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Abstract: Epilepsy, a heterogeneous group of brain-related diseases, has continued to significantly
burden society and families. Epilepsy comorbid with neurodevelopmental disorders (NDDs) is
believed to occur due to multifaceted pathophysiological mechanisms involving disruptions in the
excitation and inhibition (E/I) balance impeding widespread functional neuronal circuitry. Although
the field has received much attention from the scientific community recently, the research has not
yet translated into actionable therapeutics to completely cure epilepsy, particularly those comorbid
with NDDs. In this review, we sought to elucidate the basic causes underlying epilepsy as well
as those contributing to the association of epilepsy with NDDs. Comprehensive emphasis is put
on some key neurodevelopmental genes implicated in epilepsy, such as MeCP2, SYNGAP1, FMR1,
SHANK1-3 and TSC1, along with a few others, and the main electrophysiological and behavioral
deficits are highlighted. For these genes, the progress made in developing appropriate and valid
rodent models to accelerate basic research is also detailed. Further, we discuss the recent development
in the therapeutic management of epilepsy and provide a briefing on the challenges and caveats in
identifying and testing species-specific epilepsy models.

Keywords: autism spectrum disorder; Syngap1; Fmr1; Shank; Mecp2; Tsc1/2; Scna1; biomarkers;
epilepsy; electroencephalography

1. Introduction

Epilepsy, a heterogeneous group of brain-related diseases distinguished by a lasting
susceptibility to generating epileptic seizures, has continued to significantly burden society
and families. Although initially termed a disorder, the International League Against
Epilepsy (ILAE) redefined it as a disease to accentuate its significance and effect on the
general population of patients and clinicians. An epileptic seizure, a hallmark feature
of epilepsy disease, is defined conceptually as: “a transient occurrence of signs and/or
symptoms” that are the clinical manifestation of “abnormal excessive or synchronous
neuronal activity in the brain” [1]. Upon satisfying any of the following criteria, a clinical
diagnosis of epilepsy disease can be given to a patient: (1) the patient encounters at least
two unprovoked or reflex seizures that are separated by a duration of more than 24 h;
or (2) the patient encounters one unprovoked or reflex seizure and shows a likelihood
of suffering another seizure comparable to the general risk of recurrence of having two
unprovoked seizures over the subsequent 10 years (i.e., a probability of more than 60%);
or (3) the patient has an epilepsy syndrome (i.e., complex signs and symptoms unique to
epilepsy conditions and (4) it occurs as an isolated event for a few seconds [2,3].

In 2017, the ILAE published an operational classification of seizures and epilepsies
as an essential aid in diagnosing, treating, and understanding seizures and epilepsies,
including the epilepsy incidence [4]. Classification of epilepsies combines information
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on seizure type, age of onset, etiology, clinical course, probability of remission, electroen-
cephalographic (EEG) findings, radiologic findings, and genetics (Box 1) [4,5]. Generalized
(distributed global brain networks) and partial or focal (localized brain networks) are the
primary epilepsy types, along with idiopathic epilepsies of presumed genetic origin. Since
the same mutations can produce different epilepsy types in other individuals, a single
epilepsy type can be generated by mutations in more than one gene, leading to ambiguity
in correlating current classifications with genetic causes [6].

Box 1. Blood and Cerebrospinal Fluid Biomarkers for Epilepsy Diagnostics.

Molecular biomarkers of seizures or epilepsy that promote fast, affordable detection have received
significant attention in recent years. Purines such as adenosine triphosphate and adenosine are
potent neuromodulators released during excessive neuronal activity that are altered during the
developmental stages in epilepsy and act as a therapeutic target for the treatment of seizures and
epilepsy [7]. Studies have shown that blood purine levels could be correlated with seizure severity
and brain damage in mice, thus helping to identify patients with epilepsy [8].

Glial cell activation and subsequent cytokine production following acute seizures have gained
increasing support as important contributors to epileptogenesis. For example, interleukin-1beta
(IL-1β), one of the most widely studied biomarkers for epileptogenesis, experiences an increased
production following traumatic brain injury, thereby amplifying CNS hyperexcitability and exci-
totoxicity through Ca2+, glutamatergic, and GABAergic mechanisms, potentially culminating in
epilepsy [9]. Markers of neural damage such as the neurofilament-1 (NFL) protein can distinguish
between autoimmune phenomena and other types of epilepsy [10]. Programmed cell death protein
1 (PD-1) is critical in central and peripheral immunosuppressive mechanisms for regulating multiple
signaling pathways that were found to be higher in epilepsy patients [11]. Clusterin (CLU), a glyco-
protein, is involved in many biological processes, including tissue remodeling and differentiation,
as well as cell proliferation and death. Human CSF-CLU levels were decreased in patients with
both drug-resistant epilepsy and drug-responsive epilepsy compared to healthy individuals [12].

Hence, there are biomarkers for diagnostic and prognostic purposes based on mutations that affect
critical players in epilepsy and ASD co-occurrence. Nevertheless, a more robust analysis of neuronal
firing patterns in the brain is suitable for understanding the features of these comorbidities.

Epilepsy comorbid with neurodevelopmental disorders (NDDs) such as autism spec-
trum disorder (ASD) and intellectual disability (ID) has been explained by underlying
deficits in the excitation and inhibition balance in the widespread neuronal circuitry [13].
Epileptiform activity in a background of NDDs, particularly ASD, has been recapitulated
in both mouse models [14] and human patients [15,16]. It is a challenge to tackle the co-
occurrence of these two complex disorders; there have been several failures in clinical trials
to develop actionable therapeutics. In this review, we present the common cause of epilepsy
and the signature markers of epilepsy–ASD co-occurrence while focusing on mouse models
and human patient data. In addition, the available therapeutic options and the challenges
in bridging the gap between preclinical trials and behavioral phenotype amelioration are
elucidated in order to present a holistic perspective on this unique comorbidity.

2. Causes of Epilepsy

Molecular components of neuronal signaling constitute almost all the genes identified
thus far that cause idiopathic epilepsy, but the underlying genes lack clear inheritance
patterns. The mutant alleles’ functional effects provide direct evidence that neuronal
hyperexcitability is one cellular mechanism that underlies seizures [6]. In addition to
these genetic causes of epilepsy, there are acquired epilepsies such as those elicited by
traumatic injuries or other environmental contributors. These are detailed in the following
sections, which primarily address those examples for which an epilepsy–ASD phenotype is
well documented.
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2.1. Genetic Causes of Epilepsy

Epilepsies may result from genetic abnormalities as primary causes or metabolic dis-
orders as secondary causes, of which some also have genetic underpinnings. However,
epilepsies associated with genetic abnormalities show considerable heterogeneity. Mu-
tations in some genes such as sodium voltage-gated channel alpha subunit 1 (SCN1A), can
cause epilepsies or syndromes with epilepsy as the core symptom [17], while other genes
such as tuberous sclerosis complex-1&2 (TSC1 and TSC2) may be associated with gross brain
developmental malformations and epilepsies [18] or neurodevelopmental disorders due
to gene mutations such as Fragile X Syndrome (FMR1) [19], Tubulin β3 Class III, and WD
Repeat Domain 62 (TUBB3 and WDR62) [20,21].

The inheritance pattern of genetic epilepsies has commonly been classified into domi-
nant (autosomal or X-linked) or recessive (autosomal or X-linked) inheritance [22]. How-
ever, epilepsy genes with undefined inheritance patterns, including genes with de novo
mutations, have also been reported that are de novo associated with autosomal dominant
genetic disorders as observed in SCN1A mutations, typically in Dravet syndrome [17] and
in epileptic encephalopathies [23]. Additionally, there is also debate regarding whether
the genetic contribution is largely from numerous common variants with a small effect
discoverable by genome-wide association studies or from rare variants with a significant
effect detectable by parallel sequencing studies [24].

2.1.1. Ion Channel and Receptor-Mediated Causes

Approximately 25% of the genes that are implicated in epilepsy encode ion
channels [24]. The voltage-gated sodium, potassium, and calcium channels have a common
ancestral protein, as is evolutionarily evident from their shared domain characteristics.
Mutations in these channels disrupt neuronal firings, and consequently, their functions,
based on the data from human and mouse studies [3,6].

Voltage-Gated Sodium Ion (NaV) Channels

SCN1A which encodes the NaV1.1 subunit, is expressed predominantly in the GABAer-
gic neurons and enriched at the axon initial segment, thereby regulating the initiation and
propagation of action potentials in neurons [25,26]. SCN1A mutations are some of the most
common epilepsy-related genes, with nearly a hundred mutations reported to date [25,27].
Heterozygous mutation in SCN1B, a β1-ancillary subunit of Na+ channels, has also been
described in families with generalized epilepsy febrile plus [28,29]. The β-subunits of NaV
channels are enriched at axon initial segments and the nodes of Ranvier of both excitatory
and inhibitory neurons, which regulates channel gating and expression; thus, improper
modulation of neuronal functions results in epileptic seizures [30].

Voltage-Gated Potassium Ion (Kv) Channels

KCNA1 encodes the Kv1.1 subunit of the voltage-gated K+ channel (with α and β

subunits), which is widely expressed throughout the central nervous system, especially
in the hippocampus [31]. It is predominantly localized in the axon initial segment, axon
preterminal, and the juxtaparanodal domain adjacent to the nodes of Ranvier, thus con-
tributing to the regulation of membrane potential [32]. Human KCNA1 heterozygous
mutations are majorly associated with episodic ataxia type-1. KCNA2 encodes the KV1.2
shaker-type voltage-gated K+ channel subunit, which is a part of the delayed rectifier class
of K+ channels that is highly expressed in the central nervous system, particularly in the
axon, and helps in the repolarization [33,34]. De novo mutations in KCNA2 have been
identified in cases of early infantile epileptic encephalopathy [35].

GABA Receptors

Genes that regulate synaptic transmission and DNA methylation/chromatin remodel-
ing are often implicated in ASD and epilepsy. Exome sequencing of ASD cohorts identified
several ASD gene candidates with de novo loss-of-function mutations or de novo missense
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variants such as FMR1, TSC1/2, and SYNGAP1 [36], which, when mutated in rodent
models, culminated in epilepsy and ASD [37]. Investigations of DUP15q syndrome, a
specific form of “syndromic autism” marked by the co-occurrence of ASD and epilepsy
phenotypes, have furnished direct genetic evidence of GABAergic gene defects associated
with ASD–epilepsy comorbidity. DUP15q syndrome arises from maternal duplications
on chromosome 15q11.2-q13.1, which leads to the overexpression of several genes, in-
cluding UBE3A (ubiquitin ligase E3A) and a cluster of GABAA receptor subunits, and
phenotypically manifests in recurrent seizures (mainly infantile onset) [38]. The role of
GABA receptors in this disorder has further been strengthened by association studies that
linked single-nucleotide polymorphisms in GABA receptor subunit genes to ASD and the
form of epilepsy [39].

Glutamate Receptors

Evidence from human genetics and mouse model studies has implicated excessive
glutamate in ASD. However, increased levels of glutamate have been detected in both blood
and platelets of subjects affected by ASD [40]. Most importantly, single-gene disorders char-
acterized by ASD–epilepsy comorbidity (such as FMR1-, TSC1/2-, and SHANK3-mediated
Phelan-McDermid syndromes) are caused by mutations in genes that regulate glutamate
receptor-mediated signaling mechanisms.

2.1.2. Metabolic Causes

There is a plethora of metabolic diseases associated with seizure occurrence that have
many mechanisms: neurotoxic ammonia accumulation in urea cycle disorders, brain energy
disbalance in glucose transport disorders, and impaired ATP production in mitochondrial
disorders, to highlight a few [41]. However, in situations where the epilepsy phenotype
co-manifests with ASD, there are distinct patterns. Metabolic disorders can be an inte-
gral direct underlying cause of GABAergic and glutamatergic transmission alterations.
Chronically high levels of specific metabolites such as phenylalanine led to upregulation of
glutamate receptors, with unwanted consequences on the E/I balance [42]. ASD, epilepsy,
and ID comorbidity has also been characterized by amino acid metabolism dysfunctions
such as inactivating mutations in branched-chain ketoacid dehydrogenase kinase (BCKDK)
or amino acid transporter (SlC7A5) [43], altering brain amino acid profiles and causing neu-
robehavioral deficits in both humans and mice [43]. Other metabolic disorders associated
with ASD and epilepsy include vitamin deficiencies (such as cobalamin and cerebral folate
deficiency), mitochondrial diseases, and other disorders of energy metabolism; all of these
conditions may be characterized by seizures and ASD [42,44,45].

2.2. Nongenetic Causes of Epilepsy

Environmental factors are contributors to the pathophysiology of ASD and associated
comorbidities, which lack genetic underpinnings. Brain damage arising during delivery
and through neonatal factors such as severe neonatal jaundice should be avoidable, but
if treated inadequately, can predispose both to epilepsy and autism [46]. A more obvious
environmental link is that of intrauterine infection. For example, maternal rubella during
pregnancy has long been associated with a high risk of intellectual disability, autism, and
epilepsy in the offspring [47]. Exposure to heavy metals such as mercury is associated with
ASD and the occurrence of epilepsy. Although the mechanisms by which heavy metals may
cause neurodevelopmental disorders have not been elucidated, the toxic effects of heavy
metals on mitochondrial function, energy metabolism, and cell survival are known [42].
Several clinical studies have shown that exposure to the anticonvulsant and a mood stabi-
lizer valproic acid (VPA) in utero is associated with an increased risk of ASD and epileptic
seizures [48], which was corroborated by rodent studies of GABAergic dysfunction [49]
and E/I imbalance [50]. Therefore, environmental factors further contribute to increased
excitability in ASD.
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3. Patient Studies of Epilepsy and ASD

A recent estimate by the Centers for Disease Control and Prevention (CDC) Autism
and Developmental Disabilities Monitoring (ADDM) Network in the United States (US)
reported a prevalence of ASD of about 1 in 44 children who typically show two peaks
in epilepsy incidence: one in early development and the other in teenage years [51]. A
2017 meta-analysis revealed a prevalence of 6.3% of epilepsy in patients with ASD, and
with the risk being further compounded by the presence of intellectual disability (ID),
younger populations (<18 years) were found to be more susceptible [51]. The characteristics
of epilepsy in ASD are categorized based on the onset of a seizure, seizure types, EEG
findings, and epilepsy outcome. A study on the developmental evaluation of more than
100 ASD-afflicted individuals showed an incidence of epileptic seizures in a quarter of the
patients, with age at onset varying from 8 to 26 years [52].

3.1. Mechanisms of Epilepsy–ASD Comorbidity

Epilepsy–ASD comorbidity can be explained by a common hypothesis that postulates
that neurodevelopmental deficit of multiple origins (e.g., genetic, metabolic, immune, and
environmental) results in an altered structure and function of excitatory and inhibitory
circuits. A persistent E/I imbalance and hyperexcitability are caused by aberrant neuronal
activity. Neurodevelopmental deficits in inhibitory circuits and the subsequent E/I imbal-
ance are mainly due to defects in GABA-mediated activities and hyperexcitability caused
by the increased glutamatergic signaling and function [13]. During embryonic and early
postnatal brain development, all these deficits may hamper synaptic plasticity and neuronal
connectivity and can manifest in hyperexcitability; cognitive, social, and emotional deficits;
and intellectual disability (ID) [53].

Other than the simplistic view of E/I imbalance as the mechanism behind the co-
occurrence of ASD and epilepsy, many genetic mutations cause ASD, epilepsy, or both.
Structural proteins that anchor synaptic machinery, regulate synaptic vesicle release, and
govern the migration of neurons and organization of network connections are associated
with ASD and epilepsy [14].

3.2. Hallmark EEG Signatures in Epilepsy–ASD Comorbidity

Electrophysiological-related measurements are an essential tool to capture seizures
in human patients with epilepsy and in animal-model-based studies. To precisely locate
brain areas where the seizure originates, electroencephalography recordings from the scalp
or sometimes directly from the brain are used that further help in subsequent resection
during surgical intervention procedures [54]. A characteristic feature of EEG recordings in
individuals with epilepsy besides ictal (neuronal firing during a seizure between seizure
onset and at the end) occurrences include transient electrophysiological disturbances that
arise between ictal episodes more frequently than seizures, such as interictal EEG spikes
and sharp waves (IIS), pathological high-frequency oscillations (HFOs) between 80 and
600 Hz [55], and “micro seizures” and “micro-periodic epileptiform discharges” [56,57].

A noticeable increase in the incidence of epileptiform activity (interictal spikes) in
electroencephalogram (EEG) recordings has been reported in ASD-afflicted human pa-
tients [15,16]. Altered γ-band oscillations have also been described in resting-state EEGs
from ASD patients [58], suggesting dysfunction of parvalbumin (PV)-positive interneu-
rons (which are responsible for these band oscillations). However, the results of in-depth
analyses of the EEG profiles of patients who had ASD and epilepsy compared with only
ASD are still unclear (Table 1). In the following sections, we have highlighted the epilepsy
characteristics for a few of the key genes implicated in different types of ASD by citing data
gleaned from patient cohort studies.
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Table 1. Tabulation of epilepsy characteristics and behavioral and structural deficits in different
NDD-related genes from human patient data (FMR1, SYNGAP1, SHANK, TSC, and MECP2).

Genetic
Mutation Disease Epilepsy Characteristics Behavioral and Structural

Deficits References

MeCP2 Rett syndrome
(typical and atypical)

Complex partial and generalized
tonic-clonic seizures. Stage I RTT has

normal EEG features; Stage II RTT EEG
shows loss of non-REM sleep characteristics
and focal spikes or sharp waves; Stage III
RTT EEG shows bilaterally synchronous

bursts of pseudoperiodic delta activity and
generalized rhythmic spike discharges

characterizing a high seizure burden; Stage
IV RTT EEG shows significant slowing of

the background activity with delta rhythms,
multifocal epileptiform activity in the awake

state, and generalized slow spike-wave
activity in sleep.

Developmental regression and
delays, partial or complete loss of

motor functions, gait abnormalities,
abnormal sleep patterns, hand
stereotypies, reduced cerebral

volume and cortical grey matter
mainly in frontal regions,
acquired microcephaly

[59–61]

SYNGAP1 SYNGAP1-related
NSID

Psychomotor delays precede epilepsy
onset, seizures are mostly generalized:

myoclonic, atonic, and myoclonic-atonic
seizures; atypical absences; eyelid

myoclonia and myoclonic absences. Ictal
EEG shows generalized spike-wave

discharges coinciding with the eyelid
myoclonia, followed by a spike-wave
complex correlating with a myoclonic

(spike) and an atonic (slow-wave)
component. Focal or multifocal

epileptiform discharges are often
observed along with generalized

spike-wave discharges.

Developmental delays, language
impairments, high pain and low
seizure thresholds, sleeping and
eating abnormalities, nonspecific

MRI findings with enlarged
ventricles or subarachnoid spaces,
discrete hippocampal tissue loss;

astrocytosis and cerebellar Purkinje
neuron losses are also seen

[62]

FMR1
Fragile X Mental

retardation
syndrome

Common form of epilepsy in FXS
resembles benign focal epilepsy with
centrotemporal spikes (benign focal

epilepsy of childhood (BFEC), benign
Rolandic epilepsy). Centrotemporal

spikes are the most common epileptiform
feature on EEG; focal spikes or sharp
discharges are seen in some patients;
seizures can be partial complex and

generalized tonic-clonic.

Attention-deficit/hyperactivity
disorders, ASD features, aggression
and self-injurious behaviors, anxiety,
hand stereotypies, language deficits,

regional variation in grey matter
volume, linear increase in white
matter volume, enlarged caudate

nucleus, microcephaly

[63–65]

SHANK1-3 Phelan-McDermid
syndrome

Moderate ASD/ID and refractory
epilepsy of the Lennox-Gastaut type;

electroencephalographic abnormalities
are heterogenous: from slowing or

absence of the dominant occipital rhythm
to focal spike and slow-wave discharges

to generalized spike and slow-wave
discharges; generalised tonic-clonic,

myoclonic, and tonic seizures have been
reported. SHANK3 duplications can
cause episodes of status epilepticus.

Developmental delay, ASD, and
schizophrenia, progressive loss of skills,
attention-deficit/hyperactivity disorder,

dysmorphisms of corpus callosum,
severe white matter alterations

[66,67]

TSC1/2 Tuberous sclerosis

Complex partial, generalized tonic-clonic,
myoclonic, and infantile spasms
characterized by multifocal EEG

abnormalities

ASD/ID features, mental
retardation, attention deficit,

hyperactivity, aggression, anxiety,
sleep disturbances, depression,

altered neuronal network topology,
and excitation/inhibition balance

[68]

3.2.1. MeCP2

Mutations in the gene methyl-CpG-binding protein (MeCP2) cause Rett syndrome,
a rare and severe genetic encephalopathy that affects roughly 1:10,000 females born each
year [69]. Rett syndrome (RTT) is a clinically defined syndrome that includes devel-
opmental regression followed by stabilization, partial or complete loss of purposeful
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hand skills and spoken language, gait abnormalities, epilepsy, and stereotypic hand
movements [70–72]. Although one study reported an improvement of epilepsy in adult
age in RTT-afflicted individuals [73], other studies claimed that epilepsy persists as a major
concern even in adulthood [74,75]. Typically, three distinct seizure patterns are seen in RTT:
(a) no seizures, (b) frequent remissions and relapses, and (c) unremitting and persistent
seizures [76]. Pathogenic mutations in MECP2 (methyl-CpG binding protein 2) may be
accompanied by active epilepsy (the seizures last five years), but the exact relationship of
epilepsy with the mutation type remains unclear [69]. Patients with RTT are classified into
the early seizure (Hanefeld) variant and the congenital (Rolando) variant; these classes
may have cyclin-dependent kinase-like 5 (CDKL5) [70,77] or fork-head box G1 (FOXG1)
mutations [70,78,79], respectively [80–82], suggesting that patients with features of RTT
without MECP2 mutations may have mutations in other genes, including those asso-
ciated with epileptic encephalopathies, intellectual disability (ID), or autism spectrum
disorder [83].

3.2.2. SYNGAP1

SYNGAP1 encodes for a RAS-GTPase activating protein—SYNGAP1—that is ex-
pressed highly in the brain and is involved in the modulation of excitatory synaptic
transmission by N-methyl-D-aspartate (NMDA) receptors [84]. Pathogenic variants of
the protein, primarily truncation mutant products, have been reported in individuals with
intellectual disability (ID) and ASD with or without seizures [85,86]. SYNGAP1 heterozy-
gous mutations disrupt the E/I balance in the developing brain, resulting in accelerated
glutamatergic synapse maturation and altered synaptic plasticity alongside cognitive, emo-
tional, and social deficits [87,88]. A distinct developmental and epileptic encephalopathy
(DEE), termed SYNGAP1-DEE, has been defined as psychomotor delay preceding epilepsy
onset, with seizures appearing at a mean age of two years [62,85,89,90]. Individuals present
mostly generalized seizures, namely: myoclonic, atonic, and myoclonic-atonic seizures;
atypical absences; eyelid myoclonia; and myoclonic absences [86–88].

Electroclinical seizure patterns of 15 (10 females, 5 males) previously unreported
individuals with SYNGAP1 pathogenic variants (de novo missense or truncating mutations)
revealed atypical absences in 8 individuals associated with atonic phenomena, oculoclonic
movements, or rhythmic axial myoclonia, in addition to other seizure patterns [91]. Myoclonic
seizures, eyelid myoclonia with absences (EMA), atonic seizures, myoclonic absences, atonic
seizures, and myoclonic-atonic-tonic seizures were common patterns. Interestingly, three of
the patients presented with the same mutation but exhibited various epilepsy phenotypes
for ID and ASD, reflecting the diversity and unpredictability of epileptic phenomena even
under the umbrella of the same NDD [91]. This results of this study strongly correlated
with the visual cortex hyperexcitability recently reported in mouse models with Syngap1
haploinsufficiency [92]. Another study reported a similar pattern of epileptic seizures in
patients with SYNGAP1 mutations [62].

3.2.3. FMR1

Fragile X syndrome (FXS), the most prevalent X-linked monogenic cause of ID/ASD,
is characterized by homozygous null FMR1 mutations and epileptic seizures [93,94]. Data
from the Fragile X Online Registry With Accessible Research Database, a multisite obser-
vational study initiated in 2012 involving FXS clinics in the Fragile X Clinic and Research
Consortium, reported that out of 1607 participants, 12% of patients with a 77% male preva-
lence had at least one seizure incidence, with this rate being significantly higher in males
than females. Interestingly, individuals with FXS without seizures were less prone than
those displaying seizures to have ASD/ID, sleep apnea, language deficits, and other related
behavioral deficits. Most of the cohort had an onset of seizures of more than 10 years prior
to the study. However, patients who had seizures for more than 3 years suffered from
greater cognitive and language impairment, but not behavioral disruptions, compared
with those with seizures for <3 years [94]. A developmental evaluation of EEG findings in
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FXS patients from 2 to 51 years of age showed centrotemporal spikes as the most common
epileptiform pattern [63].

Seizures can be readily controlled for most individuals with FXS and tend to disappear
in adolescence [95]. A voltage-gated inward current, ImGluR(V), has been proven to be the
cellular basis for the epileptogenic behavior induced by activation of the mGluR5 receptor.
Stimulation of mGluR5 by the agonist dihydroxyphenylglycine in mouse hippocampal
slices caused prolonged epileptiform discharges that lasted for more than 1 h after washout
of the agonist [96], which may explain the mechanisms of neuronal dysfunction in FXS that
might underlie hyperexcitability leading to seizures in this disorder.

3.2.4. SHANK1-3

The SH3 and multiple ankyrin repeat domains (SHANKs) are a family of scaffolding
proteins in excitatory synapses required for synaptic development and function. SHANK3
is the most recognized member of the family, being associated with Phelan-McDermid
syndrome [97]. Molecular defects of SHANK3 underlie several neurodevelopmental entities,
in particular ASD and epilepsy, whereas there is a paucity of data on the disease associations
of SHANK1 and SHANK2. One study reported a novel de novo mosaic p.(Gly126Arg)
SHANK1 variant as the monogenic cause of disease in an 11-year-old male patient who
presented, from the age of 2 years, moderate ASD/ID and refractory epilepsy of the Lennox-
Gastaut type [67], which is an epileptic encephalopathy that is refractory to treatment and
is characterized by three major features: polymorphic seizures, intellectual impairment,
and a characteristic electroencephalogram (EEG) pattern [98]. In silico analyses revealed
that the SHANK1 variant disrupted a conserved region of SHANK1 with high homology to
a recently recognized functionally relevant domain in SHANK3 that is implicated in ligand
binding, including the “non-canonical” binding of RAP1 [67].

The spectrum of seizure semiologies and electroencephalography (EEG) abnormalities
has not been studied in detail in the context of SHANK3 mutations. Microdeletions or
heterozygous loss-of-function mutations at the SHANK3 locus reveal a wide spectrum of
seizure semiologies and frequencies. Electroencephalographic abnormalities are heteroge-
nous: from slowing or absence of the dominant occipital rhythm to focal spike and slow-
wave discharges to generalized spike and slow-wave discharges [99]. One previous study
investigating the seizure types associated with Phelan-McDermid syndrome suggested
that epilepsy associated with this disorder is mild and pharmacologically controllable [100].
However, there are no consistent neuroimaging or migration-related abnormalities that are
likely to predispose SHANK3 patients to seizures [99].

3.2.5. TSC1

The tuberous sclerosis (TSC)/mTORC1 signaling pathway is a major PI3K/PTEN/AKT
downstream pathway that mediates cellular and behavioral effects in the nervous
system [68]. Tuberous sclerosis complex (TSC), a congenital syndrome characterized by the
widespread development of benign tumors in multiple organs, is caused by heterozygous
mutations in one of the tumor-suppressor genes (TSC1 or TSC2). About 80% of affected
patients have de novo mutations, with the remaining 20% having inherited TSC gene muta-
tions. Epilepsy, mental retardation, and ASD/ID comprise the most common neurological
manifestations of TSC mutations [68].

The prevalence of TSC mutations that cause ASD in the population is 1–4%, whereas
features of ASD are present in 25–50% of individuals with TSC mutations [100,101]. A
nonspecific disruption of brain function due to TSC, including tuber location or seizures and
their effects on brain development, may be underlying reasons for this strong association.
In children with TSC mutations with ASD, seizure onset occurs at significantly earlier ages
than in children without ASD [68]. Epilepsy is the most common neurological symptom
in TSC, with 60–90% of such patients developing epilepsy during their lifetime [102].
Furthermore, the most common seizure types reported in patients with TSC mutation are
complex partial, generalized tonic-clonic, myoclonic, and infantile spasms. The epilepsy
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is often quite severe; poor prognostic signs include multiple seizure types, seizure onset
before one year of age, and multifocal EEG abnormalities [68]. The multifocal occurrence
of cortical tubers substantiates the occurrence of the multifocal nature of epileptic foci
in TSC mutations. In addition to electroencephalography, epileptogenic areas can be
detected using magnetic resonance imaging (MRI) and positron emission tomography
(PET) scans [103,104].

Although seizures may play a causal role in developing encephalopathy, it is uncertain
whether epilepsy in TSC mutations is simply a marker in infants prone to developing
encephalopathy. Many factors influence the presentation of both early seizure onset and
encephalopathy, resulting in neurodevelopmental deficits. Mammalian target of rapamycin
(mTOR) overactivation caused by TSC mutations leads to altered cellular morphology
with cytomegalic neurons, dysregulated synaptogenesis, and an imbalance between excita-
tion/inhibition, thus providing a likely neuroanatomical substrate for the early appearance
of refractory seizures and the encephalopathic process [105]. In addition to these molecular
changes, EEG data collected from patients with TSC mutations and without ASD and from
patients with non-syndromic and nonclinical controls revealed an altered neuronal network
topology. These data represented a functional correlate of structural abnormalities that may
play a role in the pathogenesis of neurological deficits [106].

Despite patient-cohort-based studies in human NDDs (Figure 1), a gap remains in the
understanding of the underlying mechanisms in humans due to ethical constraints, necessi-
tating the need to use other mammalian models. In addition to the reported occurrences
of epileptic phenotypes in human neurodevelopmental disorders, mouse models specific
to epilepsy have been generated to dissect the mechanisms of this heterogeneous disease.
Epilepsy features have also been extensively studied in mouse models created to study
neurodevelopmental disorders. These will be discussed in the following sections.
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4. Animal Models of Epilepsy and NDDs

Animal models are crucial to studying any physiological condition or disorder and its
respective pathophysiology due to the ethical restrictions on human studies. Mouse and
rat are among the most preferred species for biomedical research due to their anatomical,
physiological, and genetic similarities to humans [107]. Regarding the animal models
in epilepsy, priority is given to chronic epilepsy models capable of exhibiting epileptic
behaviors such as status epilepticus (SE), a condition with continuous seizures lasting
more than 30 min or two or more seizures without full recovery of consciousness during
this episode [108,109]. A febrile seizure, another type of seizure that can be observed in
the animal models of chronic epilepsy, occurs during fevers accompanied by loss of con-
sciousness (>38.0 ◦C/100.4 ◦F) and is caused by an infection in children between 6 months
and 5 years old. Studying these models provides an insight into the pathophysiological
processes involved in human epilepsy [110–113]. Animal models of epilepsy can be created
by either genetic manipulation or induction at a postnatal stage via chemoconvulsants or
electrical stimulations.

4.1. Nongenetic Models of Epilepsy
4.1.1. Chemical Convulsant

Pilocarpine and kainic acid are two primary compounds whose local or systemic
administration causes limbic seizures and SE. Pilocarpine is a muscarinic acetylcholine
receptor agonist that results in limbic SE as well as cognitive and memory deficits [114–116].
One method of administering pilocarpine in rats is to induce SE with a low mortality rate of
3 mEq/kg dosage intraperitoneally after lithium chloride pretreatment for 24 h [116–119].
Studies using an administration of high (400 mg/kg) and low (100 mg/kg) doses of
pilocarpine showed a sequence of behavioral alterations that eventually led to limbic status
epilepticus in the case of increased pilocarpine administration, while a similar seizure
activity was exhibited with a different threshold for the lower dose [115]. This compound
is thus capable of inducing widespread brain damage, as the epileptiform activity starts
from the hippocampus and then migrates to the amygdala, cortex, and subsequently
both limbic and cortical leads [115,120]. There are two main patterns of seizure onset for
medial temporal lobe epilepsies (MTLE) induced by pilocarpine: the hypersynchronous
(HYP) onset pattern and the low-voltage fast (LVF) pattern [121–123]. Seizures usually
have a beginning (prodrome and aura), middle (ictal), and end (postictal) stage. The
HYP pattern is characterized by periodic focal (pre-ictal) spiking at approximately 2 Hz
and a following high-amplitude, low-frequency ictal activity in the hippocampus and
subiculum [122,124–126]; whereas an initial positive or negative spike followed by low-
amplitude, high-frequency activity is noted as the LVF pattern [122]. Kainic acid (KA)
is an L-glutamate analogue that leads to neuronal depolarization and seizures primarily
in the hippocampus when administered intracerebrally (0.1–3.0 mg per hemisphere) or
systemically (15–30 mg/kg) [127,128]. Later, another protocol that demonstrated a relatively
lower mortality rate was devised that used intraperitoneal administration of lower doses
(5 mg/kg) [129]. Other studies reported that the high expression of GluK2 receptors at the
mossy fiber input synapses and strong recurrent connections rendered the CA3 region of
the hippocampus essential for the induction of KA-mediated seizures [130–133]. Hence,
pilocarpine and kainic acid have been used to generate animal models of spontaneous
recurrent seizures [134], but they result primarily in temporal lobe epilepsy (TLE) [135].

PTZ-induced kindling is another well-accepted model of chronic epilepsy [136] that
is capable of inducing SE. However, the seizure characteristics have been observed to
vary with different postnatal developmental stages [137–139]. Generalized tonic-clonic
seizures in rats can be induced by administration of PTZ (20 mg/kg) every 48 h [140], while
50 mg/kg of PTZ administration every 24 or 48 h achieved kindling in 80% of mice after
15 injections [141]. PTZ kindling is a time-saving method to induce seizures consistently
with comparatively fewer mortality rates [136,142,143]. Electroencephalography (EEG)
recordings of PTZ-induced seizures showed tonic-clonic seizures with high amplitude
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spikes, polyspikes, and sharp spike-wave discharges and a depression/suppression of the
EEG after tonic-clonic convulsions, similar to that seen in epileptic patients [144,145].

Another potent stimulant that causes epileptic seizures is flurothyl, a volatile com-
pound that has been shown to cause myoclonic jerks, forelimb clonus, wild running, and
tonic posturing followed by a recovery period [139]. The volatile property of flurothyl
makes it feasible to administer the compound via inhalation and facilitates the determi-
nation of the seizure threshold of the animals [146]. It has been reported that flurothyl
inhalation results in irreparable neural damage in areas such as the cerebral cortex, hip-
pocampus, amygdala, thalamus, basal ganglia, and mesencephalon [147]. Certain studies
have also shown that when recurrent seizures are induced during the early stages of life
in rodents by exposing them to flurothyl, the seizure susceptibility increases when they
become adults [148,149]. Flurothyl-mediated seizure inductions were also found to be as
clinically effective as electrical inductions with lesser effects on memory functions. In the
case of electrical inductions, the path and the dose of the current and the seizure itself
leave a mark on the brain, as seen in psychological tests and the EEG, whereas the effects
of flurothyl on the brain are those of the seizure alone [150]. Moreover, exposing mice to
flurothyl-induced generalized seizures (lasting for <30 s) for 8 days caused 95% of the mice
to have spontaneous seizures after the treatment period, which lasted around 4 weeks [151].
The model from this study may provide insight into why spontaneous seizures remit
without anticonvulsant treatment.

4.1.2. Electrical Stimulation

Seizures can also be induced in animal models using electrical stimulation. It is
considered to be less harmful than the chemoconvulsants, which have higher mortality
rates and high variability in the frequency and severity of spontaneous seizures [135].
Electroshock-induced seizures (ES), after discharges (AD), and kindling are the different
electrical stimulation techniques employed to induce seizures in the target animal models.
ES involves whole-brain stimulation; for example, 6 Hz in mice and 50–60 Hz in rats,
and it is categorized into minimal ES with minimal clonic behavioral seizures mainly
within the forebrain [135,152] and maximal ES displaying generalized tonic-clonic seizures
occurring in the hindbrain [153]. Unlike ES, AD is a focused approach with induction in
specific brain regions such as the hippocampus, where seizures are observed following
the postictal refractoriness [154]. The animals display complex partial seizures if AD is
applied to limbic structures and myoclonic seizures if applied to the sensorimotor cortex.
When AD is repeatedly induced in a specific brain region such that it enhances the seizure
susceptibility progressively with each AD leading to a permanent epileptic state with
spontaneous seizures, it becomes a kindling model of ES [155–157]. Temporal lobe epilepsy
is modeled based on the electrical kindling of a limbic structure. Hippocampal kindling
with a train of stimuli (≥80) of 60 Hz for 2 s results in spontaneous recurrent seizure (SRS)
events, which are distinguished by EEG discharges and associated motor seizures [158].
However, the process for ES, especially kindling, is expensive and extensive, as it involves
extended periods of handling and stimulation procedures [139].

4.1.3. Traumatic Brain Injury

Mild to moderate brain injuries can lead to complications of seizures; in some cases,
the spontaneous reoccurrence of seizures develops into post-traumatic epilepsy (PTE).
Animal models of PTE are essential for understanding the pathophysiology of the resultant
epileptic seizures, as the condition is prone to pharmacoresistance, increasing the necessity
for effective therapeutic strategies [159,160]. Some of the existing animal models of PTE
include the fluid percussion injury model, controlled cortical impact (CCI) model, impact
acceleration model, canine model of post-traumatic epilepsy, penetrating head trauma
model, and pediatric post-traumatic epilepsy model, which replicate the neuroinflam-
matory, metabolic, and neurodegenerative characteristics of PTE patients [161]. Among
these, the most extensively studied model is the fluid percussion injury model [162,163],
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which was developed by applying pressure pulses of 0.9–2.1 atm (1.5–3.4 atm for rats)
for approximately 20 ms after performing craniotomy over the right parietal cortex while
keeping the dura intact in mice [164,165]. CCI models of rats and mice are also important
models for PTE that are created by causing cortical malformations in the exposed brain
by utilizing pneumatic or electromagnetic impactors at different velocities for varying
severity [166,167]. Ablation of brain injury centered over the left or the right sensorimotor
cortex created asymmetrical responses [168]. Another model involved the administration
of homocysteine (845 mg/kg intraperitoneal) 16–18 h after cobalt implantation, resulting
in refractory cortical-onset SE accompanied by injury, with evidence of widespread neo-
cortical oedema and damage. This was similar to the conditions observed in SE arising
from traumatic brain injury, subarachnoid hemorrhage, and lobar hemorrhage [169,170].
A two-hit model for epilepsy was also developed by utilizing optogenetic kindling in
which a secondary factor of injury and inflammation could be added to induce a spon-
taneous seizure, allowing for the investigation of injury or the role of inflammation in
epileptogenesis without being hindered by electrode insertion, as in the case of electrical
kindling [171,172].

4.2. Genetic Models of Epilepsy

Animal models with their genetics as the root cause for seizures rather than chem-
ical compounds or voltage induction have also been developed to examine the various
aspects governing epilepsy. One of the well-studied genetic models of epilepsy is the
mouse model susceptible to an audiogenic seizure (AS), which is characterized by violent
generalized seizures upon loud or intense auditory stimulation [173]. The inferior colliculus
in the auditory midbrain is the primary structure involved in an AS [174,175]. The DBA/2
inbred strain of Mus musculus is an example that displays convulsions that are fatal on
exposure to even doorbells (~10–120 kHz, 90–120 dB) [176]. A few other strains of rats
that show audiogenic seizures include the Krushinsky–Molodkina (KM) strain of Wistar
descent [173], the University of Arizona (UAZ) strain of Sprague Dawley descent [177],
the genetically epilepsy-prone rat in the United States [178], P77PMC rats [179], Wistar
Albino Glaxo/Rijswijk rats (WAG/Rij) [180], the Wistar Audiogenic Sensitive rat [181], and
the Wistar Audiogenic rat (WAR) [135,182]. The seizures exhibited by these animals are
strain-specific but mainly follow a sequence of actions that initiate with a startle response,
then a momentary quiescence followed by violent running, tonic-clinic seizure, and a
postictal depression phase [135,183,184]. Extended exposure of the animals to AS protocol
is termed audiogenic kindling (AuK), which can sometimes result in the development of
limbic seizures during which new behaviors such as facial and forelimb clonus followed by
elevation and falling are observed [181,185,186]. Even though these animals need a trigger
for the induction of epileptic activity, an advantage of these models is that the stimulus
specificity helps to avoid random seizures and reduce mortality in the animals [135].

Rats with petit mal or absence seizures such as the Genetic Absence Epilepsy Rat
from Strasbourg (GAERS) and WAG/Rij exhibit spontaneous bursts of 7 to 11/s and 200
to 400 µV in amplitude with a duration of 0.5 to 40 s that occur hundreds of times a day.
These seizures persist throughout the rats’ lifetime, and these animals exhibit behavioral
arrest and frequent facial myoclonia [187–189]. The different mouse models of absence
seizure include those exhibiting lethargic, tottering, leaner, and stargazer phenotypes
caused by monogenic mutations in the genes for murine voltage-gated Ca2+ channels [190].
For example, the tottering mutation (Cacna1atg) that occurs in the Cacna1a for the CaV2.1
subunit gives rise to polyspike discharges and behavioral absence seizures [190–192], while
the leaner mutation in the same gene leads to cortical spike-wave discharges in the animals
with cerebellar atrophy [190,191,193].

Apart from these, there are many validated genetic mouse models of epilepsy. Some
mouse models, including Arfgef1, Fmr1, Pcdh19, Syngap1, and Ube3a, do not exhibit sponta-
neous seizures, although when observing the EEGs, with the exclusion of Pcdh19, all the
others show increased susceptibility to induced seizures. Some of these models display
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spontaneous seizures in their early life, such as those with homozygous truncation mu-
tation in the Gabra1 gene, which develops a severe seizure phenotype by postnatal day
19 [194], while some exhibit the spontaneous seizure phenotype in the later phases of their
life (~PND300), as observed in a null or missense mutation in Cdkl5 [195]; certain other mu-
tations cause sudden death, such as a homozygous null mutation of Scn1b gene [196,197].
Below, we discuss some of the genetic mouse models of neurodevelopmental disorders in
which the mutations have been implicated in epileptic seizures as well (Figure 2).
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4.2.1. SCN1A

Allelic variants of sodium voltage-gated channel alpha subunit 1 (SCN1A) are closely
associated with generalized epilepsy that includes febrile seizures and epileptic
encephalopathy [198]. The mutations in SCN1A result in a wide range of epilepsies that
differ in their comorbidities and functional deficits, such as Dravet syndrome (DS), ge-
netic epilepsy with febrile seizures plus (GEFS+), and developmental and epileptic en-
cephalopathies (DEEs), which further comprises myoclonic-atonic epilepsy (MAE) and
epilepsy of infancy with migrating focal seizures (EIMFS) [198,199]. Furthermore, several
studies investigated the autistic behavior displayed by mice with mutated Scn1a, making
them relevant to the studies linking ASD and epileptic seizures [200–202].

The heterozygous knockout (KO) Scn1a+/− mouse model with Dravet syndrome (DS)
showed a reduced level of NaV1.1 to 50% of the normal levels and spontaneous seizures,
hypothermia-induced seizures, and a high mortality rate within one month of birth while
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the homozygous KOs of the same mutation died within 15 days of birth [26,203]. Their
seizures usually lasted for 20 s and included both clonic and tonic-clonic seizures. The
disruption of the NaV1.1 channels resulted in ataxia and related functional deficits that im-
pacted the GABA function as observed in the GABAergic cerebellar Purkinje neurons, [204].
Whole-cell voltage-clamp recordings were made using different Scn1a+/−mice bred to dif-
ferent strains such as 129S6/SvEvTac (129.Scn1a+/−), which show normal survivability, and
C57BL/6J (F1.Scn1a+/−), which show premature lethality. The recordings displayed a de-
crease in the sodium current (INa) density in GABAergic interneurons in P21 F1.Scn1a+/−

and an elevated INa in pyramidal neurons in both strains, suggesting that the difference
in pyramidal neuron excitability due to altered INa density may lead to strain-dependent
seizure severity and survival [205].

EEG recordings from the Scn1a+/− model showed normal periods of low-amplitude
baseline cortical activity, spontaneous electrographic and/or behavioral seizures, and
epileptiform interictal activity [26]. A power spectral analysis of the background EEG
activity from Scn1aA1783V revealed normal background oscillations at the pre-epileptic
stage, a marked reduction in the total power during the onset of severe epilepsy, and
a subsequent smaller reduction later in life. They also noted that a low EEG power at
the stage of severe, frequent convulsive seizures correlated with an increased risk of
premature death [206]. Furthermore, calcium imaging from acute brain slices indicated
a significant dysfunction in the filtering of the perforant path input to the dentate gyrus
(DG) in young adult Scn1a+/− mice as a result of enhanced excitatory input to DG neurons,
which established that the cortico-hippocampal circuit is a key locus of the pathology in
Scn1a+/−mice [207]. However, the mean activity of the cortical PV-INs was increased
in the mouse model, which could have contributed to the ictal/middle phase [208]. In
another study in which current-clamp recordings were obtained from PV-INs of mice with a
heterozygous K1270T (KT) GEFS+ mutation in the Scn1a gene (Scn1aKT), the mice exhibited
heat-induced seizures when exposed to a temperature of ~42 ◦C, which revealed that the
mutation caused an increased threshold and a decreased amplitude for the action potential
without altering the intrinsic membrane properties [209,210]. Studies have shown that the
alteration of gene expression in rodent models of Dravet syndrome can result in seizure
reduction [211]. Moreover, among all the animal models of Scn1a mutation, the Dravet
models have displayed successful face validity, making them suitable for testing novel
therapeutics that are capable of alleviating the seizures along with other setbacks of the
mutation and taking treatments one step closer to success.

4.2.2. Syngap1

Synaptic RAS-GTPase activating protein 1 (SYNGAP1) is a major signaling pro-
tein found mainly in the excitatory synapses that plays a pivotal role in regulating fun-
damental molecular changes in dendritic spine synaptic morphological and functional
modifications [87,88,212]. De novo mutations in SYNGAP1 cause intellectual disability (ID),
ASD, and epilepsy [85,89,90]. The excitation/inhibition (E/I) balance is an essential factor
that modulates cognitive and other functions [213,214]; an imbalance can cause epilepsy, as
observed in neurodevelopmental diseases such as ASD.

Studies have shown that Syngap1+/− mice had a reduced fluorophenyl-induced
seizure threshold and were susceptible to audiogenic seizures [86,215]. Cortical EEG
recordings from Syngap1+/− mice displayed generalized sharp epileptiform discharges and
occasional brief (<1 s) or prolonged (>10 s) seizures with a myoclonic jerk [216]. Continu-
ous 24-hour subdural vEEG/suprascapular EMG recordings from the cortex at temporally
advancing ages identified spontaneous seizures in 50% of Syngap1+/− mice [217]. The
seizures observed were mainly myoclonic at postnatal day (PND) 60, began during non-
rapid eye movement (NREM) at transitions from NREM to waking, and lasted for around
30–40 s with rhythmic spike-wave discharges occurring at ~3–4 Hz [217]. After PND 120,
the mutant mice were found to exhibit multiple seizure phenotypes, including myoclonic
(NREM), generalized tonic-clonic (NREM), and electrographic seizures (wake); these were



Int. J. Mol. Sci. 2022, 23, 10807 15 of 33

consistent with the clinal reports [62,214,218]. Interictal spikes (IISs) were observed during
both sleep and waking in the Syngap1+/− mice, with an increase in the frequency during
NREM of the mice in the P120 age group [217]. However, it has been shown that the re-
expression of Syngap1 or pharmacological administration in Syngap1+/− adult mice showed
improvement in the seizure threshold [86,219]. Genetic restoration of the Syngap1, and
subsequently the protein level, restored the threshold level to that of healthy mice [216,220],
implying a potential therapeutic target.

4.2.3. Fmr1

Fragile X syndrome (FXS), which is the most common cause of inherited mental
retardation, arises due to mutations occurring in the FMR1. Several mouse models have
been generated to study this condition, which exhibits phenotypes analogous to the clinical
and pathological symptoms observed in human patients [221]. Unlike fragile X patients
who exhibit spontaneous seizures [222], fragile X knockout mice do not exhibit spontaneous
seizures, but only when they are exposed to intense stimulations such as auditory [223,224].
The KO models were constructed by disrupting exon 5 of the Fmr1 gene using a neomycin
gene, and they showed an increased susceptibility to audiogenic seizures at all the ages
tested compared to their WT littermates [224–226]. These studies showed that exposing
mice at PNDs 17, 22, 35, and 45 to an electric doorbell at 120 dB for 60 s induced a
sequential seizure response in them that consisted of an early wild running phase followed
by generalized myoclonus and tonic flexion and extension, and sometimes followed by
respiratory arrest.

EEG studies confirmed the hypersensitivity observed in Fmr1 KO mice, which dis-
played an increased evoked EEG gamma power (30–80 Hz). It was normalized in the
treatment of the mice with racemic baclofen, a GABAB agonist that improved the working
memory of Fmr1 mice [227], suggesting a potential therapeutic target. Another EEG study
indicated a sleep-enhanced interictal epileptiform discharge that appeared as “rolandic”
spikes in the centrotemporal regions during the non-REM sleep [63]. Paired whole-cell
recordings from pyramidal neurons in Fmr1 KO mice revealed reductions in synchro-
nized synaptic inhibition and coordinated spike synchrony in response to the group I
metabotropic glutamate receptor (mGluRs) agonist 3,5-dihydroxyphenylalanine (DHPG),
implying a weakened somatostatin-expressing, low-threshold-spiking (LTS) interneuron
network in layer II/III of the somatosensory cortex, resulting in altered activity of the
cortical network that was in line with the FXS phenotype [228].

Spontaneous neuronal ensemble activity recorded during sleep in the somatosensory
cortex of Fmr1−/− mice indicated an abnormally high synchrony of neocortical network
activity and a threefold increase in the neuronal firing rates, showing that the cortical
networks in FXS are hyperexcitable in a brain-state-dependent manner, which explains
the several dysfunctions associated with FXS, including intellect, sleep, and sensory in-
tegration [229]. The phenotypes of this genetic error are similar for humans and animal
models [226,230,231], suggesting conserved sensory processing circuits [232] and allowing
us to further explore the underlying mechanisms of FXS and the accompanying seizures.

4.2.4. Shank3

Mutations in Shank3 have been implicated in the functional integrity of dendritic
spines, and therefore SHANK3 haploinsufficiency can cause epilepsy risk due to abnormali-
ties in the glutamatergic synaptic structure and function [233]. However, most of the Shank3
knockdown mouse models do not display seizure phenotypes [234,235]. The Shank3b−/−

mice do not display any spontaneous seizures, including PTZ-induced seizures, but they
may exhibit seizures on rare occasions such as during handling in routine husbandry pro-
cedures [234,236]. Another mouse model, Shank3Q321R/Q321R, lacked spontaneous seizures
but had a decreased δ-band concomitant with an increased α-band in EEG in the frontal
and parietal lobe, respectively, and reduced neuronal excitability in the hippocampal CA1
neurons [237]. This was further confirmed by another study in which hyperexcitability
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discharges; electrographic seizures in CA1, DG, and the frontal cortex; and an increased
frequency of epileptiform spikes in the DG were observed [238]. These studies validated
the fact that epileptic seizures can be due to the synaptic E/I imbalance observed [238–240].

Chemoconvulsants, electrical stimulations, and genetic manipulations are some of the
key methods used to develop animal models of epilepsy. Each method has its advantages
and disadvantages, making it difficult for scientists to exactly map intricate details of
different types of epileptic seizures seen in humans. However, the existing techniques do
let researchers explore specific features of each epileptic condition and draw conclusions
on the possible underlying causes, which may help to develop new treatment strategies. In
addition to mouse models, studies have also been done to explore epilepsy characteristics in
induced pluripotent stem cells from human patients, as outlined in the following sections.

5. Current Therapeutic Management and Antiepileptic Drugs in Clinical Trials

The currently available antiepileptic drugs (AEDs) modulate the voltage-gated chan-
nels, GABAergic and glutamatergic transmission, and newly emerged players such as car-
bonic anhydrase and synaptic vesicle proteins [241–243]. However, these druggable targets
provide symptomatic relief (suppression of seizures) without employing preventative and
curative effects. Additionally, 35% of the patients did not respond to the monotherapies or
polytherapy of available AEDs [244]. Developmental epilepsies constitute the major portion
of pharmacoresistant seizures. A detailed understanding of initiation- and progression-
phase biomarkers and targeting of the underlying pathogenesis will provide a critical space
to unravel the novel targets and maintenance of neuronal homeostasis [245,246]. In line
with this, several novel targets and processes have been shown to elicit beneficial effects on
the excitation/inhibition balance in animal models [243]. Clinical studies on the repurpos-
ing of anticancerous, antimicrobial and anti-inflammatory drugs for antiepileptic potential
highlighted the importance of the involvement of novel targets in overlapping pathways,
which contribute to the severity, frequency, and intensity of epileptic seizures [247,248].
However, the mechanisms for major drugs in clinical trials still range from the old treatment
strategies such as the modulation of channels to inhibition of GABAergic transmission
(Tables 2 and 3). The new generation of antiepileptic strategies should involve timely
intervention with double-edged efficacy in targeting the symptomatic as well as antiepilep-
togenic and/or disease-modification (from pathological to physiological state) targets. This
reflects the need for stronger contenders to impede the underlying molecular pathways of
epilepsy and for an improvement in current modeling approaches that can closely mimic
the pathology, etiology, and unpredictability of human seizures. In the next two sections,
we review the species-specific differences as a major limitation of rodent models and recent
advancements in modeling approaches to tackle these challenges, respectively.

Table 2. Pharmacological treatments undergoing clinical trials. This table lists the relevant clinical
details of the pharmacological treatments inclusive of monotherapy and polytherapy along with their
mechanism of action/actions, type of epilepsy, current clinical phase, and identifiers available on the
website https://clinicaltrials.gov (accessed on: 15 July 2022).

S.No. Intervention Mechanism of Action Type of Epilepsy Clinical Phase Clinicaltrials.gov

1 XEN1101 Potassium channel
modulator Focal onset 2 NCT03796962

2 Clobazam Potentiation of
GABAergic transmission Refractory focal 4 NCT02726919

3 EQU-001 NA All 2 NCT05063877

4 Cenobamate
Positive allosteric

modulation of GABAA
ion channels

Primary generalized
tonic-clonic 3 NCT03678753

5 CX-998 T-type calcium channels
Idiopathic generalized

epilepsy with
absence seizures

2 NCT03406702

https://clinicaltrials.gov
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Table 2. Cont.

S.No. Intervention Mechanism of Action Type of Epilepsy Clinical Phase Clinicaltrials.gov

6 Brivaracetam Synaptic vesicle 2A

Childhood absence 3 NCT05109234

Rolandic benign

4 NCT00181116

7 YKP3089

Positive modulation of
GABAA receptors and
voltage-gated sodium

channels

Photosensitive 2 NCT00616148

8 Ganaxolone Allosteric to
GABAA receptor

Photosensitive,
drug-resistant, partial onset 2 NCT01963208

9 Prednisolone Immunotherapy Cryptogenic 4 NCT02695797

10 Topiramate Inhibits carbonic
anhydrase enzyme Childhood absence 2 NCT00210574

11 BGG492 Antagonism of AMPAR
Photosensitive 2 NCT00784212

Partial 2 NCT00887861

12 BM430C Inhibition of voltage gated
sodium channels All 3 NCT00395694

13 Lu AG06466
Inhibits monoacylglycerol

lipase (MGLL)-serine
hydrolase

Focal 1 NCT05081518

14 ABI-009 (Nab-rapamycin) Inhibition of mTOR Surgically refractory 1 NCT03646240

15 Vorinostat Inhibition of histone
deacetylases (HDAC) Drug-resistant 2 NCT03894826

16 ACT-709478 Inhibition of
T-type Ca2+ channels Photosensitive 2 NCT03239691

17 UCB0942 Antagonism of
GBAA receptors Drug-resistant focal 2 NCT02495844

18 PF-06372865 Agonism of
GBAA receptors Photosensitive 2 NCT02564029

19 VX-765 Inhibition of caspase 1 Drug-resistant partial
epilepsy 2 NCT01048255

20 TAVT-18 (sirolimus) Inhibition of mTOR Pediatric drug-resistant 1/2 NCT04595513

21 MGCND00EP1 Modulation of
5HT1a receptors Adolescent drug-resistant 2 NCT04406948

22 RWJ-333369 Neuromodulator Complex partial, focal 3 NCT00433667

23 Soticlestat
Inhibition of cholesterol

24-hydroxylase

Dravet syndrome (DS)
Lennox-Gastaut
syndrome (LGS)

2 NCT03635073

3 NCT04940624

24 OPC-214870 Not known Drug-resistant 1 NCT04241965

25 TAK-935 Conversion of
cholesterol to 24HC Epileptic encephalopathies 1/2 NCT03166215

26 NBI-921352 Inhibition of Nav 1.6
SCN8A developmental and

epileptic encephalopathy
syndrome

2 NCT04873869

27 NBI-827104 Triple T-type calcium
channel blocker Epileptic encephalopathy 2 NCT04625101

28 LP352 5-HT2c receptor
super agonist Epileptic encephalopathy 1/2 NCT05364021

29 GWP42003-P Cannabidiol oral solution Dravet syndrome 3 NCT02091375

30 Ropinirole Agonist of dopamine Myoclonic 2 NCT00639119

31 Rufinamide
Stabilizes inactivation state

of voltage-gated
sodium channel

Drug-resistant 3 NCT00334958
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Table 2. Cont.

S.No. Intervention Mechanism of Action Type of Epilepsy Clinical Phase Clinicaltrials.gov

32 Allopregnanolone injection Positively modulates
GABAA receptors Post-traumatic 2 NCT01673828

33 Ezogabine
Positive allosteric

modulation of
(K(v) 7.2–7.5) channels

KCNQ2 developmental and
epileptic encephalopathy 3 NCT04639310

34 Aspirin Inhibition of mTOR Tuberous sclerosis complex 2 NCT03356769

35 Phenylbutyrate Removal of ammonia STXBP1 encephalopathy 1 NCT04937062

36 STK-001 Antisense oligonucleotide
to SCN1A mRNA Dravet syndrome 2 NCT04740476

37 Triheptanoin Medium-chain triglyceride Rett syndrome 2 NCT02696044

38 Carisbamate
Moderate inhibition of
high-voltage-activated

calcium channels
Lennox-Gastaut syndrome 1

NCT04062981

NCT03731715

39 CVL-865 GABAA modulation Focal onset drug-resistant 2 NCT04244175

40 Cysteamine bitartrate
(RP103)

Lysosomal metabolism
of cysteine

Mitochondrial diseases,
including Leigh syndrome 2 NCT02023866

41 Telampanel Antagonism of
AMPA receptors Drug-resistant 2 NCT00057460

Table 3. Nonpharmacological treatments undergoing clinical trials. This table lists the relevant clinical
details of the nonpharmacological treatments inclusive of gene therapies along with the potential
mechanism of action/actions, type of epilepsy, current clinical phase, and identifiers available on the
website https://clinicaltrials.gov (accessed on 15 July 2022).

S.No. Intervention Mechanism of Action Type of Epilepsy Clinical Phase Clinicaltrials.gov

1 Pulvinar deep stimulation Stimulation of pulvinar
thalamic nucleus Drug-resistant NA NCT04692701

2 Trans auricular vagus nerve
stimulation

Experience-dependent
neural plasticity Pediatric NA NCT02004340

3 MRI-guided laser interstitial
thermal therapy (MgLiTT)

Sinovation Laser
Ablation System Drug-resistant NA NCT04569071

4 Green light exposure
Engagement of
thalamocortical

inhibitory circuits
Drug-resistant NA NCT03857074

5 Fecal microbiota suspension Modulation of
gut–brain axis Drug-resistant 3 NCT02889627

6 Bilateral thalamic central lateral
nuclei stimulation

Restoration of
conscious awareness Temporal lobe NA NCT04897776

7 Cerebellar continuous θ burst
stimulation (cTBS)

Inhibition of cortical and
motor evoked potentials Drug-resistant NA NCT05042726

8 Transcranial deep
brain stimulation

Modulation of
cortical excitability Drug-resistant NA NCT04325360

9 Stereotactic laser ablation Necrosis of epileptic foci Temporal lobe 3 NCT02844465

10 Vagus nerve stimulation Experience-dependent
neural plasticity Drug-resistant 1 NCT02378792

11 Lentiviral engineered
potassium (K+) channel (EKC)

Gene therapy for
hyperpolarization Drug-resistant 0 NCT04601974

12 Autologous bone marrow stem
cell transplantation Tissue repair Temporal lobe 1 NCT00916266

https://clinicaltrials.gov
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Table 3. Cont.

S.No. Intervention Mechanism of Action Type of Epilepsy Clinical Phase Clinicaltrials.gov

13 Transplantation of adipose-derived
regenerative cells (ADRCs) Tissue repair Autoimmune

drug-resistant 1 NCT03676569

14 Modified Atkins diet Metabolism Drug-resistant NA NCT01311440

15 Physical exercise program Life-style improvement Pediatric drug-resistant NA NCT05323682

16 Focused ultrasound Modulate neuronal firing Drug-resistant NA NCT03868293

17 External trigeminal
nerve stimulation

Alternative to
neurostimulation Drug-resistant 2 NCT01159431

18 Vitamin D supplementation Metabolic stimulation Drug-resistant 3 NCT03475225

19 Betashot (a medium chain
triglyceride- based (MCT) food) Metabolic stimulation All NA NCT02825745

20 Music periodicity Musical stimulation
Benign childhood with
centrotemporal spikes
(BCECTS) or Rolandic

NA NCT01515436

22 Polyunsaturated
fatty acids Anti-inflammation Drug-resistant 3 NCT00299533

5.1. Species-Specific Differences between Rodent and Human-Derived Models of Epilepsy

Pharmacologically induced and genetic epileptic models of rodents display promi-
nent face and construct validities [249], respectively. However, 90% of the neurological
drugs with a promising preclinical potential have failed in clinical trials [250,251]. These
large discrepancies could be attributed to the lack of studies on species-specific differ-
ences at the level of neural and glial cell responses to disease conditions. Recently, it
was shown that apart from being small and anatomically less diverse and complex, astro-
cytes of rodents displayed more resilience toward oxidative stress compared to hominid
astrocytes [252,253]. Unlike those of humans, mouse astrocytes display a neural repair
program in response to hypoxia and no response toward glutamate agonists, whereas
human astrocytes activate antigen presentation pathways in response to cytokine-induced
inflammatory conditions, which contrasts with observations in mouse astrocytes. Addition-
ally, major energy metabolic differences were found in the resting state of the mitochondrial
respiration [253,254]. Therefore, more informed approaches are required for preclinical test-
ing of antiseizure drugs in epilepsies related to neurodegeneration and refractory conditions
as the underlying pathogenesis of seizures. These approaches must consider the cellular
and molecular levels of altered cytokines, mitochondrial metabolism, hypoxic conditions,
and functional synaptic integration, which differ in rodents and humans. Additionally,
seizure generation and propagation might show considerable differences between humans
and rodents due to the higher-velocity propulsion of Ca2+ waves in human astrocytes [252].

Although the hierarchical organization and diversity of cell types are “superficially”
similar in hexalaminar cortical structures of humans and mice, ultrastructural details
and high-throughput sequencing studies revealed surprising (and alarming?) differences
between neurotransmitter receptors and ion channels, which constitute the major target
sites of the AEDs. Notably, hominid supragranular pyramidal neurons ubiquitously
expressed h-channels and had extensive dendritic arborization compared to mouse neurons,
which contributed to the differences in basal electrophysiological properties and responses
to high-frequency synaptic integration [255–257].

GWAS and transcriptomics signatures have revealed a significant correlation between
human and mouse cortical microglia, but the variations were considerably enriched in host
defense, cell cycle, ageing, and immune regulatory genes, as well as in genes implicated in
neurodegenerative and neuro-psychiatric diseases [258,259]. These species-specific differ-
ences could contribute differentially to the tripartite crosstalk among neurons–astrocytes–
microglia (Figure 3) that dominates the initial responses under status-epilepticus and during
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the process of epileptogenesis that, in turn, affect the responses of AEDs and recapitulation
of human seizures during epileptic studies in rodents.

Figure 3

Figure 3. Species-specific differences in the intrinsic properties of astrocytes, neurons, and microglia.
Apart from being larger in diameter and exhibiting extensive primary processes, hominid astrocytes
display more resistance to oxidative stress, increased velocity of calcium propulsion, absence of
enrichment in hypoxia-induced transcriptomic signatures of neural repair, inflammation-induced
expression of antigen presentation genes, and resting state metabolism of mitochondria. Hominid
features of morphologically complex, diverse, and larger neurons exhibit differential basal membrane
properties, fewer channels, and lower ionic conductance per volume compared to rodent counterparts.
Human microglia express some intrinsic gene signatures (not present in rodent microglia) such as
the presence of CARD8, an inflammasome component; and granulysin, which is present in cytokine
granules. Additionally, the ageing-related genes are oppositely misregulated in a species-dependent
manner. Created with BioRender.com.

5.2. Informed Modeling Approaches to Tackle the Species-Specific Challenges in the Development
and Testing of Epileptic Models

To tackle the challenge of species-specific biases in pro- and antiepileptic mechanisms,
the inclusion of human-derived organoids, hPSCs, and humanized-mouse systems can be
more informed approaches on the translational fronts of mimicking the hominid features of
epilepsy disease. Each model system presents a unique set of advantages and disadvantages
and can be used to address a specific set of questions.
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5.2.1. Human Pluripotent Stem Cells (hPSCs)

The hominid cellular- and molecular-level effects of more than 12 epileptic mutations
have been modeled successfully using 2D-differentiated neural cells and glial cells from
embryonic or somatic precursors [260]. Different mutations in a single gene can contribute
differently to the functional consequences; therefore, patient-to-patient variability in terms
of seizure types and propagation exists. The 2D model system can recapitulate the differ-
ences in mutation-specific cellular dysfunctions and guide tailor-made pharmacological
or genetic treatment approaches [261]. However, the absence of extracellular neuronal
and non-neuronal signaling milieu, intra-class cellular heterogeneities, and structural and
functional circuitries impose limitations on the usage of this model for refractory epilepsies
characterized by recurrent and spontaneous seizures as behavioral readouts [262].

5.2.2. Brain Organoids

Brain organoids are 3D reconstructions of IPSCs with hominid replicas of the sub-
ventricular zone, exclusive subclasses of inhibitory neurons and outer radial glial cells
that are absent in rodent models [263]. Developmental epilepsies such as Angelman
syndrome [264] and Rett syndrome [265] have been successfully modeled in cerebral
organoids with epileptiform readouts at the level of single-cell hyperexcitability and net-
work oscillations. High-throughput omics studies, optogenetic stimulations, and other
techniques such as calcium signaling tracers and multielectrode array (MEA) chips for
network-level activity have been successfully tested in organoids, rendering them as a
genetically and technically amenable resource for epileptic studies [265–267]. Despite
the high level of structural and functional relevance to the human brain, organoids are
limited by the absence of vasculature, immune-extravasation, a knitted network, and a
distribution of glial cells [268] and may lack vascular and immune signatures of epileptic
conditions. However, studies on offering bioengineering solutions in the usage of microflu-
idics with endothelial-cell lining [269], the presence of astrocyte–microglial signatures in
cerebral organoids [270], the incorporation of a functional vasculature-like system [271],
and the structural correlation of electrophysiological properties such as burst-firing and
fast-spiking of early developing neurons [272] have explored the feasibility of organoids in
developmental epilepsies.

5.2.3. Humanized Rodent Model

Genomic engineering and transplantation approaches can overcome the limitations
imposed by the above-mentioned in vitro model systems. The grafting of disease-forming
neuronal precursors (patient-derived/engineered) into the desired location of the brain of ro-
dents allows access to the necessary neuronal inputs and interorgan communication [273,274].
A path-breaking study on the engraftment of human brain organoids was illustrated in
mice by integrating axonal architecture, vascularization, neural differentiation, gliogen-
esis, and glial cell distribution [275]; hPSC-derived neurons of cortical origin also have
been extensively transplanted into rodents’ brains [276,277]. Notably, engraftment of hP-
SCs derived from maturing GABAergic neurons ameliorated the epileptic activity in a
pilocarpine-induced kindling model of mice [278]. These studies open avenues to the “cell
therapy or (organoid-therapy?)” approaches to targeting refractory seizures and provide an
amenable environment for testing of antiseizure drugs. Relevant questions regarding the
“maturation of organoids in the grafted environment”, “dosage regulation”, and “critical
window of grafting” remain unanswered and should be dealt with in the future.

6. Conclusions

Epilepsy, ID, and ASD are prevalent neurodevelopmental disorders that have proven
to be complicated and challenging in several aspects. Since they often present with a highly
variable and overlapping spectrum of symptoms and syndromes, defining a distinct set of
diagnostic criteria has been difficult for clinicians and scientists. However, studies in mouse
models of epilepsy, ID, and ASD have proved to be immensely helpful in the construction
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of the pathophysiology of these disorders through a bottom-top approach. These studies
have demonstrated that epilepsy and ID/ASD with diverse causal origins have intersecting
etiologies that might be responsible for the observed shared phenotypes. Opposing cellular
phenotypes observed in these disorders highlight the importance and need for balanced
and timely developmental processes at all systemic levels.

Further studies employed these aspects for the development of genetic and pharmaco-
logical therapeutic strategies (creation of mouse models with counteracting mutations to
re-establish balance and the testing of drugs targeting common neurological pathways).
However, only a fraction has been uncovered in the understanding of these disorders,
and further studies are required for improved diagnosis, treatment, and prognosis. As
highlighted in this review, there are several areas that remain unexplored and could play
essential roles in the pathophysiology of epilepsy and ID/ASD. Additionally, the role of
non-neuronal cells such as astrocytes, oligodendrocytes, and microglia have also not been
studied in detail concerning mutations in epilepsy and ID/ASD. The augmented critical
period is another characteristic modality that is altered in many forms of epilepsy and
ID/ASD. A study of the precise mechanisms for a better understanding of this phase of
development could be useful for the rescue during the later period of life. Because the
diagnosis is delayed during the early stages of development, reversing neuronal connec-
tions becomes difficult, which is one of the significant issues lingering in the minds of
neuroscientists. Preclinical studies in this regard can result in some useful clues for the
translational success of the testing of small molecules for efficacy in epilepsy and ID/ASD.
However, many drugs still fail in clinical trials even after ameliorating disease pathology in
the preclinical mouse models. Poor experimental design with an inadequate sample size
could be one of the reasons for failure at the later stages.

Another critical point is the variability in the intrinsic metabolic and biochemical
pathways amongst different animal strains and species that lead to changes in drug pharma-
cokinetics and pharmacodynamics across systems. These factors influence how a potential
therapeutic candidate molecule can be metabolized by the animal model and show how it
is different for human beings. One viable alternative to overcome the above issues is to
use patient-derived iPSCs, which have been considered a model in the last decade or so.
However, to acquire an all-around understanding of epilepsy and ID/ASD, it is crucial
to conduct studies in vivo; i.e., using animal models in combination with patient-derived
iPSCs. Such combinatorial studies can fill the existing gap in our knowledge of ID/ASD
and show the way toward future therapeutic strategies.
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