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Abstract—We consider a non-asymptotic (one-shot) version of
the multiterminal secret key agreement problem on a finite linear
source model. In this model, the observation of each terminal
is a linear function of an underlying random vector composed
of finitely many i.i.d. uniform random variables. By restricting
the public discussion to be a linear function of the terminals’
observations, we obtain a characterization of the communication
complexity (minimum number of symbols of public discussion)
of generating a secret key of maximum length. More precisely,
we show that the minimum discussion can be achieved by a non-
interactive protocol in which each terminal first does a linear
processing of its own private observations, following which the
terminals all execute a discussion-optimal communication-for-
omniscience protocol. The secret key can be chosen to be a linear
function of the vector of all observations.

I. INTRODUCTION

The problem of secret key agreement via public discussion
was first formulated for two terminals by Maurer [1] and
Ahlswede and Csiszár [2], and subsequently extended to
multiple terminals by Csiszár and Narayan [3]. In the set-
up of this problem, the terminals involved must agree upon a
secret key based on correlated observations from a source,
using interactive public discussion. The key must be kept
information-theoretically secure from an eavesdropper having
access to the public discussion. The conventional setting
allows unlimited public discussion, and the aim is to agree
upon a secret key of largest possible length. The problem
formulation is in fact asymptotic in nature: the terminals
observe an infinite sequence of i.i.d. realizations of the corre-
lated source random variables, and the asymptotic secret key
rate (number of symbols of secret key generated per source
realization) must be as large as possible. The largest possible
asymptotic key rate, termed the secrecy capacity, is by now
quite well understood [3, 4].

A more difficult problem is to determine the secrecy ca-
pacity under a constraint on the amount or rate of public
discussion allowed. Specifically, when the (asymptotic) rate
of public discussion is bounded above by R, the problem is to
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determine the maximum achievable secret key rate CS(R),
which we term the rate-constrained secrecy capacity. This
problem was considered in the case of two terminals by Tyagi
[5] and Liu et al. [6]. The primary focus of Tyagi [5] was
on the related problem of characterizing what we will call the
communication complexity RS, which is the least discussion
rate needed to achieve the (unconstrained) secrecy capacity; he
left open the rate-constrained secrecy capacity problem. Liu
et al. [6] gave a characterization of the achievable region of
key and discussion rate pairs using a notion of XY -concave
envelopes that they develop. They used their methods to give a
precise description of the ratio CS(R)

R in the regime of R→ 0.
The multiterminal CS(R) and RS problems were considered

in our prior works [7–10]. Among our contributions there were
some general outer bounds on the achievable rate region, and
upper and lower bounds on RS; in the special case of the
hypergraphical source model, we derived tighter upper bounds
on RS and the ratio CS(R)

R valid for all R > 0. In the important
special case of the pairwise independent network (PIN) model
(see e.g. [11]), our bounds were good enough to precisely
characterize RS and CS(R).

In this paper, we make further progress on these prob-
lems by focusing on the (multiterminal) finite linear source
model [12], which generalizes the hypergraphical source and
PIN models. In the finite linear model, the observation of each
terminal is a linear function of an underlying random vector
composed of finitely many i.i.d. uniform random variables.
Furthermore, we consider a non-asymptotic, single-shot ver-
sion of the secret key agreement problem as opposed to the
asymptotic version in [12]. In this version, the terminals ob-
serve only one realization of the source, and after some public
discussion, must agree (with probability 1) upon a secret key
that is statistically independent of the public communication.
Single-shot analogues of the RS and CS(R) problems can be
formulated in this setting — see Section II. We study these
problems with a view towards extending the results obtained
for the single-shot setting to the asymptotic model.

Courtade and Halford [13] formulated and analyzed the
single-shot secret key generation problem for hypergraphical
sources. They made a key assumption to facilitate their anal-
ysis, namely, that the communication from each terminal is a
linear function of its observations. Under this restriction, they
effectively resolved the single-shot RS and CS(R) problems
for hypergraphical sources. Note that linear discussion was
also considered in [12, 14] for finite linear sources, but the ob-
jective there was to achieve the unconstrained secrecy capacity
of the asymptotic model perfectly at a finite blocklength, so
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as to avoid excessive delay in generating the secret key.
Taking inspiration from [13], we too restrict the public dis-

cussion to be a linear function of the terminals’ observations.
Under the linear discussion model, for finite linear sources,
we obtain a characterization (Corollary 2 in Section IV) of
the communication complexity of generating a secret key of
maximum length. The minimum discussion is achieved by a
non-interactive protocol in which each terminal first does a
linear processing of its own private observations, following
which the terminals all execute a (single-shot) discussion-
optimal communication-for-omniscience protocol on their lin-
early processed observations. At the end of this, each terminal
is able to recover the observations of all the other terminals
(omniscience), and it then applies a linear function to the entire
vector of observations to obtain a maximum-length secret key.

The rest of the paper is organized as follows. Section II
contains the formal problem formulation, Section III presents
an illustrative example, and Section IV contains statements of
the main results, complete proofs of which can be found in the
full version of this paper [15]. The paper ends in Section V
with a discussion of the possible ways in which the results
could be extended to settings beyond that of our problem
formulation.

II. PROBLEM FORMULATION

We use the sans serif font K to represent a random variable
with distribution PK and taking values from a set K. We use
the boldface uppercase M for matrices and boldface lowercase
san serif font x :=

[
x1 . . . x`(x)

]
for random row vectors,

where `(x) denotes the length of the vector. We assume all
the entries take values from the same finite field Fq of order
q. We take logarithm log to base q and so all the information
quantities are in the units of log q bits. For a finite set B, we
use yB :=

[
yi1 . . . yi|B|

]
to denote a row vector obtained

by concatenating the row vectors yi’s for some enumeration
i1, . . . , i|B| of the set B. We use the notation

x ∈ ⟪yB⟫ or ⟪yi1 , . . . , yi|B|
⟫

to mean that there exists a deterministic matrix M such that
x = yBM .

As in [3], the multiterminal secret key agreement problem
consists of a finite set V = {1, 2, . . . ,m} of m ≥ 2 users who
want to share a secret key after some public discussion that can
be eavesdropped by a wiretapper. The one-shot perfect linear
secret key agreement (SKA) scheme consists of the following
phases.

One-shot private observation: Each user i ∈ V observes the
component zi of a given finite linear source zV defined in [4]
with the requirement that

zi ∈ ⟪x⟫ ∀i ∈ V (1)

for some uniformly random vector x over Fq . x is referred to
as the base of zV . In the special case when zi is a subvector
of x, zV is called the hypergraphical source [4], which is the
source model considered in [13]. Unlike the model in [3] and

[12] where each user observes n i.i.d. samples of the source,
we consider the one-shot model as in [13, 16] where each user
only observes one sample.

Private randomization: Each user i ∈ V privately generates
a random vector ui over Fq independent of the source zV , i.e.,

PuV |zV =
∏
i∈V

Pui . (2)

Note that there is no restriction on the length nor the distri-
bution of ui, and so the requirement that it must be a vector
over Fq does not lose generality. Note also that such a ran-
domization was not explicitly considered in the formulations
of [3, 12, 13].

Linear public discussion: Each user i ∈ V publicly reveals
the message

fi ∈ ⟪ui, zi⟫. (3)

Hence, everyone including the wiretapper observes fV . Unlike
[3], the discussion above is non-interactive as interaction is
unnecessary for linear discussion as explained in [17].1

Secret key agreement: After the public discussion, each user
i ∈ V attempts to agree on a secret key K satisfying

H(K|ui, zi, fV ) = 0 ∀i ∈ V
log|K| −H(K|fV ) = 0

(4)
(5)

where (4) is the recoverability constraint that requires the se-
cret key to be perfectly recoverable by every user and (5) is the
secrecy constraint that requires the key to be uniformly random
and perfectly independent of the entire public discussion. Note
that we do not assume a priori that K is a linear function of
the private source, and so the key length log|K| is not required
to be an integer.2

The objective is to characterize the set of achievable key
lengths and discussion lengths. In particular, a quantity of
interest is the constrained secrecy capacity defined as

cS(r) := cS(zV , r) := max{log|K| | `(fV ) ≤ r}, (6)

where the maximization is over all possible secret key agree-
ment schemes subject to a constraint on the total public
discussion length, r. (The dependency on zV is implicit if there
is no ambiguity.) Characterizing the entire curve of cS(r) is
difficult even in the case of linear discussion, but some points
on the curve can be characterized, such as cS(0) considered

1Suppose the discussion is interactive, i.e., a message, say f, revealed in
public by some user i ∈ V is a linear function ψ(ui, zi, f̃) of the private
observations of user i as well as all the previously discussed messages denoted
by f̃ . By linearity, we can rewrite f as ψ(ui, zi,0) + ψ(0,0, f̃) where 0
denotes an all-zero vector of an appropriate length. Note that, given f̃ , there
is a bijection between f and f′ := ψ(ui, zi,0), and so user i can reveal f′
instead of f in public without loss of generality, since f can be recovered
from f′ and other discussion messages f̃ . As f′ does not depend on f̃ , we can
convert any interactive discussion to a non-interactive discussion by replacing
every discussion message f by the corresponding f′.

2Nevertheless, it will follow from Theorem 1 that K can be chosen to be
a linear function of the private source without loss of optimality, and so the
maximum key length is indeed an integer.
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in [18]. As in [3, 12, 13], we also consider the unconstrained
secrecy capacity defined as

cS := cS(zV ) := max{cS(r) | r ≥ 0}, (7)

which is the secrecy capacity without the constraint on the
discussion length. The smallest discussion length required to
achieve cS is denoted by

rS := rS(zV ) := inf{r ≥ 0 | cS(zV , r) = cS(zV )} (8)

and referred to as the communication complexity. As in [3,
13], we will characterize cS and rS using the closely related
problem of communication for omniscience defined as follows.

Omniscience: We say that the public discussion achieves
omniscience of zV if

H(zV |ui, zi, fV ) = 0 ∀i ∈ V. (9)

The smallest length of communication for omniscience is
defined as

rCO := rCO(z) := min `(fV ), (10)

where the minimization is over all public discussion schemes
subject to (9) in place of (5) and (4). The problem under the
one-shot model for hypergraphical and finite linear sources
is proposed in [16, 19] and referred to as the cooperative
data exchange. In [3], the secret key agreement scheme that
achieves the capacity is by first achieving omniscience of zV
and then extracting the secret key as a function of zV , implying
that the rate of communication for omniscience is no smaller
than the communication complexity. We say that cS can be
achieved via omniscience of zV .

III. MOTIVATING EXAMPLE

We will use the following example to illustrate the problem
formulation and motivate our main results. Consider V =
{1, 2, 3, 4} and a finite linear source zV (see (1)) over the
binary field F2 with a base x of length `(x) = 4 as follows:

z1 :=
[
x1 x2 ⊕ x3

]
z2 :=

[
x1 x2 ⊕ x4

]
z3 :=

[
x1 ⊕ x2 x3

]
z4 :=

[
x1 ⊕ x3 ⊕ x4

]
.

(11)

A feasible secret key agreement scheme is to choose

K = x1, f1 =
[
x2 ⊕ x3

]
, and f2 =

[
x2 ⊕ x4

]
, (12)

but without any private randomizations uV and discussions
f3 and f4 by users 3 and 4. The secret key K is perfectly
recoverable by every user, i.e., satisfying (4), since users 1
and 2 directly observes the key bit x1, which can also be

computed by users 3 and 4 using their private sources and
public discussion as follows

x1 =
[
x1 ⊕ x2 x3 x2 ⊕ x3

] 1
1
1

︸ ︷︷ ︸
z3

︸ ︷︷ ︸
f1

=
[
x1 ⊕ x3 ⊕ x4 x2 ⊕ x3 x2 ⊕ x4

] 1
1
1

 .︸ ︷︷ ︸
z4

︸ ︷︷ ︸
f1

︸ ︷︷ ︸
f2

The secrecy constraint (5) also holds because log|K| = 1 =
H(K|fV ), which follows from the definition of the base x that
x1 is uniformly random and independent of x2, x3, and x4.

Note that the above scheme does not achieve the omni-
science condition in (9) because users 1, 2 and 4 cannot
recover x3 after the discussion. However, it is easy to show
that omniscience can be achieved if we further set f3 =

[
x3

]
,

i.e., with an additional bit of discussion by user 3. Since 1 bit
of secret key can be achieved with 2 bits of public discussion
and omniscience can be further achieved with an additional
bit of discussion, we have

cS(rCO) ≥

{
1 r ≥ 2

0 r < 2
, and


cS ≥ 1

rS ≤ 2

rCO ≤ 3

(13)

by the definitions (6), (7), (8) and (10). The challenge is
to show the reverse inequalities and therefore establish the
optimality of the achieving schemes.

IV. MAIN RESULTS

We start with some general admissible conditions that
simplify the secret key agreement scheme without loss of
optimality.

Theorem 1 cS(r) remains unchanged by imposing the addi-
tional constraints that

`(ui) = 0 ∀i ∈ V, and

K = k ∈ ⟪zV ⟫,
(14a)
(14b)

which mean respectively that private randomization is not
needed and that the secret key can be chosen to be a linear
function of the private source. 2

Corollary 1 cS(r) must be integer, non-decreasing and right
continuous in r. 2

PROOF The claim in the corollary that cS(r) must be an
integer follows from (14b) that the key can be linear and
therefore a uniformly random vector by the secrecy con-
straint (5). Monontonicity and continuity follows directly from
the definition (6). The proof of the theorem is more involved
and is given in [15, Appendix A]. �

The example in Section III considers such a secret key
agreement scheme without private randomization. The secret
key x1 is also linear in the private source trivially because it is
observed by users 1 and 2 directly. Note that our formulation
allows the private randomization to have arbitrary length and

949

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on October 19,2022 at 05:21:15 UTC from IEEE Xplore.  Restrictions apply. 



distribution, and the key to be arbitrary random variables that
need not be linear in the private source. The above admissible
constraints (14) makes the problem tractable as it significantly
reduces the space of secret key agreement schemes we need
to consider to characterize cS(r). Indeed, since there is only
a finite number of linear functions of zV , there is only a
finite number of admissible secret key agreement scheme. It
is worth noting that the constraints (14) were assumed in the
formulation of [13] for the hypergraphical source model, and
our result implies that such constraints are admissible since
hypergraphical sources are special case of the finite linear
sources.

For the general source model in [3], the admissible con-
straint (14a) that private randomization does not help improve
cS(r) remains a plausible conjecture. However, it is clear that
the constraint (14b) is not admissible for some sources that
are not finite linear. Nevertheless, this constraint is essential
in bringing the existing characterizations of the capacity from
the general source model to the one-shot finite linear source
model as follows.

Theorem 2 cS(r) in the extreme cases with 0 and respectively
unbounded discussion lengths are

cS(0) = max{H(g) | g ∈ ⟪zi⟫,∀i ∈ V }
cS =

⌊
min

P∈Π′(V )

∑
C∈P H(zC)−H(zV )

|P| − 1

⌋
,

(15)

(16)

where the maximization is over the choices of random vector g,
and the minimization is over the collection Π′(V ) of partitions
of V into at least two non-empty disjoint sets. cS can be
achieved via communication for omniscience of zV at the
smallest length

rCO = H(zV )− cS, (17)

which implies the upper bound rS ≤ rCO on rS. 2

PROOF See [15, Appendix B]. �

For the running example given in Section III, it is straight-
forward to evaluate the above expressions (15), (16) and (17)
to yield cS(0) = 0, cS = 1 and rCO = 3. In particular, an opti-
mal solution to (16) can be shown to be P = {{1, 2, 3}, {4}}.
This implies the optimality of the omniscience scheme in
Section III in achieving both cS and rCO.

The above result follows quite directly from existing works
for the asymptotic model. For instance, the r.h.s. of (15) is
the multivariate Gács–Körner common information evaluated
for the finite linear source model. g is called the maximal
common function of zi for i ∈ V . cS(0) = JGK(zV ) was
shown in [18] but for the asymptotic model instead, and the
result has recently been extended to general sources under a
very general setting in [20]. It is straightforward to extend
this result to the current one-shot model. Indeed, the capacity
result can be shown for general sources.

The duality (17) between secret key agreement and com-
munication for omniscience also follows directly from the
asymptotic model in [3], which is specialized to the asymptotic

finite linear source model in [12]. The characterization (16)
of cS is the same as that of the asymptotic model [3, 4]
except for the floor operation, since the minimization in (16)
may not be integer but cS must be integer by Corollary 1.
The characterization of rCO for the one-shot finite linear
source model is given in [16, 21], which focus primarily on
the omniscience problem instead of the secret key agreement
problem.

Note that one can summarize the theorem by saying that
cS(0), cS and rCO for the one-shot model is the same as
those of the asymptotic model for finite linear source but with
an additional integer constraint: CS(0) is already an integer
for the asymptotic model while we can take the floor and
the ceiling respectively for CS and RCO to turn them into
integer achievable lengths. It therefore appears reasonable to
conjecture that cS(r) for the one-shot model is the same as
the CS(R) for the asymptotic model for finite linear source
but with an additional floor operation as in (16) to satisfy the
integer constraint in Corollary 1. The following result resolves
this partially at the communication complexity rS.

Theorem 3 If rS < rCO, then there exists z′V with

z′i ∈ ⟪zi⟫ ∀i ∈ V (18)

such that
rS(z′V ) = rS(zV )

rCO(z′V ) < rCO(zV )

cS(z′V ) = cS(zV ).

(19)
(20)
(21)

z′V is said to be reduced source of zV (by linear processing),
since the above implies H(z′V ) < H(zV ). 2

Corollary 2 The communication complexity is

rS = min{rCO(z′V ) | z′i ∈ ⟪zi⟫, cS(z′V ) = cS(zV )}, (22)

which can be achieved via omniscience of the linearly reduced
source z′V . 2

PROOF The corollary follows immediately from theorem by
repeatedly linearly reducing the source until rS = rCO. This
is possible since the theorem guarantees a linear processing
of the source exists that can reduce rCO without changing
(cS, rS) whenever rS < rCO. For the proof of the theorem,
see [15, Appendix C]. �

For the running example in Section III, the omniscience
scheme does not achieve rS, i.e., rS < rCO, and so the theorem
above guarantees a linear processing of the source that reduces
rCO without changing (cS, rS). Such a linearly reduced source
can be obtained with

z′3 = z3

[
1
1

]
= x1 ⊕ x2 ⊕ x3 ∈ ⟪z3⟫

and z′i = zi for i ∈ 1, 2, 4. It is straightforward to show that
cS(z′V ) = 1 by (16) and rCO(z′V ) = 2 by (17), and the
source is reduced in the sense that H(z′V ) = 3 < H(zV ).
By going through all possible independent linear processings
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of zi’s, which is possible as there is only a finite number
of possibilities, one can show that the above defined z′V is
optimal to (22), achieving the minimum rCO. Hence, rS = 2
as desired by the above corollary.

V. EXTENSIONS

In this work, we considered the one-shot secret key agree-
ment problem under a finite linear source model with linear
public discussion, perfect secrecy and recoverability. Indeed,
due to the linearity of the source mode, it is plausible that
the public discussion is linear without loss of optimality, i.e.,
non-linear discussion cannot improve the secrecy capacity.
It is straightforward to show Theorem 2 without requiring
linear discussion, as the converse parts follow from those of
the asymptotic model without requiring the discussion to be
linear. However, extending Theorem 1 and Theorem 3 appears
challenging and we have to resort to techniques that rely on
the linearity of the discussion to prove the results.

Another challenge is to extend Theorem 1 and Theorem 3
to the asymptotic model where users observe n ≥ 1 i.i.d.
samples znV :=

[
zV 1 . . . zV n

]
of the private source, and

the constrained secrecy capacity and discussion rate is per
sample of the observation, i.e.,

CS(R) := max

{
log|K|
n

∣∣∣∣ `(fV )

n
≤ R

}
.

The recoverability (4) and secrecy (5) constraints can also be
relaxed to the asymptotic versions in [3], i.e., for some positive
δn, εn → 0 as n→∞,

1

n
log|K| −H(K|fV ) ≤ δn

Pr (∃i ∈ V,K 6= φi(u, z
n
i , fV )) ≤ εn

for a sequence in n of secret key agreement schemes and
some functions φi for i ∈ V that user i uses to recover the
secret key. As mentioned below Theorem 2, the characteriza-
tions of CS(0), CS and RCO are known for the asymptotic
model and they are indeed used to derive the corresponding
characterizations for the one-shot model. We believe that
the other results in Theorem 1 and Theorem 3 can also be
extended. The current proofs can be directly extended if we
impose perfect recoverability instead, i.e., with εn = 0 for
sufficiently large n. However, the proofs without assuming
perfect recoverability remain elusive. What we desire is a
proof that perfect recoverability is admissible and can therefore
be assumed without loss of optimality. In a similar vein, we
also desire a proof that RS can be achieved exactly, i.e., for
sufficiently large n, there exists a secret key agreement scheme
with 1

n log|K| = CS and `(fV )
n = RS, and that linear public

discussion is admissible.
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