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Altered polar character of nanoconfined liquid water
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Atomistic molecular dynamics simulation study of dipolar fluids confined to spherical nanocavities of radii
ranging from Rc = 1 to 4 nm reveals a surprisingly small Kirkwood correlation factor (gK ) in water, but not so
in dipolar Stockmayer fluid. This results in an ultrafast relaxation of the total dipole moment time correlation
function (DMTCF) of water. The static dielectric constant of water under nanoconfinement exhibits a strong
dependence on size with a remarkably low value even at Rc = 3 nm and a slow convergence to the bulk value
because of surface-induced long-range orientational correlations. Interestingly, DMTCF exhibits a bimodal 1/ f
noise power spectrum.
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I. INTRODUCTION

A large number of physicochemical processes occur in
aqueous solution under nanoconfinement. Confinement can
significantly modulate the phase behavior, ion transport, reac-
tion pathways, and chemical equilibrium [1–3]. For example,
confined water exhibits enhanced self-dissociation [4]. This
increases the ionic product and affects other physicochem-
ical properties. Electrospray experiments reveal a marked
enhancement in the reaction rate in aqueous droplet medium
[5,6]. Some reactions adopt different mechanisms that lead
to unexpected products [7]. Experiments often find slower
relaxation in confined water, although the reverse has also
been observed [8–12]. Also, the altered polar character of con-
fined water controls many other important processes such as
solvation and charge transfer [13]. Phenomenological theories
invoke a continuum model with a given dielectric constant
of the liquid [13,14]. Hence, understanding the dielectric
behavior of confined dipolar liquids becomes important to
comprehend these processes [15–20]. Although the dielectric
properties of bulk dipolar liquids are well understood [21,22],
only a limited number of theoretical studies have been devoted
to understand the same under spherical nanoconfinement
[18,23,24].

The Hamiltonian and total interaction potential for con-
fined liquid systems is given by Eq. (1).

H = K (0)
liquid + U ({r}, R);

U ({r}, R) =
∑

i, j(>i)

ui j (ri j )+
∑
i,k

uik (Rik ). (1)

Here, K (0)
liquid denotes kinetic energy, ui j (ri j ) represents in-

termolecular interactions, and uik (Rik ) represents the liquid-
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surface interaction. In practice, one models ui j (ri j ) as the
sum of electrostatic, dipolar, and Lennard-Jones interactions.
However, uik (Rik ) is modeled in different ways to characterize
different surfaces.

The combined effects of geometric confinement and
surface-liquid interactions have remained a subject of discus-
sions for many decades [25–27]. In water, both the effects are
complex. Liquid water strives to maintain its hydrogen bond
network (HBN) to minimize free energy. This is termed as
the principle of minimal frustration [28,29]. As water exhibits
several anomalies, we study another model dipolar liquid to
establish general perspectives.

We ask the following questions: (i) How does the static
dielectric constant (ε) scale with the size of the nanocavity?
(ii) What is/are the microscopic origin(s) of ultrafast col-
lective orientational relaxation under nanoconfinement? (iii)
How does the surface-liquid interaction affect the structure
and dynamics of confined liquid? We aim to answer these
questions in the present work.

II. THEORETICAL FORMALISM

For spherical samples, the generalized Clausius-Mossotti
relation provides the only exact expression for frequency-
dependent dielectric function, ε(ω) [Eq. (2)].

ε(ω) − 1

ε(ω) + 2
= 4π

3V
α(ω). (2)

Here, V denotes the volume and α(ω) represents the
frequency-dependent macroscopic polarizability [30,31]. By
using the linear response theory (LRT) of Kubo [32], α(ω) can
be expressed in terms of the after-effect function, b(t ), which
is related to the dipole moment time correlation function
(DMTCF) [Eq. (3)]

α(ω) = −
∫ ∞

0
dt eiωt db(t )

dt
; b(t ) = 1

3kBT
〈M(0)M(t )〉.

(3)
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By using Eqs. (2) and (3) one can transform Eq. (4) in the
ω = 0 limit [Eq. (4)].

ε − 1

ε + 2
= 4π

9V kBT
〈M2〉S. (4)

This is the well-known Clausius-Mossotti equation which
is exact but has the constraint of having to be immersed in a
medium of dielectric constant unity. Recently, an interesting
approach was employed to obtain spatially resolved dielectric
function in spherical geometry [33].

We note that, for a virtual sphere of radius r0 inside a larger
spherical domain of radius Rc, Berendsen had earlier derived
an expression for 〈M(r0)2〉 [Eq. (5)], the mean-squared dipole
moment of the virtual sphere [18,34].

〈M(r0)2〉
3kBT r0

3
= (ε − 1)

9ε(ε + 2)

[
(ε + 2)(2ε + 1) − 2(ε−1)2

(
r0

Rc

)3
]
.

(5)

However, Berendsen’s approach assumes that the dielec-
tric constant of the region r ∈ [0, r0] to be the same as the
outer shell, r ∈ (r0, Rc]. This condition may not hold in the
nanoscopic world. Equation (5) reduces to Eq. (4) for r0 = Rc

and to the Onsager-Kirkwood relation [22] for Rc → ∞. One
can of course obtain 〈M2〉S from simulations. However, the
use of Eq. (5) in the nanoworld remains questionable. In the
Supplemental Material (SM S1), we detail the derivation of
Eq. (5) with a discussion on its applicability [35].

On the other hand, ε for a rectangular box of liquid with
periodic boundary condition (PBC), is given by Eq. (6) if LRT
is applied [36,37].

ε = 1 + 4π

3V kBT
〈M2〉PBC. (6)

Use of PBC introduces approximations. ε calculated from
Eq. (6) approaches the bulk value even for small-sized sys-
tems as it contains the effect of PBC. While the Clausius-
Mossotti equation is exact, the calculation of ε of the medium
inside the sphere requires the creation of a restricting sur-
face and requires the use of definitive surface-liquid inter-
actions. While use of PBC partly avoids this difficulty, the
effects introduced by PBC to render this approach are also
approximate.

Another constraint, not restrictive for large systems but
serious in the nanoscopic world, is the determination of the
effective volume. As shown later, the Clausius-Mossotti rela-
tion shows a strong sensitivity to the volume. Here, volume
is determined by the nature of the surface-liquid interactions.
For soft-repulsive walls the interaction excludes a portion
of the volume. This poses a problem of far-reaching conse-
quences. Usually in statistical mechanics, we probe the vol-
ume (V ) from outside without considering the solute-solvent
interactions. Of course, the goal of statistical mechanics is to
consider the limit of V → ∞ to recover the thermodynamic
properties. However, that limit becomes inapplicable in the
nanoworld [38]. In some earlier studies, the volume of the
cavity was not estimated systematically [18,39]. Therefore,
the values obtained remain doubtful. We address and resolve
this issue in SM S2 [35].

FIG. 1. Static dielectric constant against the inverse of the num-
ber of molecules (1/N ) for aqueous nanocavities with (a) LJ-12,6
atomistic walls, (b) LJ-10,4,3 walls, (c) LJ-9,3 walls, and (d) SF
with LJ-9,3 walls. The convergence for water is extremely slow.
Extrapolations using a cubic polynomial provide asymptotic values
of 67.9, 57.5, and 70.4, respectively (thermodynamic limit). How-
ever, the convergence for SF is remarkably fast. Insets: Schematic
two-dimensional cross sections of the nanocavities. Penetration of
water molecules into the soft spheres (yellow regions) and inacces-
sible regions (orange) inside the cavity invoke errors in the volume
calculation. Data represented as [ε(Nwat )] (SM S4 and S5 [35]).

We perform atomistic molecular dynamics simulations
of spherical nanocavities filled with extended simple point
charge model (SPC/E) water or Stockmayer fluid (SF), sus-
pended in vacuum and enclosed by rigid nonpolarizable walls.
For water we consider three different liquid-surface inter-
actions: (i) LJ-12,6 (where LJ is Lennard-Jones) potential
with atomistic wall, (ii) LJ-9,3 potential, and (iii) LJ-10,4,3
potential (see SM S3 [35] for simulation details).

III. RESULTS AND DISCUSSION

Dielectric response exhibits anisotropy under confinement
[20,40,41]. In a spherical cavity one divides the field vector
into longitudinal (azimuthal and polar) and transverse (radial)
components. Here, we calculate the overall, average, and
macroscopic dielectric response ε. Electrostatic screening,
which controls the encounter probability among solutes, is
controlled by ε of the medium. We report ε of water and
SF in spherical nanoconfinements by employing Eq. (4) and
use the effective/accessible volume. We report the calculated
values in Fig. 1 where inside brackets the numbers of water
molecules are mentioned.

We find that ε of nanoconfined water shows a strong size
dependence and slow convergence to the bulk value, unlike SF
[Fig. 1(d)]. For water, even inside a 3-nm cavity the value of ε

remains remarkably low (∼40), compared to the bulk (∼68
for SPC/E water). To obtain ε in the thermodynamic limit
(N → ∞), we plot ε against 1/N (Fig. 1). Extrapolations
provide quantitative agreements for the bulk, as shown in
Fig. 1.

033145-2



ALTERED POLAR CHARACTER OF NANOCONFINED … PHYSICAL REVIEW RESEARCH 1, 033145 (2019)

FIG. 2. ε of water against the inverse of effective radius aqueous
nanocavities. Surfaces are described by (a) LJ-12,6, (b) LJ-10,4,3,
and (c) LJ-9,3 potentials. The sensitivity of ε to Reff is strong.
After the divergentlike behavior ε becomes negative. (d) Wave-
vector (k) -dependent dielectric function calculated for dipolar hard-
sphere liquid using mean spherical approximation shows similar
divergencelike behavior (replotted from Ref. [42]).

In order to further analyze the size dependence, we rear-
range Eq. (4) to obtain Eq. (7).

ε = 8πβ〈M2〉 + 9V

9V − 4πβ〈M2〉 . (7)

Clearly, ε diverges if 9V = 4πβ〈M2〉 (Fig. 2). In peri-
odic/macroscopic systems, volume calculation is error-free.
However, it becomes nontrivial in nanoconfined systems, es-
pecially when the liquid is surrounded by soft-repulsive walls.

We determine the volume using statistical mechanics. That
is, we first obtain radial distributions of water molecules with
respect to the center of the sphere (SM S2) [35]. We then
integrate over the density distribution and normalize to the
total number (Nwat ).

1

Nwat

∫ Reff

0
dr 4πr2ρ(r) = 1. (8)

We use Eq. (8) to obtain Reff (<RC) numerically. This
provides a measure of effective volume, Veff = (4/3)πR3

eff .
We demonstrate the sensitivity of ε to Veff in Figs. 2(a)–2(c).
For same 〈δM2〉, we vary the radius from Rc − (σW /2) to Rc

for 1-nm aqueous nanocavities.
Figure 2 shows that a small error in Reff can significantly

alter ε. For example, if one changes Reff from 0.93 to 0.90 nm,
ε changes from 17.2 to 46.1. Hence, careful determination
of Veff becomes crucial. However, we do not observe such
a strong dependence on volume for confined SF. This is
attributed to the absence of extensive HBN. By employing
mean spherical approximation, Chandra and Bagchi obtained
similar divergencelike behavior of wave-number-dependent
dielectric function [ε(k)] in a dipolar hard-sphere liquid
[Fig. 2(d)] [42].

Rotational motions of solvent are important for solvation.
The initial ultrafast decay (∼60%−80%) in aqueous solvation
dynamics is attributed to several factors: (i) librational modes

FIG. 3. (a) Total DMTCF of water inside spherical nanocavities.
The relaxation under confinement is approximately 20 times faster
than the bulk (dashed line). (b) First rank orientational TCF for
nanoconfined water which shows a slightly faster decay than the
bulk. The distinction is prominent, especially for Rc = 1 nm. How-
ever, C1(t ) converges to the bulk response with increasing cavity size.
(c) Total DMTCFs of SF inside spherical nanocavities show approx-
imately four times faster relaxation. (d) First rank orientational TCF
for nanoconfined SF. Unlike water, the confined particles show a
slower decay, however, with comparable timescales.

of water, (ii) hydrogen bond excitation, and (iii) the large force
constant of polarization free energy fluctuation [13]. Single-
particle rotation contributes at later stages (∼10%−20%)
[43,44]. We calculate collective orientational correlations (to-
tal dipole moment TCF, DMTCF) [CM (t )] and single-particle
rotational correlations [C1(t )] for confined liquids [Eq. (9)].

CM (t ) = 〈M(0) · M(t )〉; C1(t ) = 1

N

N∑
i=1

〈
cos

(̂
ηi

0 · η̂i
t

)〉
. (9)

Here, η̂i
t is the unit vector along the molecular dipole

of the ith molecule at time t . We observe 20 times faster
relaxation of DMTCF for nanoconfined water than the bulk
[Fig. 3(a)]. This observation remains independent of the cho-
sen surface-liquid interaction and cavity size. Bulk CM (t )
exhibits exponential decay with an approximately 10 ps com-
ponent. Experimentally it is ∼8.3 ps [45]. On the other hand,
CM (t ) of cavity water molecules exhibit biexponential decay
with timescales ∼30 fs (40%) and ∼700 fs (60%). We also
observe bimodal relaxation in C1(t ): (i) ∼200−600 fs regime
(10%−20%) and (ii) ∼3−4 ps regime (80%−90%). How-
ever, these timescales are comparable to the bulk relaxation
[Fig. 3(b)]. Figures 3(c) and 3(d) show CM (t ) and C1(t ) for
confined SF: CM (t ) relaxes approximately four times faster
than the bulk; but C1(t ) is slower than the bulk, although with
comparable timescales. Blaak and Hansen had earlier reported
faster relaxation of CM (t ) for Stockmayer fluid [19] (see SM
S6 [35] for timescales).

The reason for such anomalous ultrafast decay can be
traced to two factors: (i) inward propagation of surface-
induced orientational correlations and (ii) the interplay be-
tween self-correlations and cross correlations of different
regions inside the cavity. We divide the system into two,
four, and eight equal regions to obtain region-specific dipole
moments. The time trajectories of local dipoles reveal the
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FIG. 4. Time evolution of angles created by the total dipole
moment vectors of two hemispheres with (a) X axis and (b) Y
axis for an Rc = 4 nm aqueous system with atomistic LJ-12,6 walls.
(c) and (d) show similar plots for an Rc = 4 nm SF system with
LJ-9,3 walls. In SF, the fluctuations are short lived. These plots show
strong anticorrelated dipole flips that result in enormous cancella-
tions. Blue and red represent northern and southern hemispheres,
respectively.

correlation length in the system. In Fig. 4, we plot the time
trajectories of angles made by the total dipole moment vectors
of two hemispheres with Cartesian axes for Rc = 4 nm. For
water, we observe anticorrelated flips for two of the direc-
tion cosines associated with a Pearson’s correlation coeffi-
cient (ρi j ) ∼ −0.85, where, i and j indicate two different
regions (here, two hemispheres). However, along the third
axis correlation is weaker (ρi j ∼ 0.18). We observe similar
trends for other systems as well (SM S7) [35]. However, for
SF, such anticorrelations are rather weak (ρi j ∼ −0.3−0.4)
and short lived. Additionally, we observe anticorrelations in
direction cosines for concentric spheres of smaller radii inside
a nanocavity (SM S7) [35].

Next, we dissect the total DMTCF in terms of subensem-
bles. This reveals the timescales of anticorrelations. If we
divide the sphere into “m” equal subensembles, there arise
m number of self-terms (〈Mi(0)Mi(t )〉) and mP2 = m(m−1)

2
number of cross terms 〈Mi(0)Mj (t )〉 [Eq. (10)].

M(t ) =
m∑

i=1

Mi(t ); and

〈M(0)M(t )〉 =
m∑

i=1

〈Mi(0)Mi(t )〉+
m∑

i, j=1

〈Mi(0)Mj (t )〉. (10)

Figure 5(a) (for Rc = 4 nm and m = 8) demonstrates the
presence of anticorrelation among the dipole moments of
eight grids. For m = 2 and 4 we observe similar behavior.
Although the amplitudes of self-terms are approximately four
to ten times larger than that of the cross terms, the total
negative contribution arising from the anticorrelated terms
makes the resultant decay ultrafast [red dashed curves in
Fig. 5(a)]. Furthermore, the power spectrum of DMTCF for
nanoconfined water exhibits bimodal 1/ f noise [Fig. 5(b)].
We attribute the deviation from bulk exponent to the surface
effect and heterogeneous dynamics inside the nanocavities.

FIG. 5. (a) Self- and cross-DMTCF among eight grids inside
an aqueous nanocavity of Rc = 4 nm. The amplitudes of self-terms
are approximately four to ten times higher than that of the cross
terms. However, there are 8 self- and 56 cross terms that construct
〈M(0)M(t )〉. As a result, the negative contributions from anticorre-
lated cross terms predominate at longer times. This makes the net
relaxation (red dashes) drastically fast. (b) Bimodal 1/ f character of
the power spectrum of dipole moment fluctuation under confinement.

In order to rationalize the results shown in Figs. 4 and
5, we compute the Kirkwood g factor (gK ) [Eq. (11a)] for
nanocavities and bulk. gK reveals information on the micro-
scopic ordering of molecular dipoles. gK = 1 for completely
random orientations.

gK = 〈M2〉
Nμ2

; (11a)

τM = gK

gD
K (0)

τS. (11b)

We provide the numerical values of gK in SM S8 [35]. gK

for confined water varies between 0.15 and 0.21, whereas in
the bulk (PBC) gK is ∼3.6 at 300 K. In an earlier study on
water clusters, Saito and Ohmine reported similar low gK [17].

The timescale of DMTCF (τM) is related to gK and single-
particle rotational correlation timescale (τS) by Eq. (11b),
where gD

K (0) is the dynamic Kirkwood g factor [46]. We find
a substantial reduction of gK under confinement compared to
the bulk, irrespective of the size of the cavities. For water it
becomes almost 20 times smaller than the bulk. However, for
SF, it becomes approximately four times smaller than the bulk.
This indicates that the collective alignment of microscopic
dipoles is destructive inside spherical nanocavities resulting
in enormous cancellations among correlations. This is due
to inward propagation of surface-induced correlations that
interfere destructively. On the other hand, in periodic bulk sys-
tems, the microscopic dipoles align constructively. We obtain
gD

K (0) in between 1.4 and 1.8 inside aqueous nanocavities and
1.5 for bulk SPC/E water. The deviation in gD

K (0) from the
bulk is not significant. Hence, from Eq. (11b), τM becomes
approximately proportional to gK . This explains the faster
collective relaxation inside the cavity. This is related to the
observed blueshift and a faster decay of the perpendicular
dielectric absorption spectrum by Gekle and Netz [40].

We perform layerwise analyses (thickness ∼5 Å) to study
the differences in relative surface orientations as we approach
the center. We obtain the distributions of angles formed be-
tween O-H bonds of water and the surface normal. We observe
a distinct peak around ∼90◦ for the outermost water layer (SM
S9) [35]. This demonstrates the existence of certain preferred
orientations near the surface. Similar observations have been
made by Ruiz-Barragan et al. from ab initio simulations of
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water inside graphene slit pores [47]. The water molecules fol-
low the principle of minimal frustration often used to describe
protein folding and spin-glass transitions [28,29]. In this case,
it occurs through the maximization of hydrogen bonds in order
to minimize the free energy. Banerjee et al. reported similar
observations for a two-dimensional Mercedes-Benz model
confined between two hydrophobic plates [48]. However, in
SF we cannot make such distinctions between surface layers
and interiors (SM S9) [35]. We find that aqueous solvation
dynamics and water O-O-O angle distribution under con-
finement converge to the respective bulk pattern for smaller
nanocavities (SM S10 and S11) [35].

IV. SUMMARY AND CONCLUSIONS

The dielectric constant of a liquid is a collective property,
determined by the long wavelength orientational correlations
in the system [42,49]. Because of the long-ranged orienta-
tional correlations in dipolar liquids, the dielectric constant
is rather strongly dependent on size and shape. Use of the
PBC in simulations thus introduces an approximation which
needs to be tackled carefully. The approach via the Clausius-
Mossotti equation is exact but one has to deal with a slow
convergence. For water, this convergence is particularly slow
because of the extensive HBN. As detailed in this Rapid
Communication, the problem becomes more acute in the
nanoworld.

The present study varies the size of the nanocavity and
water-surface interactions giving rise to substantial alterations
in the structure and dynamics of dipolar liquids. We find

a substantial reduction in ε of nanoconfined water at small
cavity sizes (∼2−3 nm radius). The convergence toward the
bulk value is surprisingly slow. However, ε of Stockmayer
liquid shows a relatively weaker dependence on the size of
the nanocavity. We find that the Clausius-Mossotti equation is
rather sensitive to the volume of a system. In the nanoscopic
world volume is defined by intermolecular interactions, unlike
the macroscopic description of volume, that is prescribed
from outside. When the enclosing surface is modeled as soft
spheres, effective volume calculation is subject to errors. We
show that a small error in Veff leads to substantial changes in ε

for nanoconfined water, unlike SF. We explain the anomalous
ultrafast relaxation in terms of substantially low values of
Kirkwood g factor and anticorrelated local dipole moments
of different subensembles inside the cavity. The nature of the
surface-liquid interaction alters the values of ε but does not
affect the general trends. We have confirmed this claim by
using four other surface-water interactions (SM S12) [35].
Additionally, in SM S13, we present an Ising model based
analysis that reproduces the quenched dipole moment fluctu-
ations under a constrained environment [35].
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