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Dynamics of quasiperiodically driven spin systems

Sayak Ray ,1 Subhasis Sinha ,2 and Diptiman Sen 3

1Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
2Indian Institute of Science Education and Research-Kolkata, Mohanpur, Nadia 741246, India

3Centre for High Energy Physics, Indian Institute of Science, Bengaluru 560012, India

(Received 26 July 2019; revised manuscript received 29 August 2019; published 21 November 2019)

We study the stroboscopic dynamics of a spin-S object subjected to δ-function kicks in the transverse magnetic
field which is generated following the Fibonacci sequence. The corresponding classical Hamiltonian map is
constructed in the large spin limit, S → ∞. On evolving such a map for large kicking strength and time period,
the phase space appears to be chaotic; interestingly, however, the geodesic distance increases linearly with
the stroboscopic time implying that the Lyapunov exponent is zero. We derive the Sutherland invariant for
the underlying SO(3) matrix governing the dynamics of classical spin variables and study the orbits for weak
kicking strength. For the quantum dynamics, we observe that although the phase coherence of a state is retained
throughout the time evolution, the fluctuations in the mean values of the spin operators exhibit fractality which
is also present in the Floquet eigenstates. Interestingly, the presence of an interaction with another spin results in
an ergodic dynamics leading to infinite temperature thermalization.
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I. INTRODUCTION

In recent years quasiperiodic systems have attracted a lot of
interest in various contexts ranging from quasicrystals [1–5] to
localization-delocalization transitions [6–10], multifractality
[11–14], topological phases [15], and so on. The creation of
a quasiperiodic potential in one dimension using bichromatic
optical lattices [6] has led to the realization of the well-known
Aubry-André model [16], which has been studied extensively
both theoretically [7,8] and experimentally [9,10,17], in the
context of observing localization phenomena, particularly
many-body localization in interacting systems [18,19]. In
the presence of a periodic drive such many-body localized
states exhibit drive-induced delocalization and thermalization
of isolated interacting quantum systems [20–22], and its
connection with the underlying chaotic dynamics and ran-
dom matrix theory has been explored [23]. As an extension,
several interesting questions can be addressed related to the
dynamical behavior of quantum systems under a quasiperiodic
drive. One such issue is the emergence of steady states in
quasiperiodically driven interacting quantum systems [24,25]
and most interestingly, its connection with spectral properties
and random matrix theory which is related to ergodicity.

One way to generate a quasiperiodic drive is by perturb-
ing the system under consideration following the Fibonacci
sequence; such a sequence has a rich mathematical structure
giving rise to an invariant of the corresponding dynamical
systems [26–28]. This way of generating a quasiperiodic drive
can provide an alternate way to study the quasiperiodic struc-
tures observed in Fibonacci lattices [27–29]. The Fibonacci
drive can also be generated for a series of incommensurate
frequencies known as metallic means, a common example
of which is the golden ratio, βG = (

√
5 + 1)/2. These driv-

ing protocols can give rise to the realization of a strange
nonchaotic attractor [30] leading to a fractal-like dynamics

which has been theoretically studied for dynamical maps with
quasiperiodicity [31–33] as well observed experimentally
[34]. The evolution of a spin-1/2 system under quasiperiodic
perturbation reveals various interesting dynamical behaviors
and temporal correlations [35–38]. A quasiperiodic drive can
also lead to slow relaxation to nonequilibrium steady states
which has been investigated for interacting spin systems in the
presence of a disordered magnetic field [39]. However, what
remains unexplored in all these studies is the properties of the
time evolution operator, which naturally raises the following
important questions. Under a quasiperiodic drive, is there any
underlying fractality in the eigenmodes of the time evolution
operator itself, even for noninteracting systems? If so, then
what is the fate of such critical states in the presence of
interactions and how is it reflected in the dynamics? Recently
the study of multifractal eigenstates in models with random
or quasiperiodic disorder near metal-insulator transitions both
in the presence and absence of interactions has attracted
significant attention due to its connection with nonergodic-
ity and anomalous thermalization [40–42]. Multifractality of
eigenstates is also exhibited near quantum phase transitions in
Ising-like spin models [43], near Mott insulator to superfluid
phase transitions in the Bose-Hubbard model [44], and in
Luttinger liquids [45]. Interestingly, such multifractal elec-
tronic states has recently been observed experimentally near
the metal-insulator transition [46]. In this paper we address
these issues by considering a simple model of a large spin
in the presence of a quasiperiodic drive which allows us to
study the classical dynamics in an appropriate limit, at the
same time retaining the full information of the time evolution
operator. Such a large spin system offers the possibility of
studying fractal dynamics at the classical level as well its
signature in the eigenstates and spectrum of the corresponding
quantum system. Moreover, a generalization of this simple
model to two interacting spins provides a way to observe the

2470-0045/2019/100(5)/052129(8) 052129-1 ©2019 American Physical Society

https://orcid.org/0000-0003-3944-6715
https://orcid.org/0000-0001-6227-6270
https://orcid.org/0000-0002-6926-9230
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.052129&domain=pdf&date_stamp=2019-11-21
https://doi.org/10.1103/PhysRevE.100.052129


RAY, SINHA, AND SEN PHYSICAL REVIEW E 100, 052129 (2019)

change in dynamics to ergodicity due to the interplay between
a quasiperiodic drive and interactions.

We first consider a simple model of a noninteracting spin
of magnitude S (which has a well-defined classical limit)
subjected to a quasiperiodic drive. Our objective is twofold.
First, we want to study the dynamics of the corresponding
classical system and analyze the fluctuations around the mean
values of the spin components. Second, we want to study
the quantum dynamics and spectral properties of the time
evolution operator, particularly its change in the presence
of interaction. The paper is organized as follows. In Sec. II
we describe the time-dependent Hamiltonian and the details
of the quasiperiodic driving protocol. We then study the
dynamics of the corresponding classical system by suitably
taking the limit S → ∞ in Sec. II A. This is followed by
the derivation of an invariant for this dynamical system in
Sec. II B. The quantum dynamics of a finite spin S and the
spectral properties of the time evolution operator are discussed
in Sec. II C. The effects of interaction are studied in Sec. III.
Finally, we summarize our results, discuss possible experi-
ments which can test our results, and conclude in Sec. IV.

II. DRIVEN SPIN MODEL IN TRANSVERSE
MAGNETIC FIELD

The dynamics of a spin-S particle in the presence of a time-
dependent magnetic field can be described by the Hamiltonian

Ĥ (t ) = ω0Ŝz + λŜx

∞∑
n=−∞

δ

(
t −

∑
n

Tn

)
, (1)

where the first term in the Hamiltonian represents the effect of
a magnetic field with strength ω0 applied along the ẑ direction
(we have absorbed the gyromagnetic ratio in the definition
of ω0), and the second term represents a δ-function kick due
to a transverse magnetic field in the x̂ direction with strength
λ. Here Ŝx,y,z’s denote the spin angular-momentum operators
and Tn is the time lapse between the (n − 1)th and nth kicks.
Here we consider the case Tn = T0(1 ± ε) ≡ T±, i.e., the
time lapse can take two values T+ or T− which follows the
Fibonacci sequence:

T+, T−, T+, T+, T−, T+, T−, T+, · · · . (2)

We will scale the energy (time) by ω0 (1/ω0) and set h̄ = 1
throughout this paper.

The time evolution operator describing the dynamics of
such system between the (n − 1)th and nth kicks is given by

F̂n = e−iTnŜz e−iλŜx . (3)

Note that for a periodic drive in which all the Tn’s are equal,
Eq. (3) reduces to the usual Floquet operator. Following the
time evolution of any operator between the (n − 1)th and nth
kicks under the Floquet matrix F̂n (namely, Ân+1 = F̂†

n ÂnF̂n)
[47], we obtain the Heisenberg equations of motion for the
spin operators as follows:

Ŝn+1
x = Ŝn

x cos Tn − sin Tn
(
Ŝn

y cos λ − Ŝn
z sin λ

)
,

Ŝn+1
y = Ŝn

x sin Tn + cos Tn
(
Ŝn

y cos λ − Ŝn
z sin λ

)
,

Ŝn+1
z = Ŝn

y sin λ + Ŝn
z cos λ. (4)

This is a linear map for the spin operators of the form:
(Ŝn+1

x , Ŝn+1
y , Ŝn+1

x ) = Jn(Ŝn
x , Ŝn

y , Ŝn
x ), where the transfer matrix

Jn can be written as

Jn =

⎛
⎜⎝

cos Tn − sin Tn cos λ sin Tn sin λ

sin Tn cos Tn cos λ − cos Tn sin λ

0 sin λ cos λ,

⎞
⎟⎠, (5)

where the Tn’s are given in Eq. (2). We will consider the case
ε = 1, so that Eq. (3) becomes

F̂1 = e−iλŜx , F̂2 = e−i2T0 Ŝz e−iλŜx , (6)

where F̂1 represents kicking the spin-S object by a magnetic
field in the x̂ direction and F̂2 corresponds to time evolution of
the system under Ŝz for time interval 2T0 followed by another
kick in Ŝx.

Starting from two such SU (N ) matrices, F̂1 and F̂2, the
successive Floquet operators in a Fibonacci sequence can be
generated using the recursion relation,

F̂m+2 = F̂m+1F̂m, (7)

where the initial matrices F̂1 and F̂2 are given in Eq. (6).
We would like to point out that at a Fibonacci time step m,
the stroboscopic time is given by n = Fm, where Fm is the
mth Fibonacci number. For large m, the stroboscopic time
increases exponentially as n ∼ eβGm, where βG = (

√
5 + 1)/2

is the golden ratio. The advantage of using such a recursion
relation is that one can numerically obtain the steady state of
the system after a very long timescale. Henceforth, we will
adopt Eq. (7) to study the dynamics for a very large duration
in stroboscopic time.

A. Classical dynamics

We will first discuss the dynamics of the corresponding
classical system. The classical limit of such a spin system
can be obtained by considering the large spin limit, S → ∞.
Then the spin variables Ŝx,y,z can be classically described by
the components of a spin vector �S ≡ (Sx, Sy, Sz ). We scale the
spin operators by the magnitude S to obtain the classical spin
variables, si = Si/S which follow the commutation relations
[si, s j] = iεi jksk/S. In the limit S → ∞, the commutators van-
ish and the variables become classical. Thus using Eqs. (4),
the stroboscopic time evolution of the corresponding classical
spin variables in between consecutive kicks can be described
by the following linear Hamiltonian map:⎛

⎜⎝
sn+1

x

sn+1
y

sn+1
z

⎞
⎟⎠ = Jn

⎛
⎜⎝

sn
x

sn
y

sn
z

⎞
⎟⎠, (8)

where the transfer matrix Jn is given in Eq. (5). By evolving
Eq. (8) stroboscopically in time we obtain the trajectories
on a unit sphere as shown in Fig. 1 for different driving
parameters. We observe that for a small driving strength λ

and time period T0 the trajectories are regular and precess
over time as depicted in Fig. 1(a). Over a small timescale a
similar regular trajectory is plotted in the projected plane of
sx-sy in Fig. 2(a). However, for large values of λ and T0, the
dynamics is no longer regular and eventually covers the whole
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(a) (b)

FIG. 1. Stroboscopic dynamics of the spin variables sx , sy, and sz

on a unit sphere up to Fibonacci step m ∼ 1000 for (a) λ = π/100,
T0 = π/50 and (b) λ = π/10, T0 = π/10.

surface of the sphere shown in Fig. 1(b). We note that the
transfer matrix in Eq. (5) has determinant equal to 1 and its
eigenvalues have the form 1 and e±iε, ε being the eigenphase.
As a result, the Lyapunov exponent always turns out to be
zero [48–50]. To further illustrate this, we compute the growth
of the geodesic distance on the Bloch sphere. We start from
the initial point si = (sx, sy, sz ) = (0, 0, 1) and evolve it under
successive kicks following Fibonacci sequence. The resulting
trajectory for small λ and T0 is depicted in the sx-sy plane in
Fig. 2(a). The geodesic distance between the initial point si

and the time-evolved point s f is given by d = cos−1(�si · �s f ).
In Fig. 2(b) we have plotted d as a function of the stroboscopic
time (number of kicks) n; a linear growth is observed implying
that the Lyapunov exponent is zero. The slope of d with n
increases on increasing λ, resulting in completely dispersed
trajectories in phase space, an example of which is depicted
in Fig. 1(b). The vanishing of the Lyapunov exponent is
an indication of nonchaotic dynamics, similarly to strange
nonchaotic attractors occurring in this case.

B. Fibonacci sequence of SO(3) matrices
and Sutherland invariant

We first discuss the case of SU(2) matrices multiplied
according to a Fibonacci sequence for which Sutherland found
an invariant; then we will discuss how this invariant general-
izes to the case of SO(3) matrices. Starting with two SU(2)
matrices U1 and U2, we generate a Fibonacci sequence of
matrices defined by the recursion relation Um+2 = Um+1Um.
Let us parametrize Um as

Um = eiαmn̂m·�σ = cos αm I2 + i sin αm n̂m · �σ , (9)

where 0 � αm � π , n̂m is a unit vector, I2 denotes the 2 × 2
identity matrix, and �σ = (σx, σy, σz ) denotes the Pauli matri-
ces. Defining xm = 1

2 tr(Um) = cos αm, Sutherland showed that
the quantity

Is = x2
m + x2

m+1 + x2
m+2 − 2xmxm+1xm+2 − 1 (10)

is independent of m [28].
We now consider SO(3) matrices denoted as Rm. Starting

with two such matrices R1 and R2, we generate a Fibonacci
sequence using the recursion relation

Rm+2 = Rm+1Rm. (11)

0 2 4 6 8 10n
0

1

2

3

d

λ = π/100
λ = π/50
λ = π/20
λ = π/10

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

s y

sx

(a) (b)

FIG. 2. (a) Dynamics of the spin variables, starting from the ini-
tial point (0,0,1), projected onto the sx-sy plane for T0 = π/100 and
λ = π/100, for which Is = −2.43 × 10−7 � 0. The dotted points are
obtained numerically by evolving the dynamical map in Eq. (8) up
to a few Fibonacci steps m ∼ 50, and the solid line is drawn using
the analytical expression in Eq. (15). (b) Geodesic distance d as a
function of the stroboscopic time n for T0 = π/100.

Let us parametrize Rm as follows:

Rm = eiφmêm· �T , (12)

where 0 � φm � 2π , êm is a unit vector, and �T = (Tx, Ty, Tz )
are the generators of SO(3) matrices. One can show that the
matrix elements of Rm given by Rm

i j and the components of êm

given by em
i are related as

Rm
i j = δi j cos φm + em

i em
j (1 − cos φm)

+
3∑

k=1

εi jk em
k sin φm, (13)

where εi jk is the totally antisymmetric matrix with ε123 = 1.
Now using the standard mapping between the spin-1/2 and
spin-1 representations of the angular-momentum group, αm =
φm/2 and n̂m = êm one can obtain the Sutherland invariant Is

for a given SO(3) matrix Rm. The analytical expression of the
invariant Is corresponding to the transfer matrices Jm in Eq. (5)
is derived in Appendix A. There is a subtlety here: Since the
same SO(3) matrix Rm corresponds to two different SU(2)
matrices, Um and −Um, whose traces (divided by 2) are given
by xm and −xm, one has to check at each step of the Fibonacci
sequence which of the two possible values of the trace gives
the correct value of the Sutherland invariant in Eq. (10).

We will now study what happens when Rm acts on the col-
umn (sx, sy, sz ) = (0, 0, 1) as numerically shown in Fig. 2(a).
Using Eq. (13), we see that⎛

⎜⎝
sm

x

sm
y

sm
z

⎞
⎟⎠ =

⎡
⎢⎣

e1e3(1 − cos φm) − e2 sin φm

e2e3(1 − cos φm) + e1 sin φm

cos φm + e2
3(1 − cos φm)

⎤
⎥⎦. (14)

Hence, using the above parametrization for the transfer matrix
in Eq. (5), when λ, T0 	 1, we see that the point (sm

x , sm
y ) given

by (
sm

x , sm
y

) = [e1e3(1 − cos φm), e1 sin φm], (15)

where e1 = λ/λ̄, e3 = 2T0/βGλ̄, and λ̄ =
√

λ2 + 4T 2
0 /β2

G, de-
scribes an ellipse as shown by the solid line in Fig. 2(a) whose
center lies at (e1e3, 0) and the lengths of the axes are 2e1e3

and 2e1 in the x̂ and ŷ directions, respectively (see Appendix A
for details).
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We mention that quasiperiodic driving of SU(2) matrices
has been studied in detail in Refs. [24] and [25]. It has been
found that the long-time behavior of the system depends to
some extent on the value of the Sutherland invariant Is [24].
The behavior is particularly simple near Is = 0 and −1 (which
are respectively the maximum and minimum possible values
of Is). Near Is = 0, the trajectory is given by a circle on the
Bloch sphere [25]. This is similar to the behavior of SO(3)
matrices discussed above, namely the point moves on an
ellipse [as depicted in Fig. 2(a)] when T0 and λ are small
which corresponds to a very small value of Is according to
Eq. (A2). On increasing λ and T0 the invariant Is increases,
resulting in an increase in the linear growth of the geodesic
distance d with stroboscopic time n as shown in Fig. 2(b).
For larger λ and T0 the approximation in deriving Eq. (15)
does not hold and therefore cannot explain the corresponding
completely dispersed phase space as shown in Fig. 1(b).
Also, the above analytical expression for the regular elliptical
trajectory does not explain the precession over very long times
even for small λ and T0 shown in Fig. 1(a), which goes beyond
the simple approximate calculation shown in Appendix A.

C. Quantum dynamics

We now analyze the quantum dynamics of a spin-S object
governed by the time-dependent Hamiltonian in Eq. (1). To
this end we construct the initial wave function |ψ (0)〉 from a
spin coherent state given by [51]

|,�〉 = (1 + |z|2)−SezŜ+ |S,−S〉, (16)

where  and � are the polar and azimuthal angles, respec-
tively, representing the orientation of the classical spin vector
of magnitude S and z = e−i� tan(/2). The time-evolved
state after the mth Fibonacci kick is given by

|ψ (m)〉 = F̂m |ψ (0)〉. (17)

To compute the distribution of the relative phases of the
time-evolved state we first construct the phase state given by
[52],

|ϕ〉 = 1√
N

S∑
l=−S

eilϕ |l〉, (18)

where ϕ = ϕ0 + 2π l ′/N and l ′ ∈ [1,N ], N = 2S + 1. We
choose ϕ0 = −π so that the relative phase lies in the range
−π to π . The phase distribution can be obtained by projecting
|ψ (m)〉 onto the phase state as given by

p(ϕ) = |〈ϕ|ψ (m)〉|2. (19)

In Fig. 3(a) we have shown the time evolution of p(ϕ), and in
Fig. 3(b) the snapshots of p(ϕ) at different times are plotted.
We observe the phase distribution p(ϕ) remains a highly
peaked function; however, its peak position changes under
stroboscopic evolution. It indicates that the phase diffusion
does not take place even for large kicking strengths, and the
phase coherence is not lost during the time evolution. We also
compute the expectation values of the spin operators, i.e., 〈Ŝz〉
where the average 〈.〉 is taken with respect to the time-evolved
state |ψ (m)〉. We have verified that under quantum dynamics
〈Ŝi〉’s are in agreement with the classical variables si obtained

-3 -2 -1 0 1 2 3
φ

0

0.1

0.2

0.3

p(
φ)

Initial
m = 5
m = 10
m = 15

(b)(a)

FIG. 3. (a) Time evolution of the phase distribution p(ϕ) of the
time-evolved state is shown in the color map where the values of
p(ϕ) are presented in a color scale. (b) Snapshots of the distribution
p(ϕ) at different Fibonacci time steps. Although the peak position
of p(ϕ) fluctuates, no broadening of the distribution is observed. For
both figures T0 = π/100 and λ = π/40.

from the dynamical map. The time evolution of the mean
values of these operators exhibit fluctuations similar to the
peak of p(ϕ) in Fig. 3.

To understand the nature of the fluctuations in the dynam-
ics of spin variables, we compute the cumulative sum of the
Fourier transform of 〈Ŝz〉 given by [31–33,36,37]

X� =
N∑

m=1

xmei2π�m, (20)

where xm = 〈Ŝz〉 computed at the mth Fibonacci step and � is
the frequency. From the power spectrum, X� vs �, we observe
that several frequency modes are present in the fluctuations
which confirms that the dynamics is not at all regular even
for small values of λ and T0 for which the spin variables
are seen to undergo a precessional motion in Fig. 1(a). The
corresponding dynamics in the Re[X�]-Im[X�] plane exhibits
a fractal-like structure as depicted in Fig. 4(a). The degree
of such fractal motion can be quantified using the relation
|X�|2 ∼ Nβ , where the exponent β = 1 (2) signifies random
(regular) paths, respectively, whereas β �= 1, 2 corresponds
to a fractal path in the Re[X�]-Im[X�] plane which can be
observed from the logarithmic plot in Fig. 4(b). We have
computed β for different values of �, i.e., β(� = 0.2) =
1.436 and β(� = 0.4) = 1.1, for λ = π/50 and T0 = π/100
and checked that for different choices of λ and T0 the fractal
behavior remains qualitatively similar.

Next we investigate the spectral properties of the Floquet
operator, F̂m, after a sufficiently large Fibonacci step m. Due
to unitarity, we have F̂m|χν〉 = eiεν |χν〉, where εν ∈ [−π, π ]
and |χν〉 are the eigenphase and eigenvector corresponding
to the νth Floquet eigenmode. We compute the moments of
the eigenstates |χν〉 of the Floquet operator F̂m at the mth
Fibonacci step using the relation given by

Iν
q =

S∑
ms=−S

|χν (ms)|2q, Iq = 1

N
∑

ν

Iν
q ∼ N−τq , (21)

where χν (ms) = 〈χν |αms〉, |αms〉 being the computational basis
and N = 2S + 1 is the Hilbert space dimension of a non-
interacting spin of magnitude S. The exponent τq is related
to the fractal dimension Dq as τq = Dq(q − 1) [35,53–55].
The fractal dimension can equivalently be computed from
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(a) (b)

FIG. 4. (a) Stroboscopic dynamics in the Re[X�]-Im[X�] plane
plotted at the N th Fibonacci step, where N runs from 1 to 10 000
for driving parameters T0 = π/100, λ = π/50, and frequency � =
1/βG. (b) |X�|2 plotted as a function of the maximum Fibonacci step
N after an averaging over 10 000 realizations of the Fibonacci chain.
We find that |X�|2 ∼ N1.16.

[43,55,56]

Dq = Sν
q

logN , Sν
q = −

S∑
ms=−S

log |χν (ms)|2q

(q − 1)
, (22)

where N � 1 and Sν
q is the Rényi entropy corresponding

to the νth eigenvector |χν〉. In Figs. 5(a) and 5(b) we have
plotted log Iq and the average Rényi entropy Sq = ∑

ν Sν
q/N

respectively as a function of logN for different values of q.
Using Eqs. (21) and (22) we obtain τq from the slope of the
linear fitting in Figs. 5(a) and 5(b) respectively. The nontrivial
behavior of τq with q is shown in Fig. 5(c) and hence a
q-dependent fractal dimension Dq confirms the multifractality
of the eigenvectors. These plots have been generated after
a sufficiently large number of Fibonacci steps, say, m ∼ 30,
after which the behavior does does not change with m as is
evident from Fig. 5(c). We also observed that the qualitative
behavior remains the same for different choices of the driving
parameters λ and T0. It is to be noted that the scaling expo-
nents τq or Dq are related to the statistical properties of the
Floquet states and are extracted in the limit of large system
size N , which in our case turns out to be related to the spin
magnitude S. Thus τq and Dq are computed from Eqs. (21)
and (22), respectively, for a very large spin magnitude S.

Further, we explored the fractality in the eigenspectrum
by counting the local number of eigenstates �Nε within the
interval �ε around the eigenphase ε. Typically in the limit
�ε → 0, the local number of eigenstates around ε follows
the relation �Nε ∼ (�ε)α , where the exponent α = 1 is as-
sociated with band spectrum, whereas 0 < α < 1 indicates
a multifractal spectrum [12,53,57,58]. In Fig. 5(d) we have
shown the variation of �Nε with �ε in a log-log plot at the
center of the band (ε � 0). From the slope of the linear fitting
in Fig. 5(d) we obtain the exponent α � 0.69 which signifies
fractality in the Floquet eigenspectrum. It should be noted that
in general the value of α can change depending on the choice
of energy ε in the band [12,53].

III. EFFECTS OF INTERACTIONS

In this section we study the effects of interactions by con-
sidering a system of two interacting spins each of magnitude
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FIG. 5. Multifractality of Floquet states: Log-log plot of vari-
ation of (a) moments Iq and (b) Shannon entropy Sq of Floquet
states with Hilbert space dimension N . (c) τq vs q, extracted from
(a) and (b) using Eqs. (21) and (22) respectively, for a typical
choice of parameters λ = π/10 and T0 = π/10. Note that the graphs
calculated for different Fibonacci steps m overlap with each other for
sufficiently large m. (d) Multifractal Floquet eigenspectrum: Log-log
plot of number of states �Nε vs �ε computed at the band center
(ε � 0). The exponent α � 0.69 is extracted from the slope of linear
fitting of the numerical data points (dots). The parameters used are
T0 = π/100, λ = π/50, and N = 801 (S = 400).

S, and a δ-function kick is applied to both the spins following
a Fibonacci sequence. Our goal is to study (i) the fate of the
multifractality of the Floquet states and the spectrum of the
evolution operator in the presence of interactions and (ii) the
validity of the semiclassical dynamics in terms of coherent
states for large spins and whether the interactions can lead to
thermalization.

The Hamiltonian describing such quasiperiodically driven
interacting system is given by

Ĥ (t ) = Ĥ0 + λŜA/B
x

∞∑
n=−∞

δ

(
t −

∑
n

Tn

)
,

Ĥ0 = ŜA
z + ŜB

z − JŜA
z ŜB

z . (23)

This is a simple generalization of the noninteracting model
discussed above, where J is the strength of the interaction
between the two spins, and the last term represents kicks
applied to the two spins following a Fibonacci sequence. The
Floquet operators for the first two Fibonacci step are therefore
given by

F̂ I
1 = e−iT Ĥ0 e−iλŜA

x , F̂ I
2 = e−iT Ĥ0 e−iλŜB

x . (24)

The subsequent matrices in the Fibonacci sequence are then
generated using Eq. (7). By diagonalizing the Floquet matrix
F̂ I

m we obtain the eigenphases εν and the corresponding
eigenvectors |χν〉 (see Sec. II C). We first compute the spacing
between the successive eigenphases, i.e., δν = εν+1 − εν , and
calculate the distribution of the δν’s following the proce-
dure described in Ref. [59] in order to keep the normaliza-
tion

∫
P(δ)dδ = 1 and mean

∫
δP(δ)dδ = 1. In Figs. 6(a)
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FIG. 6. [(a) and (b)] Distribution P(δ) of the spacing be-
tween eigenphases δ for J = 0.01 and J = 5, respectively, for S =
20 (NI = 1681) and computed at Fibonacci step n = 50. (c) log Iq vs
logNI and (d) τq vs q for J = 5. The behavior of the corresponding
noninteracting system (J = 0) is shown by the black circles. Here
and in the rest of the figures we set T = π/100 and λ = π/10.

and 6(b) we have plotted the normalized quasienergy spacing
distribution P(δ) for small and large values of J , respectively.
We note that in the presence of interactions, the fractality of
the system vanishes and level repulsion sets in. For large J ,
P(δ) resembles the Wigner surmise and corresponds to the
Gaussian orthogonal ensemble of random matrix theory as
shown in Fig. 6(b); this indicates a possible thermalization of
the system for large values of the interaction strength J [60].

We compute the moments of the Floquet eigenstates using
Eq. (21) followed by a calculation of the exponent τq which
is related to the fractal dimension Dq. In Fig. 6(c) we have
plotted log Iq vs logNI for different values of q, where NI =
(2S + 1)2 is the Hilbert space dimension. From the linear
fitting we obtain the slope τq which we have plotted in
Fig. 6(b) as a function of q and compared with the case J = 0.
We note that in contrast to the noninteracting case, we find
for finite values of the interaction strength J that τq ∼ q; this
implies Dq ∼ 1 indicating an ergodic nature of the Floquet
eigenstates.

We further elucidate this fact from the wave packet dynam-
ics. We construct an initial wave function from the product of
two spin coherent states given by

|ψAB(0)〉 = |,�〉A ⊗ |,�〉B. (25)

The dynamics of the expectation values of the corresponding
spin observables are illustrated in Appendix B. From the time-
evolved wave function, |ψAB(m)〉 = F̂ I

m|ψAB(0)〉, we compute
the reduced density matrix corresponding to either of the spins
A and B using the relation,

ρ̂m
A(B) = TrB(A)|ψAB(m)〉〈ψAB(m)|, (26)

where Tr(.) represents partial tracing with respect to spin B
or A. In Fig. 7 we have shown the structure of ρ̂m

A after
Fibonacci step m = 50 which, we have checked, is sufficient
to obtain the steady states. For small values of J , ρ̂m

A contains
both the diagonal and off-diagonal entries in the eigenbasis

-10 -5 0 5 10
m1

0

0.1

0.2

0.3

0.4

ρ A
(m

1,m
1)

m = 0
m = 50

(a) (b)

(c) (d)

FIG. 7. [(a)–(c)] Time evolution of the subsystem reduced den-
sity matrix ρ̂A for J = 0.01 and J = 5, respectively, for S = 10.
(d) Plots of the corresponding diagonal elements.

of Ŝz indexed by m1, m2 which can be observed in Fig. 7
(b). On the other hand, for large values of J , ρ̂m

A becomes
completely diagonal as is evident from Fig. 7(c), with equally
weighted entries, i.e., ρm

A (m1, m1) ∼ 1/N . Such an observa-
tion indicates that in the presence of interactions the coherent
state picture is lost and leads us to conclude that the system
approaches a diagonal ensemble and thermalizes to infinite
temperature [60–63].

IV. CONCLUSIONS

To summarize, we have studied the dynamics of a spin-S
object which has a well-defined classical limit and is subjected
to quasiperiodic kicks following the Fibonacci sequence. By
evolving the corresponding classical Hamiltonian map of the
spin variables we obtained the phase portraits which, for small
kicking strength λ and time period T0, exhibits regular orbits
which precess over an unit sphere. Interestingly, for increasing
λ and T0 the dynamics appears to be chaotic; however, the
Lyapunov exponent vanishes. We have calculated the Suther-
land invariant which constrains to some extent the dynam-
ics governed by the transfer matrix with SO(3) symmetry.
Fluctuations of the classical counterpart of the spin dynamics
exhibit a fractal structure which is verified by its Fourier
spectrum analysis. It turns out that for an initially chosen
spin coherent state, the phase coherence is retained during
the time evolution under Fibonacci drive even for large λ and
T0 indicating classical-quantum correspondence. Fractality in
classical dynamics is observed from the spectral analysis.
More interestingly, the fractality is also present in the internal
structure of the Floquet matrix governing the full quantum
dynamics which has been investigated from the scaling of the
Rényi entropy, as well as from the moments of the Floquet
eigenvectors and the quasienergy spectrum. Finally, we have
considered two such spin-S objects interacting with each
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other and driven quasiperiodically. We have shown that in
the presence of the interaction, the fractal behavior vanishes
and level repulsion sets in the Floquet quasienergy spectrum.
In the dynamics, we observed that for increasing interaction
strength J , the average values of the components of spin
operators for both the spins saturate to zero and the reduced
density matrix for either of the spins becomes diagonal. The
emergence of the diagonal ensemble with equally weighted
diagonal elements indicates thermalization of the system to
infinite temperature and corresponds to the microcanonical
ensemble of statistical mechanics.

In conclusion, a quasiperiodically driven large spin system
is a simple but fascinating model with multifractal Floquet
eigenstates and eigenspectrum, and at the same time its dy-
namics in the classical limit corresponds to strange nonchaotic
attractors. Moreover it exhibits a nonergodic to ergodic tran-
sition in the presence of interactions. Kicked spin models
have already been realized in experiments considering the
angular momentum of an atom in a suitable hyperfine state
[64,65]; the kicks can be generated by using a short magnetic
pulse [66]. The dynamics of such kicked systems can also be
investigated in circuit QED experiments [67]. The signature of
fractality and its change to ergodic behavior in the dynamics
can be found in the experiments by measuring the discrete
time Fourier amplitude spectrum of time varying physical
observable such as the spin variables in our study as well from
the dimension measurement [34]. The models discussed in our
paper can thus be realized and therefore our results can be
tested in the similar experiments.
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APPENDIX A: SUTHERLAND INVARIANT
FOR SO(3) MATRICES

We consider the transfer matrix Jn, given in Eq. (5) which
is a SO(3) matrix. Starting with two such matrices J1 and J2
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/S
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FIG. 8. [(a) and (b)] Time evolution of 〈ŜA,B
x,y,z〉 for J = 0.01 and

J = 5, respectively, for S = 10.

given by

J1 = e−iλTx and J2 = e−i2T0Tz e−iλTx , (A1)

we find that the corresponding Sutherland invariant is

Is = −[sin T0 sin(λ/2)]2. (A2)

We have checked numerically up to a large Fibonacci step
m ∼ 1000 that Is remains constant during the time evolution.

It is known that the mth Fibonacci number, given by Fm =
[βm

G − (−1)m

βm
G

]/
√

5, quickly approaches the value βm
G /

√
5 as m

increases. We then find that

Jm = e−iβm
G [λTx+(2T0/βG )Tz]/

√
5, (A3)

which has been derived under the approximation that λ, T0 	
1 so that the commutators arising from [Ti, Tj] do not grow
much within a small timescale. This leads us to define

φm = − βm
G√
5
λ̄ and êm = 1

λ̄
(λ, 0, 2T0/βG), (A4)

where λ̄ =
√

λ2 + 4T 2
0 /β2

G.

APPENDIX B: DYNAMICS OF SPIN OBSERVABLES IN
THE PRESENCE OF INTERACTION

To study the dynamics of the spin variables, we compute
the expectation values of the spin operators, i.e., 〈ŜA,B

x,y,z〉, where
〈.〉 is taken from the time-evolved wave function |ψAB(m)〉 =
F̂ I

m|ψAB(0)〉.
We observe that for small values of the interaction strength

J , 〈ŜA,B
x,y,z〉 saturates to different nonzero values, whereas for

large J , all the spin observables decays to zero as depicted in
Figs. 8(a) and 8(b), respectively.
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