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Abstract—The length of an optimal scalar linear index code
of a groupcast index coding problem is equal to the minrank
of its side-information hypergraph. The side-information hyper-
graph becomes a side-information graph for a special class of
groupcast index coding problems known as unicast index coding
problems. The number of computations required to find the
minrank of a side-information graph depends on the number
of edges present in the side-information graph. In this paper, we
define the notion of minrank-critical edges in a side-information
graph and derive some properties of minrank, which identifies
minrank-non-critical edges. Using these properties we present
a method to reduce the number of computations required to
compute minrank. Apart from this, we give a heuristic method
to compute minrank. Also, we give an heuristic algorithm to
find a clique cover of the side-information graph by using some
binary operations on the adjacency matrix of the side-information
graph. We also give a method to convert a groupcast index coding
problem into a single unicast index coding problem. Combining
all these results, we give a method to construct index codes
(with not necessarily optimal length) for groupcast index coding
problems. The construction technique is independent of field size
and hence can be used to construct index codes over the binary
field. In some cases the constructed index codes are better than
the best known in the literature both in terms of the length of
the code and the minimum field size required.

I. INTRODUCTION

An index coding problem [1], comprises of a transmitter

that has a set of K messages {x1, x2, . . . , xK}, and a set of m

receivers {R1, R2, . . . , Rm}. Each receiver, Rk = (Kk,Wk),
knows a subset of messages, Kk ⊂ X , called its side-

information, and demands another subset of messages, Wk ⊆
Kc

k, called its Want-set. The transmitter can take cognizance

of the side-information of the receivers and broadcast coded

messages, called the index code. The objective is to minimize

the number of coded transmissions, called the length of the

index code.

An index coding problem with no restrictions on want-

set and side-information is called a groupcast index coding

problem. Without loss of generality a groupcast index coding

problem with m receivers and want-set Wk for k ∈ [1 : m] =
{1, 2, . . . ,m} can be converted into another groupcast index

coding problem with
∑

k∈[1:m] |Wk | receivers such that every

receiver wants exactly one message. A groupcast index coding

problem with K messages {x1, x2, . . . , xK} can be repre-

sented by a hypergraph H with K vertices {x1, x2, . . . , xK}
and

∑

k∈[1:m] |Wk | number of hyperedges [4].

An index coding problem is unicast [2] if the demand sets

of the receivers are disjoint. It is called single unicast if the

demand sets of the receivers are disjoint and every receiver

wants only one message. Any unicast index problem can be

equivalently reduced to a single unicast index coding problem

(SUICP). In an SUICP, the number of messages is equal to

the number of receivers.

Any SUICP with K messages {x1, x2, . . . , xK} can be

expressed as a side-information graph G with K vertices

{x1, x2, . . . , xK}. In G, there exists an edge from xi to

xj if the receiver wanting xi knows xj . In a unicast index

coding problem with K messages and K receivers, the side-

information graph has
∑

k∈[1:K] |Kk | number of edges. A

matrix A = (ai,j) fits G if ai,i = 1 for all i and ai,j=0

whenever (i, j) is not an edge of G. Let rkq(A) denote the

rank of this matrix over Fq. The minrankq(G) is defined as

minrankq(G) , min{rkq(A) : A fits G}.

In [3] and [4], it was shown that for any given index coding

problem, the length of an optimal scalar linear index code

over Fq is equal to the minrankq(G) of its side-information

graph. However, finding the minrank for any arbitrary side-

information graph is NP-hard [4]. There exists a low rank

matrix completion method to find the rank of a binary matrix

which is also NP-hard [5].

A directed graph G with K vertices is called a κ(G)-partial

clique [1] iff every vertex in G has at least (K − 1 − κ)
outgoing edges and there exits at least one vertex in G

which has exactly (K − 1− κ) outgoing edges. For an index

coding problem whose side-information graph is a κ(G)-
partial clique, a maximum distance separable (MDS) code of

length K and dimension κ+1, over a finite field Fq for q ≥ K ,

can be used as an index code. The κ(G)-partial clique method

provides a savings of K−κ−1 transmissions when compared

with the naive technique of transmitting all K messages.

Tehrani et. al in [7] proposed a partition multicast technique

to address the groupcast index coding problem. In this tech-

nique one divides the messages into partitions and consider

each partition as a partial clique. The messages are partitioned

in such a way that the sum of savings of all the partitions

are maximized. However, the proposed partition multicast

technique is suboptimal and computing it is NP-hard. The

required field size in partition multicast depends on the number

of messages in the partition and the number of messages

known to each receiver in the partition.

In this paper, the vertices xi and xj in a side-information

graph are connected with an undirected edge if receiver Ri
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knows xj and receiver Rj knows xi. Throughout we assume

a finite field with characteristic 2 and use the XOR operation

for convenience. However the results are easily extendable to

finite fields with any characteristic.

A. Contributions

The main contributions of this paper are summarized as

follows.

• We give a method to construct index codes for groupcast

index coding problems which is independent of field size.

Partition multicast index codes is the best known in the

literature for groupcast index coding problems and they

do not exist for all fields. We give instances of groupcast

index coding problems where the length of index code

obtained by using the proposed method is less than that

of partition multicast.

• To give a method to construct index codes for groupcast

index coding problem, we develop many tools to address

single unicast index coding problems. We define the

notion of minrank-critical edges in a side-information

graph and derive some properties of minrank, which

identify minrank-non-critical edges in a side-information

graph. Using these properties we present a method to

reduce the number of computations required to compute

the minrank. We also give a heuristic method to compute

the same along with a heuristic algorithm to find a clique

cover of the side-information graph. We propose a sub-

optimal method to convert a groupcast index coding

problem into a single unicast index coding problem.

The remaining part of this paper is organized as follows. In

Section II, we derive some properties of the minrank of a side-

information graph and give a method to reduce the complexity

of the minrank computation problem. In Section III, we give

a heuristic method for minrank computation. In Section IV,

we give a method to construct index codes for groupcast

index coding problems which works over every finite field.

We conclude the paper in Section V. In the Appendix we

give a heuristic algorithm to find the clique cover of a side-

information graph.

The proofs of all the theorems and lemmas in this paper

have been omitted due to space constraints. These and more

examples can be found in [10].

II. PROPERTIES OF MINRANK OF A SIDE-INFORMATION

GRAPH

In this section, we derive some properties of the minrank

of the index coding problem. By using the derived properties,

we provide a method to identify minrank-non-critical edges

of a side-information graph. As the number of computations

required to find exact value of the minrank is exponential in

the number of edges present in the side-information graph,

identification of every minrank-non-critical edge can reduce

the number of computations required to compute the minrank

by half.

In a given index coding problem with side-information

graph G, an edge e is said to be critical if the removal of e

from G strictly reduces the capacity region. The index coding

problem G is critical if every edge e is critical. Tahmasbi,

Shahrasbi and Gohari [8] studied critical graphs and analyzed

properties of critical graphs with respect to capacity region.

In this paper, we analyze properties of minrank by defining

the notion of minrank-critical edges.

Definition 1. In a given index coding problem with side-

information graph G, an edge e is said to be minrank-critical

if the removal of e from G strictly increases the minrank of

the graph G. An edge e ∈ E is said to be minrank-non-critical

if the removal of e from G does not change the minrank of

the graph G.

In Lemma 1-Lemma 4 and in Theorem 1, we establish some

properties of minrank that would be useful to identify minrank

non-critical edges in a side-information graph.

Lemma 1. Let G be the side-information graph of an SUICP

with K messages. Let G(k) be the side-information graph after

removing all the incoming and outgoing edges associated with

a vertex xk for any xk ∈ V (G). Then, the minrank of G(k) is

at most one greater than the minrank of G.

Lemma 2. Consider the side-information graph G in Fig. 1 in

which V (G) = V (G1) ∪ V (G2) ∪ V (G3) and there are no

edges between V (G1) and V (G3). Then, we have

minrank(G1) + minrank(G3) ≤ minrank(G)

≤ minrank(G1) + minrank(G2) + minrank(G3).

G1 G2

G3
...

...

...

...

Fig. 1

Theorem 1. Let G be a side-information graph and Gk be the

induced subgraph of G with the vertex set V (G) \ {xk} for

any xk ∈ V (G). If xk is not present in any directed cycle in

G and the minrank of Gk is n− 1 (for some positive integer

n), then the minrank of G is n.

Lemma 3. In the side-information graph G, if xk is not present

in any directed cycle in G, then all the incoming and outgoing

edges from xk are minrank-non-critical.

Note 1. A condition for critical graphs was obtained in [8]

for linear index coding (one-shot or asymptotic) and for

asymptotic non-linear index coding. Taking the equal rate

line in capacity region, and the inverse when it touches the

boundary, we can obtain the corresponding optimal broadcast

rate, which in the context of scalar linear codes is minrank. By

using this observation, we can obtain Theorem 1 and Lemma

3 by using the results in [8]. However, Theorem 1 and Lemma

3 are proved in [10] by using simple arguments on the fitting

matrix of a side-information graph.
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Lemma 4. Let C be the set of vertices in any clique of size

t in the graph G. Let GC be the side-information graph after

removing all the incoming and outgoing edges associated with

the t vertices in C, i.e., GC = V (G) \ C. Then, the minrank

of GC is at most one greater than the minrank of G.

Definition 2. Let G be a side-information graph. Let Ci =
{xi1 , xi2 , . . . , xi|Ci|

} and Cj = {xj1 , xj2 , . . . , xj|Cj |
} be two

cliques in G. Let VR = V (G) \ ({xi1 , xi2 , . . . , xi|Ci|
} ∪

{xj1 , xj2 , . . . , xj|Cj |
}). We say that the cliques Ci and Cj are

cycle-free if there exist at least two vertices xk ∈ Ci and

xk′ ∈ Cj such that there is no cycle consisting of vertices

only from a non-trivial subset of {xk, xk′} and any subset of

VR.

The example given below illustrate Definition 2.

Example 1. Consider the side-information graph G given in

Fig. 2. In G, there exist two cliques {x1, x2, x3} and {x4, x5}
and every vertex in the clique {x1, x2, x3} is having an

outgoing edge with every vertex of the clique {x4, x5}. In

the graph G, the vertex x3 in the clique {x1, x2, x3} is not

present in any cycle comprising of vertices only from the set

VR. The vertex x5 in the clique {x4, x5} is not present in any

directed cycle which comprises of vertices only from the set

VR. There also does not exist a directed cycle comprising of

x3 from the clique {x1, x2, x3} along with x5 from the clique

{x4, x5} and vertices only from the set VR. Hence, according

to Definition 2, the clique {x1, x2, x3} and the clique {x4, x5}
are cycle-free.

x1

x3x2

x7 x6

x4

x5x9

x8

x11 x10

Fig. 2: Side-information graph G

Theorem 2 given below identifies the minrank non-critical

edges between cliques.

Theorem 2. Let G be a side-information graph. Let Ci =
{xi1 , xi2 , . . . , xi|Ci|

} and Cj = {xj1 , xj2 . . . , xj|Cj |
} be any

two cliques in G that are cycle-free. Then all the edges

between Ci and Cj (the incoming and outgoing edges from

any vertex in Ci to any vertex in Cj ) are minrank-non-critical.

Note that Definition 2 and Theorem 2 are also applicable if

clique Ci is a single vertex (trivial clique) or Cj is a single

vertex or both Ci and Cj are single vertices.

Example 2. Consider the side-information graph G given in

Fig. 2. According to Definition 2, the clique {x1, x2, x3} and

the clique {x4, x5} are cycle-free. Hence, from Theorem 2, the

six edges from the clique {x1, x2, x3} to the clique {x4, x5}

are minrank-non-critical.

Theorem 3. Let G be a side-information graph with K vertices

{x1, x2, . . . , xK}. Let G̃ be the graph obtained from G by the

following reduction procedure:

• Find a set of cliques {C1, C2, . . . , Ct} in G such that all

the t cliques partition V (G). Note that any vertex is also

a trivial clique of size one. If the cliques Ci and Cj are

cycle-free, delete all the edges between Ci and Cj for

every i, j ∈ [1 : t].

Then, minrank(G) = minrank(G̃).

Theorem 3 reduces the minrank computation problem into

a smaller problem in terms of number of edges (number of

vertices remain the same after reduction). Construction I given

in next section reduces the minrank computation problem into

a smaller problem in terms of both the number of vertices and

the number of edges.

III. A HEURISTIC METHOD TO REDUCE THE MINRANK

COMPUTATION PROBLEM

In the following three steps, we give a heuristic approach to

reduce the given minrank computation problem into another

minrank computation problem which requires lesser computa-

tional complexity. We refer these three steps as Construction

I in the rest of the paper.

Construction I

Step 1: Let {C1, C2, . . . , Ct} be the set of t cliques in G.

These t cliques partition V (G) = {x1, x2, . . . , xK}. Note that

any vertex is also a trivial clique of size one. Let GR be the

graph obtained from G after the following two steps:

Step 2: Let {xi1 , xi2 , . . . , xi|Ci|
} be the vertices in the ith

clique for i ∈ [1 : t]. If | Ci |≥ 2, combine these |Ci| vertices

into one new vertex yi. Else, leave the vertex in Ci as it is.

Step 3: Now the number of vertices is equal to the number of

cliques in G, that is t. If the number of directed edges from

Ci to Cj in G are |Ci| · |Cj |, then introduce a directed edge

from yi to yj for i, j ∈ [1 : t]. Otherwise, there does not exist

a directed edge from yi to yj for i, j ∈ [1 : t].
By using the procedure given in Construction I,

we obtain the graph GR from graph G. We have

minrank(G) ≤ minrank(GR).
In Lemma 5, we give a sufficient condition when the

minrank of the graphs G and GR are equal. The necessary and

sufficient conditions that the side-information graph G need to

satisfy such that the minrank of G is equal to the minrank of

GR needs further investigation.

Lemma 5. Let G be a side-information graph. Let

{C1, C2, . . . , Ct} be a set of t cliques in G. If every pair of

these t cliques are cycle-free, then the minrank of G is equal

to the minrank of GR.

The lemma given below (also available in [9] in different

form) establishes a relation between the index code for GR

and the index code for G.

Lemma 6. Let G be the side-information graph of a single

unicast ICP. Let GR be the graph obtained from G by using
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Construction I. An index code C for the ICP represented by

GR can be used as an index code for the ICP represented by

G after replacing yi with the XOR of vertices present in Ci

for i ∈ [1 : t] (yi and Ci are defined in Construction I).

Construction I along with Lemma 6 gives a simple index

code construction procedure for unicast index coding prob-

lems. The following example illustrates Construction I.

Example 3. Consider the index coding problem represented by

the side-information graph G (|V (G)| = 7) given in Fig. 3.

From Construction I, the reduced side-information graph GR

is given in Fig. 3. In this example, the minrank of the graph G

and also of GR is three. The index code for the index coding

problem represented by GR is {y1+y4, y4+x6, x6+x7} and

the index code for the index coding problem represented by

G is {x1 + x2 + x3
︸ ︷︷ ︸

y1

+ x4 + x5
︸ ︷︷ ︸

y4

, x4 + x5
︸ ︷︷ ︸

y4

+x6, x6 + x7}.

x1

x3x2

x7 x6

x4

x5
y1 y4

x6x7

Fig. 3: Side-information graph G and its reduced side-

information graph GR

Note 2. Construction I starts with G and obtains GR. It can

also be applied on the graph G̃ obtained in Theorem 3. Let

G̃R be the graph obtained by applying Construction I on G̃.

In this case, the reduction of minrank computation problem

by using Theorem 3 and Construction I is summarized below.

G ⇒
︸︷︷︸

Theorem 3

G̃ ⇒
︸︷︷︸

Construction I

G̃R

minrank(G) = minrank(G̃) ≤ minrank(G̃R).

The relation between the minrank of GR and G̃R requires

further investigation.

In Theorem 3 and Construction I, it is assumed that the

cliques in the graph are known. Note that finding a clique

cover of a graph is an NP-hard problem. There exist various

heuristic algorithms to find clique covers. In the Appendix,

we give a heuristic algorithm to find the cliques by using the

binary operations on the adjacency matrix.

IV. CODE CONSTRUCTION FOR GROUPCAST INDEX

CODING PROBLEMS

In this section, we give a method to convert a groupcast

index coding problem into a single unicast index coding

problem. This method, along with the other techniques given in

this paper leads to a construction of index codes for groupcast

index coding problems.

A. Converting a groupcast ICP into a single unicast ICP

Consider a groupcast index coding problem with K

messages {x1, x2, . . . , xK} and a set of m receivers

{R1, R2, . . . , Rm}. Let Wk be the want-set and Kk be the

side-information of receiver Rk for k ∈ [1 : m].

Theorem 4. Consider a groupcast index coding problem

with K messages and m receivers. Let γk be the set of

receivers wanting the message xk for k ∈ [1 : K] and

K̃k =
⋂

∀Rj∈γk
Kj . Consider a single unicast index coding

problem with K messages {x1, x2, . . . , xK} and K receivers

{R̃1, R̃2, . . . , R̃K}. The kth receiver R̃k wanting xk and

having the side-information K̃k. Then, any index code for this

single unicast ICP is also an index code for the groupcast ICP.

B. Steps to construct index code for groupcast index coding

problems

In the following four steps, we give a heuristic approach to

construct an index code for groupcast index coding problems.

We refer the following four steps as Construction II in the

rest of the paper.

Construction II

Step 1. Convert the given groupcast index coding problem

into a single unicast index coding problem by using the

construction in Theorem 4.

Step 2. Find the clique cover by using any clique cover

algorithm (algorithm described in appendix can be used to find

clique cover in polynomial time by using binary operations on

adjacency operation). Reduce the given minrank problem into

a smaller problem by using Construction I.

Step 3. Find the cycle cover in the reduced minrank problem

by using any cycle cover algorithm.

Step 4. Construct the index code by using the clique cover

and cycle cover found in Step 2 and Step 3.

The other method that can be used to construct index codes

for groupcast problems is partition multicast [7]. However,

computing partition multicast is NP-hard and requires higher

field size. The field size required in partition multicast depends

on the number of messages in a partition and the number of

messages known to each receiver in the partition. Whereas,

Construction II can be used to construct index code in poly-

nomial time and this method is independent of field size. Note

that both partition multicast and Construction II are suboptimal

in the length of index code.

Example 4. Some of the groupcast index coding problems

in which the length of the index code given by Construction

II is less than the length obtained from partition multicast

are given in Table I. In Table I, we use K ,m,l∗ and lPM

to denote number of messages, number of receivers, length

of index code by using Construction II and length of index

code by using partition multicast respectively. The minimum

field size required to construct the index code is mentioned

with the length of index code in both the methods. For the

groupcast index coding problem given in S. No. 3 of Table I,
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S.No K m Wk Kk Index Code l∗ lPM

1 12 6 W1 = {x1, x7, x9}, K1 = {x2, x3, x10, x11, x12} C = {x1 + x2 + x3, 6 9

W2 = {x1, x11, x12}, K2 = {x2, x3, x5, x6, x8, x10}. x5 + x6 + x12, (F2) (F2)

W3 = {x2, x12}, K3 = {x1, x3, x5, x6} x5 + x6 + x7,

W4 = {x3, x5, x10}, K4 = {x4, x6, x7, x8, x11}. x3 + x4, x8 + x9,

W5 = {x4, x6},W6 = {x3, x8}. K5 = {x1, x2, x5, x7},K6 = {x4, x9}. x9 + x10 + x11}

2 12 6 W1 = {x1, x7, x9}, K1 = {x2, x3, x10, x11, x12} C = {x1 + x2 + x3, 6 8

W2 = {x1, x11, x12}, K2 = {x2, x3, x5, x6, x8, x10}. x5 + x6 + x12, (F2) (F13)

W3 = {x2, x12}, K3 = {x1, x3, x5, x6} x5 + x6 + x7,

W4 = {x3, x5, x10}, K4 = {x4, x6, x7, x8, x11}. x3 + x4, x8 + x9,

W5 = {x4, x6},W6 = {x3, x8}. K5 = {x1, x2, x5, x7}, x9 + x10 + x11}

K6 = {x4, x5, x6, x9}.

3 10 8 W1 = {x1, x2, x10}, K1 = {x3, x4, x5}, C = {x1 + x5, 6 7

W2 = {x3, x5, x10}, K2 = {x2, x4, x7, x8}, x5 + x7 + x8, (F2) (F11)

W3 = {x4, x9},W4 = {x7}, K3 = {x1, x6, x10},K4 = {x8, x9, x10}, x7 + x8 + x9,

W5 = {x4, x8},W6 = {x6}, K5 = {x6, x7, x9},K6 = {x2, x3, x10}, x2 + x3 + x4,

W7 = {x1, x4},W8 = {x6, x9}. K7 = {x5, x6, x10},K8 = {x1, x2, x3}, x4 + x6, x10}

TABLE I: Some instances of the groupcast index coding problem where the length of the index code given by Construction

II is less than the length obtained from partition multicast.

the minimum field size required in partition multicast is F11,

whereas Construction II gives the index code in F2 and the

length of index code given by Construction II is one less than

that of partition multicast.

V. DISCUSSION

By developing various tools for the most general groupcast

index coding problem, we give a method to construct index

codes for groupcast index coding problems. The construction

technique is independent of field size and hence can be used

to construct index codes over the binary field.
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APPENDIX

A HEURISTIC ALGORITHM TO FIND A CLIQUE

COVER

Birk et al. [1] proposed least difference greedy (LDG)

clique cover algorithm to find the cliques in a side-information

graph. Kwak et al. [6] improved the LDG algorithm by

proposing extended least difference greedy (ELDG) clique

cover algorithm to find the cliques in a side-information graph.

However, the way the cliques are found in both the LDG and

ELDG algorithms depends both on undirected and directed

edges in the side-information graph, whereas directed edges

do not contribute to cliques.

In [10], we give a method for the heuristic search of the

cliques in a side-information graph by using binary operations

on the adjacency matrix A. This algorithm computes the

Hadamard product of A
T with A and this operation gives

all cliques of size two in G. Then the algorithm combines the

rows and columns corresponding to all cliques of size two.

Let the resultant matrix be A1 and let the corresponding side-

information graph whose adjacency matrix A1 be G1. Then,

the algorithm computes the Hadamard product of AT

1 with A1

and this operation gives all cliques of size two in G1. Then,

the algorithm combines the rows and columns corresponding

to all cliques of size two in G1. This procedure is continued till

the Hadamard product gives all zero matrix and the algorithm

outputs the set of all cliques.

LDG and ELDG algorithms use fitting matrix to find

cliques, whereas the algorithm presented in [10] uses the

adjacency matrix to find cliques.
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