Dynamics of quasiperiodically driven spin systems

Sayak Ray $\odot,{ }^{1}$ Subhasis Sinha $\odot,{ }^{2}$ and Diptiman Sen \oplus^{3}
${ }^{1}$ Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
${ }^{2}$ Indian Institute of Science Education and Research-Kolkata, Mohanpur, Nadia 741246, India
${ }^{3}$ Centre for High Energy Physics, Indian Institute of Science, Bengaluru 560012, India

(Received 26 July 2019; revised manuscript received 29 August 2019; published 21 November 2019)

Abstract

We study the stroboscopic dynamics of a spin- S object subjected to δ-function kicks in the transverse magnetic field which is generated following the Fibonacci sequence. The corresponding classical Hamiltonian map is constructed in the large spin limit, $S \rightarrow \infty$. On evolving such a map for large kicking strength and time period, the phase space appears to be chaotic; interestingly, however, the geodesic distance increases linearly with the stroboscopic time implying that the Lyapunov exponent is zero. We derive the Sutherland invariant for the underlying $\mathrm{SO}(3)$ matrix governing the dynamics of classical spin variables and study the orbits for weak kicking strength. For the quantum dynamics, we observe that although the phase coherence of a state is retained throughout the time evolution, the fluctuations in the mean values of the spin operators exhibit fractality which is also present in the Floquet eigenstates. Interestingly, the presence of an interaction with another spin results in an ergodic dynamics leading to infinite temperature thermalization.

DOI: 10.1103/PhysRevE.100.052129

I. INTRODUCTION

In recent years quasiperiodic systems have attracted a lot of interest in various contexts ranging from quasicrystals [1-5] to localization-delocalization transitions [6-10], multifractality [11-14], topological phases [15], and so on. The creation of a quasiperiodic potential in one dimension using bichromatic optical lattices [6] has led to the realization of the well-known Aubry-André model [16], which has been studied extensively both theoretically $[7,8]$ and experimentally [9,10,17], in the context of observing localization phenomena, particularly many-body localization in interacting systems [18,19]. In the presence of a periodic drive such many-body localized states exhibit drive-induced delocalization and thermalization of isolated interacting quantum systems [20-22], and its connection with the underlying chaotic dynamics and random matrix theory has been explored [23]. As an extension, several interesting questions can be addressed related to the dynamical behavior of quantum systems under a quasiperiodic drive. One such issue is the emergence of steady states in quasiperiodically driven interacting quantum systems [24,25] and most interestingly, its connection with spectral properties and random matrix theory which is related to ergodicity.

One way to generate a quasiperiodic drive is by perturbing the system under consideration following the Fibonacci sequence; such a sequence has a rich mathematical structure giving rise to an invariant of the corresponding dynamical systems [26-28]. This way of generating a quasiperiodic drive can provide an alternate way to study the quasiperiodic structures observed in Fibonacci lattices [27-29]. The Fibonacci drive can also be generated for a series of incommensurate frequencies known as metallic means, a common example of which is the golden ratio, $\beta_{G}=(\sqrt{5}+1) / 2$. These driving protocols can give rise to the realization of a strange nonchaotic attractor [30] leading to a fractal-like dynamics
which has been theoretically studied for dynamical maps with quasiperiodicity [31-33] as well observed experimentally [34]. The evolution of a spin- $1 / 2$ system under quasiperiodic perturbation reveals various interesting dynamical behaviors and temporal correlations [35-38]. A quasiperiodic drive can also lead to slow relaxation to nonequilibrium steady states which has been investigated for interacting spin systems in the presence of a disordered magnetic field [39]. However, what remains unexplored in all these studies is the properties of the time evolution operator, which naturally raises the following important questions. Under a quasiperiodic drive, is there any underlying fractality in the eigenmodes of the time evolution operator itself, even for noninteracting systems? If so, then what is the fate of such critical states in the presence of interactions and how is it reflected in the dynamics? Recently the study of multifractal eigenstates in models with random or quasiperiodic disorder near metal-insulator transitions both in the presence and absence of interactions has attracted significant attention due to its connection with nonergodicity and anomalous thermalization [40-42]. Multifractality of eigenstates is also exhibited near quantum phase transitions in Ising-like spin models [43], near Mott insulator to superfluid phase transitions in the Bose-Hubbard model [44], and in Luttinger liquids [45]. Interestingly, such multifractal electronic states has recently been observed experimentally near the metal-insulator transition [46]. In this paper we address these issues by considering a simple model of a large spin in the presence of a quasiperiodic drive which allows us to study the classical dynamics in an appropriate limit, at the same time retaining the full information of the time evolution operator. Such a large spin system offers the possibility of studying fractal dynamics at the classical level as well its signature in the eigenstates and spectrum of the corresponding quantum system. Moreover, a generalization of this simple model to two interacting spins provides a way to observe the
change in dynamics to ergodicity due to the interplay between a quasiperiodic drive and interactions.

We first consider a simple model of a noninteracting spin of magnitude S (which has a well-defined classical limit) subjected to a quasiperiodic drive. Our objective is twofold. First, we want to study the dynamics of the corresponding classical system and analyze the fluctuations around the mean values of the spin components. Second, we want to study the quantum dynamics and spectral properties of the time evolution operator, particularly its change in the presence of interaction. The paper is organized as follows. In Sec. II we describe the time-dependent Hamiltonian and the details of the quasiperiodic driving protocol. We then study the dynamics of the corresponding classical system by suitably taking the limit $S \rightarrow \infty$ in Sec. II A. This is followed by the derivation of an invariant for this dynamical system in Sec. II B. The quantum dynamics of a finite spin S and the spectral properties of the time evolution operator are discussed in Sec. II C. The effects of interaction are studied in Sec. III. Finally, we summarize our results, discuss possible experiments which can test our results, and conclude in Sec. IV.

II. DRIVEN SPIN MODEL IN TRANSVERSE MAGNETIC FIELD

The dynamics of a spin- S particle in the presence of a timedependent magnetic field can be described by the Hamiltonian

$$
\begin{equation*}
\hat{H}(t)=\omega_{0} \hat{S}_{z}+\lambda \hat{S}_{x} \sum_{n=-\infty}^{\infty} \delta\left(t-\sum_{n} T_{n}\right) \tag{1}
\end{equation*}
$$

where the first term in the Hamiltonian represents the effect of a magnetic field with strength ω_{0} applied along the \hat{z} direction (we have absorbed the gyromagnetic ratio in the definition of ω_{0}), and the second term represents a δ-function kick due to a transverse magnetic field in the \hat{x} direction with strength λ. Here $\hat{S}_{x, y, z}$'s denote the spin angular-momentum operators and T_{n} is the time lapse between the $(n-1)$ th and nth kicks. Here we consider the case $T_{n}=T_{0}(1 \pm \epsilon) \equiv T_{ \pm}$, i.e., the time lapse can take two values T_{+}or T_{-}which follows the Fibonacci sequence:

$$
\begin{equation*}
T_{+}, T_{-}, T_{+}, T_{+}, T_{-}, T_{+}, T_{-}, T_{+}, \cdots \tag{2}
\end{equation*}
$$

We will scale the energy (time) by $\omega_{0}\left(1 / \omega_{0}\right)$ and set $\hbar=1$ throughout this paper.

The time evolution operator describing the dynamics of such system between the $(n-1)$ th and nth kicks is given by

$$
\begin{equation*}
\hat{\mathcal{F}}_{n}=e^{-i T_{n} \hat{S}_{z}} e^{-i \lambda \hat{S}_{x}} \tag{3}
\end{equation*}
$$

Note that for a periodic drive in which all the T_{n} 's are equal, Eq. (3) reduces to the usual Floquet operator. Following the time evolution of any operator between the $(n-1)$ th and nth kicks under the Floquet matrix $\hat{\mathcal{F}}_{n}$ (namely, $\hat{A}_{n+1}=\hat{\mathcal{F}}_{n}^{\dagger} \hat{A}_{n} \hat{\mathcal{F}}_{n}$) [47], we obtain the Heisenberg equations of motion for the spin operators as follows:

$$
\begin{align*}
& \hat{S}_{x}^{n+1}=\hat{S}_{x}^{n} \cos T_{n}-\sin T_{n}\left(\hat{S}_{y}^{n} \cos \lambda-\hat{S}_{z}^{n} \sin \lambda\right), \\
& \hat{S}_{y}^{n+1}=\hat{S}_{x}^{n} \sin T_{n}+\cos T_{n}\left(\hat{S}_{y}^{n} \cos \lambda-\hat{S}_{z}^{n} \sin \lambda\right), \\
& \hat{S}_{z}^{n+1}=\hat{S}_{y}^{n} \sin \lambda+\hat{S}_{z}^{n} \cos \lambda \tag{4}
\end{align*}
$$

This is a linear map for the spin operators of the form: $\left(\hat{S}_{x}^{n+1}, \hat{S}_{y}^{n+1}, \hat{S}_{x}^{n+1}\right)=J_{n}\left(\hat{S}_{x}^{n}, \hat{S}_{y}^{n}, \hat{S}_{x}^{n}\right)$, where the transfer matrix J_{n} can be written as

$$
J_{n}=\left(\begin{array}{ccc}
\cos T_{n} & -\sin T_{n} \cos \lambda & \sin T_{n} \sin \lambda \tag{5}\\
\sin T_{n} & \cos T_{n} \cos \lambda & -\cos T_{n} \sin \lambda \\
0 & \sin \lambda & \cos \lambda
\end{array}\right)
$$

where the T_{n} 's are given in Eq. (2). We will consider the case $\epsilon=1$, so that Eq. (3) becomes

$$
\begin{equation*}
\hat{\mathcal{F}}_{1}=e^{-i \lambda \hat{S}_{x}}, \quad \hat{\mathcal{F}}_{2}=e^{-i 2 T_{0} \hat{S}_{z}} e^{-i \lambda \hat{S}_{x}} \tag{6}
\end{equation*}
$$

where $\hat{\mathcal{F}}_{1}$ represents kicking the spin- S object by a magnetic field in the \hat{x} direction and $\hat{\mathcal{F}}_{2}$ corresponds to time evolution of the system under \hat{S}_{z} for time interval $2 T_{0}$ followed by another kick in \hat{S}_{x}.

Starting from two such $S U(N)$ matrices, $\hat{\mathcal{F}}_{1}$ and $\hat{\mathcal{F}}_{2}$, the successive Floquet operators in a Fibonacci sequence can be generated using the recursion relation,

$$
\begin{equation*}
\hat{\mathcal{F}}_{m+2}=\hat{\mathcal{F}}_{m+1} \hat{\mathcal{F}}_{m} \tag{7}
\end{equation*}
$$

where the initial matrices $\hat{\mathcal{F}}_{1}$ and $\hat{\mathcal{F}}_{2}$ are given in Eq. (6). We would like to point out that at a Fibonacci time step m, the stroboscopic time is given by $n=F_{m}$, where F_{m} is the m th Fibonacci number. For large m, the stroboscopic time increases exponentially as $n \sim e^{\beta_{G} m}$, where $\beta_{G}=(\sqrt{5}+1) / 2$ is the golden ratio. The advantage of using such a recursion relation is that one can numerically obtain the steady state of the system after a very long timescale. Henceforth, we will adopt Eq. (7) to study the dynamics for a very large duration in stroboscopic time.

A. Classical dynamics

We will first discuss the dynamics of the corresponding classical system. The classical limit of such a spin system can be obtained by considering the large spin limit, $S \rightarrow \infty$. Then the spin variables $\hat{S}_{x, y, z}$ can be classically described by the components of a spin vector $\vec{S} \equiv\left(S_{x}, S_{y}, S_{z}\right)$. We scale the spin operators by the magnitude S to obtain the classical spin variables, $s_{i}=S_{i} / S$ which follow the commutation relations $\left[s_{i}, s_{j}\right]=i \epsilon_{i j k} s_{k} / S$. In the limit $S \rightarrow \infty$, the commutators vanish and the variables become classical. Thus using Eqs. (4), the stroboscopic time evolution of the corresponding classical spin variables in between consecutive kicks can be described by the following linear Hamiltonian map:

$$
\left(\begin{array}{c}
s_{x}^{n+1} \tag{8}\\
s_{y}^{n+1} \\
s_{z}^{n+1}
\end{array}\right)=J_{n}\left(\begin{array}{l}
s_{x}^{n} \\
s_{y}^{n} \\
s_{z}^{n}
\end{array}\right)
$$

where the transfer matrix J_{n} is given in Eq. (5). By evolving Eq. (8) stroboscopically in time we obtain the trajectories on a unit sphere as shown in Fig. 1 for different driving parameters. We observe that for a small driving strength λ and time period T_{0} the trajectories are regular and precess over time as depicted in Fig. 1(a). Over a small timescale a similar regular trajectory is plotted in the projected plane of $s_{x}-s_{y}$ in Fig. 2(a). However, for large values of λ and T_{0}, the dynamics is no longer regular and eventually covers the whole

FIG. 1. Stroboscopic dynamics of the spin variables s_{x}, s_{y}, and s_{z} on a unit sphere up to Fibonacci step $m \sim 1000$ for (a) $\lambda=\pi / 100$, $T_{0}=\pi / 50$ and (b) $\lambda=\pi / 10, T_{0}=\pi / 10$.
surface of the sphere shown in Fig. 1(b). We note that the transfer matrix in Eq. (5) has determinant equal to 1 and its eigenvalues have the form 1 and $e^{ \pm i \varepsilon}, \varepsilon$ being the eigenphase. As a result, the Lyapunov exponent always turns out to be zero [48-50]. To further illustrate this, we compute the growth of the geodesic distance on the Bloch sphere. We start from the initial point $s_{i}=\left(s_{x}, s_{y}, s_{z}\right)=(0,0,1)$ and evolve it under successive kicks following Fibonacci sequence. The resulting trajectory for small λ and T_{0} is depicted in the $s_{x}-s_{y}$ plane in Fig. 2(a). The geodesic distance between the initial point s_{i} and the time-evolved point s_{f} is given by $d=\cos ^{-1}\left(\vec{s}_{i} \cdot \vec{s}_{f}\right)$. In Fig. 2(b) we have plotted d as a function of the stroboscopic time (number of kicks) n; a linear growth is observed implying that the Lyapunov exponent is zero. The slope of d with n increases on increasing λ, resulting in completely dispersed trajectories in phase space, an example of which is depicted in Fig. 1(b). The vanishing of the Lyapunov exponent is an indication of nonchaotic dynamics, similarly to strange nonchaotic attractors occurring in this case.

B. Fibonacci sequence of $\operatorname{SO}(3)$ matrices and Sutherland invariant

We first discuss the case of $\mathrm{SU}(2)$ matrices multiplied according to a Fibonacci sequence for which Sutherland found an invariant; then we will discuss how this invariant generalizes to the case of $\mathrm{SO}(3)$ matrices. Starting with two $\mathrm{SU}(2)$ matrices U_{1} and U_{2}, we generate a Fibonacci sequence of matrices defined by the recursion relation $U_{m+2}=U_{m+1} U_{m}$. Let us parametrize U_{m} as

$$
\begin{equation*}
U_{m}=e^{i \alpha_{m} \hat{n}_{m} \cdot \vec{\sigma}}=\cos \alpha_{m} \mathbb{I}_{2}+i \sin \alpha_{m} \hat{n}_{m} \cdot \vec{\sigma} \tag{9}
\end{equation*}
$$

where $0 \leqslant \alpha_{m} \leqslant \pi, \hat{n}_{m}$ is a unit vector, \mathbb{I}_{2} denotes the 2×2 identity matrix, and $\vec{\sigma}=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ denotes the Pauli matrices. Defining $x_{m}=\frac{1}{2} \operatorname{tr}\left(U_{m}\right)=\cos \alpha_{m}$, Sutherland showed that the quantity

$$
\begin{equation*}
I_{s}=x_{m}^{2}+x_{m+1}^{2}+x_{m+2}^{2}-2 x_{m} x_{m+1} x_{m+2}-1 \tag{10}
\end{equation*}
$$

is independent of m [28].
We now consider $\mathrm{SO}(3)$ matrices denoted as R_{m}. Starting with two such matrices R_{1} and R_{2}, we generate a Fibonacci sequence using the recursion relation

$$
\begin{equation*}
R_{m+2}=R_{m+1} R_{m} \tag{11}
\end{equation*}
$$

FIG. 2. (a) Dynamics of the spin variables, starting from the initial point $(0,0,1)$, projected onto the $s_{x}-s_{y}$ plane for $T_{0}=\pi / 100$ and $\lambda=\pi / 100$, for which $I_{s}=-2.43 \times 10^{-7} \simeq 0$. The dotted points are obtained numerically by evolving the dynamical map in Eq. (8) up to a few Fibonacci steps $m \sim 50$, and the solid line is drawn using the analytical expression in Eq. (15). (b) Geodesic distance d as a function of the stroboscopic time n for $T_{0}=\pi / 100$.

Let us parametrize R_{m} as follows:

$$
\begin{equation*}
R_{m}=e^{i \phi_{m} \hat{e}_{m} \cdot \vec{T}} \tag{12}
\end{equation*}
$$

where $0 \leqslant \phi_{m} \leqslant 2 \pi, \hat{e}_{m}$ is a unit vector, and $\vec{T}=\left(T_{x}, T_{y}, T_{z}\right)$ are the generators of $\mathrm{SO}(3)$ matrices. One can show that the matrix elements of R_{m} given by $R_{i j}^{m}$ and the components of \hat{e}_{m} given by e_{i}^{m} are related as

$$
\begin{align*}
R_{i j}^{m}= & \delta_{i j} \cos \phi_{m}+e_{i}^{m} e_{j}^{m}\left(1-\cos \phi_{m}\right) \\
& +\sum_{k=1}^{3} \epsilon_{i j k} e_{k}^{m} \sin \phi_{m} \tag{13}
\end{align*}
$$

where $\epsilon_{i j k}$ is the totally antisymmetric matrix with $\epsilon_{123}=1$. Now using the standard mapping between the spin-1/2 and spin-1 representations of the angular-momentum group, $\alpha_{m}=$ $\phi_{m} / 2$ and $\hat{n}_{m}=\hat{e}_{m}$ one can obtain the Sutherland invariant I_{s} for a given $\mathrm{SO}(3)$ matrix R_{m}. The analytical expression of the invariant I_{s} corresponding to the transfer matrices J_{m} in Eq. (5) is derived in Appendix A. There is a subtlety here: Since the same $\mathrm{SO}(3)$ matrix R_{m} corresponds to two different $\mathrm{SU}(2)$ matrices, U_{m} and $-U_{m}$, whose traces (divided by 2) are given by x_{m} and $-x_{m}$, one has to check at each step of the Fibonacci sequence which of the two possible values of the trace gives the correct value of the Sutherland invariant in Eq. (10).

We will now study what happens when R_{m} acts on the column $\left(s_{x}, s_{y}, s_{z}\right)=(0,0,1)$ as numerically shown in Fig. 2(a). Using Eq. (13), we see that

$$
\left(\begin{array}{c}
s_{x}^{m} \tag{14}\\
s_{y}^{m} \\
s_{z}^{m}
\end{array}\right)=\left[\begin{array}{c}
e_{1} e_{3}\left(1-\cos \phi_{m}\right)-e_{2} \sin \phi_{m} \\
e_{2} e_{3}\left(1-\cos \phi_{m}\right)+e_{1} \sin \phi_{m} \\
\cos \phi_{m}+e_{3}^{2}\left(1-\cos \phi_{m}\right)
\end{array}\right] .
$$

Hence, using the above parametrization for the transfer matrix in Eq. (5), when $\lambda, T_{0} \ll 1$, we see that the point $\left(s_{x}^{m}, s_{y}^{m}\right)$ given by

$$
\begin{equation*}
\left(s_{x}^{m}, s_{y}^{m}\right)=\left[e_{1} e_{3}\left(1-\cos \phi_{m}\right), e_{1} \sin \phi_{m}\right] \tag{15}
\end{equation*}
$$

where $e_{1}=\lambda / \bar{\lambda}, e_{3}=2 T_{0} / \beta_{G} \bar{\lambda}$, and $\bar{\lambda}=\sqrt{\lambda^{2}+4 T_{0}^{2} / \beta_{G}^{2}}$, describes an ellipse as shown by the solid line in Fig. 2(a) whose center lies at $\left(e_{1} e_{3}, 0\right)$ and the lengths of the axes are $2 e_{1} e_{3}$ and $2 e_{1}$ in the \hat{x} and \hat{y} directions, respectively (see Appendix A for details).

We mention that quasiperiodic driving of $\mathrm{SU}(2)$ matrices has been studied in detail in Refs. [24] and [25]. It has been found that the long-time behavior of the system depends to some extent on the value of the Sutherland invariant I_{s} [24]. The behavior is particularly simple near $I_{s}=0$ and -1 (which are respectively the maximum and minimum possible values of I_{s}). Near $I_{s}=0$, the trajectory is given by a circle on the Bloch sphere [25]. This is similar to the behavior of $\mathrm{SO}(3)$ matrices discussed above, namely the point moves on an ellipse [as depicted in Fig. 2(a)] when T_{0} and λ are small which corresponds to a very small value of I_{s} according to Eq. (A2). On increasing λ and T_{0} the invariant I_{s} increases, resulting in an increase in the linear growth of the geodesic distance d with stroboscopic time n as shown in Fig. 2(b). For larger λ and T_{0} the approximation in deriving Eq. (15) does not hold and therefore cannot explain the corresponding completely dispersed phase space as shown in Fig. 1(b). Also, the above analytical expression for the regular elliptical trajectory does not explain the precession over very long times even for small λ and T_{0} shown in Fig. 1(a), which goes beyond the simple approximate calculation shown in Appendix A.

C. Quantum dynamics

We now analyze the quantum dynamics of a spin-S object governed by the time-dependent Hamiltonian in Eq. (1). To this end we construct the initial wave function $|\psi(0)\rangle$ from a spin coherent state given by [51]

$$
\begin{equation*}
|\Theta, \Phi\rangle=\left(1+|z|^{2}\right)^{-S} e^{z \hat{S}_{+}}|S,-S\rangle \tag{16}
\end{equation*}
$$

where Θ and Φ are the polar and azimuthal angles, respectively, representing the orientation of the classical spin vector of magnitude S and $z=e^{-i \Phi} \tan (\Theta / 2)$. The time-evolved state after the m th Fibonacci kick is given by

$$
\begin{equation*}
|\psi(m)\rangle=\hat{\mathcal{F}}_{m}|\psi(0)\rangle \tag{17}
\end{equation*}
$$

To compute the distribution of the relative phases of the time-evolved state we first construct the phase state given by [52],

$$
\begin{equation*}
|\varphi\rangle=\frac{1}{\sqrt{\mathcal{N}}} \sum_{l=-S}^{S} e^{i l \varphi}|l\rangle, \tag{18}
\end{equation*}
$$

where $\varphi=\varphi_{0}+2 \pi l^{\prime} / \mathcal{N}$ and $l^{\prime} \in[1, \mathcal{N}], \mathcal{N}=2 S+1$. We choose $\varphi_{0}=-\pi$ so that the relative phase lies in the range $-\pi$ to π. The phase distribution can be obtained by projecting $|\psi(m)\rangle$ onto the phase state as given by

$$
\begin{equation*}
p(\varphi)=|\langle\varphi \mid \psi(m)\rangle|^{2} \tag{19}
\end{equation*}
$$

In Fig. 3(a) we have shown the time evolution of $p(\varphi)$, and in Fig. 3(b) the snapshots of $p(\varphi)$ at different times are plotted. We observe the phase distribution $p(\varphi)$ remains a highly peaked function; however, its peak position changes under stroboscopic evolution. It indicates that the phase diffusion does not take place even for large kicking strengths, and the phase coherence is not lost during the time evolution. We also compute the expectation values of the spin operators, i.e., $\left\langle\hat{S}_{z}\right\rangle$ where the average \langle.$\rangle is taken with respect to the time-evolved$ state $|\psi(m)\rangle$. We have verified that under quantum dynamics $\left\langle\hat{S}_{i}\right\rangle$'s are in agreement with the classical variables s_{i} obtained

FIG. 3. (a) Time evolution of the phase distribution $p(\varphi)$ of the time-evolved state is shown in the color map where the values of $p(\varphi)$ are presented in a color scale. (b) Snapshots of the distribution $p(\varphi)$ at different Fibonacci time steps. Although the peak position of $p(\varphi)$ fluctuates, no broadening of the distribution is observed. For both figures $T_{0}=\pi / 100$ and $\lambda=\pi / 40$.
from the dynamical map. The time evolution of the mean values of these operators exhibit fluctuations similar to the peak of $p(\varphi)$ in Fig. 3.

To understand the nature of the fluctuations in the dynamics of spin variables, we compute the cumulative sum of the Fourier transform of $\left\langle\hat{S}_{z}\right\rangle$ given by [31-33,36,37]

$$
\begin{equation*}
X_{\Omega}=\sum_{m=1}^{N} x_{m} e^{i 2 \pi \Omega m} \tag{20}
\end{equation*}
$$

where $x_{m}=\left\langle\hat{S}_{z}\right\rangle$ computed at the m th Fibonacci step and Ω is the frequency. From the power spectrum, X_{Ω} vs Ω, we observe that several frequency modes are present in the fluctuations which confirms that the dynamics is not at all regular even for small values of λ and T_{0} for which the spin variables are seen to undergo a precessional motion in Fig. 1(a). The corresponding dynamics in the $\operatorname{Re}\left[X_{\Omega}\right]-\operatorname{Im}\left[X_{\Omega}\right]$ plane exhibits a fractal-like structure as depicted in Fig. 4(a). The degree of such fractal motion can be quantified using the relation $\left|X_{\Omega}\right|^{2} \sim N^{\beta}$, where the exponent $\beta=1$ (2) signifies random (regular) paths, respectively, whereas $\beta \neq 1,2$ corresponds to a fractal path in the $\operatorname{Re}\left[X_{\Omega}\right]-\operatorname{Im}\left[X_{\Omega}\right]$ plane which can be observed from the logarithmic plot in Fig. 4(b). We have computed β for different values of Ω, i.e., $\beta(\Omega=0.2)=$ 1.436 and $\beta(\Omega=0.4)=1.1$, for $\lambda=\pi / 50$ and $T_{0}=\pi / 100$ and checked that for different choices of λ and T_{0} the fractal behavior remains qualitatively similar.

Next we investigate the spectral properties of the Floquet operator, $\hat{\mathcal{F}}_{m}$, after a sufficiently large Fibonacci step m. Due to unitarity, we have $\hat{\mathcal{F}}_{m}\left|\chi_{\nu}\right\rangle=e^{i \varepsilon_{v}}\left|\chi_{\nu}\right\rangle$, where $\varepsilon_{\nu} \in[-\pi, \pi]$ and $\left|\chi_{\nu}\right\rangle$ are the eigenphase and eigenvector corresponding to the ν th Floquet eigenmode. We compute the moments of the eigenstates $\left|\chi_{\nu}\right\rangle$ of the Floquet operator $\hat{\mathcal{F}}_{m}$ at the m th Fibonacci step using the relation given by

$$
\begin{equation*}
I_{q}^{\nu}=\sum_{m_{s}=-S}^{S}\left|\chi_{\nu}\left(m_{s}\right)\right|^{2 q}, \quad I_{q}=\frac{1}{\mathcal{N}} \sum_{\nu} I_{q}^{\nu} \sim \mathcal{N}^{-\tau_{q}} \tag{21}
\end{equation*}
$$

where $\chi_{\nu}\left(m_{s}\right)=\left\langle\chi_{\nu} \mid \alpha_{m_{s}}\right\rangle,\left|\alpha_{m_{s}}\right\rangle$ being the computational basis and $\mathcal{N}=2 S+1$ is the Hilbert space dimension of a noninteracting spin of magnitude S. The exponent τ_{q} is related to the fractal dimension D_{q} as $\tau_{q}=D_{q}(q-1)$ [35,53-55]. The fractal dimension can equivalently be computed from

FIG. 4. (a) Stroboscopic dynamics in the $\operatorname{Re}\left[X_{\Omega}\right]-\operatorname{Im}\left[X_{\Omega}\right]$ plane plotted at the N th Fibonacci step, where N runs from 1 to 10000 for driving parameters $T_{0}=\pi / 100, \lambda=\pi / 50$, and frequency $\Omega=$ $1 / \beta_{G}$. (b) $\left|X_{\Omega}\right|^{2}$ plotted as a function of the maximum Fibonacci step N after an averaging over 10000 realizations of the Fibonacci chain. We find that $\left|X_{\Omega}\right|^{2} \sim N^{1.16}$.
[43,55,56]

$$
\begin{equation*}
D_{q}=\frac{S_{q}^{v}}{\log \mathcal{N}}, \quad S_{q}^{\nu}=-\sum_{m_{s}=-S}^{S} \frac{\log \left|\chi_{\nu}\left(m_{s}\right)\right|^{2 q}}{(q-1)} \tag{22}
\end{equation*}
$$

where $\mathcal{N} \gg 1$ and S_{q}^{v} is the Rényi entropy corresponding to the ν th eigenvector $\left|\chi_{\nu}\right\rangle$. In Figs. 5(a) and 5(b) we have plotted $\log I_{q}$ and the average Rényi entropy $S_{q}=\sum_{\nu} S_{q}^{v} / \mathcal{N}$ respectively as a function of $\log \mathcal{N}$ for different values of q. Using Eqs. (21) and (22) we obtain τ_{q} from the slope of the linear fitting in Figs. 5(a) and 5(b) respectively. The nontrivial behavior of τ_{q} with q is shown in Fig. 5(c) and hence a q-dependent fractal dimension D_{q} confirms the multifractality of the eigenvectors. These plots have been generated after a sufficiently large number of Fibonacci steps, say, $m \sim 30$, after which the behavior does does not change with m as is evident from Fig. 5(c). We also observed that the qualitative behavior remains the same for different choices of the driving parameters λ and T_{0}. It is to be noted that the scaling exponents τ_{q} or D_{q} are related to the statistical properties of the Floquet states and are extracted in the limit of large system size \mathcal{N}, which in our case turns out to be related to the spin magnitude S. Thus τ_{q} and D_{q} are computed from Eqs. (21) and (22), respectively, for a very large spin magnitude S.

Further, we explored the fractality in the eigenspectrum by counting the local number of eigenstates ΔN_{ε} within the interval $\Delta \varepsilon$ around the eigenphase ε. Typically in the limit $\Delta \varepsilon \rightarrow 0$, the local number of eigenstates around ε follows the relation $\Delta N_{\varepsilon} \sim(\Delta \varepsilon)^{\alpha}$, where the exponent $\alpha=1$ is associated with band spectrum, whereas $0<\alpha<1$ indicates a multifractal spectrum $[12,53,57,58]$. In Fig. 5(d) we have shown the variation of ΔN_{ε} with $\Delta \varepsilon$ in a log-log plot at the center of the band ($\varepsilon \simeq 0$). From the slope of the linear fitting in Fig. 5(d) we obtain the exponent $\alpha \simeq 0.69$ which signifies fractality in the Floquet eigenspectrum. It should be noted that in general the value of α can change depending on the choice of energy ε in the band $[12,53]$.

III. EFFECTS OF INTERACTIONS

In this section we study the effects of interactions by considering a system of two interacting spins each of magnitude

FIG. 5. Multifractality of Floquet states: Log-log plot of variation of (a) moments I_{q} and (b) Shannon entropy S_{q} of Floquet states with Hilbert space dimension \mathcal{N}. (c) τ_{q} vs q, extracted from (a) and (b) using Eqs. (21) and (22) respectively, for a typical choice of parameters $\lambda=\pi / 10$ and $T_{0}=\pi / 10$. Note that the graphs calculated for different Fibonacci steps m overlap with each other for sufficiently large m. (d) Multifractal Floquet eigenspectrum: Log-log plot of number of states ΔN_{ε} vs $\Delta \varepsilon$ computed at the band center ($\varepsilon \simeq 0$). The exponent $\alpha \simeq 0.69$ is extracted from the slope of linear fitting of the numerical data points (dots). The parameters used are $T_{0}=\pi / 100, \lambda=\pi / 50$, and $\mathcal{N}=801(S=400)$.
S, and a δ-function kick is applied to both the spins following a Fibonacci sequence. Our goal is to study (i) the fate of the multifractality of the Floquet states and the spectrum of the evolution operator in the presence of interactions and (ii) the validity of the semiclassical dynamics in terms of coherent states for large spins and whether the interactions can lead to thermalization.

The Hamiltonian describing such quasiperiodically driven interacting system is given by

$$
\begin{align*}
\hat{H}(t) & =\hat{H}_{0}+\lambda \hat{S}_{x}^{A / B} \sum_{n=-\infty}^{\infty} \delta\left(t-\sum_{n} T_{n}\right) \\
\hat{H}_{0} & =\hat{S}_{z}^{A}+\hat{S}_{z}^{B}-J \hat{S}_{z}^{A} \hat{S}_{z}^{B} \tag{23}
\end{align*}
$$

This is a simple generalization of the noninteracting model discussed above, where J is the strength of the interaction between the two spins, and the last term represents kicks applied to the two spins following a Fibonacci sequence. The Floquet operators for the first two Fibonacci step are therefore given by

$$
\begin{equation*}
\hat{\mathcal{F}}_{1}^{I}=e^{-i T \hat{H}_{0}} e^{-i \lambda \hat{S}_{x}^{A}}, \quad \hat{\mathcal{F}}_{2}^{I}=e^{-i T \hat{H}_{0}} e^{-i \lambda \hat{S}_{x}^{B}} \tag{24}
\end{equation*}
$$

The subsequent matrices in the Fibonacci sequence are then generated using Eq. (7). By diagonalizing the Floquet matrix $\hat{\mathcal{F}}_{m}^{I}$ we obtain the eigenphases ε_{v} and the corresponding eigenvectors $\left|\chi_{\nu}\right\rangle$ (see Sec. II C). We first compute the spacing between the successive eigenphases, i.e., $\delta_{v}=\varepsilon_{v+1}-\varepsilon_{v}$, and calculate the distribution of the δ_{v} 's following the procedure described in Ref. [59] in order to keep the normalization $\int P(\delta) d \delta=1$ and mean $\int \delta P(\delta) d \delta=1$. In Figs. 6(a)

FIG. 6. [(a) and (b)] Distribution $P(\delta)$ of the spacing between eigenphases δ for $J=0.01$ and $J=5$, respectively, for $S=$ $20\left(\mathcal{N}_{I}=1681\right)$ and computed at Fibonacci step $n=50$. (c) $\log I_{q}$ vs $\log \mathcal{N}_{I}$ and (d) τ_{q} vs q for $J=5$. The behavior of the corresponding noninteracting system $(J=0)$ is shown by the black circles. Here and in the rest of the figures we set $T=\pi / 100$ and $\lambda=\pi / 10$.
and 6(b) we have plotted the normalized quasienergy spacing distribution $P(\delta)$ for small and large values of J, respectively. We note that in the presence of interactions, the fractality of the system vanishes and level repulsion sets in. For large J, $P(\delta)$ resembles the Wigner surmise and corresponds to the Gaussian orthogonal ensemble of random matrix theory as shown in Fig. 6(b); this indicates a possible thermalization of the system for large values of the interaction strength J [60].

We compute the moments of the Floquet eigenstates using Eq. (21) followed by a calculation of the exponent τ_{q} which is related to the fractal dimension D_{q}. In Fig. 6(c) we have plotted $\log I_{q}$ vs $\log \mathcal{N}_{I}$ for different values of q, where $\mathcal{N}_{I}=$ $(2 S+1)^{2}$ is the Hilbert space dimension. From the linear fitting we obtain the slope τ_{q} which we have plotted in Fig. 6(b) as a function of q and compared with the case $J=0$. We note that in contrast to the noninteracting case, we find for finite values of the interaction strength J that $\tau_{q} \sim q$; this implies $D_{q} \sim 1$ indicating an ergodic nature of the Floquet eigenstates.

We further elucidate this fact from the wave packet dynamics. We construct an initial wave function from the product of two spin coherent states given by

$$
\begin{equation*}
\left|\psi_{A B}(0)\right\rangle=|\Theta, \Phi\rangle_{A} \otimes|\Theta, \Phi\rangle_{B} \tag{25}
\end{equation*}
$$

The dynamics of the expectation values of the corresponding spin observables are illustrated in Appendix B. From the timeevolved wave function, $\left|\psi_{A B}(m)\right\rangle=\hat{\mathcal{F}}_{m}^{I}\left|\psi_{A B}(0)\right\rangle$, we compute the reduced density matrix corresponding to either of the spins A and B using the relation,

$$
\begin{equation*}
\hat{\rho}_{A(B)}^{m}=\operatorname{Tr}_{B(A)}\left|\psi_{A B}(m)\right\rangle\left\langle\psi_{A B}(m)\right|, \tag{26}
\end{equation*}
$$

where $\operatorname{Tr}($.$) represents partial tracing with respect to spin B$ or A. In Fig. 7 we have shown the structure of $\hat{\rho}_{A}^{m}$ after Fibonacci step $m=50$ which, we have checked, is sufficient to obtain the steady states. For small values of $J, \hat{\rho}_{A}^{m}$ contains both the diagonal and off-diagonal entries in the eigenbasis

FIG. 7. [(a)-(c)] Time evolution of the subsystem reduced density matrix $\hat{\rho}_{A}$ for $J=0.01$ and $J=5$, respectively, for $S=10$. (d) Plots of the corresponding diagonal elements.
of \hat{S}_{z} indexed by m_{1}, m_{2} which can be observed in Fig. 7 (b). On the other hand, for large values of $J, \hat{\rho}_{A}^{m}$ becomes completely diagonal as is evident from Fig. 7(c), with equally weighted entries, i.e., $\rho_{A}^{m}\left(m_{1}, m_{1}\right) \sim 1 / \mathcal{N}$. Such an observation indicates that in the presence of interactions the coherent state picture is lost and leads us to conclude that the system approaches a diagonal ensemble and thermalizes to infinite temperature [60-63].

IV. CONCLUSIONS

To summarize, we have studied the dynamics of a spin- S object which has a well-defined classical limit and is subjected to quasiperiodic kicks following the Fibonacci sequence. By evolving the corresponding classical Hamiltonian map of the spin variables we obtained the phase portraits which, for small kicking strength λ and time period T_{0}, exhibits regular orbits which precess over an unit sphere. Interestingly, for increasing λ and T_{0} the dynamics appears to be chaotic; however, the Lyapunov exponent vanishes. We have calculated the Sutherland invariant which constrains to some extent the dynamics governed by the transfer matrix with $\mathrm{SO}(3)$ symmetry. Fluctuations of the classical counterpart of the spin dynamics exhibit a fractal structure which is verified by its Fourier spectrum analysis. It turns out that for an initially chosen spin coherent state, the phase coherence is retained during the time evolution under Fibonacci drive even for large λ and T_{0} indicating classical-quantum correspondence. Fractality in classical dynamics is observed from the spectral analysis. More interestingly, the fractality is also present in the internal structure of the Floquet matrix governing the full quantum dynamics which has been investigated from the scaling of the Rényi entropy, as well as from the moments of the Floquet eigenvectors and the quasienergy spectrum. Finally, we have considered two such spin- S objects interacting with each
other and driven quasiperiodically. We have shown that in the presence of the interaction, the fractal behavior vanishes and level repulsion sets in the Floquet quasienergy spectrum. In the dynamics, we observed that for increasing interaction strength J, the average values of the components of spin operators for both the spins saturate to zero and the reduced density matrix for either of the spins becomes diagonal. The emergence of the diagonal ensemble with equally weighted diagonal elements indicates thermalization of the system to infinite temperature and corresponds to the microcanonical ensemble of statistical mechanics.

In conclusion, a quasiperiodically driven large spin system is a simple but fascinating model with multifractal Floquet eigenstates and eigenspectrum, and at the same time its dynamics in the classical limit corresponds to strange nonchaotic attractors. Moreover it exhibits a nonergodic to ergodic transition in the presence of interactions. Kicked spin models have already been realized in experiments considering the angular momentum of an atom in a suitable hyperfine state [64,65]; the kicks can be generated by using a short magnetic pulse [66]. The dynamics of such kicked systems can also be investigated in circuit QED experiments [67]. The signature of fractality and its change to ergodic behavior in the dynamics can be found in the experiments by measuring the discrete time Fourier amplitude spectrum of time varying physical observable such as the spin variables in our study as well from the dimension measurement [34]. The models discussed in our paper can thus be realized and therefore our results can be tested in the similar experiments.

ACKNOWLEDGMENTS

S.R. thanks Anandamohan Ghosh for useful discussions. D.S. thanks Department of Science and Technology (DST), India, Project No. SR/S2/JCB-44/2010 for financial support. S.R. acknowledges the financial support and hospitality provided by Indian Institute of Science Education and Research Kolkata (IISER Kolkata), India for this work.

APPENDIX A: SUTHERLAND INVARIANT FOR SO(3) MATRICES

We consider the transfer matrix J_{n}, given in Eq. (5) which is a $\mathrm{SO}(3)$ matrix. Starting with two such matrices J_{1} and J_{2}

FIG. 8. [(a) and (b)] Time evolution of $\left\langle\hat{S}_{x, y, z}^{A, B}\right\rangle$ for $J=0.01$ and $J=5$, respectively, for $S=10$.
given by

$$
\begin{equation*}
J_{1}=e^{-i \lambda T_{x}} \quad \text { and } \quad J_{2}=e^{-i 2 T_{0} T_{z}} e^{-i \lambda T_{x}} \tag{A1}
\end{equation*}
$$

we find that the corresponding Sutherland invariant is

$$
\begin{equation*}
I_{s}=-\left[\sin T_{0} \sin (\lambda / 2)\right]^{2} \tag{A2}
\end{equation*}
$$

We have checked numerically up to a large Fibonacci step $m \sim 1000$ that I_{s} remains constant during the time evolution.

It is known that the m th Fibonacci number, given by $F_{m}=$ [$\left.\beta_{G}^{m}-\frac{(-1)^{m}}{\beta_{G}^{m}}\right] / \sqrt{5}$, quickly approaches the value $\beta_{G}^{m} / \sqrt{5}$ as m increases. We then find that

$$
\begin{equation*}
J_{m}=e^{-i \beta_{G}^{m}\left[\lambda T_{x}+\left(2 T_{0} / \beta_{G}\right) T_{z}\right] / \sqrt{5}} \tag{A3}
\end{equation*}
$$

which has been derived under the approximation that $\lambda, T_{0} \ll$ 1 so that the commutators arising from $\left[T_{i}, T_{j}\right]$ do not grow much within a small timescale. This leads us to define

$$
\begin{equation*}
\phi_{m}=-\frac{\beta_{G}^{m}}{\sqrt{5}} \bar{\lambda} \quad \text { and } \quad \hat{e}_{m}=\frac{1}{\bar{\lambda}}\left(\lambda, 0,2 T_{0} / \beta_{G}\right) \tag{A4}
\end{equation*}
$$

where $\bar{\lambda}=\sqrt{\lambda^{2}+4 T_{0}^{2} / \beta_{G}^{2}}$.

APPENDIX B: DYNAMICS OF SPIN OBSERVABLES IN THE PRESENCE OF INTERACTION

To study the dynamics of the spin variables, we compute the expectation values of the spin operators, i.e., $\left\langle\hat{S}_{x, y, z}^{A, B}\right\rangle$, where \langle.$\rangle is taken from the time-evolved wave function \left|\psi_{A B}(m)\right\rangle=$ $\hat{\mathcal{F}}_{m}^{I}\left|\psi_{A B}(0)\right\rangle$.

We observe that for small values of the interaction strength $J,\left\langle\hat{S}_{x, y, z}^{A, B}\right\rangle$ saturates to different nonzero values, whereas for large J, all the spin observables decays to zero as depicted in Figs. 8(a) and 8(b), respectively.
[1] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Rev. Lett. 53, 1951 (1984).
[2] P. J. Steinhardt and S. Ostlund, The Physics of Quasicrystals (World Scientific, Singapore, 1987).
[3] A. I. Goldman and R. F. Kelton, Rev. Mod. Phys. 65, 213 (1993).
[4] R. Lifshitz, Rev. Mod. Phys. 69, 1181 (1997).
[5] M. Quilichini, Rev. Mod. Phys. 69, 277 (1997).
[6] G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, and M. Inguscio, Nature (London) 453, 895 (2008).
[7] C. Aulbach, A. Wobst, G. L. Ingold, P. Hänggi, and I. Varga, New J. Phys. 6, 70 (2004); M. Modugno, ibid. 11, 033023 (2009).
[8] S. Iyer, V. Oganesyan, G. Refael, and D. A. Huse, Phys. Rev. B 87, 134202 (2013).
[9] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H. Fischer, R. Vosk, E. Altman, U. Schneider, and I. Bloch, Science 349, 842 (2015).
[10] P. Bordia, H. P. Lüschen, S. S. Hodgman, M. Schreiber, I. Bloch, and U. Schneider, Phys. Rev. Lett. 116, 140401 (2016).
[11] F. Piéchon, Phys. Rev. Lett. 76, 4372 (1996); S. Abe and H. Hiramoto, Phys. Rev. A 36, 5349 (1987).
[12] M. Kohmoto, Phys. Rev. Lett. 51, 1198 (1983); C. Tang and M. Kohmoto, Phys. Rev. B 34, 2041 (1986); M. Kohmoto, B. Sutherland, and C. Tang, ibid. 35, 1020 (1987).
[13] X. Deng, S. Ray, S. Sinha, G. V. Shlyapnikov, and L. Santos, Phys. Rev. Lett. 123, 025301 (2019); A. Szabó and U. Schneider, Phys. Rev. B 98, 134201 (2018).
[14] V. K. Varma, C. de Mulatier, and M. Žnidaric, Phys. Rev. E 96, 032130 (2017).
[15] P. J. D. Crowley, I. Martin, and A. Chandran, Phys. Rev. B 99, 064306 (2019).
[16] S. Aubry and G. André, Ann. Isr. Phys. Soc. 3, 133 (1980).
[17] Y. Lahini, R. Pugatch, F. Pozzi, M. Sorel, R. Morandotti, N. Davidson, and Y. Silberberg, Phys. Rev. Lett. 103, 013901 (2009).
[18] R. Nandkishore and D. A. Huse, Annu. Rev. Condens. Matter Phys. 6, 15 (2015); E. Altman and R. Vosk, ibid. 6, 383 (2015).
[19] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Rev. Mod. Phys. 91, 021001 (2019).
[20] P. Bordia, H. Lüschen, U. Schneider, M. Knap, and I. Bloch, Nat. Phys. 13, 460 (2017).
[21] P. Ponte, A. Chandran, Z. Papić, and D. A. Abanin, Ann. Phys. 353, 196 (2015); P. Ponte, Z. Papić, F. Huveneers, and D. A. Abanin, Phys. Rev. Lett. 114, 140401 (2015).
[22] L. D'Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, Adv. Phys. 65, 239 (2016).
[23] S. Ray, A. Ghosh, and S. Sinha, Phys. Rev. E 97, 010101(R) (2018); S. Ray, S. Sinha, and K. Sengupta, Phys. Rev. A 98, 053631 (2018).
[24] S. Nandy, A. Sen, and D. Sen, Phys. Rev. B 98, 245144 (2018).
[25] S. Maity, U. Bhattacharya, A. Dutta, and D. Sen, Phys. Rev. B 99, 020306(R) (2019).
[26] S. Ostlund, R. Pandit, D. Rand, H. J. Schellnhuber, and E. D. Siggia, Phys. Rev. Lett. 50, 1873 (1983).
[27] M. Kohmoto, L. P. Kadanoff, and C. Tang, Phys. Rev. Lett. 50, 1870 (1983).
[28] B. Sutherland, Phys. Rev. Lett. 57, 770 (1986).
[29] K. Singh, K. Saha, S. A. Parameswaran, and D. M. Weld, Phys. Rev. A 92, 063426 (2015); B. Pal and K. Saha, Phys. Rev. B 97, 195101 (2018).
[30] D. Ruelle and F. Takens, Commun. Math. Phys. 20, 167 (1971); C. Grebogi, E. Ott, S. Pelikan, and J. A. Yorke, Physica D (Amsterdam) 13, 261 (1984).
[31] A. S. Pikovsky and U. Feudel, J. Phys. A 27, 5209 (1994).
[32] T. Yalcinkaya and Y. C. Lai, Phys. Rev. E 56, 1623 (1997).
[33] M. Agrawal, A. Prasad, and R. Ramaswamy, Phys. Rev. E 81, 026202 (2010).
[34] W. L. Ditto, M. L. Spano, H. T. Savage, S. N. Rauseo, J. Heagy, and E. Ott, Phys. Rev. Lett. 65, 533 (1990).
[35] I. Guarneri and M. D. Meo, J. Phys. A 28, 2717 (1995).
[36] J. M. Luck, H. Orland, and U. Smilansky, J. Stat. Phys. 53, 551 (1988).
[37] P. M. Blekher, H. R. Jauslin, and J. L. Lebowitz, J. Stat. Phys. 68, 271 (1992).
[38] T. Geisel, Phys. Rev. A 41, 2989 (1990).
[39] P. T. Dumitrescu, R. Vasseur, and A. C. Potter, Phys. Rev. Lett. 120, 070602 (2018).
[40] E. Altman, Nat. Phys. 14, 979 (2018); D. J. Luitz and Y. Bar Lev, Phys. Rev. Lett. 117, 170404 (2016); E. J. Torres-Herrera and L. F. Santos, Phys. Rev. B 92, 014208 (2015); M. Serbyn, Z. Papić, and D. A. Abanin, ibid. 96, 104201 (2017).
[41] B. L. Altshuler, E. Cuevas, L. B. Ioffe, and V. E. Kravtsov, Phys. Rev. Lett. 117, 156601 (2016); M. Pino, L. B. Ioffe, and B. L. Altshuler, Proc. Natl. Acad. Sci. USA 113, 536 (2016); A. De Luca, B. L. Altshuler, V. E. Kravtsov, and A. Scardicchio, Phys. Rev. Lett. 113, 046806 (2014)
[42] C. Monthus, J. Stat. Mech. (2016) 073301; T. Micklitz, F. Monteiro, and A. Altland, Phys. Rev. Lett. 123, 125701 (2019).
[43] Y. Y. Atas and E. Bogomolny, Phys. Rev. E 86, 021104 (2012); Philos. Trans. R. Soc. Lond. A 372, 20120520 (2014).
[44] J. Lindinger, A. Buchleitner, and A. Rodríguez, Phys. Rev. Lett. 122, 106603 (2019).
[45] J.-M. Stéphan, G. Misguich, and V. Pasquier, Phys. Rev. B 84, 195128 (2011).
[46] A. Richardella, P. Roushan, S. Mack, B. Zhou, D. A. Huse, D. D. Awschalom, and A. Yazdani, Science 327, 665 (2010).
[47] Here we call the time evolution operator between two consecutive kicks the Floquet operator.
[48] R. Blümel, Phys. Rev. Lett. 73, 428 (1994).
[49] R. Schack, Phys. Rev. Lett. 75, 581 (1995).
[50] A. S. Pikovsky, M. A. Zaks, and J. Kurths, J. Phys. A 29, 295 (1996).
[51] J. M. Radcliffe, J. Phys. A 4, 313 (1971).
[52] R. Gati and M. K. Oberthaler, J. Phys. B 40, 61 (2007).
[53] J. X. Zhong and T. Geisel, Phys. Rev. E 59, 4071 (1999).
[54] S. Roy, I. M. Khaymovich, A. Das, and R. Moessner, SciPost Phys. 4, 025 (2018).
[55] E. J. Torres-Herrera and L. F. Santos, Ann. Phys. (Berlin) 529, 1600284 (2017).
[56] X. Chen, B. Hsu, T. L. Hughes, and E. Fradkin, Phys. Rev. B 86, 134201 (2012).
[57] R. Ketzmerick, K. Kruse, and T. Geisel, Phys. Rev. Lett. 80, 137 (1998).
[58] S. Ostlund and R. Pandit, Phys. Rev. B 29, 1394 (1984).
[59] F. Haake, Quantum Signatures of Chaos, Springer Series in Synergetics, Vol. 54 (Springer, Berlin, 2010).
[60] S. Ray, A. Ghosh, and S. Sinha, Phys. Rev. E 94, 032103 (2016).
[61] A. Russomanno, R. Fazio, and G. E. Santoro, Europhys. Lett. 110, 37005 (2015).
[62] N. Regnault and R. Nandkishore, Phys. Rev. B 93, 104203 (2016).
[63] L. D'Alessio and M. Rigol, Phys. Rev. X 4, 041048 (2014).
[64] G. A. Smith, A. Silberfarb, I. H. Deutsch, and P. S. Jessen, Phys. Rev. Lett. 97, 180403 (2006).
[65] S. Chaudhury, S. Merkel, T. Herr, A. Silberfarb, I. H. Deutsch, and P. S. Jessen, Phys. Rev. Lett. 99, 163002 (2007).
[66] S. Chaudhury, A. Smith, B. E. Anderson, S. Ghose, and P. S. Jessen, Nature (London) 461, 768 (2009).
[67] C. Neill, P. Roushan, M. Fang, Y. Chen, M. Kolodrubetz, Z. Chen, A. Megrant, R. Barends, B. Campbell, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Kelly, J. Mutus, P. J. J. O’Malley, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. Polkovnikov, and J. M. Martinis, Nat. Phys. 12, 1037 (2016).

