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Abstract—We present an information theoretic proof of the
nonsignalling multiprover parallel repetition theorem, a recent
extension of its two-prover variant that underlies many hardness
of approximation results. The original proofs used de Finetti
type decomposition for strategies. We present a new proof that is
based on a technique we introduced recently for proving strong
converse results in multiuser information theory and entails a
change of measure after replacing hard information constraints
with soft ones.

I. INTRODUCTION

The parallel repetition theorem is an important tool in
theoretical computer science which is used to prove hardness
of approximation results. It shows roughly that if distributed
provers can satisfy a random predicate with probability v < 1
without coordinating, then they can satisfy n independent
copies of the same predicate only with probability going to
0 exponentially in n. Such a theorem for the two-prover case
was shown in [8], with a simplified proof given in [4]. The
precise form of the statement of such a theorem relies on the
structure of the query distribution, the predicate, and the class
of strategies allowed for the provers. In particular, in some
applications we only need a parallel repetition theorem for
nonsignalling strategies, a class of correlation that subsumes
even quantum correlations.

While the validity of a multiprover parallel repetition theo-
rem for the standard setting is unclear, recently such a theorem
has been proved for the nonsignalling setting [6] (see, also, [1],
[2]). The proof uses de Finetti type decomposition of strategies
and a linear programming interpretation of the value function.
In this paper, we provide a new proof of the same result
that is completely “information theoretic”. Our proof draws
on the connection between the parallel repetition setting and
that of multiuser rate-distortion theory. In particular, we rely
on a change of measure approach developed recently in [9]
for proving strong converse results in multiuser information
theory. In this approach, we first replace the hard information
constraints involving conditional independence by their soft
counterparts involving bounds on KL divergences. Next, we
change measure to that obtained by conditioning on the
“winning” event. The n-fold problem is related to a single
instance of the problem using a tensorization property of the
resulting value function.
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This paper is part review – we recall the formulation and
results for two provers in Section II, followed by those for
the multiprover setting in Section III. Our main contribution
is a new proof of the multiprover parallel repetition theorem
(Theorem 4) given in Section IV. The final section contains
brief concluding remarks.

Notation. Given random variable (X1, ..., Xm), for a subset
A of {1, ...,m}, we abbreviate the random variable (Xi, i ∈
A) as XA. Similarly, for a tupple (x1, ..., xm), denote xA =
(xi, i ∈ A). For other notations, we basically follow [3].

II. TWO-PROVER PARALLEL REPETITION THEOREM

We begin by reviewing the two-prover setting. A two-prover
game G consists of a verifier and two-provers P1 and P2.
The verifier samples a query (X1, X2) according to a fixed
joint distribution PX1X2

on finite alphabet X1×X2, and sends
X1 and X2 to P1 and P2, respectively. Upon receiving the
queries, P1 and P2 send responses U1 ∈ U1 and U2 ∈ U2,
respectively, where Ui depends only on Xi. They may use any
mappings fi, i = 1, 2, of Xi to get Ui; for finite sets U and X ,
denote by F(U|X ) the set of all mappings from f : X → U .
The provers win the game if ω(X1, X2, U1, U2) = 1 for a
prespecified predicate ω : X1 × X2 × U1 × U2 → {0, 1}. We
will represent the game G by the pair (PX1X2

, ω). The goal
of the provers is to choose mappings (f1, f2) that maximize
the winning probability. This maximum winning probability is
termed the value of the game and is given by

ρ(G) := max
{
E[ω(X1, Y1, f1(X1), f2(X2))] :

f1 ∈ F(U1|X1), f2 ∈ F(U2|X2)
}
.

In n parallel repetitions of the game, the verifier samples
sequences of queries Xn

1 and Xn
2 according to the product

distribution PnX1X2
. The provers now respond with sequences

Un1 ∈ Un1 and Un2 ∈ Un2 where Uni depends only on
Xn
i , i = 1, 2. They win the game if predicates for each

coordinate are satisfied, namely the predicate ω∧n for the
parallel repetition game G∧n is given by

ω∧n(xn1 , x
n
2 , u

n
1 , u

n
2 ) :=

n∧
j=1

ω(x1j , x2j , u1j , u2j),

where
∧

denotes the AND function. The value of G∧n is
defined similarly as follows:

ρ(G∧n) := max
{
E[ω∧n(Xn

1 , X
n
2 , f1(Xn

1 ), f2(Xn
2 ))] :

f1 ∈ F(Un1 |Xn1 ), f2 ∈ F(Un2 |Xn2 )
}
.

967978-1-5386-9291-2/19/$31.00 ©2019 IEEE ISIT 2019

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on October 19,2022 at 05:16:56 UTC from IEEE Xplore.  Restrictions apply. 



As a simple attempt towards winning the parallel repetition
game, provers may simply apply strategies for single instance
of the game across each coordinate. In fact, they may use
a different strategy for each coordinate. Clearly, any such
attempt will have value less than ρ(G)n. But can they do
better by using other functions fi that take into account the
entire vector Xn

i and do not have a product structure across
coordinates? At a high level, a parallel repetition theorem says
that the answer is no: The exponential decay of value with n
is unavoidable.

The first instance of parallel repetition theorem was shown
by Raz [8] (see [4] for simpler proof).

Theorem 1 ([8]). There exists a function C : [0, 1] → [0, 1]
satisfying C(t) < 1 if t < 1 such that for any game G,

ρ(G∧n) ≤ C(ρ(G))
− n

log |U1||U2| .

The statement above holds for any game G with the same
universal function C(·) and universal exponent that depends
only on the cardinality of the response set U1 × U2.

An important aspect of the setting above, which will be
a prime focus here, is the role of randomness in response
strategies. A simple derandomization argument shows that the
value of games will not change if the pair (f1, f2) is generated
randomly using shared randomness V that is independent of
the query. Such strategies with shared randomness available
to the provers can be described by channels

PU1U2|X1X2
(u1, u2|x1, x2)

=
∑

f1∈F(U1|X1)

f2∈F(U2|X2)

µ(f1, f2)δf1,f2(u1, u2|x1, x2) (1)

where µ is a distribution on F(U1|X1)×F(U2|X2) and δf1,f2
given by δf1,f2(u1, u2|x1, x2) := 1{u1=f1(x1),u2=f2(x2)} is the
deterministic strategy induced by functions f1, f2.

In physics, strategies of the form (1) are said to satisfy
the hidden variable theory, a classical physics principle which
says that if all the hidden variables are revealed then the state
of the world will be deterministic. We denote the set of all
such strategies by PHVT = PHVT(U1 × U2|X1 × X2). With this
new notation at our disposal and using the observation above
that shared randomness does not improve the value of a game,
we can express ρ(G) alternatively as

ρ(G) = max
PU1U2|X1X2

∈PHVT

E[ω(X1, X2, U1, U2)].

Note that since strategies using shared randomness can per-
form at best as deterministic strategies, the same must be
true for strategies using independent private randomness at the
provers. Thus, yet another alternative form of ρ(G) is given
by

ρ(G) = max
{
E[ω(X1, X2, U1, U2)] :

PU1U2|X1X2
s.t. U1 −◦−X1 −◦−X2 −◦− U2

}
, (2)

namely we can consider maximization over Markov chains
U1 −◦− X1 −◦− X2 −◦− U2 with marginal of (X1, X2) fixed to

PX1X2 .
It is important to examine the limitation posed by restricting

to strategies in PHVT. In fact, a contentious debate in physics re-
volving around statistical modeling of quantum measurements
was finally settled in the second half of the previous century
through quantitative distinction between correlations allowed
in hidden variable theory and more general nonsignalling
correlation.

For our setting, we can define the class of nonsignaling
strategies as follows.

Definition 1 (Nonsignalling strategies). Let PNS = PNS(U1 ×
U2|X1×X2) be the set of all strategies PU1U2|X1X2

satisfying

PU1|X1X2
(u1|x1, x2) = PU1|X1X2

(u1|x1, x′2) ,

PU2|X1X2
(u2|x1, x2) = PU2|X1X2

(u2|x′1, x2)
(3)

for every x1 6= x′1 and x2 6= x′2. Equivalently, we can express
these conditions as I(U1 ∧ X2|X1) = I(U2 ∧ X1|X2) = 0,
namely the Markov relations U1−◦−X1−◦−X2 and U2−◦−X2−◦−X1

hold.

Note that these strategies include as a special case the “long
Markov strategies” satisfying U1−◦−X1−◦−X2−◦−U2. This latter
class performs as well as PHVT. In fact, it is easy to verify that
strategies in PHVT satisfy (3), which yields

PHVT ⊂ PNS. (4)

In typical applications of parallel repetition theorem in com-
plexity theory, it suffices to use a version of the theorem for
nonsignalling strategies. In any case, the next question is of
independent interest: Does parallel repetition theorem hold if
we allow the broader class of nonsignalling strategies?

Specifically, denote by ρNS(G) the maximum probability of
satisfying ω using nonsignalling strategies, i.e.,

ρNS(G) := max
PU1U2|X1X2

∈PNS

E[ω(X1, X2, U1, U2)].

By (4), ρ(G) ≤ ρNS(G). In fact, the inequality can be strict
for some games (see [10, Example 1]).

Holenstein proved that the following version of parallel
repetition theorem for nonsignaling strategies.

Theorem 2 ([4]). There exists a function C : [0, 1] → [0, 1]
satisfying C(t) < 1 if t < 1 such that for any game G,

ρNS(G
∧n) ≤ C(ρNS(G))−n.

Note that now the exponent of parallel repetition theorem
doesn’t even depend on the cardinality of response set. Also,
we remark that the proof of Theorem 2 in [4] is much simpler
than the simplified proof of Theorem 1 in the same paper.

III. MULTIPROVER PARALLEL REPETITION THEOREM

Moving to the multiprover setting, a multiprover game G =
(PXM , ω) consists of a verifier and m provers P1, . . . ,Pm.
Denoting M = {1, ...,m} and XM = (X1, . . . , Xm), the
verifier samples a query XM according to a fixed joint
distribution PXM and sends Xi to Pi for i in M. Upon
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receiving the queries, each prover Pi sends a response Ui ∈ Ui,
1 ≤ i ≤ m, to the verifier. The provers win the game if
ω(XM, UM) = 1 for a given predicate ω : XM × UM →
{0, 1}.

As in the previous section, the provers’ strategy can be
described by a channel PUM|XM . The set of all strategies that
can be described as convex combination of deterministic, local
strategies is denoted by PHVT = PHVT(UM|XM) (cf. (1)). The
value of the game that can be attained by strategies satisfying
hidden variable theory is given by

ρ(G) = max
PUM|XM∈PHVT

E[ω(XM, UM)].

The parallel repetition game G∧n is defined analogously to
the two-player setting.

For the multi-prover setting, a nonsignaling strategy is a
channel PUM|XM such that the following condition is satis-
fied:

PUA|XM (uA|xA, xAc) = PUA|XM (uA|xA, x′Ac) ,

for all xA, xAc , x′Ac , uA and all subsets A of M. Denoting
the set of all nonsignaling strategies by PNS = PNS(UM|XM),
the value of the game that can be attained by nonsignaling
strategies is given by

ρNS(G) = max
PUM|XM∈PNS

E[ω(XM, UM)].

A general parallel repetition theorem for strategies in PHVT is
not known. As we have mentioned at the end of the previous
section, proving parallel repetition theorem for strategies in
PNS is relatively easier than that for strategies in PHVT; the
former is known to hold under the condition that query distri-
bution PXM has full support [1], [2]. Remarkably, without the
full support condition, a counterexample appeared in [5] for a
parallel repetion theorem for PNS. The counterexample rules
out a parallel repetition theorem for PNS in general. In other
words, ρNS(G) < 1 is not sufficient to claim the exponential
decay of winning probability in parallel repetition games. In
fact, even preceding this counterexample, a parallel repetition
theorem, i.e., exponential decay, was shown to hold if the value
of the single game for a broader class of strategies, called sub-
nonsignalling strategies, is strictly less than 1 [6].

Sub-nonsignaling strategies PUM|XM , which we define
next, need not be conditional distributions and are only re-
quired to be subnormalized, namely we only need them to
be nonnegative and satisfying

∑
uM

PUM|XM(uM|xM) ≤ 1.
Both total variation distances and KL divergence can be
applied to such subnormalized distribution. We remark that
the marginal PY and the conditional distribution PY |X , re-
spectively, for a subnormalized distribution PXY are de-
fined as PY (y) =

∑
x PXY (x, y) and PY |X (y|x) =

PXY (x, y) /PX (x). While PY , too, is a subnormalized dis-
tribution, PY |X will be a (normalized) distribution.

Definition 2 (Sub-nonsignalling strategies). The set PSNS
of sub-nonsignalling strategies consists of subnormalized
PUM|XM such that, for each subsets A of M, there exists

a channel QUA|XA satisfying:

PUA|XM (uA|xA, xAc) ≤ QUA|XA (uA|xA) , (5)

for all xA, xAc , uA.

Note that nonsignalling strategies are those for which the
inequality condition above is replaced with identity. Heuris-
tically, sub-nonsignalling strategies may be regarded as the
class of strategies close to nonsignalling strategies in statistical
distance. Another heuristic was suggested in [6] which inter-
preted sub-nonsignalling strategies as nonsignalling strategies
with additional xM dependent power to randomly abstain from
responding. In fact, we can find a sub-nonsignalling strategy
close to a distribution for which all conditional distributions
PUA|XM are close to some conditional distributions QUA|XA .1

Lemma 3 ([6, Lemma 5.2]). Let PXM be a query distribution
on XM, and let PŨMX̃M

be a probability distribution on
UM × XM. Suppose that for each A ( M there exists a
conditional distribution QUA|XA such that

dvar(PŨAX̃M
,PXMQUA|XA) ≤ εA.

Then, there exists a sub-nonsignaling P′UM|XM
such that

dvar(PŨMX̃M
,PXMP′UM|XM

) ≤ ε∅ + 2
∑

∅6=A(M

εA.

By definition, the value of the game that is attained by
sub-nonsignaling strategies satisfy ρSNS(G) ≥ ρNS(G). For
two-prover games, ρSNS(G) was shown in [6] to coincide
with ρNS(G). However, equality may not hold for multiprover
games, in general. Interestingly, when the query distribution
PXM has full support, there exists a constant Γ = Γ(PXM)
such that, for ε > 0, (cf . [6])

ρNS(G) < 1− ε =⇒ ρSNS(G) < 1− ε

Γ
. (6)

Before we state the parallel repetition theorem for sub-
nonsignalling strategies, we switch to a slightly more general
formulation where in the n parallel repeptiton game, instead
of winning all the games, we are interested in quantifying the
probability that the provers win more than a fraction ∆ of the
game. This formulation is closer to the rate-distortion theory
formulation of information theory and appeared, for instance,
in [7]. Specifically, for 0 < ∆ ≤ 1, consider

ρSNS(G
n,∆) := max

{
Pr
(
Nω(Xn

M, U
n
M) ≥ n∆

)
:

PUn
M|Xn

M
∈ PSNS(UnM|XnM)

}
, (7)

where Nω(xnM, u
n
M) :=

∑n
j=1 ω(xM,j , uM,j). Since

ω(xM,j , uM,j) is the indicator for a win in the jth co-
ordinate, Nω(xnM, u

n
M) denotes the total number of wins.

Analogously, PNS is defined by restricting the maximum in (7)
to nonsignalling strategies; our original definition ρNS(G

∧n)
coincides with ρNS(Gn, 1).

1Lemma 3 is a multiprover extension of [4, Lemma 9.5] which showed that
in the two-prover setting we can find a nonsignalling P′

UM|XM
.
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We now recall the multiprover parallel repetition theorem
from [6].

Theorem 4. Let G = (PXM , ω) be a multiprover game with
ρSNS(G) < 1. For any ∆ ≥ ρSNS(G) + ν with 0 < ν ≤
1− ρSNS(G), we have

ρSNS(G
n,∆) ≤ exp

(
− n ν

2

Cm

)
,

where the constant Cm = O(22m) depends only on m = |M|.

For multiprover games with full support query distributions,
Theorem 4 together with (6) implies the parallel repetition
theorem for nonsignaling strategies, shown first in [2].

The proof of the multiprover parallel repetition theorem for
nonsignaling strategies and full support query distribution in
[2] entails extending the proof approach for the two-prover
setting in [4]. An alternative proof was provided in [1] by
using a technique based on de Finetti theorem. At a high level,
this technique allows us to restrict attention to convex com-
binations of product strategies. In [6], the parallel repetition
theorem for sub-nonsignaling strategies, namely Theorem 4,
was proved by using another variant of de Finetti theorem.

In the next section, we provide an alternative proof of The-
orem 4. Our proof is based on a technique recently developed
by the authors in [9] to prove strong converse theorems for
multi-user information theory problems. A crucial observation
is that the parallel repetition theorem can be regarded as
an exponential strong converse of a multi-user rate-distortion
problem with no communication. In contrast to the proof in [6]
that uses a structural decomposition of strategies, our proof is
completely “information theoretic”.

IV. A NEW PROOF OF THEOREM 4

Our proof looks at the expected number of wins instead
of the probability of winning. For a given multiprover game
G = (PXM , ω) and δ ≥ 0, define

ηNS(G, δ) := max
{
E[ω(X̃M, ŨM)] :

I(ŨA ∧ X̃Ac |X̃A) +D(PX̃M
‖PXM) ≤ δ, ∀A (M.

}
Note that the maximum is over the set of distributions, which
we call δ-approximate nonsignaling distributions, that satisfy
the information structure only approximately. In particular, we
have replaced the hard information constraints required by
nonsignalling strategies by their soft counterparts expressed by
bounds on KL diveregence. Below we shall see two properties
of ηNS(G, δ): it tensorizes and can be bounded above roughly
by ρSNS(G). We note that a linear programming based notion of
approximate nonsignaling strategies was used in [4], [2], [1],
[6]. Our divergence based notion of approximation is amenable
to tensorization and facilitates an information theoretic proof.

Under the changed measure obtained by conditioning on
C, the expected number of wins is more than n∆. Also, this
new measure satisfies the soft information constraint bound
with δ equal to the exponent of probability of C. Thus,
ηNS(G

n, δ) must be more than n∆. Using the properties of

ηNS(G
n, δ) mentioned earlier, we can bound it above roughly

by nρSNS(G), which shows that ∆ must be roughly bounded
above by ρSNS(G). The required bound for exponent is ob-
tained by the contrapositive statement.

Formal arguments follow. We begin with the tensorization
property.

Lemma 5. For a given multiprover game G = (PXM , ω),
n ∈ N and δ ≥ 0, we have

ηNS(G
n, nδ) = n · ηNS(G, δ).

Proof. The inequality ηNS(G
n, nδ) ≥ nηNS(G, δ) holds by

definition. For the other direction, fix a nδ-approximate
nonsignalling distribution PŨn

MX̃n
M

. We have

E[Nω(X̃M, ŨM)] =

n∑
j=1

E[ω(X̃M,j , ŨM,j)]

= nE[ω(X̃M,J , ŨM,J)], (8)

where J is distributed uniformly on {1, . . . , n}. Furthermore,

nδ ≥ I(ŨnA ∧ X̃n
Ac |X̃n

A) +D(PX̃n
M
‖PXn

M
)

≥ n
[
H(X̃Ac,J |X̃A,J) +D(PX̃M,J

‖PXM)
]

−
n∑
j=1

H(X̃Ac,j |X̃n
A, Ũ

n
A)

≥ n
[
H(X̃Ac,J |X̃A,J) +D(PX̃M,J

‖PXM)
]

−
n∑
j=1

H(X̃Ac,j |X̃A,j , ŨA,j)

= n
[
H(X̃Ac,J |X̃A,J) +D(PX̃M,J

‖PXM)
]

− nH(X̃Ac,J |X̃A,J , ŨA,J , J)

≥ n
[
I(ŨA,J ∧ X̃Ac,J |X̃A,J) +D(PX̃M,J

‖PXM)
]
,

where the first inequality follows from [9, Proposition 1] and
the second and the third inequalities hold since conditioning
decreases entropy. Thus, PŨM,J ,X̃M,J

is a δ-approximate
nonsignalling distribution and the claim follows by (8).

Next, we relate ηNS(G, δ) and ρSNS(G) using Lemma 3.

Lemma 6. For a given multiprover game G = (PXM , ω) and
δ ≥ 0, we have

ηNS(G, δ) ≤ ρSNS(G) + C ′m
√

(2 ln 2)δ,

where the constant C ′m = O(2m) depends only on m = |M|.

Proof. Consider a δ-approximate nonsignalling distribution
PŨMX̃M

. For any A ( M, since I(ŨA ∧ X̃Ac |X̃A) =
D(PŨAX̃M

‖PX̃M
PŨA|X̃A

) ≤ δ and D(PX̃M
‖PXM) ≤ δ, by

using Pinsker’s inequality [3] and the triangle inequality, we
get

dvar(PŨAX̃M
,PXMPŨA|X̃A

) ≤
√

(2 ln 2)δ.

Next, by applying Lemma 3 with εA =
√

(2 ln 2)δ, there
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exists a sub-nonsignaling strategy P′UM|XM
such that

dvar(PŨMX̃M
,PXMP′UM|XM

) ≤ (2|M|+1 − 3)
√

(2 ln 2)δ.

Finally, since ω is bounded by 1, we have

EPX̃MŨM
[ω(XM, UM)]

≤ EPXMP′
ŨM|X̃M

[ω(XM, UM)]

+ 2dvar(PŨMX̃M
,PXMP′UM|XM

)

≤ ρSNS(G) + 2(2|M|+1 − 3)
√

(2 ln 2)δ,

where the final inequality uses the fact that P′
ŨM|X̃M

is sub-
nonsignalling. We obtain the claimed bound with C ′m =
2(2m+1 − 3) since PŨMX̃M

was an arbitrary δ-approximate
nonsignalling distribution.

We have all the tools for the proof of Theorem 4 in place.
Proof of Theorem 4: If ρSNS(Gn,∆) > exp(−nδ), we

can find a sub-nonsignalling strategy PUn
M|Xn

M
such that

P (Nω(UM, X
n
M) ≥ n∆) > exp(−nδ) for some δ > 0.

Denoting

C =
{

(unM, x
n
M) : Nω(xnM, u

n
M) ≥ n∆

}
,

we change the measure by conditioning on the event
(UnM, X

n
M) ∈ C as follows:2

PŨn
MX̃n

M
(unM, x

n
M) =

PUn
MXn

M
(unM, x

n
M)1[(unM, x

n
M) ∈ C)]

PUn
MXn

M
(C)

.

Then, by a simple calculation, we have

D(PŨn
MX̃n

M
‖PUn

MXn
M

) = log
1

PUn
MXn

M
(C)
≤ nδ.

Furthermore, for each A ( M, denoting by QUn
A|Xn

A
the

dominating conditional distribution for the sub-nonsignaling
strategy PUn

A|Xn
A

(cf. (5)), we have

I(ŨnA ∧ X̃n
Ac |X̃n

A) +D(PX̃n
M
‖PXn

M
)

≤ I(ŨnA ∧ X̃n
Ac |X̃n

A) +D(PŨn
A|X̃n

A
‖QUn

A|Xn
A
|PX̃n

A
)

+D(PX̃n
M
‖PXn

M
)

= D(PŨn
A|X̃n

M
‖PŨn

A|X̃n
A
|PX̃n

M
) +D(PŨn

A|X̃n
A
‖QUn

A|Xn
A
|PX̃n

M
)

+D(PX̃n
M
‖PXn

M
)

= D(PŨn
A|X̃n

M
‖QUn

A|Xn
A
|PX̃n

M
) +D(PX̃n

M
‖PXn

M
)

≤ D(PŨn
A|X̃n

M
‖PUn

A|Xn
M
|PX̃n

M
) +D(PX̃n

M
‖PXn

M
)

= D(PŨn
AX̃

n
M
‖PUn

AX
n
M

)

≤ D(PŨn
AX̃

n
M
‖PUn

AX
n
M

)

+D(PŨn
Ac |Ũn

AX̃
n
M
‖PUn

Ac |Un
AX

n
M
|PŨn

AX̃
n
M

)

= D(PŨn
MX̃n

M
‖PUn

MXn
M

)

≤ nδ,

2Although PUMXM is only a subnormalized distribution, the changed
measure PŨMX̃M

is a distribution.

where the second inequality follows from the sub-nonsignaling
condition (5) and the third inequality uses the fact that
PUn

Ac |Un
AX

n
M

is a conditional distribution. The above bound
implies that the changed measure PŨn

MX̃n
M

is δ-approximate
nonsignalig distribution. Furthermore, since Nω(X̃M, Ũ

n
M) ≥

n∆ holds with probability 1 under the changed measure
PŨn

MX̃n
M

, we have

n∆ ≤ E[Nω(ŨnM, X̃
n
M)] ≤ ηNS(Gn, nδ),

which together with Lemma 5 and Lemma 6 implies

∆ ≤ ηNS(G, δ) ≤ ρSNS(G) + C ′m
√

(2 ln 2)δ.

By considering contraposition, if

∆ > ρSNS(G) + C ′m
√

(2 ln 2)δ, (9)

then we have ρSNS(Gn,∆) ≤ exp(−nδ). Thus, by setting δ =
ν2

(2 ln 2)(C′
m+1)2 , ∆ ≥ ρSNS(G)+ν implies (9), and we have the

claim of the theorem.

V. DISCUSSION

A multiprover parallel repetition theorem for standard strate-
gies, i.e., strategies satisfying the hidden variable theory, is
not available. In fact, our initial attempt in this work was
to provide an alternative proof of the two-prover parallel
repetition theorem for the standard strategies. We tried to
prove a counterpart of the tensorization property, Lemma 5, for
standard strategies. However, our preliminary attempt failed,
mainly because it was difficult to identify a suitable soft
constraint for the long Markov chain in (2). Nonetheless, we
do believe that our measure change approach can be used
to obtain a parallel repetition theorem for standard strategies,
perhaps by proving an approximate tensorization property of
the value function with suitable soft constraints.
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