
A Generalisation of Interlinked Cycle Structures
and Their Index Coding Capacity

Mahesh Babu Vaddi and B. Sundar Rajan
Department of Electrical Communication Engineering, Indian Institute of Science, Bengaluru 560012, KA, India

E-mail: {vaddi, bsrajan}@iisc.ac.in

Abstract—Cycles and Cliques in a side-information graph
reduce the number of transmissions required in an index coding
problem. Thapa, Ong and Johnson defined a more general form
of overlapping cycles, called the interlinked-cycle (IC) structure,
that generalizes cycles and cliques. They proposed a scheme, that
leverages IC structures in digraphs to construct scalar linear
index codes. In this paper, we extend the notion of interlinked
cycle structure to define more generalised graph structures called
overlapping interlinked cycle (OIC) structures. We prove the
index coding capacity of OIC structures by giving an index
code with length equal to the order of maximum acyclic induced
subgraph (MAIS) of OIC structures.

I. INTRODUCTION AND BACKGROUND

A single unicast index coding problem, comprises a trans-
mitter that has a set of K messages, X = {x1, x2, . . . , xK},
and a set of K receivers, R = {R1, R2, . . . , RK}. Each
receiver, Rk = (Wk,Kk), knows a subset of messages,
Kk ⊆ X , called its side-information, and wants to know one
message, Wk = {xk}, called its Want-set. The transmitter
can take cognizance of the side-information of the receivers
and broadcast coded messages, called the index code. The
objective is to minimize the number of coded transmissions,
called the length of the index code, such that each receiver
can decode its demanded message using its side-information
and the coded messages.

The index coding with side-information was introduced by
Birk and Kol in [1]. Single unicast index coding problems
were studied in [2]. A single unicast index coding problem
(SUICP) can be represented by using a graph G with K
vertices {x1, x2, . . . , xK}. In G, there exists an edge from
xi to xj if the receiver wanting xi knows xj . This graph is
called the side-information graph of SUICP.

The broadcast rate [6] of an index coding problem is the
minimum (minimization over all mapping including nonlinear
and all dimensions) number of index code symbols required
to transmit such that every receiver can decode its wanted
message by using the broadcasted index code symbols and its
side-information. The capacity of an index coding problem is
the reciprocal of the broadcast rate.

In this paper, we refer the capacity of a single unicast
index coding problem with side-information graph G as the
index coding capacity of side-information graph G. In [5],
Maleki et.al. found the index coding capacity of some side-
information graphs which have a circular symmetry by using
interference alignment technique. However, in general, finding
the index coding capacity is a complicated problem because

one need to consider all possible linear and non linear map-
pings and dimensions to evaluate capacity.

For a graph G, the order of an induced acyclic sub-graph
formed by removing the minimum number of vertices in G, is
called Maximum Acyclic Induced Subgraph (MAIS(G)). In
[2], it was shown that MAIS(G) lower bounds the broadcast
rate of the index coding problem described by G. That is,

β(G) ≥MAIS(G). (1)

A. Interlinked Cycles and Optimal Index Codes

In [3], Thapa, Ong and Johnson defined a special graph
structures called interlinked cycle (IC) structure. The inter-
linked cycle structures generalises the notion of cycles and
cliques. Consider a graph G with K vertices {x1, x2, . . . , xK}
having the following property: G has a vertex set VI such that
for any ordered pair (xi ∈ VI , xj ∈ VI) and xi 6= xj , there
is a path from xi to xj , and the path does not include any
other vertex in VI except xi and xj . The set VI is called inner
vertex set and the vertices in VI are called inner vertices. A
path in which only the first and the last vertices are from
VI , and they are distinct, is called an I-path. If the first and
last vertices are the same, then it is called an I-cycle. If the
directed graph G satisfies the four conditions given below, it
is called an interlinked-cycle structure.

• There is no I-cycle in G.
• Every non-inner vertex must be present in at least one
I-path.

• For all ordered pairs of inner vertices (xi, xj), xi 6= xj ,
there is only one I-path from xi to xj in G.

• There exist no cycles among non-inner vertices

Let G be the IC structure with K vertices {x1, x2, . . . , xK}
and N inner vertices VI = {x1, x2, . . . , xN}. Let the K −
N non-inner vertices be VNI = {xN+1, xN+2, . . . , xK}. The
following coded symbols for an IC structure G with |V (G)| =
K was proposed in [3].

• A code symbol is obtained by the bitwise XOR (denoted
by ⊕) of messages present in the inner vertex set VI , i.e.,

yI =

N⊕
i=1

xi. (2)

• For each xj ∈ VNI , for j ∈ [N + 1 : K], a code symbol
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Fig. 1: Interlinked cycle structure with VI = {x1, x2, x3}.

is obtained as given below.

yj = xj
⊕

xq∈N+
G (xj)

xq. (3)

where N+
G (xj) is the out-neighborhood of xj in the IC

structure G.
The length of index code constructed above is K −N + 1.

Thapa, Ong and Johnson proved that the constructed codes in
(2) and (3) are of optimal length.

The following decoding procedure is given in [3] to decode
the index codes given by ICC scheme.
• For j ∈ [N + 1 : K], the message xj (xj corresponding

to a non-inner vertex) can be decoded from yj given in
(3).

• For each xk ∈ VI , a directed rooted tree (denoted by Tk)
in G can be found with xk as the root vertex and all other
inner vertices VI \ {xk} are the leaves. The inner vertex
xk ∈ VI is decoded by computing the XOR of all index
code symbols corresponding to the non-leaf vertices at
depth greater than zero in Tk and yI , where Tk is the
rooted tree with xk as the root node and all other inner
vertices as the leaves.

Example 1. Consider an SUICP with side-information graph
G given in Fig. 1. G is an IC structure with K = 5, N = 3
and inner vertices VI = {x1, x2, x3}. Hence, for this side-
information graph, we have K − N + 1 = 3. An optimal
length index code for this ICP obtained from (2) and (3) is

C = {x1 + x2 + x3︸ ︷︷ ︸
∈VI︸ ︷︷ ︸
yI

, x4︸︷︷︸
∈VNI

+ x2︸︷︷︸
N+

G (x4)︸ ︷︷ ︸
y4

, x5︸︷︷︸
∈VNI

+ x1︸︷︷︸
N+

G (x5)

}

︸ ︷︷ ︸
y5

.

In [8], we provided an addition to interlinked cycle structure
class by providing optimal length index codes for IC structures
with one cycle among non-inner vertex set. We gave a modi-
fied code construction and modified decoding method for the
IC structure with one cycle among non-inner vertex set. In [9],
we disproved the two conjectures given in [3] regarding the
optimality of IC structures.

The below mentioned two examples are useful to understand
the motivation behind studying overlapping interlinked cycle
structures.

Motivating Example I

Consider the side-information graph G given in Figure 2.
The broadcast rate of the index coding problem described by

x1 x2

x3 x4

x5 x6

Fig. 2: Overlapping IC structure with capacity 1
3 .

x4

x8

x5x9

x2

x1

x6

x7

x10 x3

Fig. 3: Overlapping IC structure with capacity 1
6 .

this side-information graph is three. To get an index code of
length three, the side-information graph must have an inner
vertex set with four inner vertices in it. But, no subset of
size four of {x1, x2, . . . , x6} satisfies the necessary conditions
required for VI . Hence, the side-information graph G is not
an interlinked cycle structure.

In this paper we show that G given in Figure 2 is an
overlapping interlinked cycle structure and give an index code
with length MAIS(G).

Motivating Example II

Consider the side-information graph G given in Figure 3.
The broadcast rate of the index coding problem described
by this side-information graph is six. To get an index code
of length six, the side-information graph must have an inner
vertex set with five inner vertices in it. But, no subset of
size five of {x1, x2, . . . , x10} satisfies the necessary conditions
required for VI . Hence, the side-information graph G is not
an interlinked cycle structure.

In this paper we show that G given in Figure 3 is an
overlapping interlinked cycle structure give an index code with
length MAIS(G).

B. Contributions

The contributions of this paper are summarized as below:
• We extend the notion of interlinked cycle structure to de-

fine more generalised graph structures called overlapping
interlinked cycle (OIC) structures. We give an index code
for OIC structures whose length is equal to MAIS of OIC
structure.

The proofs of all lemmas in this paper have been omitted
due to space constraints. All the proofs and more examples
can be found in [10].
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II. OVERLAPPING CYCLE STRUCTURES

In this section, we generalise the notion of interlinked cycle
structure to define overlapping interlinked cycle structure.

A tree is an undirected graph in which any two vertices are
connected by exactly one path. That is, a tree is an acyclic
connected graph. A polytree [7] is a directed acyclic graph
whose underlying undirected graph is a tree. In a polytree,
there exits only one directed path from any vertex to any other
vertex.

A graph G is called overlapping interlinked cycle structure if
there exists a collection of subsets of vertices of V (G) double
indexed as V (i,j)

I for i ∈ [0 : d] and j ∈ [1 : wi] such that the
following conditions are satisfied.

Condition 1. The vertex subsets V (i,j)
I for i ∈ [0 : d] and

j ∈ [1 : wi] form a polytree with edges existing only between
a parent and child when there is a single common vertex
between the parent and child. Also, the number of vertices
in V

(i,j)
I must be greater than the sum of number of parents

and children of V (i,j)
I in the polytree. The polytree is shown

in Figure 4.
To define the second condition, we need to define some

sets related to the vertex sets present in polytree. Let V Total
I =

∪di=0 ∪
wi
j=1 V

(i,j)
I and VNI = V (G) \ V Total

I . We refer vertices
in V Total

I as inner vertices and the vertices in VNI as non-
inner vertices. If the vertex set V (i,j)

I has p number of parents,
then, V (i,j)

I is having one common vertex with each of these
p parents. Let the set Ṽ (i,j)

I be the set after removing all the p
vertices from V

(i,j)
I which are common with their p parents.

We have

V Total
I = ∪di=0 ∪

wi
j=1 V

(i,j)
I = ∪di=0 ∪

wi
j=1 Ṽ

(i,j)
I .

If the vertex set V (i,j)
I has c number of children, then,

V
(i,j)
I is having one common vertex with each of these
c children and Ṽ

(i,j)
I consists of c common vertices with

the c children of V
(i,j)
I and |Ṽ (i,j)

I | − c number of ver-
tices which are not common to any other vertex set in
the polytree. Let the c children of V

(i,j)
I in polytree

be V
(i+1,j1)
I , V

(i+1,j2)
I , . . . , V

(i+1,jc)
I and the corresponding

common vertices be x(i,j),j1 , x(i,j),j2 , . . . , x(i,j),jc respec-
tively.

Let S(i,j),jk for k ∈ [1 : c] be the collection of all nodes
V

(i′,j′)
I in the polytree to which there exists a path from V

(i,j)
I

to V
(i′,j′)
I through V

(i+1,jk)
I . For every V

(i′,j′)
I ∈ S(i,j),jk ,

i′ ∈ [i+1 : d], there exists i′− i+1 nodes of polytree present
in this path including the first node V (i,j)

I and the last node
V

(i′,j′)
I and these i′−i+1 nodes are connected by i′−i edges.

Note that any two nodes in the polytree which are connected
by an edge have a common vertex. Let this path be as given
below.

V
(i,j)
I −−−−−→

x(i,j),jk

V
(i+1,jk)
I −−−−−−−→

x(i+1,jk),k2

V
(i+2,k2)
I −−−−−−−→

x(i+2,k2),k3

. . .

−−−−−−−−−−−−−−−→
x(i′−2,k

i′−i−2
),k

i′−i−1

V
(i′−1,ki′−i−1)

I

k′=ji′−i−−−−−−−−−−−→
x(i′−1,k

i′−i−1
),k′

V
(i′,j′)
I .

V
(0;1)
I V

(0;2)
I

V
(0;w0)
I

V
(1;w1)
I

V
(1;5)
IV

(1;4)
I

V
(1;3)
IV

(1;2)
IV

(1;1)
I

V
(d;1)
I V

(d;2)
I

V
(d;ad−1)
I V

(d;aw)
I

: : :

: : :

: : :: : :: : :

: : : : : : : : : : : : : : : : : :

: : :

x(0;1);1

x(0;1);2

x(0;1);3
x(0;2);3 x(0;2);4

x(0;w0);5 x(0;w0);w1

x(1;w1);w2x(1;1);1

x(d−1;2);2

: : :

: : :

Fig. 4: Polytree structure of vertex subsets.

Let

V
(i,j),(i′,j′)
P = V

(i+1,jk)
I

⋃i′−i⋃
s=2

V
(i+s,ks)
I

 \
{x(i,j),jk , x(i+1,jk),k2

, x(i+2,k2),k3
, . . . , x(i′−1,ji′−i−1),j

′}.

That is, V (i,j),(i′,j′)
P is the union of the i′ − i vertex sets

present in the path from V
(i,j)
I to V (i′,j′)

I excluding the vertex
set V (i,j)

I and after removing i′ − i common vertices.

Condition 2. In G, for every Ṽ
(i,j)
I , from every vertex in

Ṽ
(i,j)
I , there should be only one path to every non-common

vertex in that Ṽ (i,j)
I such that the path does not include any

other inner vertices other than the first and last vertex. From
every vertex in Ṽ

(i,j)
I , either there can be only one path to

the common vertex x(i,j),jk for k ∈ [1 : c] or there can be
only one path to every vertex in V

(i,j),(i′,j′)
P for any V i′,j′

I

present in S(i,j),jk such that the path does not include any
other inner vertices other than the first and last vertex. All the
paths mentioned in this condition are referred as I-paths in
this paper.

Condition 3. For every inner vertex x(i,j),k1
∈ V

(i,j)
I , there

exists no cycle in G that includes x(i,j),k1
and vertices only

from the set V (G) \V (i,j)
I . The graph G should not have any

cycle with only non-inner vertices in it.
Condition 4. Every non-inner vertex must be present in at least
one I-path. All the outgoing paths from a non-inner vertex
terminate at the vertices of only one vertex set V (i,j)

I for i ∈
[0 : d] and j ∈ [1 : wi].

In this paper, we refer the vertex subsets V (i,j)
I for i ∈ [0 : d]

and j ∈ [1 : wi] as semi-inner vertex sets. The following two
examples illustrate Condition 2.
Example 2. Consider the side-information graph given in Fig-
ure 3. In the graph G, we have V (0,1)

I = {x1, x4, x5}, V (1,1)
I =

{x2, x4, x6} and V (2,1)
I = {x3, x6, x7}. The polytree structure

of the three semi-inner vertex sets are shown on Figure 5.
In G, the vertex x5, instead of having an I-path to x4, it
has I-paths to {x2, x4, x6} \ {x4} = {x2, x6}. Similarly, the
vertex x2, instead of having an I-path to x6, it has I-paths to
{x3, x6, x7} \ {x6} = {x3, x7}. The details of I-paths in G
are summarised in Table I.
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xk I-path Depth at which Depth at which
I-path originates I-path terminates

x1 x4, x5 0 0
x4 x1, x5 0 0
x5 x1, {x2, x6} 0 1
x2 x4, x6 1 1
x6 x2, {x3, x7} 1 2
x7 x4, x3 2 2
x3 x4, x7 2 2

TABLE I: I-paths present in Figure 3

V
(0;1)
I = fx1; x4; x5g

V
(1;1)
I = fx2; x4; x6g

V
(0;1)
I \ V

(1;1)
I = fx4g

V
(2;1)
I = fx3; x6; x7g

V
(1;1)
I \ V

(2;1)
I = fx6g

Fig. 5: Polytree of semi-inner vertex sets of OIC structure
given in Figure 3 and Figure 6.

Example 3. Consider the side-information given in Figure 6.
In the graph G, we have V

(0,1)
I = {x1, x4, x5}, V (1,1)

I =

{x2, x4, x6} and V (2,1)
I = {x3, x6, x7}. The polytree structure

of these side-information graph is shown in Figure 5. Note that
the only difference between Figure 3 and Figure 6 is that the
vertex x5 have I-paths to {x3, x7} instead of having an I-
path to x6. Hence, the I-path of x5 is terminated at depth two
instead of depth one. The details of I-paths are mentioned in
Table I.

xk I-path Depth at which Depth at which
I-path originates I-path terminates

x1 x4, x5 0 0
x4 x1, x5 0 0
x5 x1, x2, {x3, x7} 0 2
x6 x2, x4 1 1
x2 x6, {x3, x7} 1 2
x7 x6, x3 2 2
x3 x6, x7 2 2

TABLE II: I-paths present in Figure 6

The graphs given in Figure 2, Figure 3 and Figure 6
satisfy all the four conditions given above. Hence, they are

x4

x8

x5x9

x2

x1

x6

x7

x10 x3

Fig. 6: Overlapping IC structure with capacity 1
5 .

overlapping interlinked cycle structures.

A. Index code construction for Overlapping Interlinked Cycle
Structure

Consider an index coding problem whose side-information
graph is a Overlapping Interlinked Cycle (OIC) structure. Let
s =

∑d
i=0 wi. That is, s is the number of nodes in polytree

(note that each node in polytree represents a semi-inner vertex
set). In the following two steps, we give an index code of
length |VNI |+ s. The index code comprises one code symbol
for every semi-inner vertex set (total s index code symbols
for s semi-inner vertex sets) and one index code symbol for
every non-inner vertex (|VNI | index code symbols for |VNI |
non-inner vertices).
• A code symbol is obtained by the bitwise XOR of

messages present in the semi-inner vertex set V (i,j)
I for

every i ∈ [0 : d] and every j ∈ [1 : wi], i.e.,

y
(i,j)
I =

|V (i,j)
I |⊕
k=1

x(i,j),k. (4)

• For each xk ∈ VNI , a code symbol is obtained as given
below.

yk = xk
⊕

xq∈N+
G (xk)

xq. (5)

where N+
G (xk) is the out-neighborhood of xk in the IC

structure G.

B. Decoding procedure

In this subsection, we give the decoding procedure for the
index code constructed from (4) and (5) for OIC structures.

To establish decoding procedure for OIC structures, we
define the tree T

(i,j)
k for every vertex x(i,j),k ∈ Ṽ

(i,j)
I for

every i ∈ [0 : d] and j ∈ [1 : wi]. Let the I-paths originating
from x(i,j),k pass through bk semi-inner vertex sets at depth
i + k for k ∈ [0 : t − i]. Note that b0 = 1 follows from the
fact that I-paths originating from x(i,j),k pass through only
one semi-inner vertex set V (i,j)

I at depth i. Let t =
∑t−i

k=0 bk.
From the definition of polytree, these t semi-inner vertex sets
are represented by t nodes and these t nodes are connected
by t− 1 directed edges in the polytree. Note that every edge
in the semi-inner vertex set polytree represents one vertex in
G which is common to both the parent and child connected
by this edge. Let V (i,j)

k be the union of t semi-inner vertex
sets after deleting the t − 1 common vertices belonging to
t − 1 edges connecting the t semi-inner vertex sets. That is,
the cardinality of V (i,j)

k is t less than that of the cardinality of
union of t semi-inner vertex sets. For x(i,j),k ∈ V

(i,j)
I , because

of the presence of I-paths from x(i,j),k to all other vertices
in V (i,j)

k , a directed rooted tree (denoted by T (i,j)
k ) in G can

be found with x(i,j),k) as the root vertex and all other inner
vertices V (i,j)

k \ {x(i,j),k} as the leaves.
From (4), all the message symbols in a semi-inner vertex

set V (i,j)
I are encoded into one index code symbol y(i,j)I . Let
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w
(i,j)
k be the XOR of t index code symbols corresponding

to the t semi-inner vertex sets through which the I-paths
originating from x(i,j),k are pass through. That is, w(i,j)

k is
the XOR of the message symbols present in V (i,j)

k .
Theorem 1 given below gives the decoding procedure for

the index code constructed for OIC structures. The decoding
procedure is same as that of the decoding procedure given by
Thapa, Ong and Johnson in [3] for IC structures except that
the tree Tk needs to be replaced by tree T (i,j)

k and yk needs
to be replaced with w(i,j)

k .
Theorem 1. For any OIC structure, the index code constructed
from (4) and (5) can be decoded by using the given below
method.
• For xk ∈ VNI , the message xk can be decoded from yk

given in (5).
• The inner vertex x(i,j),k ∈ Ṽ

(i,j)
I is decoded by comput-

ing the XOR of all index code symbols corresponding to
the non-leaf vertices at depth greater than zero in T (i,j)

k

and w(i,j)
k , where T (i,j)

k is the rooted tree with x(i,j),k as
the root node and all other inner vertices in V (i,j)

k as the
leaves.

The following theorem establish the index coding capacity
and broadcast rate of OIC structures.
Theorem 2. The index coding capacity C(G) of an OIC
structure G with s semi-inner vertex set (s =

∑d
i=0 wi =

number of nodes in polytree) is given by C(G) = 1
|VNI |+s .

In the OIC structures, if the number of semi-inner vertex
sets is one (s = 1), then the OIC structure becomes an IC
structure. Hence, when s = 1, the encoding, decoding and
optimality results in this paper exactly match the results given
by Thapa, Ong and Johnson in [3]. The following example
illustrates the encoding and decoding of OIC structures.
Example 4. Consider the index coding problem with side-
information graph given in Figure 2. In G, we have V (0,1)

I =

{x1, x3, x4} and V (1,1)
I = {x3, x5, x6}. The polytree structure

of two inner vertex sets are shown on Figure 7. For G, the
index code obtained from (4) and (5) is given below.

C = {x1 + x3 + x4︸ ︷︷ ︸
∈V (0,1)

I︸ ︷︷ ︸
y
(0,1)
I

, x3 + x5 + x6︸ ︷︷ ︸
∈V (1,1)

I︸ ︷︷ ︸
y
(1,1)
I

, x2︸︷︷︸
∈VNI

+ x1︸︷︷︸
N+

G (x2)

}

︸ ︷︷ ︸
y2

.

Trees T (0,1)
1 , T

(0,1)
3 , T

(0,1)
4 , T

(1,1)
5 and T (1,1)

6 corresponding
to the inner vertices x1, x3, x4, x5 and x6 are given in Figure 8.
The decoding of each message symbol from C is summarised
in Table III. In Table III, we use γk to denote the index code
symbols used by Rk to decode xk and τk to denote the sum
of index code symbols present in γk.
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xk Tree γk τk

x1 T1 y
(0,1)
I x1 + x3 + x4︸ ︷︷ ︸

side-information
x2 ∈ VNI y2 x2 + x1︸︷︷︸

side-information

x3 T3 y
(0,1)
I , y2 x3 + x2 + x4︸ ︷︷ ︸

side-information

x4 T4 y
(0,1)
I , y

(1,1)
I , y2 x4 + x2 + x5 + x6︸ ︷︷ ︸

side-information

x5 T5 y
(1,1)
I x5 + x3 + x6︸ ︷︷ ︸

side-information

x6 T6 y
(1,1)
I x6 + x3 + x5︸ ︷︷ ︸

side-information

TABLE III: Decoding of ICP described by Figure 2

V
(0;1)
I = fx1; x3; x4g

V
(1;1)
I = fx3; x5; x6g

V
(0;1)
I \ V

(1;1)
I = fx3g

Fig. 7: Polytree of semi-inner vertex sets of Figure 2.
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Fig. 8: Trees of inner vertices in Figure 2.
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