to the final steady state value achieved due
to the corresponding control action. In the learning phase, the
EMK is populated by applying different input values of T0
to the system and recording the final steady state value reach
by the system. After learning is completed, during the appli-
cation of the control action when a demand is given, EMPC
will refer to the EMK and interpolate the required value of
T0 for the given demand. This method of using an EMK for
a practical system has been shown to be robust for differ-
ent demands and also shown to adapt to changes in system
parameter [15,16,20].

6.2 Comparison of efficiency of different controllers

6.2.1 Well-damped system

For the well-damped case, the spring constant value of the
rotation spring was made 3000mNm/rad to make it stiff.

Figure 39 shows the comparison of a critically tuned PD
controller with EMPC. Like in the ideal case presented in
Sect. 5, performance in terms of rise time and settling time
of EMPCmatches that of PD. But due to the now introduced
non-linearities, the energy dissipated in the motor is higher
in the case of PD due to the effect of Derivative part of the
controller. The third subplot shows the difference in energy

Fig. 40 Comparison of EMPC and MRAC for well-damped position
control of a practical motor system

Fig. 41 Comparison of EMPC and LQG for well-damped position con-
trol of a practical motor system

dissipated to be about 20% that of EMPC. Therfore, EMPC is
shown to give the best possible input to have the least energy
loss.

Figure 40 shows the comparison ofMRAC controller with
EMPC. The reference signal to MRACwas determined intu-
itively to give the fastest possible rise time and a low value of
learning rate (γ < 0.01) was used to let the controller adapt
itself to give the best possible input for a given demand.
Similar to that of PD, EMPC matches the performance of
MRAC. Unlike the Derivative part of PD controller, MRAC
continously adapts with a fixed learning rate and hence does
not cause a chopping effect in the input. Therefore, the energy
dissipation is lesser but still significantly higher than EMPC
(about 10%) due to negative input given to brake the system.

Figure 41 shows the comparison of linear quadratic Gaus-
sian(LQG) controller with EMPC. From the results, it is seen
that EMPC also closely matches the response of LQG con-
troller. LQG controller like MRAC also applies a negative
voltage to bring the motor system to a halt and hence dissi-
pates more energy. Thus EMPC proves to be better in terms
of energy usage.

It should also be noted that in the case of all these con-
trollers, the input is not terminated once steady state is
reached. This is due to the presence of static(dry) friction
which cannot be overcome with a small input. On the other
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hand, EMPC terminates the input once a pulse width of T0
as calculated from the EMK is applied. Though in the case
of the other controllers, a simple threshold based switch can
be introduced to terminate the input, in its native form, the
controllers tend to waste a lot of energy due to their con-
trol action. In practical systems, this would lead to highly
in-efficient usage of power. This issues is clearly resolved in
EMPC in its basic algorithm where the input is terminated
when the steady state error is within a suitable threshold.

6.2.2 Under-damped system

For the under-damped case, the spring constant value of the
rotation spring was made 20mNm/rad to make it flexible.
Figure 42 shows the comparison of a PD controller with
EMPC. Due to the non-linearities, it is very difficult to tune
a PD controller for an under-damped system. The tuning
is done to achieve least steady state error, minimum over-
shoots and minimum rise time for a given step input. The
response from a PD controller tends to be marginally stable
in most cases. The energy dissipated in the motor therefore
is extremely high in the case of PD. The difference in energy
dissipated to be more than twice that of EMPC. This will
further become worse for PD controller if system parameters
like load inertia is changed during operation.

Figure 43 shows the comparison ofMRAC controller with
EMPC. The reference signal to MRAC was chosen to have a
slower rise time sinceMRAC is preferred to be used only on a
well-damped linear system. A very low value of learning rate
(γ < 0.0001)was used to let the controller adapt itself to give
the best possible input for a given demand. MRAC performs
better than PD controller due to its learning capability. But
due to the conjugate poles of the under-damped system being
triggered, MRAC tends to have spikes in its input caused by
oscillations in the speed. Therefore, the energy dissipation is
significantly higher than EMPC (about 20%) due to spikes
in the input.

Fig. 42 Comparison of EMPC and PD for under-damped position con-
trol of a practical motor system

Fig. 43 Comparison of EMPC and MRAC for under-damped position
control of a practical motor system

Fig. 44 Comparison of EMPC and LQG for under-damped position
control of a practical motor system

Figure 44 shows the comparison of LQG controller with
EMPC. From the results, it is seen that LQG controller per-
forms much better than MRAC and PD. In the case of the
under-damped system, LQG controller ends up applying an
agressive control action causing spikes in the input to the
motor. EMPC on the other hand provides a smooth control
action and hence proves to be better in terms of energy usage.

In the case of the under-damped system, another key area
of efficiency comes from reducing switching losses. It is
clearly seen that MRAC,PD and LQG controllers input a
high switching control action. EMPC gives a very smooth
input and therefore has a very low switching losses. This fur-
ther increases the life of the motor and driver system in a
practical setup.

7 Computational cost of controllers

Modern controllers operate in the digital domain to ben-
efit by the advancements in micro-controller technology.
Computational cost depends on the number of mathematical
operations to be performed and hence the overall computa-
tion time taken to implement a control algorithm becomes
very important in effective control of a system. Based on the
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system time constant, the sampling duration is fixed and the
entire control algorithm should be executed within one sam-
ple duration for proper control action. Therefore selection
of a micro-controller for a given algorithm becomes critical,
which is decided based on the number of floating opera-
tions, multiplications, divisions, matrix operations required
for the given algorithm. Higher the computation require-
ments, higher will be the cost of the controllers to be used.
Followingparagraphs try to assess the computational require-
ments of various control algorithms considered in the paper.

Till recently, the most widely used controller in the digital
domain is the PID controller due to its ease of implementa-
tion. The PID controller requires just about 3 multiplications
(One each for Proportional, Derivative, Integral). A final
summation gives the control action to be implemented. In
the category of adaptive controller, MRAC ,LQG and EMPC
can be compared to PID in terms of computations.

In the case of MRAC and LQG, both use matrix multipli-
cations.The order of the matrix is depends on the number of
poles and zeros in the system. For a higher order system, there
maybe a requirement of a Digital Signal Processor(DSP) to
compute inverses of these matrices. For a typical 2nd order
Type-1 system like that of a position control of DC motor,
though a DSP is not required, the calculation of positive defi-
nite matrices forMRAC or the LQR gain in LQG still require
more than 20–30 multiplications. Also, the time taken for
computing inverse of a matrix is fairly large compared to just
multiplication of two matrices. There is also a requirement
to store intermediate results in the RAM of the controller and
this has to happen at a fast rate.

In EMPC, the computational process can be seen majorly
in two phases.

The learning phase involves application of input with one
parameter varying (T0) in incremental steps. The system
waits for steady state output. The system is actually idle until
this point andwill consume the least power. Once steady state
is reached, the value is directly stored in the ROM (such as
EEPROM,FLASH) of the micro-controller along with the
input parameter value for that iteration. The final length of
this EMKstored in thememory depends on the resolution and
operational range of the system. Saikumar and Dinesh [14]
explains the mapping of position and input parameter T0 to
be linear for a major region and hence the points stored in
the EMK for this region can be far apart and less in number.
The required value during application for given demand is
interpolated between the points in the EMK that it lies. The
interpolation is a simple operation of taking the slope and
calculating the required input parameter to be given to the
system. A typical memory location required for storing one
iteration of input in the learning phase would be 2 bytes each
for the input and output. Amemory of 1Kbwould give atleast
500 points. A typical general purpose micro-controller usu-

ally ships with an inbuilt user memory of 1MB which is far
more than necessary for EMPC.

In the application phase, for the given demand, EMPC
interpolates from the EMK with two math operations con-
sisting of multiplication and division and applies the control
action andwaits for the system to settle. In the case of OJR, at
the end of an iteration, another multiplication is performed to
get PCCwhich is applied in subsequent iterations. In the case
of the under-damped system, a third multiplication occurs
during the application of control action to calculate the first
order decay input [20].

ThusEMPC requires asmuch computational power as that
of aPDcontroller and a smallmemoryunit to house theEMK.
A simple 16 bit general purpose micro-controller capable of
doing basic math operations is sufficient specification for a
EMPC based controller.

8 Conclusion

A stability criterion for experience mapping based predictive
controller (EMPC) applied to a Type 1 system was derived.
The stability criterion developed was tested for both the well
damped Type 1 systems and under-damped Type 1 systems.
EMPC with OJR was shown to assure stability beyond this
criteria. The simulation results of EMPC for DCmotor based
positioning system with a load coupled through a flexible
shaft are presented as a case study prove stability even for
system parameter changes. The efficiency of EMPC on a
practical system was analysed in terms of energy dissipated
in the armature resistance of the motor. In practical cases,
EMPCwas proven to be the best among PD,MRAC and State
Space based controllers like the LQR and LQG controllesr.
EMPC was also proven to require least computational power
and memory requirements compared to other controllers,
especially those that use matrix based equations.
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