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Abstract— The problem of two-sender unicast index coding
consists of two senders and a set of receivers. Each receiver
demands a unique message not demanded by any other receiver
and has a subset of messages as its side information. Every
demanded message is available with at least one of the senders.
The senders avail the knowledge of the side information at all the
receivers to reduce the total number of transmissions required
to satisfy the demands of all the receivers. The objective is to
find the minimum total of number of transmissions per message
length (known as the optimal broadcast rate with finite length
messages) and its limiting value as the message length tends to
infinity (called the optimal broadcast rate). Achievable broadcast
rates are provided for a class of the two-sender unicast index
coding problem based on a special graph coloring technique
called two-sender graph coloring. This result illustrates the utility
of graph products in the two-sender unicast index coding problem
for the first time in the literature. For another class, achievable
broadcast rates are provided based on the optimal broadcast rates
of three single-sender sub-problems with finite message length.
This employs a code construction for the two-sender unicast index
coding problem using optimal codes (including non-linear codes)
of the sub-problems. Optimal broadcast rates are provided for a
special class of the TUICP for which only an upper bound was
known prior to this work. The optimal broadcast rates presented
in this work also consider non-linear coding schemes at the two
senders.

Index Terms— Index coding, side-information, two-sender
unicast index coding, optimal broadcast rate.

I. INTRODUCTION

THE index coding problem (ICP) with a single sender was
introduced in [1]. Each receiver has some messages as

its side information and demands some message it does not
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have. The sender avails the cognizance of the side information
available at all the receivers to minimize the number of trans-
missions required to satisfy the demands of all the receivers.
Many practical scenarios require distributed transmissions
where the messages are distributed among multiple senders.
Content is delivered in cellular networks using large storage
capacity nodes called caching helpers [2], where the messages
are distributed among the helpers to reduce the total average
delay of all the users. Data is stored over multiple storage
nodes to account for any failure in one or more storage nodes
in distributed storage networks [3], [4]. Hence, the multi-
sender ICP is of practical significance.

A special class of the multi-sender ICP where each receiver
knows a unique message not known by any other receiver and
demands any subset of other messages was studied in [5].
Different lower bounds on the optimal code length were
obtained using an iterative algorithm and optimal codes were
presented for a special subclass of the multi-sender ICP.
The multi-sender unicast ICP where each receiver demands
a unique message which is not demanded by other receivers
was studied in [6] as a rank-minimization problem. A heuristic
algorithm was proposed to obtain sub-optimal linear multi-
sender index codes in general. Many variations of the multi-
sender ICP were studied and inner and outer bounds on the
capacity region were given [7]–[9]. These works assume that
there are independent channels with fixed finite capacities from
every sender to every receiver. This is in contrast with the
previous works where a single noiseless broadcast channel was
assumed, with the transmissions from multiple senders being
orthogonal in time.

As a basic case of the multi-sender unicast ICP,
the two-sender unicast ICP (TUICP) was first studied by
Thapa et al. [10]. Single-sender index coding schemes based
on graph theory were extended to the TUICP. Thapa et al. [11]
studied the TUICP using a new variation of graph color-
ing called the two-sender graph coloring to account for the
non-availability of some messages at each sender. The TUICP
described by the side information digraph and the message
sets available at the two senders, was analyzed using three
sub-problems considered as single-sender unicast ICPs and
the relation between them. The TUICP was divided into
36 classes based on the relation among the three single-sender
sub-problems. Optimal broadcast rate (which is defined as
the optimal code length per message bit) with finite length
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TABLE I

SUMMARY OF THE ACHIEVABILITY RESULTS FOR ANY TUICP WITH
FULLY-PARTICIPATED INTERACTIONS BETWEEN THE SUB-DIGRAPHS

Dk,P
1 ,Dk,P

2 , AND Dk,P
3 OF THE SIDE INFORMATION DIGRAPH Dk .

THE LISTING OF ALL THE INTERACTION DIGRAPHS Hk AND

THE RELATED CASES IS GIVEN IN FIG. 3

messages was obtained using the two-sender graph coloring of
a related graph for a special class of the TUICP. Upper bounds
on the optimal broadcast rate with finite length messages were
obtained for other classes in terms of the optimal broadcast
rates (with finite length messages) of the three sub-problems
based on different code constructions. A sub-class was iden-
tified for which these results are optimal. Upper bounds on
the optimal broadcast rate (as the message length tends to
infinity) were obtained in terms of the optimal broadcast rates
of the sub-problems and a sub-class was identified where the
results are optimal. Optimal scalar linear codes were presented
for some special classes of the TUICP using the notion of
joint extensions of two single-sender unicast ICPs [13]. Opti-
mal linear broadcast rates (considering only linear encoding
schemes at the senders) with finite length messages, optimal
linear broadcast rates as message length tends to infinity, and
optimal code constructions were provided for a special class
of the TUICP in [14].

We summarize our results related to the optimal broadcast
rates with finite length messages in Table I. Our results related
to the optimal broadcast rates and those given in [11] are
summarized in Table II. Any TUICP is described by a side
information digraph D and a triple of message sets given
by P . The vertices of D represent the demands of the receivers
and the outgoing edges represent their side information. The
sub-digraph of D induced by the messages available with only
the first sender is denoted by D1. Similarly, we define D2.
The sub-digraph induced by the common messages at both the
senders is denoted by D3. The TUICP is classified (as in [11])
into different cases based on the relation between D1, D2, and
D3 in D, which is captured by its interaction digraph denoted
by H. We obtain H with the vertex set {1, 2, 3}, by replacing
Di with the vertex i, for all i ∈ {1, 2, 3}. The edge (i, j)
exists (equivalently we say that the interaction Di → Dj

exists), if there exists an edge from at least one vertex in Di to
some vertex in Dj , i, j ∈ {1, 2, 3}. The interaction Di → Dj

is said to be fully-participated if there are edges from every
vertex of Di to every vertex of Dj . There exist 36 possible
interaction digraphs listed in Fig. 3. All interaction digraphs
without cycles constitute Case I. All interaction digraphs with
the edges (1, 2) and (2, 1), and no outgoing edges from
vertex 3 constitute Case II-A. All interaction digraphs with
the edges (1, 3), (3, 1), (2, 3) and (3, 2) constitute Case II-B.
All interaction digraphs with the edges (1, 3) and (3, 1),
and possibly having one of the edges (2, 3) and (3, 2) (not

both) constitute Case II-C. The remaining interaction digraphs
constitute Case II-D. The side information digraphs D and
{Di}i∈{1,2,3} have the superscript k, if they are associated
with the interaction digraph Hk, for k ∈ {1, 2, · · · , 36}. The
notation βt and pt denote the optimal broadcast rate and an
achievable broadcast rate with t-bit messages respectively. The
notation β denotes the asymptotic value of βt as t tends to
infinity. The results given in Tables I and II hold for TUICPs
with all the existing interactions being fully-participated. The
notation and definitions required to understand the results in
detail are given in Sections II and III. Note that the complexity
of finding the optimal broadcast rate for this class of the
TUICP (with fully-participated interactions) is reduced to that
of finding the optimal broadcast rate for the single-sender
unicast ICP, which is an NP-hard problem in general.

The key results of this paper are summarized as
follows.

• We identify some symmetries of the confusion graph
(Lemma 6, Section III) and exploit it to color the same
using two-sender graph coloring. This yields an achiev-
able broadcast rate with finite length messages for any
TUICP with fully-participated interactions and the inter-
action digraph being Hk, k ∈ {10, 12, 14} (Theorem 1,
Section IV). Using a by-product of the above result
(Corollary 1, Section IV), we also note that the coloring
yields a non-linear index code, if certain conditions on
the optimal broadcast rates (with finite length messages)
of the sub-problems are satisfied (Note 1, Section IV).
As far as the authors’ knowledge, this is the first result
on deterministic finite length non-linear index codes for
the TUICP.

• We then establish the optimal broadcast rates of TUICPs
belonging to Case II-C with fully-participated interac-
tions, in terms of those of their sub-problems, for which
only upper bounds were given in [11] (Theorem 2,
Section V.A). This result exploits a known result on
the criticality of side information in single-sender ICP.
We also identify that the results also hold for some
TUICPs with specific partially-participated interactions
belonging to Case II-C (Note 2, Section V.A).

• We then establish an achievable broadcast rate with finite
length messages for all TUICPs with fully-participated
interactions belonging to Case II-D, in terms of the
optimal broadcast rates (with finite length messages)
of their sub-problems (Theorem 3, Section V.B). This
serves as a tighter upper bound on the optimal broadcast
rate with finite length messages, compared to the one
established in [11].

• We then establish the optimal broadcast rate of
TUICPs with fully-participated interactions belonging to
Case II-D, in terms of those of their sub-problems, for
which only upper bounds were given in [11] (Theorem 4,
Section V.C). We also identify that the results also hold
for TUICPs with specific partially-participated interac-
tions with the interaction digraph being H34 (Note 3,
Section V.C).

• The results of Theorems 2 and 4 in conjunction with the
results established in [11], complete the characterization
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TABLE II

OPTIMAL BROADCAST RATES FOR ANY TUICP WITH FULLY-PARTICIPATED INTERACTIONS BETWEEN THE SUB-DIGRAPHSDk,P
1 ,Dk,P

2 , AND Dk,P
3

OF THE SIDE INFORMATION DIGRAPH Dk . THE LISTING OF ALL THE CASES IS GIVEN IN FIG. 3

of the optimal broadcast rates of all TUICPs with
fully-participated interactions (Table II).

The remainder of the paper is organized as follows.
Section II introduces the problem setup and establishes the
required definitions and notation. Section III recapitulates the
notion of the confusion graph and related two-sender graph
coloring. Section IV provides achievable broadcast rates with
finite-length messages, for three sub-cases of the TUICP with
fully-participated interactions belonging to Case I. Section V
provides optimal broadcast rates for all the TUICPs with fully-
participated interactions belonging to Cases II-C and II-D, for
which only upper bounds were known. Section VI concludes
the paper.

II. PROBLEM FORMULATION AND DEFINITIONS

In this section, we formulate the two-sender unicast
ICP (TUICP) and establish the notation and definitions used
in this paper.

For any natural number n, let [n] � {1, 2, · · · , n}. A
given instance of the TUICP consists of two senders col-
lectively having m independent message symbols given by
M = {x1,x2, · · · ,xm}, where xi ∈ F

t×1
2 , ∀i ∈ [m], and

t ≥ 1. The sth sender denoted by Ss, s ∈ {1, 2}, has the
message set Ms, where Ms ⊆ M, and M1 ∪ M2 = M.
The identity of the messages available with each sender is
known to the other. The senders transmit through a noiseless
broadcast channel. Transmissions from different senders are
orthogonal in time. There are m receivers, each receiving
all the transmissions from both the senders. The ith receiver
demands xi and has Ki ⊆ M \ {xi} as its side information.
The single-sender unicast ICP (SUICP) is a special case of
TUICP, where either M1 = M or M2 = M. The goal of the
TUICP is to design coding schemes at the two senders (also
called a two-sender index code) such that the total number
of transmissions from the senders is minimized, while all
the receivers are able to decode their demands using their
side information. An encoding function for the sender Ss is
given by Es : F

|Ms|t×1
2 → F

ls×1
2 , such that Cs = Es(Ms),

where ls is the length of the codeword Cs transmitted by Ss,
s ∈ {1, 2}. The ith receiver has a decoding function given by
Di : F

(l1+l2+|Ki|t)×1
2 → F

t×1
2 , such that xi = Di(C1, C2,Ki),

∀i ∈ [m], i.e., it can decode xi using its side information and
the received codewords C1 and C2. Without loss of generality,
we assume that for the SUICP only E1 exists and l2 = 0.

We state the definitions of the broadcast rate of an index
code (single-sender or two-sender), the optimal broadcast rate
of an ICP (single-sender or two-sender) with t-bit messages
for any finite t, and the optimal broadcast rate of the same,
as given in [11]. Note that the definitions take into account
both linear and non-linear encoding schemes.

Definition 1 (Broadcast rate, [11]): The broadcast rate of
an index code (for a single-sender problem or a two-sender
problem) described by ({Ej}, {Di}) is the total number of
transmitted bits per received message bit (for finite length
messages), given by pt � (l1+l2)

t .
The optimal (minimum) length of any index code for a given

ICP and t-bit messages is called the optimal code length. Note
that for the SUICP, only E1 exists and hence pt = l1

t .
Definition 2 (Optimal broadcast rate with t-bit messages for

any finite t, [11]): The optimal broadcast rate for a given ICP
with t-bit messages and any finite t is given by βt � min

{Ej}
pt.

Definition 3 (Optimal broadcast rate, [11]): The optimal
broadcast rate of a given ICP (single-sender or two-sender)
is given by β � inf

t
βt = lim

t→∞βt.
We state some definitions from graph theory that will be

used in this paper.
A directed graph (also called digraph) given by D =

(V(D), E(D)), consists of a set of vertices V(D), and a set
of edges E(D) which is a set of ordered pairs of vertices.
A sub-digraph G of a digraph D satisfies V(G) ⊆ V(D) and
E(G) ⊆ E(D). The sub-digraph of D induced by the vertex
set V(G) is the digraph with the vertex set V(G), and the edge
set given by E(G) = {(u, v) : u, v ∈ V(G), (u, v) ∈ E(D)}. A
directed path in a digraph D is a sequence of distinct vertices
{vi1 , · · · , vir}, such that (vij , vij+1 ) ∈ E(D), ∀j ∈ [r − 1].
A cycle in a digraph D is a sequence of distinct vertices
(vi1 , · · · , vic), such that (vij , vij+1 ) ∈ E(D), ∀j ∈ [c − 1],
and (vic , vi1) ∈ E(D). For an undirected graph, the edge set
consists of a set of unordered pairs of vertices. Two vertices
are said to be adjacent if there exists an edge between them.
A proper graph coloring of an undirected graph D is an onto
function J : V(D) → J where J is a set of colors such
that, if (u, v) ∈ E(D), then J(u) �= J(v). The minimum
number of colors required for any proper coloring of D is its
chromatic number and is denoted by χ(D). Two undirected
graphs G and H are said to be isomorphic if there exists a
bijection between V(G) and V(H) given by f : V(G) →
V(H), such that (u, v) ∈ E(G) iff (f(u), f(v)) ∈ E(H).
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Fig. 1. Lexicographic product and disjunctive product of G1 and G2.

The following graph products of any two given undirected
graphs are used in this work and illustrated with an example
in Fig. 1.

Definition 4 (Lexicographic product): The lexicographic
product G of two undirected graphs G1 and G2 is
denoted by G1 ◦ G2, where V(G) = V(G1) × V(G2) and
((u1, u2), (v1, v2)) ∈ E(G) iff (u1, v1) ∈ E(G1) or ((u1 = v1)
and (u2, v2) ∈ E(G2)).

Definition 5 (Disjunctive product): The disjunctive product
G is denoted by G1 ∗ G2, where V(G) = V(G1) × V(G2) and
((u1, u2), (v1, v2)) ∈ E(G) iff (u1, v1) ∈ E(G1) or (u2, v2) ∈
E(G2).

For any unicast ICP (single-sender or two-sender),
the knowledge of side information and demands of all the
receivers is represented by the side information digraph D =
(V(D), E(D)), where the vertex set is given by V(D) =
{v1, · · · , vm}. The vertex vi represents the ith receiver which
demands the message xi. Due to the one-to-one relationship
between the ith receiver and xi, vi also represents xi. Hence,
we refer to vi as the ith message, the ith receiver and the
ith vertex interchangeably. The edge set is given by E(D) =
{(vi, vj) : xj ∈ Ki, i, j ∈ [m]}. The sets P1 = M1 \M2 and
P2 = M2 \ M1 contain the messages available only at S1

and S2 respectively. The set of messages available at both the
senders is P3 = M1 ∩M2. Let mi = |Pi|, i ∈ {1, 2, 3}. Let
P = (P1,P2,P3). Any TUICP I can be described in terms
of the tuple (D,P) as I(D,P). The optimal broadcast rates
β and βt of any TUICP I(D,P) are denoted by β(D,P) and
βt(D,P) respectively. Similarly, an achievable broadcast rate
pt is denoted by pt(D,P). For the single-sender unicast ICP
with side information digraph D, the β and βt are denoted by
β(D) and βt(D).

The TUICP has been analyzed using three disjoint
sub-digraphs of the side information digraph (equivalently
three sub-problems) induced by the three disjoint vertex sets
Ps, s ∈ {1, 2, 3} [11]. Let Ds be the sub-digraph of D
induced by the vertices {vj : xj ∈ Ps, j ∈ [m]}, where
s ∈ {1, 2, 3}. If there exists an edge from some vertex in
V(Di) to some vertex in V(Dj) in the side information digraph
D, i, j ∈ {1, 2, 3}, i �= j, then we say that there is an
interaction from Di to Dj , and denote it by Di → Dj . We say
that the interaction Di → Dj is fully-participated if there are
edges from every vertex in V(Di) to every vertex in V(Dj).
Otherwise, it is said to be a partially-participated interaction.
We say that the TUICP has fully-participated interactions if
all the existing interactions are fully-participated interactions.
For a given TUICP, an associated digraph called the interaction
digraph which captures the type of interactions between the
sub-digraphs of the side information digraph was introduced
in [11] without any name.

Definition 6 (Interaction digraph, [14]): For a given TUICP
I(D,P), the digraph H with V(H) = {1, 2, 3} and E(H) =
{(i, j)|Di → Dj , i �= j, i, j ∈ {1, 2, 3}}, is defined as the
interaction digraph of the side information digraph D.

Note that a given side information digraph can correspond
to different interaction digraphs based on the choice of the
message tuple P . The edges (i, j) and (j, i) in any interaction
digraph are denoted by a single edge with arrows at both ends,
i, j ∈ {1, 2, 3}. There are 64 possibilities for the digraph H.
As there are a maximum of 6 possible interactions between
all pairs of vertices of any interaction digraph, we have 64 (=
26) possible interaction digraphs. Out of the 64 digraphs,
some can be obtained by swapping the vertices 1 and 2 of
other digraphs (correspondingly exchanging the labels of the
senders and the sub-digraphs D1 and D2). Removing these
redundant digraphs, we get 36 unique interaction digraphs
as given in Fig. 3, which have been listed and classified
in [11]. The number written below each interaction digraph
in the figure is used as the subscript to denote the specific
interaction digraph. The side information digraph D describing
a given TUICP with the interaction digraph Hk is denoted by
Dk, k ∈ [36]. For any TUICP I(Dk,P), the corresponding
sub-digraphs Di, i ∈ {1, 2, 3}, are denoted as Dk,P

i . Note
that all the possible interaction digraphs are classified into
two cases broadly: Case I and Case II. Case I consists of
acyclic interaction digraphs (i.e., with no cycles). Case II is
further classified into four sub-cases as shown in Fig. 3. The
expression for the optimal broadcast rate of any TUICP with
fully-participated interactions belonging to any given sub-case
of Case II (Cases II-A, II-B, II-C, and II-D), in terms of those
of the sub-problems is the same (as listed in Table II). This
is the basis for the classification given in Fig. 3. We illustrate
the above definitions using an example.

Example 1: Consider the TUICP with m = 5 messages
with the side information digraph and the corresponding
interaction digraph given in Fig. 2. Sender S1 has M1 =
{x1,x2,x5}, and S2 has M2 = {x3,x4,x5}. Hence, P1 =
{x1,x2}, P2 = {x3,x4}, and P3 = {x5}. The side informa-
tion of all the receivers are given as follows: K1 = {x2,x5},
K2 = {x1}, K3 = {x4,x5}, K4 = {x3}, K5 = {x1,x2}.
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Fig. 2. The interaction digraph and the sub-digraphs of the given side
information digraph of the TUICP given in Example 1.

The interaction digraph given in Fig. 2 is H24 as listed
in Fig. 3. Hence, the side information digraph is denoted
as D24. The vertex-induced sub-digraphs D24,P

1 , D24,P
2 , and

D24,P
3 are also shown in Fig. 2. Note that the interaction

D24,P
3 → D24,P

1 is fully-participated. Others are partially-
participated interactions.

The following notations are required for the construction
of a two-sender index code from single-sender index codes.
Let C1 and C2 be two codewords of length l1 and l2 respec-
tively. C1 ⊕ C2 denotes the bit-wise XOR of C1 and C2 after
zero-padding the shorter codeword at the least significant
positions to match the length of the longer codeword. For
example, if C1 = 1010, and C2 = 110, then C1 ⊕ C2 = 0110.
The notation C[a : b] denotes the vector obtained by picking
the bits from bit position a to bit position b, starting from the
most significant position of the codeword C, with a, b ∈ [l], l
being the length of C. For example C1[2 : 4] = 010.

III. CONFUSION GRAPHS AND THE TWO-SENDER

GRAPH COLORING

In this section, we review confusion graphs and recapitulate
some results on the two-sender graph coloring of confusion
graphs provided in [11]. We also provide some definitions
(Definitions 9 and 10) which are used to describe the symme-
tries of the confusion graph. Then, we state and prove a lemma
which is used to establish the main results in this paper.

Consider the unicast ICP (single-sender or two-sender)
described by the side information digraph D with m messages.
Let x = (u1, . . . ,um) and x� = (v1, . . . ,vm) be two tuples of
realizations of m messages, where ui,vi ∈ F

t
2, ∀i ∈ [m]. The

tuples x and x� are said to be confusable at the ith receiver,
if ui �= vi and uj = vj for all j such that xj ∈ Ki. Two
tuples are said to be confusable if they are confusable at
some receiver. Confusion at a receiver refers to existence of
confusable tuples at the receiver. Two tuples of realizations of
m messages that are confusable cannot be encoded to the same
codeword as one of the receivers cannot decode the demanded
message successfully. The confusion graph has been originally
introduced in [15] and defined as follows for the unicast ICP.

Definition 7 (Confusion graph, [11]): The confusion graph
of a side information digraph D with m vertices and t-
bit messages is an undirected graph, denoted by Γt(D) =
(V(Γt(D)), E(Γt(D))), where V(Γt(D)) = {x : x ∈ F

mt
2 }

and E(Γt(D)) = {(x,x�) : x and x� are confusable}.
We use the following notation used in [11], in the context of

confusion graphs. Each realization of the bits of concatenated

messages belonging to P1, P2, and P3, (i.e., each element
of F

tm1
2 , F

tm2
2 and F

tm3
2 respectively), is represented by

unique tuples bi
P1

, bj
P2

, and bk
P3

. Superscripts i, i� ∈ [2tm1 ],
j, j� ∈ [2tm2 ], and k, k� ∈ [2tm3 ] are used to represent possible
realizations of concatenation of all the messages belonging to
P1,P2, and P3 of tm1, tm2, and tm3 bits. Each message tuple
(x1, . . . ,xm) can be uniquely written as (bi

P1
,bj

P2
,bk

P3
) for

some i, j, and k. Hence, each vertex of the confusion graph
is labelled by a unique tuple (bi

P1
,bj

P2
,bk

P3
).

Consider a valid coloring of the confusion graph Γt(D)
with a set of colors J . This results in |J | sets of vertices,
such that all the vertices in a given set are colored with a
unique color. Each set of vertices is independent and can
be coded into the same codeword, as no pair of vertices in
the given set are confusable. Hence, sending a codeword is
equivalent to sending the identity of a color. As χ(Γt(D))
is the minimum number of colors required, the optimal code
length is log2 χ(Γt(D))� bits. The classical graph coloring
of the confusion graph will not yield the optimal code length
for the TUICP, as there is a constraint on the coloring
due to the non-availability of some messages at one of the
senders. To account for the encoding done by the two senders,
two-sender graph coloring has been introduced in [11].

Definition 8 (Two-sender graph coloring of Γt(D), [11]):
Let two onto functions J1 : F

tm1
2 × F

tm3
2 → J1 and

J2 : F
tm2
2 × F

tm3
2 → J2 be the coloring functions carried

out by senders S1 and S2 respectively. A proper two-sender
graph coloring of Γt(D) is an onto function J0 : F

tm1
2 ×

F
tm2
2 × F

tm3
2 → J1 × J2 where Jo((bi

P1
,bj

P2
,bk

P3
)) =

(J1(bi
P1

,bk
P3

), J2(b
j
P2

,bk
P3

)) such that if (bi
P1

,bj
P2

,bk
P3

)
and (bi�

P1
,bj�

P2
,bk�

P3
) are adjacent vertices of Γt(D), then

Jo((bi
P1

,bj
P2

,bk
P3

)) �= Jo((bi�
P1

,bj�
P2

,bk�
P3

)).
Note that the two ordered pairs of colors (c1, c2) and

(c�1, c
�
2), where ci, c

�
i ∈ Ji, i ∈ {1, 2} are said to be different

iff c1 �= c�1 or c2 �= c�2. We recapitulate some results on the
two-sender graph coloring stated as Lemmas 1 to 4 in [11],
which are used in coloring the confusion graph.

Lemma 1 (Lemma 1, [11]): For any two vertices
(bi

P1
,bj

P2
,bk

P3
) and (bi�

P1
,bj

P2
,bk

P3
) in Γt(D) which

are confusable, if Jo((bi
P1

,bj
P2

,bk
P3

)) = (c1, c2) and
Jo((bi�

P1
,bj

P2
,bk

P3
)) = (c�1, c

�
2) for some c1, c

�
1 ∈ J1 and

c2, c
�
2 ∈ J2, then we must have c1 �= c�1 and c2 = c�2.

Lemma 2 (Lemma 2, [11]): For any two vertices
(bi

P1
,bj

P2
,bk

P3
) and (bi

P1
,bj�

P2
,bk

P3
) in Γt(D) which

are confusable, if Jo((bi
P1

,bj
P2

,bk
P3

)) = (c1, c2) and

Jo((bi
P1

,bj�
P2

,bk
P3

)) = (c�1, c
�
2) for some c1, c

�
1 ∈ J1 and

c2, c
�
2 ∈ J2, then we must have c1 = c�1 and c2 �= c�2.

Lemma 3 (Lemma 3, [11]): For any two vertices
(bi

P1
,bj

P2
,bk

P3
) and (bi�

P1
,bj�

P2
,bk

P3
) in Γt(D) which

are confusable due to confusion at some vertices in
D1 and D2, if Jo((bi

P1
,bj

P2
,bk

P3
)) = (c1, c2) and

Jo((bi�
P1

,bj�
P2

,bk
P3

)) = (c�1, c�2) for some c1, c
�
1 ∈ J1

and c2, c
�
2 ∈ J2, then we must have c1 �= c�1 and c2 �= c�2.

Lemma 4 (Lemma 4, [11]): For any two vertices
(bi

P1
,bj

P2
,bk

P3
) and (bi

P1
,bj

P2
,bk�

P3
) in Γt(D) which

are confusable, if Jo((bi
P1

,bj
P2

,bk
P3

)) = (c1, c2) and
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Fig. 3. Enumeration of all unique interactions between the sub-digraphs D1, D2, and D3, given by the interaction digraph H.

Jo((bi
P1

,bj
P2

,bk�
P3

)) = (c�1, c
�
2) for some c1, c

�
1 ∈ J1 and

c2, c
�
2 ∈ J2, then we must have either c1 �= c�1, or c2 �= c�2.

The optimal broadcast rate for the TUICP with finite length
messages is given by Theorem 2 in [11] as follows.

Lemma 5 (Theorem 2, [11]):

βt(D,P) = min
J1,J2

log2 |J1|� + log2 |J2|�
t

(1)

We illustrate the two-sender graph coloring of the confusion
graph using an example.

Example 2: Consider the TUICP with t = 1 and the side
information digraph given in Fig. 4 along with its confusion
graph. The message sets at the senders are given by M1 =
{x1,x3} and M2 = {x2,x3}. The confusion graph Γ1(D)
has 2m = 8 vertices representing all possible binary tuples
(bi

P1
,bj

P2
,bk

P3
), i, j, k ∈ {1, 2}, of length three. Edges are

drawn between every two confusable tuples. For example,
there is an edge between (0, 1, 0) and (1, 1, 0) due to confusion
at receiver 1. After the construction of the confusion graph,
all the vertices are colored by each sender. In the ordered pair
of colors, the first color is associated with S1 and the second
color is associated with S2. Color RED is denoted as R and
BLUE is denoted as B in Fig. 4. Coloring is done based
on Lemmas 1 to 4. Hence, if S1 colors (0, 1, 0) with RED
color, it must color (1, 1, 0) with another color, say BLUE.
Similarly, we can color other vertices using the two-sender
graph coloring. It can be easily verified that only two colors
are required at each sender to color the confusion graph. The
two-sender coloring shown in Fig. 4 can be easily verified to
be a valid two-sender coloring. Hence, J1 = J2 = {RED,
BLUE}. Assuming a map from the colors to binary bits that
maps RED to 1 and BLUE to 0, the tuple (0, 0, 0) can be
mapped to the codeword 11, the tuple (0, 0, 1) can be mapped

Fig. 4. Side information digraph and two-sender graph coloring of its
confusion graph for the TUICP given in Example 2.

to the codeword 00, and so on. Thus the two-sender index code
consists of codewords given by {00, 01, 10, 11}. The first bit
of the codeword is sent by S1, and the second bit is sent by
S2. Thus, βt(D,P) ≤ 2 for any t ≥ 1. As each sender has a
single message which is not present at the other sender, each
of them must at least send one bit. Thus, βt(D,P) ≥ 2. Hence,
βt(D,P) = 2.

To exploit the symmetries of the confusion graph and
facilitate the two-sender graph coloring, the vertices of Γt(D)
can be grouped in different ways. We define three ways
of grouping the vertices into blocks and the corresponding
inter-block edges.

Definition 9 (I-blocks, J-blocks, K-blocks): Let Bbi
P1

�
{(bi

P1
,bj

P2
,bk

P3
) : j ∈ [2tm2 ], k ∈ [2tm3 ]} with cardinality

2tm2 × 2tm3 for a given i ∈ [2tm1 ]. Similarly, Bbj
P2

and

Bbk
P3

are also defined. The subgraph of Γt(D) induced by the
vertices belonging to Bbi

P1
is called the ith I-block. There are
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2tm1 I-blocks. The subgraph of Γt(D) induced by the vertices
belonging to Bbj

P2
is called the jth J-block. Similarly, kth

K-block Bbk
P3

is also defined.
Definition 10 (Inter-block edges): An edge between two

vertices, each belonging to a different I-block of Γt(D) is
called an inter-I-block edge. An edge between two vertices,
each belonging to a different J-block of Γt(D) is called
an inter-J-block edge. An edge between two vertices, each
belonging to a different K-block of Γt(D) is called an inter-
K-block edge.

We require the following lemma to exploit the symmetries
of the confusion graph in two-sender graph coloring.

Lemma 6: All I-blocks in a given confusion graph are iso-
morphic to each other. Similarly, all J-blocks are isomorphic
to each other, and all K-blocks are isomorphic to each other,
in a given confusion graph.

Proof: We prove the lemma for all I-blocks. The
proof follows on similar lines for all J-blocks and all K-
blocks. Every vertex in any ith I-block induced by the
vertices in Bbi

P1
has the same bi

P1
sub-label, i ∈ [2tm1 ].

Thus, any edge in any ith I-block is only due to confu-
sion at the vertices (i.e, receivers) belonging to V(D2 ∪
D3). Every I-block has 2tm2 × 2tm3 vertices. If there
is an edge given by ((bi

P1
,bj

P2
,bk

P3
), (bi

P1
,bj�

P2
,bk�

P3
))

in ith I-block induced by Bbi
P1

, then there is an

edge given by ((bi�
P1

,bj
P2

,bk
P3

), (bi�
P1

,bj�
P2

,bk�
P3

)) in i�th
I-block induced by Bbi�

P1
, i �= i� and vice versa, as the

confusion is only due to tuples (bj
P2

,bk
P3

) and (bj�
P2

,bk�
P3

),
at some vertex belonging to V(D2 ∪D3). Hence, all I-blocks
are isomorphic to each other.

IV. AN ACHIEVABLE BROADCAST RATE WITH FINITE

LENGTH MESSAGES FOR SOME SUB-CASES OF CASE I
WITH FULLY-PARTICIPATED INTERACTIONS

In this section, we provide an achievable broadcast rate
with t-bit messages for any TUICP with the side information
digraph Dk, k ∈ {10, 12, 14}, having fully-participated inter-
actions between its sub-digraphs Dk,P

i , i ∈ {1, 2, 3} using
a valid two-sender graph coloring of the confusion graph.
No non-trivial achievable broadcast rate was known for these
sub-cases. We first review the related results known prior to
this paper. The following conjecture was stated in [12].

Conjecture 1 (Conjecture 1, [12]): For any side information
digraph Dk, k ∈ {8, 9, · · · , 14}, having any type of interaction
(i.e., either fully-participated or partially-participated) between
its sub-digraphs Dk,P

i , i ∈ {1, 2, 3}, for any P , and t-bit
messages for any finite t, βt(Dk,P) = βt(Dk,P

1 )+βt(Dk,P
2 )+

βt(Dk,P
3 ) + �/t, for some � ∈ {−2,−1, 0}.

The conjecture was stated considering that a minimum of
χ(Γt(Dk,P

1 ))χ(Γt(Dk,P
2 ))χ(Γt(Dk,P

3 )) ordered pairs of colors
are required to color the confusion graph Γt(Dk), k ∈
{1, 2, · · · , 7}, according to the two-sender graph coloring. The
following theorem provides non-trivial achievable broadcast
rates with finite length messages based on a two-sender
coloring of the confusion graphs Γt(Dk), k ∈ {10, 12, 14}.

Theorem 1: For any TUICP with the side information
digraph Dk, k ∈ {10, 12, 14}, having fully-participated inter-
actions between its sub-digraphs Dk,P

i , i ∈ {1, 2, 3}, for any
P , and t-bit messages for any finite t, the following broadcast
rates are achievable.

(i) pt(D10,P) = βt(D10,P
2 ) +

χ(Γt(D10,P
1 ) ∗ Γt(D10,P

3 ))�
t

,

(ii) pt(D12,P)=βt(D12,P
2 ) +

χ(Γt(D12,P
1 ) ◦ Γt(D12,P

3 ))�
t

,

(iii) pt(D14,P)=βt(D14,P
2 )+

χ(Γt(D14,P
3 ) ◦ Γt(D14,P

1 ))�
t

.

Proof: See Appendix A.
We require the following lemmas to prove Corollary 1,

which illustrates the significance of the results of Theorem 1
and the two-sender graph coloring given in its proof.

Lemma 7 (Lemma A9, [11]): For any real numbers a and
b, a + b� = a� + b� + �, for some � ∈ {−1, 0}.

Lemma 8 (Theorem 1, [18]): For any two undirected graphs
G1 and G2, χ(G1 ∗ G2) ≤ χ(G1)χ(G2).

Lemma 9 (Corollary 3.4.2, [19]): For any two undirected
graphs G1 and G2, χ(G1 ◦ G2) ≤ χ(G1)χ(G2).

Corollary 1: For any TUICP with the side-information
digraph Dh, h ∈ {10, 12, 14}, having fully-participated inter-
actions between its sub-digraphs Dh,P

i , i ∈ {1, 2, 3}, for
any P , and t-bit messages for any finite t, we have,

pt(Dh,P) ≤ βt(Dh,P
1 ) + βt(Dh,P

2 ) + βt(Dh,P
3 ) + ��/t, (2)

for some �� ∈ {−1, 0}, where pt(Dh,P) is the broadcast rate
given in Theorem 1.

Proof: We provide the proof for the case with h = 10. The
proof for other cases follows on similar lines by employing
Lemma 9 instead of Lemma 8. For the case with h = 10,
using Lemma 8 we have

χ(Γt(D10,P
1 ) ∗ Γt(D10,P

3 )) ≤ χ(Γt(D10,P
1 ))χ(Γt(D10,P

3 )).
(3)

Taking logarithm on both the sides of (3) and using Lemma 7
and Theorem 1, we have

t×pt(Dh,P)≤��+log2 χ(Γt(D10,P
1 ))�

+ log2 χ(Γt(D10,P
2 ))�+log2 χ(Γt(D10,P

3 ))�,
(4)

for some �� ∈ {−1, 0}. Dividing both the sides of (4) by t,
we have the result of (2).

Corollary 1 shows that there is a possibility to achieve a
broadcast rate lesser than that stated in Conjecture 1 in [12].
Comparing the optimal broadcast rate stated in Conjecture 1
and the achievable broadcast rate in Corollary 1, the con-
jecture is disproved if it is possible to find digraphs Dh,P

i ,
i ∈ {1, 2, 3}, h ∈ {10, 12, 14} such that pt(Dh,P) given
in Theorem 1 is strictly less than βt(Dh,P

1 ) + βt(Dh,P
2 ) +

βt(Dh,P
3 ) − 2/t.

Note 1: Note that the optimal broadcast rates given in
Theorem 1 also consider non-linear encoding schemes at
the senders. From the optimal linear broadcast rates with
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finite length messages (which consider only linear encoding
schemes at the senders) given in [14], we also note that if
pt(Dh,P) given in Theorem 1 is strictly less than βt(Dh,P

1 )+
βt(Dh,P

2 ) + βt(Dh,P
3 ), h ∈ {10, 12, 14}, then the two-sender

graph coloring results in a non-linear index code.
Remark 1: Let Dh

ij , i �= j, i, j ∈ {1, 2, 3}, be the side
information sub-digraphs of Dh, h ∈ [36], induced by the
messages in Pi ∪ Pj . Then the following upper bounds on
the optimal broadcast rate of any TUICP with finite length
messages can be obtained using two-sender graph coloring by
exploiting the symmetries of the confusion graph, as in the
proof of Theorem 1.

βt(Dh,P) ≤ βt(Dh,P
1 ) + βt(Dh

23). (5)

βt(Dh,P) ≤ βt(Dh,P
2 ) + βt(Dh

13). (6)

βt(Dh,P) ≤ βt(Dh,P
3 ) + βt(Dh

12,P1 ∪ P2). (7)

To obtain (5), we view Γt(Dh) as the union of all I-blocks
connected by inter-I-block edges and color it according to
two-sender graph coloring as done in the proof of Theorem 1.
All other upper bounds are obtained similarly.

V. OPTIMAL BROADCAST RATES FOR CASES II-C AND

II-D WITH FULLY-PARTICIPATED INTERACTIONS

In this section, we provide the optimal broadcast rate for
any TUICP belonging to Cases II-C and II-D, with fully-
participated interactions, for which only upper bounds were
given in [11]. Optimal broadcast rate for any TUICP with
Dk such that k ∈ {21, 22, · · · , 36}, given in [11], depend
on the relation between the optimal broadcast rates of the
individual single-sender sub-problems described by the three
sub-digraphs of the side information digraph. The results given
in this section along with those given in [11] provide a
complete characterization of the optimal broadcast rate of any
TUICP with fully-participated interactions. We also provide an
achievable broadcast rate with finite length messages, for all
the sub-cases of Case II-D with fully-participated interactions,
using a code construction based on optimal codes of the single-
sender sub-problems. This provides a tighter upper bound on
βt(Dk,P), k ∈ {33, 34, 35, 36}, when compared to that given
in [11]. The code constructions used to obtain the optimal
broadcast rates in this section are same as those used in
[14] with the linear codes of the sub-problems replaced by
non-linear codes.

A. Optimal Broadcast Rate for CASE II-C

We first establish the optimal broadcast rate for any TUICP
belonging to Case II-C. We require the following lemma which
is a part of Theorem 3 in [17] to derive our results.

Lemma 10 (Theorem 3, [17]): Consider any single-sender
unicast ICP described by a side-information digraph. Remov-
ing edges not lying on any directed cycle does not change the
optimal broadcast rate.

Theorem 2 (CASE II-C): For any TUICP with the side
information digraph Dk , k ∈ {21, 22, · · · , 32}, having fully-
participated interactions between its sub-digraphs Dk,P

i , i ∈
{1, 2, 3}, and for any P , we have

β(Dk,P) = max{β(Dk,P
1 ), β(Dk,P

3 )} + β(Dk,P
2 ). (8)

Fig. 5. Example of a two-sender problem belonging to Case II-C.

Proof: The result is proved in [11], for the case when
β(Dk,P

1 ) ≥ β(Dk,P
3 ). Hence, we prove the result for the case

with β(Dk,P
1 ) < β(Dk,P

3 ) by first providing a lower bound and
then providing a matching upper bound. Removing the vertices
belonging to Dk,P

1 from Dk, we obtain a digraph Dk,P
23 which

defines a TUICP. This can be considered as a single-sender
unicast ICP as both P2 and P3 are with S2. Hence, we have

β(Dk,P) ≥ β(Dk,P
23 ). (9)

As there are only unidirectional edges from V(Dk,P
2 ) to

V(Dk,P
3 ) or vice-versa (depending on the particular value of

k), using Lemma 10, we have

β(Dk,P
23 ) = β(Dk,P

2 ) + β(Dk,P
3 ). (10)

From (9) and (10), we have β(Dk,P) ≥ β(Dk,P
2 )+β(Dk,P

3 ).
Using Theorem 7 in [11], βt(Dk,P) ≤ βt(Dk,P

2 )+βt(Dk,P
3 ).

Dividing both the sides by t, and taking the limit as t → ∞
in the previous inequality, we have β(Dk,P) ≤ β(Dk,P

2 ) +
β(Dk,P

3 ), which is a matching upper bound.
Note 2: From the proof of Theorem 2, we notice that the

optimal broadcast rates for problems belonging to Case II-C
given by Theorem 2 remain the same as long as the inter-
actions between D1 and D3 are fully-participated. Other
interactions need not be fully-participated.

We illustrate Theorem 2 using an example.
Example 3: Consider a TUICP with m = 6. Let

M1 = {x1,x2,x3,x6} and M2 = {x4,x5,x6}. The
side information of all the receivers are given as follows:
K1 = {x2,x6},K2 = {x3,x6},K3 = {x1,x6},K4 =
{x5,x6},K5 = {x4,x6},K6 = {x1,x2,x3}. The side infor-
mation digraph and the interaction digraph are shown in Fig. 5.
It is easy to verify that the associated interaction digraph
is H24. Note that all the interactions are fully-participated
interactions. We also know that D24,P

1 and D24,P
2 are cycles

on vertex sets {x1,x2,x3} and {x4,x5} respectively. Hence
for any t ≥ 1, we have βt(D24,P

1 ) = 2, βt(D24,P
2 ) = 1,

and βt(D24,P
3 ) = 1. Note that the optimal broadcast rates

with t = 1 are also equal to the optimal broadcast rates of
the respective problems. According to Theorem 2, we have
β(D24,P) = 1 + max{2, 1} = 3. We provide the code for
t = 1. Sender S1 transmits x1 ⊕x2 ⊕x6 and x2 ⊕x3. Sender
S2 transmits x4⊕x5. Receiver 1 decodes x1 using x1⊕x2⊕x6

and its side information x2 and x6. Receiver 4 decodes x4

using x4 ⊕ x5 and its side information x5. Similarly, other
receivers decode their demands.
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B. An Achievable Broadcast Rate with Finite
Length Messages for CASE II-D with
Fully-Participated Interactions

The following achievable broadcast rate with t-bit messages,
for any TUICP belonging to Case II-D with fully-participated
interactions was stated in Theorem 8 in [11] as an upper bound
on βt(Dk,P) with k ∈ {33, 34, 35, 36}.

βt(Dk,P) ≤ max{βt(Dk,P
1 ), βt(Dk,P

3 )}
+ max{βt(Dk,P

2 ), βt(Dk,P
3 )}. (11)

The following theorem provides an achievable broadcast
rate for any TUICP belonging to Case II-D, by provid-
ing a code construction which uses optimal codes of the
sub-problems described by the three sub-digraphs of the side
information digraph. This provides a tighter upper bound
compared to the one given in [11] and stated in (11).

Theorem 3: For any TUICP with the side information
digraph Dk, k ∈ {33, 34, 35, 36}, having fully-participated
interactions between its sub-digraphs Dk,P

i , i ∈ {1, 2, 3},
for any P , and t-bit messages for any finite t, the following
broadcast rate is achievable.

pt(Dk,P) = max{βt(Dk,P
1 ) + βt(Dk,P

2 ), βt(Dk,P
1 )

+ βt(Dk,P
3 ), βt(Dk,P

2 ) + βt(Dk,P
3 )}. (12)

Proof: We provide a code construction for t-bit mes-
sages for any finite t and show that the constructed code
satisfies the demands of all the receivers. For the case with
βt(Dk,P

3 ) ≤ min{βt(Dk,P
1 ), βt(Dk,P

2 )}, the broadcast rate
pt(Dk,P) = βt(Dk,P

1 ) + βt(Dk,P
2 ), has been shown to be

achievable in Theorem 8 of [11]. Without loss of generality,
we assume that βt(Dk,P

2 ) ≤ min{βt(Dk,P
1 ), βt(Dk,P

3 )}. The
case with βt(Dk,P

1 ) ≤ min{βt(Dk,P
2 ), βt(Dk,P

3 )} can be
proved similarly. Let Ci be a code with the optimal broadcast
rate with t-bit messages for any finite t given by βt(Dk,P

i ) for
the SUICP described by Dk,P

i , i ∈ {1, 2, 3}. Our code for the
original TUICP I(Dk,P) is given as follows:

C3[1 + tβt(Dk,P
2 ) : tβt(Dk,P

3 )] sent by any one of S1 or S2,

C1 ⊕ C3[1 : tβt(Dk,P
2 )] by S1, C2 ⊕ C3[1 : tβt(Dk,P

2 )] by S2.

The overall length of the two-sender code is given
by t(βt(Dk,P

1 ) + βt(Dk,P
2 ) + (βt(Dk,P

3 ) − βt(Dk,P
2 ))) =

t(βt(Dk,P
1 ) + βt(Dk,P

3 )), with the broadcast rate βt(Dk,P
1 ) +

βt(Dk,P
3 ).

We provide the decoding procedure for receivers in the
side information digraphs Dk with k ∈ {33, 34, 35}. The
decoding procedure for those in the side information digraph
Dk with k = 36 is similar. Receivers belonging to Dk,P

1 and
Dk,P

2 recover their demanded messages using (C2 ⊕ C3[1 :
tβt(Dk,P

2 )]) ⊕ (C1 ⊕ C3[1 : tβt(Dk,P
2 )]) = C1 ⊕ C2, and their

side information. Receivers belonging to Dk,P
3 recover their

demanded messages using C3[tβt(Dk,P
2 )+ 1 : tβt(Dk,P

3 )] and
either C2 ⊕ C3[1 : tβt(Dk,P

2 )] or C1 ⊕ C3[1 : tβt(Dk,P
2 )],

and their side information, depending on the presence of the
interaction Dk,P

3 → Dk,P
2 or Dk,P

3 → Dk,P
1 respectively.

We illustrate the theorem using an example.

Fig. 6. Example of a two-sender problem belonging to Case II-D.

Example 4: Consider a TUICP with m = 7. Let M1 =
{x1,x2,x3} and M2 = {x2,x3,x4,x5,x6, x7}. The side
information of all the receivers are given as follows: K1 =
{x4,x5,x6,x7}, K2 = {x1,x3}, K3 = {x1,x2}, K4 =
{x1,x6,x7}, K5 = {x1,x4,x7}, K6 = {x1,x4,x5}, K7 =
{x1,x5,x6}. The side information digraph and the interaction
digraph are given in Fig. 6. It is easy to verify that the
interaction digraph is H33. We observe that D1 is a side
information digraph with one vertex, D2 is a problem solved
in [16], and D3 is a clique with two vertices. The optimal
broadcast rate of a clique and a side information digraph with
a single vertex is 1. For any t ≥ 1 we have, βt(D33,P

1 ) = 1,
βt(D33,P

2 ) = 2, and βt(D33,P
3 ) = 1. Hence, according to

Theorem 3, we have pt(D33,P) = max{2+1, 2+1, 1+1} = 3
as an achievable broadcast rate. We provide the code for
t = 1. Sender S1 transmits x1 ⊕ x2 ⊕ x3 and S2 transmits
x2 ⊕ x3 ⊕ x4 ⊕ x6 and x5 ⊕ x7. Receiver 1 decodes x1

using x1 ⊕ x2 ⊕ x3, x2 ⊕ x3 ⊕ x4 ⊕ x6, and its side
information K1 = {x2,x3}. Reciever 4 decodes x4 using
x1 ⊕ x2 ⊕ x3, x2 ⊕ x3 ⊕ x4 ⊕ x6, and its side information
K4 = {x1,x6}. Similarly, other receivers can decode their
demanded messages.

Remark 2: Note that the upper bound on βt(Dk,P), k ∈
{33, 34, 35, 36}, stated in (11) can also be written as follows.

βt(Dk,P) ≤ max{ βt(Dk,P
1 ) + βt(Dk,P

2 ), βt(Dk,P
1 )

+ βt(Dk,P
3 ), βt(Dk,P

2 )+βt(Dk,P
3 ), 2βt(Dk,P

3 )}.
Comparing this upper bound with the achievable broadcast rate
given in Theorem 3, we see that the achievable broadcast rate
given in Theorem 3 is a tighter upper bound.

C. Optimal Broadcast Rate for CASE II-D

We now present our results for Case II-D using the result
of Case II-C. We require the following lemma to prove our
results.

Lemma 11: For any D, P and finite t, if a side-information
digraph D� is obtained by adding more directed edges to D,
we have βt(D,P) ≥ βt(D�,P) and β(D,P) ≥ β(D�,P).

Proof: Consider an optimal code for the two-sender
problem I(D,P) with t-bit messages with broadcast rate
βt(D,P). Note that this code also solves the two-sender
problem I(D�,P). Hence, βt(D,P) ≥ βt(D�,P). Taking the
limit as t → ∞, in the definition of the optimal broadcast rate,
we have β(D,P) ≥ β(D�,P).
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Theorem 4 (CASE II-D): For any TUICP with the side
information digraph Dk, k ∈ {33, 34, 35, 36}, having fully-
participated interactions between its sub-digraphs Dk,P

i , i ∈
{1, 2, 3}, and for any P , we have

β(Dk,P) = max{β(Dk,P
1 ) + β(Dk,P

2 ), β(Dk,P
1 )

+ β(Dk,P
3 ), β(Dk,P

2 ) + β(Dk,P
3 )}. (13)

Proof: We first provide a lower bound using the result of
Case II-C. Then, we provide a matching upper bound using the
result of Theorem 3. Given any side information digraph Dk

with k ∈ {33, 34, 35, 36}, with fully-participated interactions
among its sub-digraphs Dk,P

1 , Dk,P
2 , and Dk,P

3 , we can get
(i) one of the side information digraphs Dk�

, k� ∈ {31, 32}
and (ii) one of the side information digraphs Dk��

with the
interaction digraph H obtained by swapping the labels of
vertices 1 and 2 in Hk� , k� ∈ {31, 32}, with the same
sub-digraphs Dk,P

1 , Dk,P
2 , and Dk,P

3 having fully-participated
interactions, by adding appropriate edges between the sub-
digraphs of Dk. From Lemma 11, we have,

β(Dk,P) ≥ β(Dk�
,P), (14)

β(Dk,P) ≥ β(Dk��
,P). (15)

Combining the result of Theorem 2 using (14) and (15),
we get,

β(Dk,P) ≥ max{β(Dk,P
1 ) + β(Dk,P

3 ), β(Dk,P
2 )

+ β(Dk,P
3 ), β(Dk,P

1 ) + β(Dk,P
2 )}. (16)

Using the result of Theorem 3, we have

βt(Dk,P) ≤ max{βt(Dk,P
1 ) + βt(Dk,P

2 ), βt(Dk,P
1 )

+ βt(Dk,P
3 ), βt(Dk,P

2 ) + βt(Dk,P
3 )}. (17)

Taking the limit as t → ∞ in the definition of β(Dk,P),
we obtain the matching upper bound.

Note 3: From the proof of Theorem 4, we notice that the
optimal broadcast rates for problems belonging to Case II-D
with the interaction digraph H34 remain the same as long as
one of the two interactions given by D3 → D1 and D3 → D2

is fully-participated.
We illustrate the theorem using an example.
Example 5: Consider a TUICP with m = 8. Let M1 =

{x1,x2,x3,x4,x5,x6,x8} and M2 = {x5,x6,x8,x7}. The
side information of all the receivers are given as follows:
K1 = {x3,x7}, K2 = {x3,x4,x7}, K3 = {x1,x4,x7},
K4 = {x2,x7}, K5 = {x4,x6,x7}, K6 = {x8,x7},
K7 = {x1,x2,x3,x4}, K8 = {x5,x7}. The side information
digraph and the interaction digraph are given in Fig. 7. Note
that the interaction digraph of the side information digraph D
is H34. We observe that D34,P

1 is a problem that is solved
using the results in [16] with optimal broadcast rate 2, and
that D34,P

2 is a vertex and D34,P
3 is a cycle. For any t ≥ 1 we

have, βt(D34,P
1 ) = 2, βt(D34,P

2 ) = 1, and βt(D34,P
3 ) = 2. The

optimal broadcast rates with t = 1 are also equal to optimal
broadcast rates of the respective problems. Hence, according
to Theorem 4, we have β(D34,P) = max{2+2, 2+1, 2+1} =
4. We provide the code for t = 1. Sender S1 transmits

Fig. 7. Example of a two-sender problem belonging to Case II-D.

x1 ⊕ x3 ⊕ x5 ⊕ x6, x2 ⊕ x4, and x6 ⊕ x8, and S2 transmits
x5 ⊕ x6 ⊕ x7.

Note that the results related to optimal broadcast rates given
in this section are summarized in Table II in Section I, and
given in terms of those of the sub-problems. The optimal
broadcast rates of SUICPs are known only for some special
cases [5], [16]. Hence, the complexity of solving the TUICP
with fully-participated interactions is reduced to that of solving
the SUICP.

Remark 3: For Case II-D, [11] provided upper bound
for the optimal broadcast rate with t-bit messages when
βt(Dk,P

3 ) > min{βt(Dk,P
1 ), βt(Dk,P

2 )} and optimal broadcast
rate when β(Dk,P

3 ) > min{β(Dk,P
1 ), β(Dk,P

2 )}. However,
we have shown that the given upper bounds in [11] are
loose, and Theorem 4 provides the optimal broadcast rates
for Case II-D.

VI. CONCLUSION AND FUTURE WORK

This paper establishes the optimal broadcast rates for all
the cases of the TUICP with fully-participated interactions,
for which only upper bounds were known, in terms of the
corresponding results of the three single-sender sub-problems.
Achievable broadcast rate with finite length messages is given
for some cases of the TUICP with fully-participated inter-
actions, using two-sender graph coloring of the confusion
graph. No results on non-trivial achievable broadcast rates
were known for these cases. Finding non-trivial achievable
broadcast rate with t-bit messages for any finite t, for the
sub-cases of Case I without known optimal broadcast rates
with finite length messages is an interesting problem. Find-
ing the optimal broadcast rate of the TUICP with partially-
participated interactions is also an open problem. Further,
extension of these results to index coding problems with any
number of senders is open.

APPENDIX A
PROOF OF THEOREM 1

We first prove statement (i) of Theorem 1. The proofs of
statements (ii) and (iii) follow on similar lines and only
the required changes are mentioned. We first identify the
edges in the confusion graph Γt(Dh) due to confusions at
the vertices (receivers) belonging to each of the sub-digraphs
Dh,P

1 , Dh,P
2 , and Dh,P

3 , h ∈ {10, 12, 14}. To avail the
symmetries of the confusion graph in coloring it according to
two-sender graph coloring, we view Γt(Dh) as the union of all
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the J-blocks connected by inter-J-block edges. The number
of ordered pairs of colors required to color the confusion
graph is used to calculate an achievable broadcast rate with
t-bit messages. Throughout the proof we assume that the
superscripts i, i� ∈ [2tm1 ], j, j� ∈ [2tm2 ], k, k� ∈ [2tm3 ].

Proof of (i) in Theorem 1. We first list all the edges of
Γt(D10).

Edges due to confusions at the vertices in V(D10,P
1 ): If

bi
P1

and bi�
P1

are confusable at some vertex in V(D10,P
1 ),

then the corresponding edges in Γt(D10) due to the
confusion at the same vertex in V(D10) are of the form
((bi

P1
,bj

P2
,bk

P3
), (bi�

P1
,bj

P2
,bk�

P3
)), as the vertex has all the

messages represented by V(D10,P
2 ) as side information, and

has no side information in V(D10,P
3 ). Hence, confusion at

any vertex in V(D10,P
1 ) does not contribute to inter-J-block

edges.
Edges due to confusions at the vertices in V(D10,P

2 ): If

bj
P2

and bj�
P2

are confusable at some vertex in V(D10,P
2 ),

then the corresponding edges in Γt(D10) are of the form
((bi

P1
,bj

P2
,bk

P3
), (bi�

P1
,bj�

P2
,bk�

P3
)). Hence, confusion at any

vertex in V(D10,P
2 ) results in inter-J-block edges.

Edges due to confusions at the vertices in V(D10,P
3 ): If

bk
P3

and bk�
P3

are confusable at some vertex in V(D10,P
3 ),

then the corresponding edges in Γt(D10) are of the form
((bi

P1
,bj

P2
,bk

P3
), (bi�

P1
,bj

P2
,bk�

P3
)). Hence, confusion at any

vertex in V(D10,P
3 ) does not result in inter-J-block edges.

Coloring the confusion graph Γt(D10): From Lemma 6,
we know that all the J-blocks are isomorphic to each other.
From the listing of all the edges of the confusion graph,
we know that the inter-J-block edges are only due to the con-
fusions at the receivers belonging to V(D10,P

2 ). Hence, in order
to color the confusion graph according to the two-sender graph
coloring, we find an optimal classical graph coloring of any
J-block and associate the resulting colors with sender S1. This
can be done, as the edges within any J-block are only due to
the confusions at the vertices belonging to V(D10,P

1 ∪D10,P
3 ),

and S1 alone has all the messages in P1 ∪ P3. The same
set of colors can be used by S1 to color every J-block
identically. This resolves all the confusions at all the receivers
in V(D10,P

1 ∪ D10,P
3 ).

Note that there is an edge given by
((bi

P1
,bj

P2
,bk

P3
), (bi�

P1
,bj

P2
,bk�

P3
)), belonging to any

jth J-block iff either the edge (bi
P1

,bi�
P1

) ∈ E(Γt(D10,P
1 ))

or the edge (bk
P3

,bk�
P3

) ∈ E(Γt(D10,P
3 )). From the definition

of the disjunctive graph product, we observe that each
J-block is isomorphic to Γt(D10,P

1 ) ∗ Γt(D10,P
3 ). Hence,

S1 requires a minimum of χ(Γt(D10,P
1 ) ∗ Γt(D10,P

3 ))
colors to color any J-block. The confusions associated with
inter-J-block edges can be resolved by S2 alone, as all
such confusions are associated with vertices in V(D10,P

2 )
and only S2 has all the messages in P2. Observe that
there are inter-J-block edges between any jth and any j�th
J-blocks iff (bj

P2
,bj�

P2
) is an edge of Γt(D10,P

2 ). We know
that a minimum of χ(Γt(D10,P

2 )) colors are required to
color Γt(D10,P

2 ). By assigning the color given to bj
P2

in
Γt(D10,P

2 ) to the jth J-block (to all the vertices in the jth

J-block) for all j ∈ [2tm2 ], we observe that all the confusions
associated with all the inter-J-block edges are resolved.
Hence, a minimum of χ(Γt(D10,P

2 )) colors are sufficient for
S2 to color the confusion graph.

This is a valid two-sender graph coloring of Γt(D10) requir-
ing a total of

(
χ(Γt(D10,P

1 ) ∗ Γt(D10,P
3 ))

) × χ(Γt(D10,P
2 ))

ordered pairs of colors. The total length of the two-sender
index code is thus given by the sum of the lengths of
codewords transmitted by the senders as t × pt(D10,P) =
log2(χ(Γt(D10,P

1 ) ∗ Γt(D10,P
3 )))� + log2(χ(Γt(D10,P

2 )))�.
Hence, the associated broadcast rate is given by pt(D10,P) =
log2(χ(Γt(D10,P

1 ) ∗ Γt(D10,P
3 )))�/t + βt(D10,P

2 ).
Proof of (ii) in Theorem 1. We first list all the edges

of Γt(D12) as follows. Edges due to confusions at the
vertices in V(D12,P

1 ): If bi
P1

and bi�
P1

are confusable at
some vertex in V(D12,P

1 ), then the edges are of the form
((bi

P1
,bj

P2
,bk

P3
), (bi�

P1
,bj

P2
, bk�

P3
)).

Edges due to confusions at the vertices in V(D12,P
2 ): Same

as in proof of (i) in Theorem 1.
Edges due to confusions at the vertices in V(D12,P

3 ): The

edges are of the form ((bi
P1

,bj
P2

, bk
P3

), (bi
P1

,bj
P2

,bk�
P3

)),
where bk

P3
and bk�

P3
are confusable at some receiver in

V(D12,P
3 ).

Coloring the confusion graph Γt(D12): Observe that there

is an edge given by ((bi
P1

,bj
P2

,bk
P3

), (bi�
P1

,bj
P2

,bk�
P3

)),
belonging to any jth J-block iff either the edge (bi

P1
,bi�

P1
) ∈

E(Γt(D12,P
1 )), or (bk

P3
,bk�

P3
) ∈ E(Γt(D12,P

3 )) and bi
P1

=
bi�
P1

. From the definition of the lexicographic graph product,
each J-block is isomorphic to Γt(D12,P

1 )◦Γt(D12,P
3 ). As seen

in the proof of statement (i) of this theorem, we have the asso-
ciated broadcast rate given by pt(D12,P) = χ(Γt(D12,P

1 ) ◦
Γt(D12,P

3 ))�/t + βt(D12,P
2 ).

Proof of (iii) in Theorem 1. We list all the edges of Γt(D14)
as follows.

Edges due to confusions at the vertices in V(D14,P
1 ): If

bi
P1

and bi�
P1

are confusable at some vertex in V(D14,P
1 ), then

the edges are of the form ((bi
P1

,bj
P2

,bk
P3

), (bi�
P1

,bj
P2

,bk
P3

)).
Edges due to confusions at the vertices in V(D14,P

2 ):
Same as in proof of (i) in Theorem 1.

Edges due to confusions at the vertices in V(D14,P
3 ): The

edges are of the form ((bi
P1

,bj
P2

, bk
P3

), (bi�
P1

,bj
P2

, bk�
P3

)),
where bk

P3
and bk�

P3
are confusable at some receiver in

V(D14,P
3 ).

Coloring the confusion graph Γt(D14): Note that there is
an edge given by ((bi

P1
,bj

P2
,bk

P3
), (bi�

P1
,bj

P2
,bk�

P3
)), belong-

ing to any jth J-block iff either the edge (bi
P1

,bi�
P1

) ∈
E(Γt(D14,P

1 )) and bk
P3

= bk�
P3

, or the edge (bk
P3

,bk�
P3

) ∈
E(Γt(D14,P

3 )). Observe that each J-block is isomorphic to
Γt(D14,P

3 ) ◦ Γt(D14,P
1 ). As seen in the proof of statement (i)

of this theorem, we have the associated broadcast rate given by
pt(D14,P) = χ(Γt(D14,P

3 ) ◦ Γt(D14,P
1 ))�/t + βt(D14,P

2 ).
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