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Abstract A curvature inequality is established for contractive commuting tuples of opera-
tors T in the Cowen–Douglas class Bn.�/ of rank n defined on some bounded domain
� in C

m. Properties of the extremal operators (that is, the operators which achieve equal-
ity) are investigated. Specifically, a substantial part of a well-known question due to R. G.
Douglas involving these extremal operators, in the case of the unit disc, is answered.

1. Introduction

For a fixed n 2 N, and a bounded domain � � C
m, the important class of operators

Bn.�
�/, �� D ¹Nz W z 2�º, defined below, was introduced in the papers [4] and [5] by

Cowen and Douglas. An alternative approach to the study of this class of operators is
presented in the paper [6] of Curto and Salinas. For w D .w1;w2; : : : ;wm/ in ��, let
DT�wI WH !H ˚H ˚ � � � ˚H be the operator: DT�wI .h/D˚

m
kD1

.Tk �wkI /h,
h 2H .

DEFINITION 1.1
A m-tuple T D .T1; T2; : : : ; Tm/ of commuting bounded operators on a complex sepa-
rable Hilbert space H is said to be in Bn.��/ if

(1) dim.
Tm
kD1 ker.Tk �wkI //D n for each w 2��;

(2) the operator DT�wI , w 2��, has closed range; and
(3)

W
w2��.

Tm
kD1 ker.Tk �wkI //DH

For any commuting tuple of operators T in Bn.��/, the existence of a rank n holo-
morphic Hermitian vector bundle ET over �� was established in [5]. Indeed,

ET WD
°
.w; v/ 2�� �H W v 2

m\
kD1

ker.Tk �wkI /
±
; �.w;v/Dw;

admits a local holomorphic cross-section. In the paper [4], for mD 1, it is shown that
two commuting m-tuple of operators T and S in Bn.��/ are jointly unitarily equiva-
lent if and only if ET and ES are locally equivalent as holomorphic Hermitian vector
bundles. This proof works for the case m> 1 as well.
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Suppose K DK.ET ;D/ is the curvature associated with canonical connectionD
of the holomorphic Hermitian vector bundleET . Then relative to any C1 cross-section
� of ET , we have

K.�/D

mX
i;jD1

K i;j .�/ dzi ^ d Nzj ;

where each K i;j is a C1 cross-section of Hom.ET ;ET /. Let

�.z/D
�
�1.z/; : : : ; �n.z/

�
be a local holomorphic frame of ET in a neighborhood��0 ��

� of some w 2��. The
metric of the bundle ET at z 2��0 w.r.t. the frame � has the matrix representation

h�.z/D
��˝
�j .z/; �i .z/

˛��n
i;jD1

:

We write @i D @
@zi

and N@i D @
@ Nzi

. The coefficients of the curvature .1; 1/-form K w.r.t.
the frame � are explicitly determined by the formula

K i;j
� .z/D� N@j

��
h�.z/

��1�
@ih�.z/

��
; z 2��0 :

Set K�.z/D ..K
i;j
� .z///.

For a bounded domain � in C and for T in Bn.��/, recall that N .k/
w is the restric-

tion of the operator .T � wI/ to the subspace ker.T � wI/kC1. In general, even if
mD 1, it is not possible to put the operator N .k/

w into any reasonable canonical form;
see [4, Section 2.19]. Here we show how to do this for anym 2N, assuming that k D 1.
The canonical form of the operator N .1/

w , we find here, is a crucial ingredient in obtain-
ing the curvature inequality for a commuting tuple of operator T in Bn.��/, which
admits ��, the closure of ��, as a spectral set.

A commuting m-tuple of operator T in Bn.��/ may be realized as the m-tuple
M� D .M �z1 ; : : : ;M

�
zm
/, the adjoint of the multiplication by them coordinate functions

on some Hilbert space of holomorphic functions defined on� possessing a reproducing
kernel K (cf. [4, 6]). The real analytic function K.z; z/ then serves as a Hermitian
metric for the vector bundle ET w.r.t. the holomorphic frame �i . Nz/ WDK.�; z/ei , i D
1; : : : ; n, Nz in some open subset ��0 of ��. Here the vectors ei , i D 1; : : : ; n, are the
standard unit vectors of Cn. For a point z 2�, let KT . Nz/ be the curvature of the vector
bundle ET . It is easy to compute the coefficients of the curvature KT . Nz/ explicitly
using the metric K.z; z/ for mD 1, nD 1, namely,

K
i;j
T . Nz/D�

@2

@wi@ Nwj
logK.w;w/jwDz

D�
kKzk

2hN@jKz ; N@iKzi � hKz; N@iKzih N@jKz;Kzi

.K.z; z//2
; z 2�:

(In this paper, the curvature .1; 1/ form is always denoted by K . However the
m�m array of coefficients of K is sometimes denoted by KT and at some other times
by K� . The choice depends on whether we wish to emphasize the dependence of the
curvature on the operator T or the frame � .)
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First, consider the case of mD 1. Assume that �� is a spectral set for an operator
T in B1.��/, � � C. Thus, for any rational function r with poles off ��, we have
kr.T /k � krk��;1. For such operators T , the curvature inequality

KT . Nw/��4�
2
�
S��. Nw; Nw/

�2
; Nw 2��;

where S�� is the Sz̈ego kernel of the domain��, was established in [10]. Equivalently,
since S�.z;w/D S��. Nw; Nz/, z;w 2�, the curvature inequality takes the form

@2

@w@ Nw
logK.w;w/� 4�2

�
S�.w;w/

�2
; w 2�:(1.1)

Let us say that a commuting tuple of operators T in Bn.��/, � � C
m, is con-

tractive if �� is a spectral set for T ; that is, kf .T /k � kf k��;1 for all functions
holomorphic in some neighborhood of ��.

In this paper (see Theorem 2.4), we generalize the curvature inequality (1.1) for a
contractive tuple of operators T in Bn.��/, which include the earlier inequalities from
[13] and [12].

Let UC be the forward unilateral shift operator on `2.N/. The adjoint U �C is the
backward shift operator and is in B1.D/. Let ds be the arc length measure on the unit
circle of the complex plane, and .H 2.D/; ds/ denotes the Hardy space. The unilateral
shift UC is unitarily equivalent to the multiplication operator M on the Hardy space
.H 2.D/; ds/. The reproducing kernel of the Hardy space is the Sz̈ego kernel SD.z; a/
of the unit disc D. It is given by the formula SD.z; a/D 1

2�.1�z Na/
, z; a 2D. A straight-

forward computation gives an explicit formula for the curvature KU�
C
.w/:

KU�
C
.w/D�

@2

@w@ Nw
logSD.w;w/D�4�

2
�
SD.w;w/

�2
; w 2D:

Since the closed unit disc is a spectral set for any contraction T (by von Neumann
inequality), it follows, from Equation (1.1), that the curvature of the operator U �C dom-
inates the curvature of every other contraction T in B1.D/:

KT .w/�KU�
C
.w/D�

�
1� jwj2

��2
; w 2D:

Thus, the operator U �C is the extremal operator in the class of contractions in B1.D/.
The extremal property of the operator U �C prompts the following question due to R. G.
Douglas.

QUESTION 1.2 (R. G. Douglas)
For a contraction T in B1.D/, and a fixed but arbitrary w0 in D, if

KT .w0/D�
�
1� jw0j

2
��2

;

then does it follow that T must be unitarily equivalent to the operator U �C?

It is known that the answer is negative, in general; however, it has an affirmative answer
if, for instance, T is a homogeneous contraction in B1.D/; see [9]. From the sim-
ple observation that KT . N�/ D �.1 � j�j

2/�2 for some � 2 D if and only if the two
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vectors QK� and N@ QK� are linearly dependent, where QKw.z/ D .1 � z Nw/Kw.z/, it fol-
lows that the question of Douglas has an affirmative answer in the class of contrac-
tive, co-hyponormal backward weighted shifts. In this paper, we answer Question 1.2
for all those operators T in B1.D/ possessing two additional properties, namely, T �

is 2 hyper-contractive and .�.T //� has the wandering subspace property for any bi-
holomorphic automorphism � of D mapping � to 0. This is Theorem 3.6 of this paper.

If the domain � is not simply connected, it is not known if there is a positive
definite kernel K defined on ��� such that

@2

@w@ Nw
logK.w;w/D 4�2

�
S�.w;w/

�2
is valid for all w 2�. Indeed, Suita has shown that the inequality in Equation (1.1) is
strict for the Sz̈ego kernel S� and all w 2� whenever � is not simply connected (cf.
[17]). Thus, the adjoint of the multiplication operator on the Hardy space .H 2.�/;ds/

is not an extremal operator in this case. It was shown in [10] that for any fixed but
arbitrary w0 2�, there exists an operator T in B1.��/ for which equality is achieved,
at w D w0, in the inequality (1.1). The question of the uniqueness of such an operator
was partially answered recently by the second named author in [15]. The precise result
is that these “point-wise” extremal operators are determined uniquely within the class
of the adjoint of the bundle shifts introduced in [1]. It was also shown in the same
paper that each of these bundle shifts can be realized as a multiplication operator on
a Hilbert space of weighted Hardy space and conversely. Generalizing these results,
in this paper, we prove that the local extremal operators are uniquely determined in a
much larger class of operators, namely, the ones that include all the weighted Bergman
spaces along with the weighted Hardy spaces defined on �. This is Theorem 5.1. The
authors have obtained some preliminary results in the multi-variable case which are not
included here.

2. Local operators and generalized curvature inequality

Let � be a bounded domain in C
m and T D .T1; T2; : : : ; Tm/ be a commuting m-tuple

of bounded operators on some separable complex Hilbert space H . Assume that the
tuple of operator T is in Bn.��/. For an arbitrary but fixed point w 2��, let

Mw D

m\
i;jD1

ker.Ti �wi /.Tj �wj /:(2.1)

Clearly, the joint kernel
Tm
iD1 ker.Ti � wi / is a subspace of Mw . Fix a holomorphic

frame � , defined on some neighborhood of w, say ��0 ��
�, of the vector bundle ET .

Thus, �.z/D .�1.z/; : : : ; �n.z//, for z in ��0 , for some choice �i .z/, i D 1; 2; : : : ; n,
of joint eigenvectors; that is, .Tj � zj /�i .z/D 0, j D 1; 2; : : : ;m. It follows that

(2.2) .Tj �wj /
�
@k�i .w/

�
D �i .w/ıj;k ; i D 1; 2; : : : ; n; and j; k D 1; : : : ;m:

The eigenvectors �.w/ together with the derivatives .@1�.w/; : : : ; @m�.w// are a basis
for the subspace Mw .
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The metric of the bundle ET at z 2��0 w.r.t. the frame � has the matrix represen-
tation

h�.z/D
��˝
�j .z/; �i .z/

˛��n
i;jD1

:

Clearly, Q�.z/D .�1.z/; : : : ; �n.z//h�.w/�1=2 is also a holomorphic frame for ET with
the additional property that Q� is orthonormal at w; that is, h Q�.w/D In. We therefore
assume, without loss of generality, that h�.w/D In.

In what follows, we always assume that we have made a fixed but arbitrary choice
of a local holomorphic frame �.z/D .�1.z/; : : : ; �n.z// defined on a small neighbor-
hood of w, say ��0 ��

�, such that h�.w/D In.
Recall that the local operator Nw D .N1.w/; : : : ;Nm.w// is the commuting m-

tuple of nilpotent operators on the subspace Mw defined by Ni .w/D .Ti � wi /jMw
.

As a first step in relating the operator T to the vector bundle ET , pick a holomorphic
frame � , satisfying h�.w/ D In, for the holomorphic Hermitian vector bundle ET
which also serves as a basis for the joint kernel of T . We extend this basis to a basis
of Mw . In the following proposition, we determine a natural orthonormal basis in Mw

such that the curvature of the vector bundle ET appears in the matrix representation
(obtained with respect to this orthonormal basis) of Nw .

PROPOSITION 2.1
Let � be a holomorphic frame of ET defined in a neighborhood of a fixed but arbi-
trary w 2�, and K t

�.z/ be the transpose of the curvature matrix ..K i;j .�/.z///mi;jD1.
Suppose that � is orthonormal at the point w. Then there exists an orthonormal basis
in the subspace Mw such that the matrix representation of Nl .w/ with respect to this
basis is of the form

Nl .w/D

�
0n�n tl .w/
0mn�n 0mn�mn

�
;

where 0B@ t1.w/
:::

tm.w/

1CA�t1.w/
t
; : : : ; tm.w/

t
�
D t.w/t.w/

tr
D�

�
K t
�.w/

��1
:

Proof
For any k D .p � 1/nC q, 1 � p � mC 1, and 1 � q � n, set vk WD @p�1.�q.w//
and vi WD .v.i�1/nC1; : : : ; v.i�1/nCn/. Thus, vi is also @i�1� , where � D .�1; : : : ; �n/.
Hence, the set of vectors ¹vk , 1 � k � .mC 1/nº forms a basis of the subspace Mw .
Let P be an invertible matrix of size .mC 1/n� .mC 1/n and

.u1; : : : ;umC1/ WD .v1; : : : ;vmC1/

0BBB@
P1;1 P1;2 : : : P1;mC1
P2;1 P2;2 : : : P2;mC1
:::

:::
: : :

:::

PmC1;1 PmC1;2 : : : PmC1;mC1

1CCCA ;
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where each Pi;j is a n � n matrix. Clearly, .u1; : : : ;umC1/ is a basis, not necessarily
orthonormal, in the subspace Mw . The vectors u WD .u1; : : : ;umC1/ are an orthonormal
basis in Mw if and only if P NP t DG�1, where G is the .mC1/n� .mC1/n, Gramian
..hvj ; vi i//; that is,

G D

0BBB@
h�.w/ @1h�.w/ : : : @mh�.w/
N@1h�.w/ N@1@1h�.w/ : : : N@1@mh�.w/

:::
:::

: : :
:::

N@mh�.w/ N@m@1h�.w/ : : : N@m@mh�.w/

1CCCA :
In particular, we choose and fix P to be the upper triangular matrix corresponding
to the Gram–Schmidt orthogonalization process. Following Equation (2.2), the matrix
representation of Nl .w/ w.r.t. the basis vD .v1; : : : ;vmC1/ is ŒNl .w/�v D ..Nl .w/ij //,
l D 1; 2; : : : ;m, where

Nl .w/ij D

´
0n�n .i; j /¤ .1; l C 1/

In .i; j /D .1; l C 1/
; 1� i; j �mC 1:

Therefore, w.r.t. the orthonormal basis .u1; : : : ;umC1/, the matrix of Nl is of the
form

�
Nl .w/

	
u
D

0BBB@
0n�n t1

l
.w/ : : : tm

l
.w/

0n�n 0n�n : : : 0n�n
:::

:::
: : :

:::

0n�n 0n�n : : : 0n�n

1CCCAD
�
0n�n tl .w/
0mn�n 0mn�mn

�
;(2.3)

where each t i
l
.w/ is a square matrix of size n, for l; i D 1; 2; : : : ;m and tl .w/ is a

n�mn rectangular matrix. It is now evident that for l; r D 1; 2; : : : ;m, we have�
Nl .w/Nr .w/

�
	

u
DQ

�
Nl .w/

	
v
G�1

�
Nr .w/

	
v
Qt ;

where QD P�1. To continue, we write the matrix G�1 in the form of a block matrix:

G�1 D

0BBBBB@
	n�n 	n�n 	n�n : : : 	n�n
	n�n R1;1 R1;2 : : : R1;m
	n�n R2;1 R2;2 : : : R2;m
:::

:::
:::

: : :
:::

	n�n Rm;1 Rm;2 : : : Rm;m

1CCCCCAD
�
	n�n 	n�mn
	mn�n R

�
;(2.4)

where each Ri;j is a n� n matrix. Then we have�
Nl .w/Nr .w/

�
	

u
D

�
Q1;1Rl;rQ

t
1;1 0n�mn

0mn�n 0mn�mn

�
:

Since P is upper triangular with P1;1 D In, we have u1 D v1P1;1 D v1; that is,

.u1; u2; : : : ; un/D .v1; v2; : : : ; vn/:

Since P1;1 D In, it follows that Q1;1 D In. Hence, w.r.t. the orthonormal basis
.u1; : : : ;umC1/ of the subspace Mw , the linear transformation Nl .w/Nr .w/� has the
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matrix representation �
Nl .w/Nr .w/

�
	

u D

�
Rl;r 0n�mn
0mn�n 0mn�mn

�
:(2.5)

Let t.w/ be the mn�mn matrix given by

t.w/D

0BBB@
t1.w/
t2.w/
:::

tm.w/

1CCCA :
Now combining Equation (2.3) and Equation (2.5), we then have

t.w/t.w/
tr
DR:(2.6)

To complete the proof, we have to relate the block matrix R to the curvature matrix
K�.w/ w.r.t. the frame � . Recalling Equation (2.4), we have that

G�1 D

�
	n�n 	n�mn
	mn�n R

�
:

The Gramian G admits a natural decomposition as a 2� 2 block matrix, namely,

G D

0BBB@
h�.w/ @1h�.w/ : : : @mh�.w/
N@1h�.w/ N@1@1h�.w/ : : : N@1@mh�.w/

:::
:::

: : :
:::

N@mh�.w/ N@m@1h�.w/ : : : N@m@mh�.w/

1CCCAD
�
h�.w/ Xn�mn
Lmn�n Smn�mn

�
:

Computing the 2� 2 entry of the inverse of this block matrix and equating it to R, we
have

R�1 D S �Lh�.w/
�1X

D
��
N@i@jh�.w/

��m
i;jD1

�
���
N@ih�.w/

�
h�.w/

�1
�
@jh�.w/

���m
i;jD1

D
��
h�.w/N@i

�
h�.w/

�1
@jh�.w/

���
D �

��
h�.w/K

j;i .�/.w/
��

where ..K i;j .�/.w///mi;jD1 denote the matrix of the curvature K at w 2��0 w.r.t. the

frame � of the bundle ET on ��0 and K t
�.w/ D ..K

j;i .�/.w///mi;jD1. Also, by our
choice of the frame � we have h�.w/D In. Hence, it follows that

(2.7) t.w/t.w/
tr
DRD�

�
K t
�.w/

��1
:

This completes the proof. �

The matrix representation of the operator Ti jMw
w.r.t. the orthonormal basis u D

.u1; : : : ;umC1/ in the subspace Mw is of the form�
Ti jMw

	
u
D

�
wiIn ti .w/
0mn�n wiImn

�
; i D 1; : : : ;m:
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It is well known that the curvature .1; 1/ form determines the local equivalence
class of a holomorphic Hermitian vector bundle. Since the class of such vector bundles
and those of commuting m-tuples of operators in B1.�/ are in one to one correspon-
dence, one would expect to find a direct proof that the curvature determines the unitary
equivalence class of these m-tuple of operators. Such proofs exist (see [4] for the case
of mD nD 1, [5] for mD 2, nD 1, and finally, [11, Theorem 2.1] for arbitrary m but
still nD 1). It shows that the curvature is indeed obtained from the holomorphic frame
and the first order derivatives using the Gram–Schmidt orthonormalization. However,
the relationship between the curvature invariant and the operator is not very direct if
the rank of the vector bundle is not 1; see [4, Section 2.19]. Nevertheless, using the
description of the local operators Ni .w/ WD

�
Ti jMw

	
u
, 1� i � n, we obtain the follow-

ing theorem.

THEOREM 2.2
Suppose that two m-tuples of operators T and QT in Bn.�/ are unitarily equivalent.
Let � (resp. Q�) be a holomorphic frame for ET (resp. EeT ). Assume, without loss of
generality, that the frames � and Q� are orthonormal at w 2 �. Then the curvature
K�.w/ is unitarily equivalent to K Q�.w/, w 2�.

Proof
Let V D

Tm
iD1 ker.Ti �wi /�Mw . With respect to the decomposition Mw D V ˚V

?,
the local operator .Ti �wi /jMw

is of the form�
.Ti �wiI /jMw

	
D

�
0n�n ti .w/
0mn�n 0mn�mn

�
; i D 1; 2; : : : ;m;

where ti .w/ is a n�mn rectangular matrix; see Equation (2.3).
Suppose that T and QT are unitarily equivalent via the unitary U . Since V and QV

are joint eigenspaces of T and QT , respectively, U must map V onto QV . Thus, the matrix
representation of U jMw

is of the form

ŒU jMw
�D

�
An�n Bn�mn
0mn�n Cmn�mn

�
:

But Mw is finite dimensional and U jMw
is a unitary. Hence, B D 0 and A, C are

unitary. Since UTi D QTiU , we have Ati .w/D Qti .w/C , i D 1; 2; : : : ;m. It follows that

Ati .w/tj .w/
tr NAtr D Qti .w/Qtj .w/

tr
:

Let X be the block diagonal unitary matrix A ˝ Im WD Diag.A; : : : ;A/. Finally, we
have

X t.w/t.w/
tr
X

tr
D Qt.w/Qt.w/

tr
:

Thus, using Equation (2.7), we conclude that the curvature K�.w/ is unitarily equiva-
lent to K Q�.w/. �
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Assume that the joint spectrum of the tuple T is contained in ��. Then it follows that
for any function f 2O.��/, we have

f .T /jMw
D f .T jMw

/

D

�
f .w/ 5f .w/ � t.w/
0 f .w/

�
D f .T w/;

where T w is the m-tuple of operator T jMw
and

5f .w/ � t.w/D @1f .w/t1.w/C � � � C @mf .w/tm.w/

D
��
@1f .w/

�
In; : : : ;

�
@mf .w/

�
In
��

t.w/
�

D
�
In˝5f .w/

��
t.w/

�
:

From Equation (2.7), we also have

t.w/t.w/
tr
D�

�
K t
�.w/

��1
:(2.8)

As an application, it is easy to obtain a curvature inequality for those commuting tuples
of operators T in the Cowen–Douglas class Bn.��/ which admit �� as a spectral set.
This is easily done via the holomorphic functional calculus.

If T admits �� as a spectral set, then the inequality I � f .T w/�f .T w/ � 0 is
evident for all holomorphic functions mapping�� to the unit disc D. As is well known,
we may assume without loss of generality that f .w/D 0. Consequently, the inequality
I � f .T w/

�f .T w/� 0 with f .w/D 0 is equivalent to�
In˝5f .w/

tr��
In˝5f .w/

�
��

�
K t
�.w/

�
:(2.9)

Let V 2Cmn be a vector of the form

V D

0BBBBB@
V1
�

�

�

Vm

1CCCCCA ; where Vi D

0BBBBB@
Vi .1/

�

�

�

Vi .n/

1CCCCCA 2Cn:

DEFINITION 2.3 (Carathéodory norm)
The Carathéodory norm of the (matricial) tangent vector V 2 Cmn at a point z in � is
defined by�
C�;z.V /

�2
D sup

®˝�
In˝5f .z/

tr��
In˝5f .z/

�
V;V

˛
W f 2O.�/;kf k1 � 1;f .z/D 0

¯
D sup

° mX
i;jD1

@if .z/@jf .z/hVj ; Vi i W f 2O.�/;kf k1 � 1;f .z/D 0
±

D sup
°


 mX
jD1

@jf .z/Vj




2
`2
W f 2O.�/;kf k1 � 1;f .z/D 0

±
:
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Now we compute the Carathéodory norm of the tangent vector V 2Cmn in the case of
Euclidean ball Bm and of polydisc D

m. For a self map g D .g1; g2; : : : ; gm/ W�!�

and

V D

0BBBBB@
V1
�

�

�

Vm

1CCCCCA ;
let g�.z/.V / be the vector defined by

g�.z/.V /D

0BBBBB@

P
j @jg1.z/Vj

�

�

�P
j @jgm.z/Vj

1CCCCCA :
From the definition, it follows that C�;g.z/.g�.z/.V // � C�;z.V /; that is, the Cara-
théodory metric is norm decreasing. In particular we have that C�;'.z/.'�.z/.V //D
C�;z.V / for any biholomorphic map ' of �. The group of biholomorphic automor-
phisms of both these domains Bm and D

m act transitively. So, it is enough to compute
C�;0.V /, since there is an explicit formula relating C�;z.V / to C�;0.V /, �D B

m or
D
m. From the Schwarz lemma, it follows that the set®

Of .0/ W f 2O.Bm/;kf k1 � 1;f .z/D 0
¯

is equal to the Euclidean unit ball Bm (cf. [12, Lemma 1.1]). Now for aD .a1; a2; : : : ;
am/ 2 B

m, note that


 mX
jD1

ajVj




2
`2
D

nX
iD1

ˇ̌̌ mX
jD1

ajVj .i/
ˇ̌̌2
� kak2

`2

nX
iD1

mX
jD1

ˇ̌
Vj .i/

ˇ̌2
:

From this it follows that the Carathéodory norm of the tangent vector V 2 Cmn at the
point 0 in the case of the Euclidean ball Bm is equal to the Hilbert–Schmidt norm of
V ; that is, kV k2HS D

Pn
iD1

Pm
jD1 jVj .i/j

2. Similarly, in case of polydisc D
m, we have

¹Of .0/ W f 2 O.Dm/;kf k1 � 1;f .z/ D 0º is equal to the `1 unit ball of C
m. For

aD .a1; a2; : : : ; am/: kak1 < 1, we note that


 mX
jD1

ajVj





`2
� kak`1 max

j
kVj k`2 :

Thus, we conclude that the Carathéodory norm of the tangent vector V 2 Cmn at the
point 0, in the case of the polydisc D

m, is equal to max¹kVj k`2 W 1� j �mº. A more
detailed discussion on such matricial tangent vectors V and the question of contractiv-
ity, complete contractivity of the homomorphism induced by them, appears in [12].

From the definition of the Carathéodory norm and Equation (2.9), a proof of the
theorem below follows.
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THEOREM 2.4
Let T be a commuting tuple of operator in Bn.��/ admitting �� as a spectral set.
Then for an arbitrary but fixed point w 2��, there exists a frame � of the bundle ET ,
defined in a neighborhood ofw, which is orthonormal atw, so that following inequality
holds: ˝

K t
�.w/V;V

˛
��

�
C��;w.V /

�2
for every V 2Cmn:

Now we derive a curvature inequality specializing to the case of a bounded planar
domains ��. Using techniques from Sz.-Nagy Foias model theory for contractions,
Uchiyama [18] was the first one to prove a curvature inequality for operators in Bn.D/.
To obtain curvature inequalities in the case of finitely connected planar domains �,
he considered the contractive operator Fw.T /, where Fw W�!D is the Ahlfors map,
Fw.w/D 0, for some fixed but arbitrary w 2�. The curvature inequality then follows
from the equality F 0w.w/D S�.w;w/. However, the inequality we obtain below fol-
lows directly from the functional calculus applied to the local operators. More recently,
K. Wang and G. Zhang (cf. [20]) have obtained a series of very interesting (higher
order) curvature inequalities for operators in Bn.�/.

In the case of a bounded finitely connected planar domain with Jordan analytic
boundary, the Carathéodory norm of the tangent vector V 2 C

n at a point z in � is
given by�

C�;z.V /
�2
D sup

®ˇ̌
f 0.z/

ˇ̌2
hV;V i`2 W f 2O.�/;kf k1 � 1;f .z/D 0

¯
D 4�2

�
S�.z; z/

�2
hV;V i`2

(cf. [3, Theorem 13.1]), where S�.z; z/ denotes the Sz̈ego kernel for the domain �
which satisfy

2�S�.z; z/D sup
®ˇ̌
r 0.z/

ˇ̌
W r 2 Rat.�/;krk1 � 1; r.z/D 0

¯
:

In consequence, we have the following.

THEOREM 2.5
Let T be a operator inBn.��/ admitting�� as a spectral set. Then for an arbitrary but
fixed point w 2��, there exists a frame � of the bundleET , defined on a neighborhood
of w, which is orthonormal at w, so that the following inequality holds:

K� .w/��4�
2
�
S��.w;w/

�2
In:

3. Curvature inequality and the case of unit disc

As is well known, an operator T in B1.D/ can be realized as the adjoint of multi-
plication M by the independent variable on a reproducing kernel Hilbert space HK

consisting of holomorphic functions on D determined by a positive definite kernel
K W D � D! C. Without loss of generality, we assume that the vector Kw ¤ 0 for
every w 2D. Let w1; : : : ;wn be n arbitrary points in D and c1; : : : ; cn be arbitrary com-
plex numbers. Using the reproducing property of K and the property that M �.Kwi /D
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NwiKwi we will have


M �� nX
i;jD1

ciKwi

�


2 D nX
i;jD1

wi NwjK.wi ;wj /cj Nci ;




 nX
i;jD1

ciKwi /



2 D nX

i;jD1

K.wi ;wj /cj Nci :

Let QK.z;w/ be the function .1� z Nw/K.z;w/, z;w 2 D. Now it is easy to see that the
operator M � on the Hilbert space HK is a contraction if and only if QK is non-negative
definite.

LEMMA 3.1
Let T be a contraction in B1.D/ and HK be an associated reproducing kernel Hilbert
space. Then for an arbitrary but fixed � 2 D, we have KT . N�/D�

1
.1�j� j2/2

if and only

if the vectors QK� , N@ QK� are linearly dependent in the Hilbert space H QK .

Proof
Assume KM�. N�/D�

1
.1�j� j2/2

for some � 2D. Contractivity of the operatorM � shows

that the function QK WD�D!C defined by

QK.z;w/D .1� z Nw/K.z;w/ z;w 2D;

is a non-negative definite kernel function. Consequently, there exists a reproducing ker-
nel Hilbert space QH , consisting of s complex valued function on D such that QK becomes
the reproducing kernel for QH . Also note that QK.z; z/D .1�jzj2/K.z; z/¤ 0, for z 2D
which gives us QKz ¤ 0. Let � be an arbitrary but fixed point in D. Now, it is straightfor-
ward to verify that KT . N�/D�

1
.1�j� j2/2

if and only if @2

@z N@z
log QK.z; z/jzD� D 0. Since

we have

@2

@z N@z
log QK.z; z/jzD� D�

k QK�k
2kN@ QK�k

2 � jh QK� ; N@ QK� ij
2

. QK.�; �//2
;

using the Cauchy–Schwarz inequality, we see that the proof is complete. �

REMARK 3.2
Let e.w/D 1p

2
. QKw ˝ N@ QKw � N@ QKw ˝ QKw/ for w 2D. A straightforward computation

shows that ke.w/k2
QH˝ QH
D QK.w;w/2 @2

@z N@z
log QK.z; z/jzDw . Now if we define

FK.z;w/ WD
˝
e.z/; e.w/

˛
QH˝ QH

for z;w 2D;

then clearly FK is a non-negative definite kernel function on D�D. In view of this, we
conclude that KT . N�/D�.1� j�j

2/�2 if and only if FK.�; �/D 0.

PROPOSITION 3.3
Let T be a unilateral backward weighted shift operator in B1.D/, which is contractive,
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co-hyponormal. If for some w0 2 D, the curvature KT .w0/ D �.1 � jw0j
2/�2, then

the operator T is unitarily equivalent to U �C, the backward shift operator.

Proof
Let T be a contraction in B1.D/ and HK be the associated reproducing kernel Hilbert
space so that T is unitarily equivalent to the operatorM � on HK . By our hypothesis on
T , we have that the operator M on HK is a unilateral forward weighted shift. Without
loss of generality, we may assume that the reproducing kernel K is of the form

K.z;w/D

1X
nD0

anz
n Nwn; z;w 2DI where an > 0 for all n� 0:

By our hypothesis on the operator T , we have that the operator M on HK is a con-
traction. So, the function QK defined by QK.z;w/D .1� z Nw/K.z;w/ is a non-negative
definite kernel function. Consequently, following Remark 3.2, the function FK.w;w/
defined by FK.w;w/ D QK.w;w/2 @2

@z N@z
log QK.z; z/jzDw is also non-negative definite.

The kernel K.w;w/ is a weighted sum of monomials zk Nwk , k D 0; 1; 2; : : : . Hence,
both QK.w;w/ and FK.w;w/ are also weighted sums of the same form. So, we have

FK.w;w/D

1X
nD0

cnjwj
2n;

for some cn � 0. Now assume KT . N�/D�
1

.1�j� j2/2
for some � in D.

Case 1: If � ¤ 0, then following Remark 3.2, we have

FK.�; �/D

1X
nD0

cnj�j
2n D 0:

Thus, cn D 0 for all n � 0 since cn � 0 and j�j ¤ 0. It follows that FK is identically
zero on D�D; that is, @2

@z N@z
log QK.z; z/jzD Nw D 0 for all w 2D. Hence,

@2

@z N@z
logK.z; z/jzD Nw D

@2

@z N@z
logSD.z; z/jzD Nw for all w 2D:

Therefore, KT . Nw/DKU�
C
. Nw/ for allw 2D, making T ŠU �C.

Now let’s discuss the remaining case; that is, KT . N�/D�
1

.1�j� j2/2
, for � D 0 2D.

Case 2: If � D 0, then by Lemma 3.1, we have that QK0, N@ QK0 are linearly dependent.
Now,

QK.z;w/ WD .1� z Nw/K.z;w/D

1X
nD0

bnz
n Nwn;

where b0 D a0 and bn D an�an�1 � 0, for all n� 1. Consequently, we have QK0.z/

b0 and N@ QK0.z/D b1z. Now QK0, N@ QK0 are linearly dependent if and only if b1 D 0 that
is a0 D a1.

Since ¹
p
anz

nº1nD0 is an orthonormal basis for the Hilbert space HK , the operator

M on HK is an unilateral forward weighted shift with weight sequence wn D
q

an
anC1
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for n � 0. So the curvature of M � at the point zero is equal to �1 if and only if

w0 D
q
a0
a1
D 1. Now if we further assumeM is hyponormal (that is,M �M �MM �/,

then the sequence wn must be increasing. Also contractivity of M implies that wn � 1.
Therefore, if KM�.0/D�1 for some contractive hyponormal backward weighted shift
M � in B1.D/, then it follows that wn D 1 for all n � 1. Thus, any such operator is
unitarily equivalent to the backward unilateral shift U �C, completing the proof of our
claim. �

The proof of Case 1 given above actually proves a little more than what is stated in the
proposition, which we record below as a separate lemma.

LEMMA 3.4
Let T be any contractive unilateral backward weighted shift operator in B1.D/. If
KT .w0/D�.1� jw0j

2/�2 for some w0 2D, w0 ¤ 0, then the operator T is unitarily
equivalent to U �C, the backward shift operator.

Let T be a contraction in B1.D/. Let a be a fixed but arbitrary point in D and �a be an
automorphism of the unit disc taking a to 0. Then �a.z/ is of the form ˇ.z � a/.1 �

Naz/�1 for some unimodular constant ˇ. For any operator T in B1.D/ and w 2 D, the
operator .T �w/ is Fredholm and the index of .T �w/ is 1 by definition. Note that

.1� Naw/.1� NaT /
�
�a.T /� �a.w/

�
D ˇ

�
.T � a/.1� Naw/� .w � a/.1� NaT /

�
D ˇ

�
1� jaj2

�
.T �w/;

w 2D.
Thus, the operator .�a.T / � �a.w// is the product of the Fredholm operator

.T �w/ of index 1 and the invertible operator ˇ.1 � jaj2/.1 � Naw/�1.1 � NaT /�1;
therefore, it is Fredholm with the same index as that of the operator .T �w/.

Also, if v 2 ker.T � w/, then for any polynomial p, p.T /.v/D p.w/v. Conse-
quently, we have that v 2 ker.�a.T /� �a.w//. Hence,

ker.T �w/� ker
�
�a.T /� �a.w/

�
:

Since ��1a ı �a.T /D T , in a similar fashion we will have

ker
�
�a.T /� �a.w/

�
� ker.T �w/:

Thus, we get that ker.�a.T /� �a.w//D ker.T �w/. In consequence,_
w2D

ker
�
�a.T /� �a.w/

�
D
_
w2D

ker.T �w/DH ;

which proves that �a.T / is in B1.D/.
Let �.w/ be a frame for the associated bundle ET of T so that T .�.w//Dw�.w/

for all w 2 D. Now it is easy to see that �a.T /.�.w// D �a.w/�.w/ or equivalently
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�a.T /.� ı�
�1
a .w//Dw.� ı��1a .w//. So, � ı��1a .w/ is a frame for the bundleE�a.T /

associated with �a.T /. Hence, the curvature K�a.T /.w/ is equal to

@2

@w@ Nw
log


� ı ��1a .w/



2
D
ˇ̌
��1a

0
.w/

ˇ̌2 @2

@z@ Nz
log


�.z/

2

jzD��1a .w/

D
ˇ̌
��1a

0
.w/

ˇ̌2
KT

�
��1a .w/

�
:

This gives the following transformation rule for the curvature:

(3.1) K�a.T /

�
�a.z/

�
DKT .z/

ˇ̌
�0a.z/

ˇ̌�2
; z 2D:

Since j�0a.a/j D .1� jaj
2/�1, in particular, we have that

K�a.T /.0/DKT .a/
�
1� jaj2

�2
:(3.2)

Normalized kernel: Let T be an operator in B1.��/ and T has been realized as
M � on a reproducing kernel Hilbert space HK with non-degenerate kernel function
K . For any fixed but arbitrary � 2�, the function K.z; �/ is non-zero in some neigh-
borhood, say U , of �. The function '� .z/ WDK.z; �/�1K.�; �/1=2 is then holomorphic.
The linear space .H ;K.�// WD ¹'�f W f 2HKº then can be equipped with an inner
product, making the multiplication operator M'� unitary from HK onto .H ;K.�//. It
then follows that .H ;K.�// is a space of holomorphic functions defined on U ��, and
it has a reproducing kernel K.�/ defined by

K.�/.z;w/DK.�; �/K.z; �/
�1K.z;w/K.w; �/�1; z;w 2U;

with the property K.�/.z; �/D 1, z 2U . Finally, the multiplication operator M on HK

is unitarily equivalent to the multiplication operator M on .H ;K.�//. The kernel K.�/
is said to be normalized at �.

The realization of an operator T in B1.��/ as the adjoint of the multiplication
operator on HK is not canonical. However, the kernel function K is determined up
to conjugation by a holomorphic function. Consequently, one sees that the curvature
KK is unambiguously defined. On the other hand, Curto and Salinas (cf. [6, Remarks
4.7 (b)]) prove that the multiplication operators M on two Hilbert spaces .H ;K.�//

and . OH ; OK.�// are unitarily equivalent if and only if K.�/ D OK.�/ in some small neigh-
bourhood of �. Thus, the normalized kernel at � (that is, K.�/, is also unambiguously
defined. It follows that the curvature and the normalized kernel at � serve equally well
as a complete unitary invariant for the operator T in B1.��/.

To answer Question 1.2, we have to impose two additional conditions on the oper-
ator T . These are not too restrictive. However, we don’t know if the second of these
two conditions follows from the other hypothesis.

First, let us recall the definition of 2 hyper-contraction (cf. [2]). An operator A
acting on a Hilbert space H is said to be 2 hyper-contraction if I � A�A � 0 and
A�2A2 � 2A�A C I � 0. For example, every contractive subnormal operator is a 2
hyper-contraction (cf. [2, Theorem 3.1]). The following lemma will be very useful in
establishing our next result.
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LEMMA 3.5
LetA be a 2 hyper-contraction and ' be a bi-holomorphic automorphism of unit disc D.
Then '.A/ is also a 2 hyper-contraction.

Proof
Let A be a 2 hyper-contraction. Let ' be the automorphism of the unit disc D given by
'.z/D 	 z�a

1�Naz
for some unimodular constant 	 and a 2 D. So '.A/D 	.A � a/.1 �

NaA/�1. Since A is a contraction, using von Neumann’s inequality, we have that '.A/
is also a contraction. Thus,

'.A/�
2
'.A/2 � 2'.A/�'.A/C I

D .1� aA�/�2
®
.A� � Na/2.A� a/2 � 2.1� aA�/.A� � Na/.A� a/.1� NaA/

C .1� aA�/2.1� NaA/2
¯
.1� NaA/�2

D .1� aA�/�2
®
.A� � Na/2.A� a/2 � .A� � Na/.1� aA�/.1� NaA/.A� a/

� .1� aA�/.A� � Na/.A� a/.1� NaA/C .1� aA�/2.1� NaA/2
¯
.1� NaA/�2

D .1� aA�/�2
®
.A� � Na/

®
.A� � Na/.A� a/� .1� aA�/.1� NaA/

¯
.A� a/

� .1� aA�/
®
.A� � Na/.A� a/� .1� aA�/.1� NaA/

¯
.1� NaA/

¯
.1� NaA/�2

D .1� aA�/�2
®
.A� � Na/.A�A� 1/

�
1� jaj2

�
.A� a/

� .1� aA�/.A�A� 1/
�
1� jaj2

�
.1� NaA/

¯
.1� NaA/�2

D .1� aA�/�2
�
1� jaj2

�®
.A� � Na/.A�A� 1/.A� a/

� .1� aA�/.A�A� 1/.1� NaA/
¯
.1� NaA/�2

D .1� aA�/�2
�
1� jaj2

�®�
1� jaj2

�
.A�

2
A2 � 2A�AC I /

¯
.1� NaA/�2

D .1� aA�/�2
�
1� jaj2

�
.A�

2
A2 � 2A�AC I /

�
1� jaj2

�
.1� NaA/�2:

Since A is a 2 hyper-contraction, it follows that '.A/ is also a 2-hyper-contraction,
completing the proof. �

Second, recall that an operator A in B.H / is said to have wandering subspace property
if the linear span of ¹An.kerA�/ W n 2 ZCº is dense in H (cf. [16]). The following
theorem provides a partial answer to Question 1.2.

THEOREM 3.6
Fix an arbitrary point � 2D. Let T be an operator in B1.D/ such that T � is a 2 hyper-
contraction. Suppose that the operator .�� .T //� has the wandering subspace property
for an automorphism �� of the unit disc D mapping � to 0. If KT .�/D�.1� j�j

2/�2,
then T must be unitarily equivalent to U �C, the backward shift operator.
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Proof
Let T be an operator in B1.D/ such that the adjoint T � is a 2-hyper-contraction and
.�� .T //

� has the wandering subspace property for an automorphism �� of the unit disc
D mapping � into 0. Let P be the operator �� .T /. We have seen that P is in B1.D/ and
from Lemma 3.5, it follows that the adjoint P � is a 2-hyper-contraction. Now assume
KT .�/D�.1� j�j

2/�2. Following Equation (3.2), we see that KP .0/D�1.
Without loss of generality, we assume that P is unitarily equivalent to the operator

M � acting on the reproducing kernel Hilbert space HK , where the kernel function K
is normalized at 0. Since M � 2 B1.D/, we have kerM � D ¹aK.�; 0/ W a 2 Cº. As K
is normalized at 0 (that is, K.z; 0/D 1 for all z in some neighborhood of 0/, we have
kerM � D C. By our assumption, P � has the wandering subspace property. As the
operator M on HK is unitarily equivalent to P �, the operator M on HK also has the
wandering subspace property. Thus, polynomials are dense in HK .

Now we claim that N@K.�; 0/D z. As HK consists of holomorphic function, for any
f 2HK , we have

f .z/D

1X
jD1

aj z
j ; where aj D

f .j /.0/

j Š
D
D
f;
N@jK.�; 0/

j Š

E
:

Let Vj D
N@jK.�;0/
j Š

. To prove V1 D N@K.�; 0/ D z, it is sufficient to show that
hV1; Vj i D 0 for all j � 0, except j D 1. First note that since K.z; 0/D 1DK.0; z/,
we have N@K.0; 0/ D 0. It follows that hV1; V0i D 0. Since K is normalized at 0, we
also have KP .0/ D �@N@K.0; 0/ D �kV1k

2. Hence, we find that kV1k2 D 1. Now to
show hV1; Vj i D 0 for j � 2, we need the following lemma.

LEMMA 3.7
Let V and W be two finite dimensional inner product spaces and A W V ! W be a
linear map. Let ¹v1; v2; : : : ; vkº be a basis for V and Gv (resp. GAv) be the Gramian
..hvj ; vi iV // (resp. ..hAvj ;Avi iW //). The linear map A is a contraction if and only if
GAv �Gv .

Proof
Let x D c1v1 C c2v2 C � � � C cnvn be an arbitrary element in V . Then the easy ver-
ification that kAxk2W � kxk

2
V is equivalent to hGAvc; ci � hGvc; ci completes the

proof. �

Differentiating .M � � Nw/K.�;w/D 0, we find that .M � � Nw/
N@Kj .�;w//

j Š
D
N@Kj�1.�;w//
.j�1/Š

for all j � 1. So, we have M �.Vj /D Vj�1 for j � 1 and M �.V0/D 0. We also have
kM �k � 1. Applying Lemma 3:7 to the vectors ¹V0; V1; : : : ; Vnº, we see that the dif-
ference0BBB@
hV0; V0i hV1; V0i � � � hVn; V0i

hV0; V1i hV1; V1i � � � hVn; V1i
:::

:::
: : :

:::

hV0; Vni hV1; Vni � � � hVn; Vni

1CCCA�
0BBB@
0 0 � � � 0

0 hV0; V0i � � � hVn�1; V0i
:::

:::
: : :

:::

0 hV0; Vn�1i � � � hVn�1; Vn�1i

1CCCA
is non-negative definite.
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Since kV0k2 D K.0; 0/ D 1 and kV1k2 D 1, the .2; 2/ entry of this difference is
0. Also, this difference being a non-negative definite matrix, we see that the 2nd
row and 2nd column must be an identically zero (for a non-negative definite matrix
B with hBe2; e2i D 0 gives

p
Be2 D 0. Hence, Be2 D 0). Consequently, we get that

hVj ; V1i D hVj�1; V0i for all j D 2; : : : ; n. But as K.z; 0/ D 1 D K.0; z/, it follows
that N@kK.0; 0/ D hVk ; V0i D 0 for all k � 1. Hence, we get that hVj ; V1i D 0 for all
j � 2, V1 D N@K.�; 0/D z, and kzk2 D kV1k2 D 1. We also have V0 DK.�; 0/D 1 with
k1k2 D kV0k

2 DK.0; 0/D 1.
By our assumption, the operator M on HK is a 2-hyper-contraction. In particular,

M is also a contraction and k1kHK D 1. Hence, we have kznkHK � 1, for all n � 1.
Since M on HK is a 2 hyper-contraction (that is, I � 2M �M CM �2M 2 � 0/, equiv-
alently, kf k2

HK
� 2kzf k2

HK
Ckz2f k2

HK
� 0, for all f 2HK . Since k1k D kzk D 1,

taking f D 1, we have kz2k � 1. But we also have kz2k � 1, which gives us kz2k D 1.
Inductively, by choosing f D zk , we obtain kzkC2k D 1 for every k 2 N. Hence, we
see that kznk D 1 for all n� 0.

We use Lemma 3:7 to show that ¹zn j n � 0º is an orthonormal set in the
Hilbert space HK . Consider the two subspace V and W of HK , defined by V DW
¹1; z; : : : ; zkº and W D

W
¹z; z2; : : : ; zkC1º. Since M is a contraction, applying the

lemma we have just proved, it follows that the matrix B defined by

B D
�
hzj ; zi i

�k
i;jD0

�
�
hzjC1; ziC1i

�k
i;jD0

is positive semi-definite. But we have kzik D 1, for all i � 0. Consequently, each diag-
onal entry of B is zero. Hence, tr.B/ D 0. Since B is positive semi-definite, it fol-
lows that B D 0. Therefore, hzj ; zi i D hzjC1; ziC1i for all 0 � i; j � k. We have
K0.z/ 
 1. So, M �1 D M �.K0/ D 0. From this it follows that for any k � 1, we
have hzk ; 1i D hzk�1;M �1i D 0. This together with hzj ; zi i D hzjC1; ziC1i for all
0 � i; j � k inductively shows that hzj ; zi i D 0 for every i ¤ j . Hence, ¹zn j n � 0º
forms an orthonormal set.

Since polynomials are dense in HK , the set of vectors ¹zn j n � 0º forms an
orthonormal basis for HK . Hence, the multiplication operator M on HK is unitar-
ily equivalent to UC, the unilateral forward shift operator. Consequently, P is unitarily
equivalent to U �C. But by U �C being a homogeneous operator, we have that U �C is uni-
tarily equivalent to ��1

�
.U �C/ (cf. [9]). Hence, we infer that T D ��1

�
.P / is unitarily

equivalent to U �C. �

COROLLARY 3.8
Let T be an operator in B1.D/. Assume that T � is a 2 hyper-contraction and that
.�.T //� has the wandering subspace property for every automorphism � of the unit
disc D. If KT .�/D�.1� j�j

2/�2 for an arbitrary but fixed point � in D, then T must
be unitarily equivalent to U �C, the backward shift operator.

4. Bergman bundle shifts

Let� be a finitely connected bounded domain in the complex plane C whose boundary
consists of n C 1 analytic Jordan curves. Let dv be the Lebesgue area measure in
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the complex plane C and ds be the arc length measure on the boundary @� of the
domain �. For a positive continuous function h on � which is integrable w.r.t. the area
measure dv, the weighted Bergman space .A2.�/;hdv/ consists of all holomorphic
function f on � satisfying kf k2

h
D
R
� jf .z/j

2h.z/dv.z/ <1. In this section we
study the operator M of multiplication by the coordinate function on the weighted
Bergman space .A2.�/;hdv/.

NOTATION 4.1
Let h be the set of functions®

h W h is a positive continuous integrable (w.r.t. area measure) function on �
¯

and similarly let Oh be the set of functions

¹ Oh W Oh is a positive continuous function on @�º:

Finally, let F1, F2 be the class of operator defined by

F1 D
®
M on

�
A
2.�/;hdv

�
W h 2 h

¯
and

F2 D
®
M on

�
H 2.�/; Ohds

�
W Oh 2 Oh

¯
:

Set F DF1 [F2.

It was shown in [15] that the class of operators in F2 includes the bundle shifts intro-
duced in [1]. We conclude this section by showing that the class F1 includes all the
Bergman bundle shifts of rank 1 introduced in [7]. Let G be the class of operators
contained in F defined by G D ¹M on .A2.�/;hdv/: logh is harmonic on �º. After
recalling the definition of of Bergman bundle shift (cf. [7]), we proceed to establish
the existence of a surjective map from G onto the class of a Bergman bundle shift of
rank 1.

Let � W D!� be a holomorphic covering map. Bergman bundle shifts are real-
ized as multiplication operators on a certain subspace of the weighted Bergman space
.A2.D/; j� 0.z/j2 dv.z//. Let G denote the group of deck transformation associated
to the map � that is G D ¹A 2 Aut.D/ j � ı A D �º. Let ˛ be a character—that is,
˛ 2Hom.G;S1/. A holomorphic function f on unit disc D satisfying f ıAD ˛.A/f ,
for all A 2 G, is called a modulus automorphic function of index ˛. Now consider
the following subspace of the weighted Bergman space .A2.D/; j� 0.z/j2 dv.z// which
consists of a modulus automorphic function of index ˛, namely,

A
2.D; ˛/D

®
f 2

�
A
2.D/;

ˇ̌
� 0.z/

ˇ̌2
dv.z/

� ˇ̌
f ıAD ˛.A/f; for all A 2G

¯
:

Let T˛ be the multiplication by the covering map � on the subspace A
2.D; ˛/. The

operator T˛ is called a Bergman bundle shift of rank 1 associated to the charac-
ter ˛.

Like the Hardy bundle shift (cf. [1]), there is another way to realize the Bergman
bundle shift as a multiplication operator M on a Hilbert space of multivalued holomor-
phic function defined on � with the property whose absolute value is single valued.
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A multivalued holomorphic function defined on � with the property whose absolute
value is single valued is called a multiplicative function. Every modulus automorphic
function f on D induces a multiplicative function on �, namely, f ı ��1. The con-
verse is also true (cf. [19, Lemma 3.6]). We define the class A

2
˛.�/ consisting of a

multiplicative function in the following way:

A
2
˛.�/ WD

®
f ı ��1

ˇ̌
f 2A2.D; ˛/

¯
:

So the linear space A
2
˛.�/ consists of those multiple valued functions h on � for

which jhj is single valued, jhj2 is integrable w.r.t the area measure dv on !, and h is
locally holomorphic in the sense that each point w 2� has a neighborhood Uw and a
single valued holomorphic function gw on Uw with the property jgw j D jhj on Uw (cf.
[8, p. 101]). It follows that the linear space A

2
˛.�/ endowed with the norm

kf k2 D

Z
�

ˇ̌
f .z/

ˇ̌2
dv.z/

is a Hilbert space. We denote it by .A2˛.�/;dv/. In fact, the map f 7! f ı ��1 is a
unitary map from A

2.D; ˛/ onto .A2˛.�/;dv/ which intertwines the multiplication by
� on A

2.D; ˛/ and the multiplication by coordinate functionM on .A2˛.�/;dv/. Thus,
the multiplication operator M on .A2˛.�/;dv/ is also called a Bergman bundle shift of
rank 1.

Let h be a positive function on� with logh harmonic on�. Now we show that the
multiplication operator M on the weighted Bergman space .A2.�/;hdv/ is unitarily
equivalent to a Bergman bundle shift T˛ for some character ˛. In this realization, it is
not hard to see that all the Bergman bundle shifts of rank 1 are in the same similar-
ity class. First note that h is bounded both above and below. So, there exist positive
constants p, q such that 0 < p � h.z/� q for all z 2�. Consequently, we have

pk � k1 � k � kh � qk � k1:

Thus, the norm on the weighted Bergman space .A2.�/;hdv/ is equivalent to the norm
on the Bergman space .A2.�/; dv/. It follows that the identity map is an invertible
operator between these two Hilbert spaces and intertwines the associated multiplication
operator. This shows that every operator in the class G is similar to the multiplication
operator M on the Bergman space .A2.�/; dv/.

The following lemma is the essential step in proving the existence of a bijective
map from G to the class of a Bergman bundle shift of rank 1.

LEMMA 4.2
Let h be a positive function on � such that logh is harmonic on �. Then there exists
a function F in H1� .�/ for some character � such that jF j2 D h on �. In fact, F is
invertible in the sense that there exist G in H1

��1
.�/ so that FG D 1 on �. Further-

more, given any character � there exists a positive function h on � such that logh is
harmonic on � and hD jF j2 on � for some F in H1� .�/.
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Proof
The proof of the first half of the lemma follows using techniques similar to the ones
used in the proof of Lemma 2.4 of [15]; therefore, we omit the proof here.

For the proof of the second half of the lemma, recall that there exist functions
!j .z/ which are harmonic in �. For each j D 1; 2; : : : ; n, the boundary value of these
functions is 1 on @�j and 0 on all the other boundary components. Since the boundary
of � consists of Jordan analytic curves, we have that the functions !j .z/ are also
harmonic on�. Let pi;j be the period of the harmonic function !j around the boundary
component @�i ; that is,

pi;j D�

Z
@�i

@

@
z

�
!j .z/

�
dsz ; for i; j D 1; 2; : : : ; n:

The negative sign appears in the equation as it is assumed that @� is positively
oriented—that is, the boundary components @�j , j D 1; 2; : : : ; n, except the outer
one, namely @�nC1, are oriented in the clockwise direction. So the period of the
harmonic function u.z/D a1!1.z/C a2!2.z/C � � � C an!n.z/ around the boundary
component @�i is equal to

P
j pi;j˛j . It is well known that the n � n period matrix

..pi;j // is positive definite and hence invertible (cf. [14, Section 10, Ch 1]). Thus, it
follows that for any n-tuple of a real number, say .b1; b2; : : : ; bn/, we have a harmonic
function u on � such that its period around the boundary component @�i is equal to
bi . Let g be the positive function on � defined by g.z/ D exp.2u.z//, z 2 �. Now
following the first part of the lemma, we have that there exists an F in H1� .�/ such

that jF j2 D g on �. Furthermore, the character � is determined by

�j D exp.ibj /; for j D 1; 2; : : : ; n:

As this is true for an arbitrary n-tuple of real number .b1; b2; : : : ; bn/, the result follows.
�

As a consequence of the previous lemma, we have the following theorem.

THEOREM 4.3
There is a bijective correspondence between the multiplication operators on the
weighted Bergman spaces G and the bundle shifts in B.

Proof
Let h be a positive function on � such that logh is harmonic on �. We see that there
is an F in H1� .�/ with jF j2 D h on � and a G in H1

��1
.�/ with jGj2 D h�1 on �.

Now consider the map MF W .A
2.�/;hdv/! .A2� .�/;dv/, defined by the equation

MF .g/D Fg; g 2
�
A
2.�/;hdv

�
:

Clearly,MF is a unitary operator and its inverse is the operatorMG . The multiplication
operator MF intertwines the corresponding operator of multiplication by the coordi-
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nate function on the Hilbert spaces .A2.�/;hdv/ and .A2� .�/;dv/. The character � is
determined by �j .h/D exp.icj .h//, where cj .h/ is given by

cj .h/D�

Z
@�j

@

@
z

�1
2

logh.z/
�
dsz ; for j D 1; 2; : : : ; n:

Conversely, following the second part of Lemma 4.2, for any character � there
exists a positive function h on � such that logh is harmonic on � and hD jF j2 on �
for some function F in H1� .�/. Thus, we have established a surjective map from the

class G D ¹M on .A2.�/;hdv/: logh is harmonic on�º onto the class B of Bergman
bundle shifts of rank 1, namely, the multiplication operatorsM on .A2� .�/;dv/, where
� is in Hom.�1.�/;S1/. �

Also, the following corollary is an immediate consequence of [7, Theorem 18].

COROLLARY 4.4
Let h1, h2 be two positive function on �. Suppose that loghi , i D 1; 2, is harmonic on
�. Then the operator M on .A2.�/;h1 dv/ is unitarily equivalent to the operator M
on .A2.�/;h2 dv/ if and only if �j .h1/D �j .h2/ for j D 1; 2; : : : ; n.

5. Curvature inequality in the case of finitely connected domain

Let h be a positive continuous function on � which is integrable w.r.t the Lebesgue
area measure dv on �. Consider the weighted Bergman space .A2.�/;hdv/. For any
compact set C ��, the function h is bounded below on C . It follows that evaluation
at any fixed but arbitrary point in � is a locally uniformly bounded linear map on
.A2.�/;hdv/. Consequently, .A2.�/;hdv/ is a reproducing kernel Hilbert space. Let
K.z;w/ be the kernel function for .A2.�/;hdv/. Clearly, the multiplication operator
M by coordinate function on .A2.�/;hdv/ is a subnormal operator and� is a spectral
set for M . In this section, we will establish the following strict curvature inequality:

@z N@z logK.z; z/jzDw > 4�
2S.w;w/2:

Let w be an arbitrary but fixed point in �. Let Cw be the closed convex set in
H D .A2.�/;hdv/ defined by Cw D ¹f 2H W f .w/D 0;f 0.w/D 1º. Consider the
following extremal problem:

inf
®
kf k2 W f 2 Cw

¯
:

Let Ew be the subspace of H defined by

Ew D
®
f 2H W f .w/D 0;f 0.w/D 0

¯
:

Since f C g 2 Cw , whenever f 2 Cw and g 2 Ew , it is evident that the unique func-
tion F which solves the extremal problem must belong to E?w . From the reproducing
property of K , it follows that

f .w/D
˝
f;K.�;w/

˛
; f 0.w/D

˝
f; N@K.�;w/

˛
:
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Consequently, we have E?w D
W
¹K.�;w/; N@K.�;w/º. A solution to the extremal prob-

lem mentioned above can be found in terms of the kernel function as in [10]:

inf
®
kf k2 W f 2 Cw

¯
D
°
K.w;w/

� @2

@z@ Nz
logK.z; z/jzDw

�±�1
:

Now consider the function g in H defined by

g.z/ WD
Kw.z/Fw.z/

2�S.w;w/K.w;w/
; z 2�;

where Fw.z/D
Sw.z/
Lw.z/

denotes the Ahlfors map for the domain� at the point w (cf. [3,
Theorem 13.1]). Note that jFw.z/j < 1 on � and jFw.z/j 
 1 on @�. As g 2H , we
have the inequality°

K.w;w/
� @2

@z@ Nz
logK.z; z/jzDw

�±�1
� kgk2

D
1

4�2S.w;w/2K.w;w/2

Z
�

ˇ̌
Fw.z/

ˇ̌2 ˇ̌
K.z;w/

ˇ̌2
h.z/dv.z/

<
1

4�2S.w;w/2K.w;w/2

Z
�

ˇ̌
K.z;w/

ˇ̌2
h.z/dv.z/

D
1

4�2S.w;w/2K.w;w/
;

where the strict inequality follows from the inequality jFw.z/j < 1 on �. Hence, we
have @z N@z logK.z; z/jzDw > 4�2S.w;w/2, which is the strict curvature inequality. We
obtain the uniqueness of the extremal operator within the class F , defined in Section 4,
by combining this with Theorem 2.6 of [15].

THEOREM 5.1
Let � be an arbitrary but fixed point in � and T be an operator in B1.��/. Assume
that the adjoint T � (up to unitary equivalence) is in F . Then KT . N�/��4�

2S�.�; �/
2,

where equality occurs for a unique operator modulo unitary equivalence.
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