Faure, G and Joseph, AP and Craveur, P and Narwani, TJ and Srinivasan, N and Gelly, J-C and Rebehmed, J and De Brevern, AG (2019) IPBAvizu: A PyMOL plugin for an efficient 3D protein structure superimposition approach. In: Source Code for Biology and Medicine, 14 (1).
|
PDF
sou_cod_bio_med_14-1_2019.pdf - Published Version Download (986kB) | Preview |
Abstract
Background: Protein 3D structure is the support of its function. Comparison of 3D protein structures provides insight on their evolution and their functional specificities and can be done efficiently via protein structure superimposition analysis. Multiple approaches have been developed to perform such task and are often based on structural superimposition deduced from sequence alignment, which does not take into account structural features. Our methodology is based on the use of a Structural Alphabet (SA), i.e. a library of 3D local protein prototypes able to approximate protein backbone. The interest of a SA is to translate into 1D sequences into the 3D structures. Results: We used Protein blocks (PB), a widely used SA consisting of 16 prototypes, each representing a conformation of the pentapeptide skeleton defined in terms of dihedral angles. Proteins are described using PB from which we have previously developed a sequence alignment procedure based on dynamic programming with a dedicated PB Substitution Matrix. We improved the procedure with a specific two-step search: (i) very similar regions are selected using very high weights and aligned, and (ii) the alignment is completed (if possible) with less stringent parameters. Our approach, iPBA, has shown to perform better than other available tools in benchmark tests. To facilitate the usage of iPBA, we designed and implemented iPBAvizu, a plugin for PyMOL that allows users to run iPBA in an easy way and analyse protein superimpositions. Conclusions: iPBAvizu is an implementation of iPBA within the well-known and widely used PyMOL software. iPBAvizu enables to generate iPBA alignments, create and interactively explore structural superimposition, and assess the quality of the protein alignments.
Item Type: | Journal Article |
---|---|
Publication: | Source Code for Biology and Medicine |
Publisher: | BioMed Central Ltd. |
Additional Information: | The copyright for this article belongs to the Authors. |
Keywords: | Protein superimposition; Structural alignment; Structural alphabet; Structural bioinformatics; Visualisation |
Department/Centre: | Division of Biological Sciences > Molecular Biophysics Unit |
Date Deposited: | 11 Oct 2022 11:30 |
Last Modified: | 11 Oct 2022 11:30 |
URI: | https://eprints.iisc.ac.in/id/eprint/77419 |
Actions (login required)
View Item |