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Abstract

Conventional and unconventional superconductivity, respectively, arise from attractive
(electron-phonon) and repulsive (many-body Coulomb) interactions with fixed-sign and
sign-reversal pairing symmetries. Although heavy-fermions, cuprates, and pnictides are
widely believed to be unconventional superconductors, recent evidence in one of the
heavy fermion superconductor (CeCu2Si2) indicate the presence of a novel conventional
type pairing symmetry beyond the electron-phonon coupling. We present a new mecha-
nism of attractive potential between electrons, mediated by emergent boson fields (vac-
uum or holon) in the strongly correlated mixed valence compounds. In the strong cou-
pling limit, localized electron sites are protected from double occupancy, which results
in an emergent holon fields. The holon states can, however, attract conduction electrons
through valence fluctuation channel, and the resulting doubly occupied states with local
and conduction electrons condenseas Cooper pairs with onsite, fixed-sign, s-wave pair-
ing symmetry. We develop the corresponding self-consistent theory of superconductivity,
and compare the results with experiments. Our theory provides a new mechanism of
superconductivity whose applicability extends to the wider class of intermetallic/mixed-
valence materials and other flat-band metals.
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1 Introduction

Superconductivity arises from the formation of electron-electron pairs, namely, Cooper pairs.
Celebrated Bardeen-Cooper-Schrieffer (BCS) theory showed that an effective attractive po-
tential between electrons can emanate from the electron-phonon coupling, resulting in a fully
gapped, constant sign superconducting (SC) gap (conventional s-wave symmetry). [1] Inter-
estingly, discussions of unconventional superconductivity from repulsive interactions dates
back to 1965. [2] It was shown that Cooper pairs can be formed in a repulsive interaction
medium, provided the corresponding gap function changes sign in the momentum space [2–5].
The first heavy-fermion (HF) superconductor CeCu2Si2 [6] was widely believed to be an un-
conventional superconductor. [7–10] Subsequently, more HF superconductors, [11] followed
by cuprate, and pnictide superconductors are discovered to feature unconventional pairings
with either nodal d-wave, or nodeless but sign-reversal s±-pairing symmetry, or their various
irreducible combinations. [12]

However, the pairing symmetry, and the pairing mechanism in the first-discovered heavy-
fermion compound CeCu2Si2 are recently called into questions. Earlier reports of nuclear
quadrupole resonance (NQR) data revealed a T3 behavior in the relaxation rate without a
coherence peak, suggesting the presence of line nodes in the SC gap structure. [13–15] Ob-
servation of four-fold modulation in the upper critical field Hc2 in CeCu2Si2 can predict a
point-node d-wave pairing state [16], provided the Fermi surface (FS) anisotropy is small
enough to cause the same modulation. [17] Finally, the observation of a spin resonance in the
SC state by inelastic neutron scattering measurement [18] can be interpreted as to arise from
sign-reversal of the SC gap if the resonance peak is very sharp and its energy lies within the
SC gap amplitude. More recently, counter-evidence of fully gapped superconductivity are ob-
tained in various measurements including point-contact tunneling spectroscopy, [19,20] spe-
cific heat, [21–23] magnetic penetration depth, [23, 24] and thermal conductivity [23]. The
field-angle dependence of the specific heat data also shows no evidence of gap anisotropy. [22]
Furthermore, the observed robustness of superconductivity to disorder supports the absence
of sign-reversal in the pairing symmetry scenario. [23, 25] These results collectively signal
towards a conventional, fixed-sign, isotropic pairing symmetry in CeCu2Si2.

CeCu2Si2 has an interesting phase diagram exhibiting two SC domes under pressure, with
an antiferromagnetic (AFM) quantum critical point (QCP) lying beneath the first SC dome,
while a valence fluctuation critical point is possibly present at the second dome. [26–28]
The proximity to the AFM QCP inspires the proposals of spin-fluctuation mediated unconven-
tional, sign-changing pairing symmetry. [24,29,30] The valence fluctuation, which is ubiqui-

2

https://scipost.org
https://scipost.org/SciPostPhys.7.6.078


SciPost Phys. 7, 078 (2019)

tous in HF compounds, can promote superconductivity with unconventional pairing mecha-
nism. [8,9,26,27,31,32] In particular, it is widely argued by various groups that the vertex cor-
rection due to valence-fluctuation exchange can directly mediate a pairing channel, [9,31,32]
or can augment pairing strength arising from other sources [33, 34]. Kondo coupling can in-
duce various unconventional pairings. [10, 35–40] Following the overwhelming evidence of
conventional pairing symmetry, the electron-phonon coupling problem with strong Coulomb
interaction is revisited recently. [33, 41, 42] In general, electron-phonon coupling, if present,
can be overturned by the strong onsite Coulomb repulsion in the HF quasiparticles exhibiting
effective mass ∼ 103 times the bare mass.

Our present work is motivated by the question: Can there be other source of attractive
potential for superconductivity in general? Here, we provide a new mechanism of attractive
potential originating from the interplay between the Coulomb interaction and valence fluctu-
ations. The physical picture is illustrated in Fig. 1. When the Coulomb interaction is strong on
the f -electron’s site, double f -electron’s occupancy is prohibited. Within the field theory view,
a singly occupied f -electron site is annexed with an unoccupied f -state− a bosonic holon field
− which repels another f -electron to occupy the state. However, the unoccupied f -site can
be occupied by a conduction electron since the presence of valence fluctuation channel allows
mutation between the f - and conduction electrons. Remarkably, we show here that the doubly
occupied state with f - and conduction electrons condense like a Cooper pair. Mathematically,
as we integrate out the boson fields (unoccupied holons), we obtain a robust, new attrac-
tive potential channel between the conduction electrons and singly occupied f -sites, naturally
commencing onsite, constant sign, s-wave like superconductivity. Conceptually, this process
is somewhat analogous to the theory of meson mediated attractive nuclear force, except here
the attraction commences between onsite electrons. We formulate the corresponding the-
ory of superconductivity, and find excellent agreement with the recently observed fully gap,
constant sign gap features in CeCu2Si2, [19–25] as well as in the Yb-doped CeCoIn5 super-
conductors [43]. We predict a definite relationship between SC Tc and valence fluctuation
(coherence) temperature TK, and other unique properties of the present theory, which are
amenable to verifications.

2 Theory

The low-energy phenomena of HF compounds are well described by the periodic Anderson
impurity (PAI) model [44,45], which has four parts:

H =
∑

k,σ

ξkc†
kσckσ + ξ f

∑

m

f †
m fm +

∑

k,σ,m

vkc†
kσ fm + U

∑

m

f †
m fm f †

−m f−m + h.c., (1)

where c†
kσ (ckσ) is the creation (annihilation) operator for the conduction electron with spin

σ = ±1/2. The conduction electron has a dispersion ξk, with k being crystal momentum.
The strongly correlated f -electrons are treated as impurity, sitting on each unit cell with an
onsite potential ξ f . The valence fluctuations between the conduction and correlated electrons
lead to a hybridization potential vk. Finally, f -electrons are subjected to a strong Hubbard
interaction U . (The model also holds for narrow ‘band’ f -electrons as long as U � Df , with
Df being its bandwidth.) Such a model is well studied in the literature, and can be projected
onto the Kondo-lattice model using a Schrieffer-Wolf transformation [46]. Another popular
route to solve this problem is the so-called slave-boson approach. [47–51]

The basic phenomenologies of the slave-boson model can be described in two parts. A
single f -orbital on a given site has four Fock states, namely, doubly occupied site (d), singly
occupied site ( f̄m), and unoccupied site (e). Clearly, d and e operators are bosons, while f̄m
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Figure 1: Illustration of the valence fluctuation mediated attractive potential. (a)
The unoccupied state (holon) in each valence fluctuation term can attract another
conduction electron through the valence fluctuation channel. The conjugate pro-
cess also occurs simultaneously. Wavy lines depict conduction electrons (c, c†), while
filled ( f̄ , f̄ †)) and open (e, e†) circles give singly occupied and unoccupied f -sites, re-
spectively. Bar symbol over f -operators emphasizes that they are single- f -electrons
occupied states. Arrows dictate valence fluctuation channels. (b) As we integrate
out the unoccupied states (e, e†), we obtain an effective interaction V < 0, forming
Cooper pair between the single site f̄ -electron and conduction c electron.

are fermions, with m being the spin index (owing to spin-orbit coupling, m can, in general,
have many multiplets). In the U →∞ limit where double occupancy is strictly prohibited,
one can project out the d-states.1 The f -orbitals can be expressed in the remaining three Fock
states as fm = e† f̄m with the constraint Q ≡ ne + n f̄ = 1, where ne = e†e, n f̄ =

∑

m f̄ †
m f̄m are

the corresponding number density at every site. [47–49,51,52] Hence we obtain,

H =
∑

k,σ

ξkc†
kσckσ + ξ̄ f

∑

m

f̄ †
m f̄m +ωee†e+

∑

k,σ,m

�

vkc†
kσe† f̄m + v†

k f̄ †
meckσ

�

. (2)

We have introduced a onsite potential ωe > 0 for the unoccupied state, which arises as a
Lagrangian multiplier to conserve the number of f -electron states to Q = 1 in the U →∞
limit. ωe is considered to be site-independent, respecting the translational invariance, which
physically implies that all holons are condensed to the same energy. The renormalized f̄ -
electron’s energy is ξ̄ f = ξ f + ωe = Zξ f , where the corresponding band renormalization
factor Z is defined as Z = 1+η with η=ωe/ξ f .

Eq. (2) is our starting point in this work. This is not exactly solvable due to the presence
of the e, e†-states. Popular methods involve hard-core boson model (classical), or mean-field
theory around the saddle point of 〈e〉 [49,53,54]. Here we include the quantum fluctuations
of the holons, and solve Eq. (2) within the quantum field theory approach.

The last term in Eq. (2) implies that each valence fluctuation process generates (or annihi-
lates) a boson field e† (e), whose job is to prohibit double occupancy on the f -sites. However,
the unoccupied states or holons can attract another conduction electron (and vice versa), i.e.,
they trigger another valence fluctuation process. The two valence fluctuations process can
be tied together to generate an effective interaction potential, which turns out to be attrac-
tive at low-energy. Mathematically, this is done by integrating out the coherent bosonic e,

1Our result also holds for finite interaction strength as long as U is larger than the bandwidth of the f-orbitals. In
addition, even when double occupancy is not strictly ruled out, and that one includes the d-states, the same pairing
interaction is obtained. In this case, however additional terms arise from the d-states which requires numerical
methods for solutions.
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e†-operators to obtain an effective interaction potential Vkk′(iωn). Sparing the details to Ap-
pendix A, we present the final result of an effective interacting Hamiltonian (in the static limit)
as

Heff =
∑

k,σ

ξkc†
kσckσ + ξ̄ f

∑

m

f̄ †
m f̄m +

∑

kk′,σσ′,mm′

Vkk′ c†
kσ f̄m f̄ †

m′ ck′σ′ . (3)

Spin conservation leads to σ +m = σ′ +m′. The most impressive aspect of the above result
lies in the form of the effective potential

Vkk′(iωn) = vkv†
k′

2ωe

(iωn)2 −ω2
e
, (4)

where iωn is the bosonic Matsubara frequency. In what follows, in the low energy limit
iωn < ωe and ωe > 0 (since holon’s energy is generally positive), Eq. (4) produces an at-
tractive potential. This is one of our principle results of this work. As in the case of the BCS
theory, [1] we consider here the static limit iωn→ 0 limit, yielding

Vkk′ = −
2vkv†

k′

ωe
< 0. (5)

For a generic attractive potential, the pair correlation function has a logarithm divergence with
temperature (see Appendix C), and we have a SC ground state. Looking at Eq. (3), we find
that the Cooper pairs form here between the conduction electron and singly occupied f̄m-site
with the SC gap parameter defined as

∆k =
2vk

ωe

∑

k′
v†

k′〈ck′σ f̄m〉. (6)

Here we make few observations. (i) This is an inter-band pairing between the spin-1
2 conduc-

tion electron and single-site f -electron with m multiplet. (ii) The k−dependence of the SC
gap is solely determined by that of the hybridization term vk in Eq. (5). (iii) This is a finite-
momentum pairing, but unlike the Fulde-Ferrel-Larkin-Ovchinnikov state (FFLO) or the pair
density wave state, here the Cooper pair solely absorbs the conduction electron’s momentum.
(For dispersive, narrow f -band, which is often the case in many HF systems, Cooper pairs
can have zero center-of-mass momentum.) (iv) The SC state, in general, does not have the
particle-hole symmetry, unless at ξk = ξ̄ f . (v) Symmetry of the Cooper pairs is dictated by
the values of m, σ, and the parity of Vkk′ . In CeCu2Si2, the hybridization occurs between the
Ce- f and Ce-d orbitals of the same Ce-atom, [30] and thus the hybridization potential can be
considered as onsite, i.e., vk = v. For onsite hybridization, one expects a spin-singlet pair for
m = ±1/2 (or higher order antisymmetric spin component if |m| > 1/2). For an attractive
potential, spin-singlet, onsite (s-wave) pairing state has the highest eigenvalue as obtained in
the BCS case as well. [1]

3 Mean-field results and critical phenomena

So far, we have obtained all results exactly. We now invoke the mean-field theory for super-
conductivity. The effective mean-field Hamiltonian reads

HMF =
∑

kσ

ξkc†
kσckσ + ξ̄ f

∑

m

f̄ †
m f̄m +

∑

kσm

∆k f̄ †
mc†

kσ + h.c..

(7)
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Figure 2: SC phase diagram with respect to valence fluctuation potential v and renor-
malized f -electron’s energy ξ̄ f . (a), The SC transition temperature Tc is plotted in
the (v, ξ̄ f ) space, scaled with respect to the conduction electron’s bandwidth D. We
set ξ f /D = −0.1. The white region for small values of v gives the SC-forbidden re-
gion (Eq. (11)). (b), SC gap amplitude ∆ (at T = 0) plotted in the same parameter
space. Above the critical value of v, both Tc and∆ grows with v2 as in Eq. (9). Inter-
estingly, optimal superconductivity commences at a finite value of ξ̄ f where all the
holon fields condense to ωe→ 0, and the pairing potential V →∞.

The corresponding self-consistent gap equation is (see Appendix B)

∆k =
2vk

ωe

∑

k′
v∗k′
∆k′

4E0k′

∑

ν=±
ν tanh

�

βEν
k′

2

�

. (8)

ν = ± are the two quasiparticle bands: E±k = ξ
−
k ± E0k, where E0k =

q

(ξ+k )
2 + |∆k|2, and

ξ±k = (ξk ± ξ̄ f )/2. β = 1/kB T .
In the case of onsite hybridization vk = v, the k-dependence of the pairing potential is

removed. This gives Vkk′ = −
2|v|2
ωe

with ωe > 0, leading to a ‘conventional’ s-wave pairing
symmetry ∆k = ∆. Taking advantage of the onsite attractive potential, and s-wave pairing
channel, we can solve Eq. (8) analytically. Solutions of Eq. (8) in the two asymptotic limits of
T → 0, and ∆→ 0 yield the gap amplitude ∆ and Tc as

∆ = D̄e−
1

2λ

�

1+ re−
1
λ

�1/2
,

kB Tc = Dγe
− 1
λ



1−

�

ξ̄ f

2Dγ

�2

e
2
λ





1/2

. (9)

Here D̄ =
Ç

D2 − ξ̄2
f , Dγ = 2Dγ/π and r = (D+ ξ̄ f )/(D− ξ̄ f ), with γ being the Euler constant,

and D = 1/2N , and N are bandwidth and density of states of conduction electrons at the Fermi
level. The SC coupling constant is defined as

λ=
2N |v|2

ωe
= 2|η|−1NJK, (10)

where JK = |v|2/|ξ f | is the Kondo coupling constant. η is defined below Eq. (2). The first terms
before the parenthesis in both∆ and Tc are the usual BCS solutions, while the correction terms
within the parenthesis have important consequences. The correction term in Eq. (9) suggests
that superconductivity arises above a critical value of the coupling constant

1
λ
< ln

�

2Dγ
|ξ̄ f |

�

. (11)
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Figure 3: Relationship between Tc and TK . We demonstrate the relationship be-
tween Tc and TK for several values of the exponent η (from Eq. (13)). Interestingly,
Tc vanishes below some critical value of TK , where the cutoff value decreases with
decreasing η. Tc , TK are normalized to some highest values of Tc0, TK0, respectively,
for each values of η. For CeCoIn5, Yb and La dopings [55] are known to modulate
the valence fluctuation strength TK , giving an intriguingly similar Tc versus TK rela-
tionship, as predicted by our theory in Eq. (13). Experimental values agree well for
η∼ 1− 1.5 for ξ̄ f = 0.7eV.

This implies that there exists a lower critical value of the hybridization vc above which super-
conductivity is possible. Since v is related to the coherence temperature TK, we show below
that the above constraint translates into a lower limit for TK to produce superconductivity.
This result is in contrast to the BCS result where any infinitesimal electron-phonon coupling
is sufficient for finite Tc . Interestingly, the BCS ratio ∆/kB Tc is not a universal constant here,
even in the weak coupling limit. In the limit of D � ξ̄ f , we recover BCS-type behavior of
∆→ De−1/2λ, and kB Tc → Dγe

−1/λ, with ∆/kB Tc → 1.73e1/2λ, suggesting a strong coupling
limit of the superconductivity.

Plots of∆ and Tc as a function of v and ξ̄ f are shown in Fig. 2. Both phase diagrams exhibit
funnel like behavior in the v− ξ̄ f space. We highlight here two key features. (i) In Tc plot we
find a white region for small values v which marks the forbidden (non-SC) region dictated by
the constraint 1/v2 > (N/2ωe) ln |2Dγ/ξ̄ f | (Eq. (11)). In the rest of the regions where both
∆ and Tc are finite, we obtain a second order phase transition with the critical exponent of
1/2. (ii) Secondly, superconductivity is optimal at a characteristic value of ξ̄ f 6= 0 (marked by
arrows in Fig. 2). At this point ωe → 0 (ξ̄ f = ξ f ) and hence the pairing potential V →∞,
stipulating maximum superconductivity. At the optimal Tc , f -electron’s band renormalization
Z → 1.

3.1 Connection to coherence temperature TK

From Eq. (4), it is evident thatωe is analogous to the Debye frequency of the electron-phonon
mechanism. The essential dependence of Tc andλ on observable parameters such as coherence
temperature TK can be derived using the saddle point approximation [49,53,54]. For this case,
Eq. (2) can be solved exactly, [56] yielding kB TK = De−1/NJK . Therefore, from Eq. (10), we
find that the SC coupling constant λ depends on TK as

1
λ
= η ln

�

D
kB TK

�

. (12)

This result is consistent with the fact that the Kondo critical point prompts optimal super-
conductivity as obtained in CeCu2Si2, [26] as well as in many other HF superconductors.
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Figure 4: Computed superfluid density as a function of temperature. The tempera-
ture dependence shows a typical exponential behavior at low-T as seen in CeCu2Si2.

[8, 9, 11, 57–59] However, Tc is terminated below a critical TK which can be obtained from
Eq. (9) as

(kB Tc)
2 = D2

γ

�

kB TK

D

�2|η|
−
ξ̄2

f

4
, (13)

where η is the same as before. Eq. (13) is another important result of our theory, which finds
a surprisingly consistent agreement with experimental data (see Fig. 3). We plot Tc and TK for
several parameter values in Fig. 3. Both the critical behavior and the power-law dependence
between Tc and TK agree remarkably well with the experimental data of La, and Yb doped
CeCoIn5 samples. [55]

4 Signatures of pairing structure

4.1 Meissner effect

Unlike the typical Cooper pair of two conduction electrons with opposite momenta in other
types of superconductors, here we have a pairing between conduction electron and correlated
singly occupied f -electrons. The conduction electrons directly couple to the gauge field A as
p′ = ħhk − e

c A. On the other hand, the f -states do not couple to the vector potential in its
localized limit. Importantly, despite that the magnetic field couples only to the conduction
electron, we find a complete exclusion of the magnetic field at T → 0, a hallmark of superfluid
state. Interestingly, however, in the strongly localized limit of the f -orbitals, the Meissner
effect experiments will exhibit charge of the Cooper pair to be −e, instead of −2e as in other
Conventional Cooper pair between two itinerant electrons. Caution to be taken in realistic
heavy-fermion systems, where the band structure calculation [29] shows weak dispersion of
the f -electrons, which couple to the external gauge field, and hence may contribute to the
Cooper pair charge of −2e or a value between −e to −2e on average.

Here we proceed with computation of the diamagnetic (Jd) and paramagnetic (Jp) current
of the conduction electrons only:

Jd =
e2a
c

∑

kσ

1
mk

c†
kσckσ, Jp = e

∑

kσ

vkc†
kσckσ. (14)

vk and mk are the velocity and effective mass, respectively, of the conduction electron, and
a is the Fourier component of the vector potential A. Using the mean-field solution of the
quasiparticle bands, the superfluid density (inversely proportional to the magnetic penetration
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depth) is obtained to be

λ−2
i j (T ) =

4πe2

c2

′
∑

k

�

1
mi j,k

�

1−
∑

ν

(ανk)
2 tanh

�

βEνk
2

��

−
β

2
vikv jk

∑

ν

(ανk)
2sech2

�

βEνk
2

��

, (15)

ν = ± for two quasiparticle bands. [Prime symbol over the summation indicates that it is
restricted within the first quadrant of the Brillouin zone, since both +k and −k fermions are

included exclusively to obtain Eq. (15) (see Appendix D).] (α∓k )
2 = 1

2

�

1∓
ξ+k
E0k

�

is the coherence
factors of the mean-field solutions. The numerical evaluation of Eq. (15) yields an exponential
behavior of superfluid density as T → 0, as shown in Fig. 4. This behavior is also observed
experimentally in CeCu2Si2 [23,24] as well as in Yb-doped CeCoin5 [43].

4.2 Spin-resonance mode

For unconventional pairing symmetry, the sign-reversal of the SC gap leads to a spin-resonance
mode at ωres ≤ 2∆. [12] Such a mode is rather weak in intensity and may lie above 2∆ for
conventional (fixed sign) pairing symmetry. [60] Experimentally, a resonance is observed in
the SC state in CeCu2Si2 at Q∼ (0.215, 0.215,1.458) in r.l.u. in the energy scale of ∼0.2 meV
which is roughly at 4kB Tc (Tc ∼ 0.6 K). [18]

The present pairing symmetry has few interesting collective spin modes which can explain
the above experimental behavior. For the calculation of spin fluctuation to be tractable we
consider that the f -electrons possess spin m = ±1/2. In this case, the total spin operator can
be defined as a summation over conduction spin and f -electrons spin:

Sq =
1
2

�∑

kαβ

c†
kασαβ ck+qβ +

∑

αβ

f̄ †
ασαβ f̄β

�

. (16)

α, β are spin indices. The transverse spin susceptibility is defined as
χ(q,τ) = 〈TτS+(q,τ)S−(−q, 0)〉. Solving in the mean-field SC state, we obtain

χ(q, iωn) =
∑

k

∑

µ,ν=±
Aµνkq

f (Eµk+q)− f (Eνk )

iωn + Eνk − Eµk+q

, (17)

where

Aµνkq =
1
2

�

1±
ξ+kξ

+
k+q +∆k∆k+q

E0k+qE0k

�

, (18)

µ, ν = ± are the band indices, and ± in Eq. (18) corresponds to amplitude of the oscillators
for µ = ν (intra-) and µ 6= ν (inter-) quasiparticle band transition. Eq. (17) can give various
collective excitations, depending on the band structure details. We are here interested in the
possible modes inside the SC gap. Indeed, we find the solution of a localized spin-excitation in
the SC state at a wavevector which corresponds to the condition ξ+k = −ξ

+
k+Q. (Note that this

is not the condition of the conduction electron’s FS nesting). In this case, we have a resonance
at an energy

ωres = E+k+Q − E−k ∼
2∆2

|ξ̄ f |
, (19)

in the limit of ∆ � ξ+k . The corresponding oscillator strength of the resonance mode is

Aµ,ν6=µ
kq = (ξ+k )

2/E2
0k > 0. Since ξ̄ f > ∆, the resonance occurs inside the SC gap, as observed

experimentally in CeCu2Si2 [18] .

9

https://scipost.org
https://scipost.org/SciPostPhys.7.6.078


SciPost Phys. 7, 078 (2019)

4.3 Other measurements

The present theory of valence fluctuation mediated attractive pairing channel can be verified in
multiple ways. For example, the present theory predicts a unique Andreev reflection behavior.
In a typical normal metal and superconductor interface, as an electron tunnels from the metal
into the superconductor side, it reflects back a hole, and vice versa. In our present case,
the conduction electron from the normal metal forms a Cooper pair with a f -state in the
SC sample, and thus reflects a f -electron to the normal metal, which can be easily probed. The
reflection probably is inversely proportional to the effective mass of the f -electron. This means
in the limit of the localized f -electron case, the Andreev reflection can be strongly suppressed
or absent. A suppression of Andreev reflection amplitude is observed in CeCoIn5, [61] and
CeCu2Si2 [19,20].

As also mentioned in the above section, in the limit of fully localized f -orbitals when the
coupling to the external gauge field is suppressed, one may find evidence of −e charge of the
Cooper pair in such experiments. However, the band structure effect of the f -orbitals can
help coupling of the f -orbitals to the gauge field and hence the charge of the Cooper pair on
average can be observed to be somewhere between −e to −2e in experiments.

5 Discussions and conclusions

Our theory demonstrates the existence of an attractive pairing potential mediated by the in-
terplay between Coulomb interaction and valence fluctuations. The origin of the attractive
potential is the emergent boson field (holon) associated with single-site f -states to restrict
double occupancy due to strong Coulomb interaction. The effective interaction is a result of
multiple valence fluctuations: The holon field generated in a given valence fluctuation is anni-
hilated in the second valence fluctuation, and the resulting two valence fluctuation processes
generate an effective interaction between the f - and conduction electrons. The interaction is
attractive at low-frequency and isotropic in the case of onsite valence fluctuation process. The
onsite, attractive interaction naturally gives an isotropic, constant sign s-wave pairing channel
between the single-site f -electrons, and conduction electrons.

Our result of fixed-sign, isotropic s-wave pairing channel is consistent with numerous ex-
perimental data discussed in the introduction. [19–25] The exponential temperature depen-
dence of point-contact tunneling spectroscopy, [19,20] specific heat, [21–23] thermal conduc-
tivity [23], and penetration depth [23, 24] are naturally explained within our model. More-
over, there have been several recent evidence of two-band superconductivity in CeCu2Si2.
[21,22,24] It was shown that most of the above data, as well as the T3 dependence of the NQR
data [13–15] can be fitted well with a two-band model with a simple s-wave pairing symmetry.
This is fully consistent with our theory which has a two-band (conduction and local) behavior
with s-wave pairing. Furthermore, the proposed pairing (Eq. (6)) is a finite momentum pair-
ing in the limit of fully localized f -electrons, and itinerant conduction electrons. Consistently,
there have been recent evidence of finite momentum pairing state in CeCu2Si2. [62] Finally,
strong suppression of Andreev reflection amplitude in CeCoIn5, [61] and CeCu2Si2 [19, 20]
are well known, suggesting the involvement of the localized f -orbitals in the Cooper pairs.

In addition, the present theory can also explain the other three experimental signatures
which were taken earlier as evidence of unconventional, sign-reversal pairing symmetry. (i)
The T3 dependence of the NQR relaxation rate 1/T1 below Tc in CeCu2Si2 is often considered
as evidence of line nodes in the SC gap structure. [13–15] As mentioned above, a two-band
model with purely s-wave gap, as in the present case, is shown to reproduce the same power-
law behavior of 1/T1 without invoking gap nodes. [21,22] Therefore, we anticipate our theory
is equally applicable here. (ii) The four-fold angular modulation of Hc2 in CeCu2Si2 [16]
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can be a signature of the SC gap anisotropy. However, it was shown in a realistic two-band
model that a strong anisotropy in Hc2 (as well as in other quantities) can well arise solely
from the Fermi surface anisotropy even for a purely isotropic s-wave SC gap. [17] Indeed, the
conduction electron’s Fermi surface is known to be substantially anisotropic in CeCu2Si2. [29,
30] (iii) Finally, it is known that a spin-resonance as measured by inelastic neutron scattering
experiments can arise either from unconventional, sign-reversal pairing symmetry, or even for
a fixed-sign s-wave pairing. [60] For sign-reversal pairing gap, the spin-resonance is typically
very sharp and its energy must follow ωres < 2∆, where ∆ is the SC gap amplitude. On
the other hand, for fixed-sign, conventional pairing, the resonance is usually very broad, and
its energy lies at ωres ≥ 2∆. The measured spin-resonance in CeCu2Si2 [18] is indeed quite
broad, and the present data cannot discern if the resonance energy lies below or above 2∆.
Moreover, our theory also predicts a novel resonance mode at an energy (Eq. (19)) determined
by 2∆2/ξ̄ f .

We compare and contrast the concepts of the present theory with the prior theories of
‘conventional’ pairing solutions in CeCu2Si2. Valence fluctuation mediated or assisted pair-
ing mechanism has been a steady theme of discussions in the heavy-fermions community.
[8, 9, 26, 27, 31–34] Miyake and Onishi [31, 32] have proposed a phenomenological pairing
vertex formula with the help of an empirical valence fluctuation susceptibility defined near its
critical point. Unlike our case, the pairing vertex in Ref. [31] does not invoke electron-electron
correlation, however, the pairing interaction is argued to be retarded when correlation is in-
cluded. On the other hand, in our case, the pairing interaction is microscopically derived
from the interplay between correlation and valence fluctuation and has a robust solution of
attractive channel at the low-energy limit. Our pairing interaction can be considered as a gen-
eralized, dynamical Kondo interaction. If we express the interaction in Eq. (3) in terms of local
spin and conduction spin interaction, then Vkk′(ω) can be cast as dynamical Kondo interaction
JK(ω) (similar result in the static limit can be obtained within the Schrieffer-Wolf transfor-
mation [46]). Starting from Kondo interaction with JK < 0, a composite Cooper pair theory
was proposed where conduction electron pairs up the (chargeless) fermionic representation of
the local spin. [36,38] Such composite pairing channel is also s-wave like in the limit of local
Kondo channel. A prior quantum Monte Carlo simulation of periodic Anderson model showed
the existence of a s-wave pairing interaction. [35] This gives a validation of the attractive pair-
ing interaction we derive in Eq. (4). Finally, we propose that a future dynamical mean-field
theory (DMFT) calculation will be valuable to further confirm the existence of the attractive
paring solution in such a model.

Finally, we make few remarks about the future extension of the present theory. A full,
self-consistent treatment of Tc , η, and TK requires an Eliashberg-type formalism. Since Tc is
significantly low in HF compounds, the present mean-field treatment is however a good ap-
proximation for the estimates of Tc . The theory also holds for dispersive f -electrons state as
long as the corresponding bandwidth is much lower than U . For a dispersive f -state, one can
obtain a zero center-of-mass momenta Cooper pair 〈c†

kσ f̄ †
−km〉. Therefore, the present theory

is applicable to the wider class of intermetallic and mixed valence superconductors where a
narrow band and a conduction band coexist, and possesses finite interband tunneling (valence
fluctuation) strength. [63] Our calculation does not include Coulomb interaction between the
conduction and f -electrons (the Falicov-Kimball type interaction). However, it is obvious that
such a Coulomb interaction term will lead to a pair breaking correction (e.g µ∗-term), in anal-
ogy with the Coulomb interaction correction to the electron-phonon coupling case (the so-
called McMillan’s formula) [64]. Finally, the vertex correction to the pairing potential can be
envisaged, in analogy with the Migdal’s theory, to scale as m/M , where m, and M are the
mass of the conduction and f -electrons. Since M ∼ 103 in these HF systems, we argue that
the vertex correction can be negligible.

11

https://scipost.org
https://scipost.org/SciPostPhys.7.6.078


SciPost Phys. 7, 078 (2019)

Acknowledgements

We thank M. B, Maple, T. V. Ramakrishnan, G. Baskaran, B. Kumar, F.D.M. Haldane for dis-
cussions and numerous suggestions. The work is supported by the Science and Engineering
Research Board (SERB) of the Department of Science & Technology (DST), Govt. of India for
the Start Up Research Grant (Young Scientist), and also benefited from the financial support
from the Infosys Science foundation under Young investigator Award.

A Field theory treatment of the hole states and effective attractive
potential

The action of the Hamiltonian in Eq. (2) is broken into four components

S = Sc + S f̄ + Se + Sv , (20)

where

Sc =

∫

dτ
∑

k,σ

c̃kσ(τ)(∂τ + ξk)ckσ(τ), (21)

S f̄ =

∫

dτ
∑

m

˜̄fm(τ)(∂τ + ξ̄ f ) f̄m(τ), (22)

Se =

∫

dτ ẽ(τ)(∂τ +ωe)e(τ), (23)

Sv =

∫

dτ
∑

k,σ,m

�

vk c̃kσ(τ)ẽ(τ) f̄m(τ) + h.c.
�

. (24)

Here ẽ, e are bosonic coherent states and ˜̄f , f̄ , c̃, c are Grassmann variables for singly occupied
f -states, and conduction electrons respectively (‘tilde’ means conjugation). τ is imaginary time
axis. Thermodynamic properties of the system can be calculated from the partition function
Z = Tre−S , where the trace is taken over all degrees of freedom of the system. We obtain an
effective action Seff by integrating out the bosonic variables ẽ, e as

Z =

∫

D[c̃, c]D[ ˜̄f , f̄ ]D[ẽ, e]e−Sc−S f̄ −Se−Sv ,

=

∫

D[c̃, c]D[ ˜̄f , f̄ ]e−Sc−S f̄

∫

D[ẽ, e]e−Se−Sv ,

=

∫

D[c̃, c]D[ ˜̄f , f̄ ]e−Seff[c̃,c, ˜̄f , f̄ ], (25)

where

Seff = Sc +S f̄ − ln

∫

D[ẽ, e]e−Se−Sv . (26)

It is easier to perform the τ integration in the Matsubara frequency space. The Fourier transfor-
mation to the Matsubara frequency domain of the e(τ) variable gives
e(τ) = 1p

β

∑

n en exp (−iωnτ), where iωn is bosonic Matsubara frequency and en = e(iωn).

In the Matsubara space, we get

Se = −
∑

n

ẽn(Ge)−1(iωn)en, (27)
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where Ge is the bare Green’s function for the en-states: (Ge)−1 = iωn −ωe.
Next we define a bosonic hybridization field ρkσm as

ρkσm(τ) = c̃kσ(τ) f̄m(τ), (28)

whose Fourier component is ρkσm(τ) = 1p
β

∑

nρkσm,n exp (−iωnτ), where

ρkσm,n = ρkσm(iωn) with iωn being the bosonic Matsubara frequency. Hence we can express
the hybridization action as

Sv =

∫ β

0

dτ
∑

k,σ,m

�

vk ẽ(τ)ρkσm(τ) + v∗kρ̃kσm(τ)e(τ)
�

=
∑

k,σ,m

∑

n

�

vk ẽnρkσm,n + v∗kρ̃kσm,nen

�

. (29)

Interestingly, now in Eqs. (27),(29) the integration over τ-variable is replaced with summation
over discrete Matsubara frequencies n. Let us say at a given temperature we have N number
of Matsubara frequencies. So we define a bosonic spinor E = (e1, e2, ..., eN )T , and Ẽ = (ẽ1,
ẽ2, ..., ẽN ). Similarly, we define a vector for the hybridization field as V = (v1, v2, ..., vN )T ,
Ṽ = (ṽ1, ṽ2, ..., ṽN ) where vn =

∑

kσm vkρkσm,n, and ṽn =
∑

kσm v∗kρ̃kσm,n. Finally, we define
a diagonal matrix G−1 for the inverse Green’s function (Ge)−1 in Eq. (27), whose components
are G−1

nn = (Ge)−1 = iωn −ωe. Hence we can express Eqs. (27),(29) respectively as

Se = − Ẽ ·G−1 · E, (30)

Sv = Ẽ ·V+ Ṽ · E. (31)

Therefore, the last term of Eq. (26) can be evaluated as
∫

D[Ẽ,E]e−Se−Sv = πN det G−1e−[Ṽ·G
−1·V] (32)

(We ignored some irrelevant constant factors). The factor of the exponent on the right hand
side of Eq. (32) can now be evaluated rigiously. In T → 0 limit, the Matsubara frequencies
span from n= −∞ to∞. Hence we obtain,

Ṽ ·G−1 ·V

= −
∑

k,σ,m
k′,σ′,m′

∞
∑

n=−∞
v∗kρ̃kσm,n

1
−iωn +ωe

vk′ρkσ′m′,n

=
∑

k,σ,m
k′,σ′,m′

∞
∑

n=0

v∗k vk′
2ωe

(iωn)2 −ω2
e
ρ̃kσm,nρkσ′m′,n

=
∑

k,σ,m
k′,σ′,m′

∞
∑

n=0

Vkk′
˜̄fm(iωn)ck,σ(iωn)c̃k′,σ′(iωn) f̄m′(iωn).

(33)

In the last equation, we have substituted the hybridization field into fermionic field from
Eq. (28). The effective potential is

Vkk′ = v∗k vk′
2ωe

(iωn)2 −ω2
e
. (34)
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B Mean-field solutions

We use the Nambo-Gorkov basis ψk = (ckσ f̄ †
m)

T , in which the mean-field Hamiltonian
(Eq. (7)) reads

HMF(k) = ξ
−
k I2×2 + ξ

+
kσz −∆kσx , (35)

where σi are the 2× 2 Pauli matrices and I2×2 is a unit matrix. ξ±k = (ξk ± ξ̄ f )/2. The BdG
eigenvalues are

E±k = ξ−k ± E0k, with E0k =
q

(ξ+k )
2 + |∆k|2. (36)

The Bogoliubov operators for the two eigenvalues E±k are

�

φ+k
(φ−k )

†

�

=

�

α+k −α−k
α−k α+k

��

ckσ
f̄ †
m

�

, (37)

where

(α∓k )
2 =

1
2

�

1∓
ξ+k
E0k

�

. (38)

Evaluating the self-consistent gap equation from Eq. (6), we get Eq. (8).

B.1 Transition temperature Tc

For the attractive potential, onsite pairing is more favorable. Hence we set Vkk′ = −2|v|2/ωe.
In this case, superconducting transition temperature Tc can be obtained by taking the limits

of ∆→ 0, which renders E+k → ξk, E−k →−ξ̄ f , E0k→
|ξk+ξ̄ f |

2 . From Eq. (8) we obtain

1= λ

∫ D

−D

dξ

2(ξ+ ξ̄ f )

�

tanh
�

βcξ

2

�

+ tanh

�

βcξ̄ f

2

��

, (39)

where we have substituted λ = 2N |v|2/ωe. βc = 1/kB Tc . The first integral in Eq. (39) is
a tricky one. In the limit of D � ξ̄ f , we can approximately evaluate this integral. The first
integral of Eq. (39) gives

I1 ≈ λ ln





2Dγ
Ç

ξ̄2
f + (2kB Tc)2



 , (40)

where Dγ = 2Dγ/π with γ = 1.78 being the Euler constant. The second integral is trivial to
evaluate which gives

I2 = λ tanh

�

βcξ̄ f

2

�

ln

�

�

�

�

�

D+ ξ̄ f

−D+ ξ̄ f

�

�

�

�

�

. (41)

In the limit of D > ξ̄ f , I2→ 0. Therefore, we are left with I1 = 1, which gives,

(kB Tc)
2 = D2

γ e−2/λ −
ξ̄2

f

4
, (42)

Eq. (8) in the main text is obtained from the above equation.
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B.2 SC gap amplitude

Next we take the T → 0 limit in Eq. (8). In this limit, we get tanh(
βE±k

2 )→±1. Hence we are
left with

1 = λ

∫ D

−D

dξ
q

(ξ+ ξ̄ f )2 + 4∆2

= λ ln

 q

(D+ ξ̄ f )2 + 4∆2 + D+ ξ̄ f
q

(D− ξ̄ f )2 + 4∆2 − D+ ξ̄ f

!

≈ λ ln

�

2(D+ ξ̄ f )
q

(D− ξ̄ f )2 + 4∆2 − D+ ξ̄ f

�

. (43)

In the last equation above, we assumed D�∆. Solving Eq.(43)

∆ = D̄e−
1

2λ

�

1+ re−
1
λ

�1/2
,

(44)

where D̄ =
Ç

D2 − ξ̄2
f , and r = (D + ξ̄ f )/(D − ξ̄ f ). In the weak coupling limit λ→ 0, we get

∆ → D̄e−
1

2λ (notice the factor of 2λ in the exponent) while in the strong coupling limit, we
obtain the BCS-type formalism of ∆→

Ç

D2 + ξ̄2
f e−

1
λ ≈ De−

1
λ .

C Pair susceptibility

To affirm that there exists a pairing instability in Eq. (3) in the main text, we compute the
pair-pair correlation function. We consider the pair field

bk(τ) =
∑

σ,m

ckσ(τ) f̄m(τ), (45)

where τ is the imaginary time. The pair susceptibility is defined as

χp(q, iωn) =

∫ β

0

∑

k

�

Tτbk(τ)b
†
k+q(τ

′)

�

e−iωn(τ−τ′),

(46)

where Tτ is the time ordered operator. Using Wick’s decomposition, we evaluate the above
average as

¬

Tτbk(τ)b
†
k+q(τ

′)
¶

=
∑

σ,m

G f
m(τ−τ

′)Gc
k,σ(τ−τ

′)δq,0,

(47)

where Gc
k,σ(τ − τ

′) = 〈Tτckσ(τ)c
†
kσ(τ

′)〉 is the conduction electron’s Green’s function, and

G f
m(τ − τ′) = 〈Tτ f̄m(τ) f̄ †

m(τ
′)〉 is the Green’s function for the single site f̄m states. In the

fermionic Matsubara frequency ipn space these two Green’s functions become
Gc

k,σ(ipn) = (ipn − ξk)−1, and G f
m(ipn) = (ipn − ξ̄ f )−1. Substituting the Green’s functions

in Eq. (46), and doing the Fourier transformation we get

χp(iωn) =
1
β

∑

k,σ,m

∑

n′
G f

m(ipn′)Gc
k,σ(iωn − ipn′). (48)
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Figure 5: Static pair susceptibility at q= 0 as a function of temperature for different
values of ξ̄ f . As expected from Eq. (51) the pair correlation function diverges at
T → 0 for ξ̄ f → 0.

Substituting the corresponding Green’s functions and performing the standard Matsubara fre-
quency summation on ipn′ , we arrive at

χp(iωn) =
∑

k

1− f (ξ̄ f )− f (ξk)

ξ̄ f + ξk − iωn
, (49)

f (ξ) is the Fermi distribution function. We are interested in the ω → 0, and q → 0 limits.
Taking analytic continuation to the real frequency plane iωn→ω+ iδ, the pair susceptibility
becomes

χp(ω≈ 0) =
N
2

∫ D

−D
dξ

tanh(
βξ̄ f

2 ) + tanh(βξ2 )

ξ̄ f + ξ
. (50)

This equation is nothing but the R.H.S. of Eq. (39), except the constant factor V . Again in the
limit of D� ξ̄ f this integral gives the solution as in Eq. (40). Hence we get

χp(T ) = N ln





2Dγ
Ç

ξ̄2
f + (2kB T )2



 . (51)

Interestingly, unlike the typical BCS case, the pair correlation function does not have a loga-
rithmic divergence as T → 0 except in the limit of ξ̄ f → 0. This is the reason superconductivity
is limited by a minimum limit of the coupling constant λ and TK to overcome the onsite energy
ξ̄ f as discussed in the main text.

D Further details of the Meissner effect

Unlike the typical Cooper pair of two conduction electrons with opposite momenta in other
mechanism, here we have a pairing between conduction electron and correlated singly occu-
pied f -electrons. How do these Cooper pairs couple to the applied magnetic field? It is easy to
envisage that conduction electrons directly couple to the gauge field A as p′ = ħhk− e

c A. On the
other hand, the f -states do not couple to the vector potential in its localized limit. Therefore,
important changes are expected here in the Meissner effects, compared to typical BCS case.
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First of all, under the magnetic field the BdG states become chiral and thus the Bogolyubov
states φ±±k and the corresponding eigenvalues E±±k for ±k are no longer the same. Hence we
treat them explicitly as:

ckσ = αkφ
+
k + βk(φ

−
k )

†

c−kσ = αkφ
+
−k + βk(φ

−
−k)

†. (52)

αk, and βk are the coherence factors at zero magnetic field. The corresponding change in
the eigenvalue are Eν±k = Eνk ∓

e
c a.vk, where ν = ±, and a is the Fourier component of the

vector potential in the momentum space. vk = ∂ ξk/(ħh∂ k) is the conduction band velocity
with v−k = −vk. Eνk are the eigenvalues without the magnetic field, and hence Eν−k = Eνk . In
the weak magnetic field limit, this corresponds to the change in the Fermi Dirac distribution
functions as f (Eν±k) = f (Eνk )∓ (

e
c a.vk)

∂ f
∂ Eνk

. The two current operators are

Jd(q) =
e2

c
a(q)

′
∑

kσ

1
mk

�

c†
k−qσckσ + c†

−k+qσc−kσ

�

, (53)

Jp(q) = e
′
∑

kσ

vk−q

�

c†
k−qσckσ − c†

−k+qσc−kσ

�

. (54)

Here mk is the effective mass of the conduction electron. In the above two equations we
utilized the fact that v−k = −vk, and m−k = mk. The prime over the summation indicate that
the summation is restricted to the first quadrant of the Brillouin zone. By substituting Eq. (52)
and after a lengthy and straightforward calculation, we arrive at

Jd(0) = −
e2a(0)

c

′
∑

k

1
mk

�

1− (α+k )
2 tanh

�

βE+k
2

�

− (α−k ) tanh

�

βE−k
2

��

,

(55)

Jp(0) =
e2β

2c

′
∑

k

(a.vk)vk

�

(α+k ) sech2

�

βE+k
2

�

+ (α−k ) sech2

�

βE−k
2

��

.

(56)

Next we take the linear response theory and within the London’s equations, we define the
penetration depth λ(T ) as λ−2

i j = −
4π
c

Ji(0)
a j(0)

, where J = Jp + Jd is the total current. i, j are the
spatial coordinates. This gives the final result given in Eq. (15). This equation reduces to the
typical BCS form in the case of ξk = −ξ̄ f .
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