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Abstract
Statistical bias correction techniques are commonly used in climate model projections

to reduce systematic biases. Among the several bias correction techniques, univariate

linear bias correction (e.g., quantile mapping) is the most popular, given its simplicity.

Univariate linear bias correction can accurately reproduce the observed mean of a

given climate variable. However, when performed separately on multiple variables, it

does not yield the observed multivariate cross-correlation structure. In the current

study, we consider the intrinsic properties of two candidate univariate linear

bias-correction approaches (simple linear regression and asynchronous regression) in

estimating the observed cross-correlation between precipitation and temperature. Two

linear regression models are applied separately on both the observed and the projected

variables. The analytical solution suggests that two candidate approaches simply repro-

duce the cross-correlation from the general circulation models (GCMs) in the bias-

corrected data set because of their linearity. Our study adopts two frameworks, based

on the Fisher z-transformation and bootstrapping, to provide 95% lower and upper con-

fidence limits (referred as the permissible bound) for the GCM cross-correlation.

Beyond the permissible bound, raw/bias-corrected GCM cross-correlation significantly

differs from those observed. Two frameworks are applied on three GCMs from the

CMIP5 multimodel ensemble over the coterminous United States. We found that

(a) the univariate linear techniques fail to reproduce the observed cross-correlation in

the bias-corrected data set over 90% (30–50%) of the grid points where the multivariate

skewness coefficient values are substantial (small) and statistically significant (statisti-

cally insignificant) from zero; (b) the performance of the univariate linear techniques

under bootstrapping (Fisher z-transformation) remains uniform (non-uniform) across

climate regions, months, and GCMs; (c) grid points, where the observed cross-

correlation is statistically significant, witness a failure fraction of around 0.2 (0.8) under

the Fisher z-transformation (bootstrapping). The importance of reproducing cross-

correlations is also discussed along with an enquiry into the multivariate approaches

that can potentially address the bias in yielding cross-correlations.
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1 | INTRODUCTION

Bias correction techniques remove systematic biases in gen-
eral circulation models (GCMs) and support climate-
application studies (Hay and Clark, 2003; Hanson and Det-
tinger, 2005; Mejia et al., 2012; Singh et al., 2014; Seo
et al., 2016). The most commonly employed bias correction
technique is the univariate approach (Huth, 1999; Wood
et al., 2004; Stoner et al., 2012), which develops an empiri-
cal relationship between the model climate variable and the
observed information. Multivariate techniques, such as
bivariate ranks, joint variable statistical bias correction, and
asynchronous canonical correlation analysis (ACCA), have
the potential to reproduce a cross-correlation structure
(Zhang and Georgakakos, 2012; He et al., 2012; Mehrotra
and Sharma, 2016; Das Bhowmik et al., 2017) among the
observed meteorological variables in the bias-corrected data
set. However, univariate bias correction remains a popular
choice because of its simplicity and its ability to reproduce
the observed mean and standard deviation in a bias-corrected
GCM data set (Wood et al., 2004; Maurer and
Hidalgo, 2008).

Univariate bias correction approaches vary from delta
change or scaling (Mpelasoka and Chiew, 2009), multiple
linear regression (Huth, 1999), quantile mapping (Wood
et al., 2004), asynchronous regression (Stoner et al., 2012)
to semi-parametric (Sankarasubramanian and Lall, 2003)
and nonparametric approaches (Gangopadhyay et al., 2004).
The Bureau of Reclamation (BOR), a water management
agency under the U.S. Department of the Interior, used
quantile mapping as the bias correction approach (bias
correction and spatial disaggregation [BCSD]) to develop
bias-corrected monthly precipitation (pr) and monthly
average temperature (tas) data sets over the coterminous
United States (CONUS) at 1/8� from Coupled Model
Intercomparison Project Phase 3 (CMIP3) and Phase
5 (CMIP5) experiments (Reclamation, 2013). Linear-
regression-based univariate techniques, simple linear regres-
sion and asynchronous regression, focus only on a single
variable to correct the bias. Therefore, such techniques have
limited ability to yield a multivariate correlation structure
(He et al., 2012; Das Bhowmik et al., 2017). Although
several former studies developed multivariate bias correction
techniques, only a few of them estimated the intervariable
dependence before and after bias correction. In recent years,
two major studies have examined the cross-correlation
between bias-corrected meteorological variables (Wilcke
et al., 2013; Ivanov and Kotlarski, 2017). Both studies
reported that the cross-correlation between raw climate
model outputs and between bias-corrected climate model
outputs have similar magnitudes. These studies considered
quantile mapping as their primary approach for bias

correction. Although Wilcke et al. (2013) considered cross-
correlations between five meteorological variables, none of the
two studies compared the observed and the bias-corrected/raw
climate model cross-correlations. Nonetheless, to the best of
our knowledge, the limitations of the univariate linear bias cor-
rection approaches have never been examined analytically.

Increasing temperature, owing to global climate change,
has been documented over the last half-century in both
observed records as well as GCM simulations (Plummer
et al., 1999; Alexander et al., 2006; Qin et al., 2010; IPCC,
2013; Blunden and Arndt, 2014). This increasing tempera-
ture trend inherently changes the cross-correlation structure
between precipitation and other variables (Das Bhowmik
et al., 2017). Therefore, it is essential to correct the bias in
the cross-correlation between meteorological variables. Das
Bhowmik et al. (2017) proposed a multivariate bias correc-
tion technique, based on ACCA that reproduces the
observed cross-correlation structure between monthly pre-
cipitation and monthly average temperature in bias-corrected
variables. Multivariate bias correction schemes result in an
improved ability to estimate the joint likelihood of precipita-
tion and temperature. However, if the observed cross-
correlation is not statistically significant, the univariate linear
bias correction itself will suffice. Hence, it is essential to
identify the grid points where multivariate bias correction
would be of benefit in removing the model bias in cross-
correlations. The grid points are identified based on the
sampling distribution of the observed cross-correlation.

The primary objectives of this study are (a) to systemati-
cally show the limitations of two candidate univariate bias
correction techniques, simple linear regression and asyn-
chronous regression, in order to estimate the cross-
correlation structure across multiple variables and (b) to
apply two statistical frameworks that identify the grid points
where the cross-correlation between raw/bias-corrected
GCM variables differs significantly from that between
observed variables. The limitations are derived both analyti-
cally and from the bias-corrected variables of the GCM
simulations. The analytical expression developed for the
bias-corrected cross-correlation is evaluated based on the
CMIP5 projections of precipitation and temperature from the
BCSD. We aim to develop a sampling distribution of the
observed cross-correlation based on Fisher z-transformation
and bootstrapping algorithms. The Fisher z-transformation
allows the cross-correlation to follow a Gaussian distribu-
tion, which is later used to construct 95% upper and lower
confidence limits for the GCM cross-correlation, whereas in
the case of bootstrapping, we resample (with repetition) the
observed precipitation and temperature to obtain a sampling
distribution of the observed cross-correlation. Based on the
sampling distribution, we identify the climate regions over
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the CONUS where the univariate approaches fail to bias-
correct the cross-correlation.

This manuscript is organized as follows: the next
section presents details of the selected GCMs and the observed
data set used for the study. Next, we derive the analytical
expression for the downscaled cross-correlation using univari-
ate linear techniques and then apply the Fisher z-transformation
to develop the 95% upper and lower confidence limits (hereaf-
ter referred to as “permissible bound”) of the observed cross-
correlation. The results are presented in section 4, which is
followed by a discussion and concluding remarks.

2 | DATA SOURCES AND
MOTIVATION

2.1 | Data sources

We consider the observed monthly precipitation (pr) and
monthly average temperature (tas) as well as the raw and
bias-corrected simulations of the monthly precipitation
and monthly temperature from three GCMs. Three GCM
models, CNRM-CM5, IPSL-CM5-LR, and MPI-ESM-LR,
from the Coupled Model Intercomparison Project Phase
5 (CMIP5) are selected. In the current analysis, we obtained
the GCM and observed data for the period 1950–1999.
Details of the data set are provided in Table 1. We present
our analysis for nine National Climatic Data Center (NCDC)
climate regions—Northwest (NW), West North Central
(WNC), East North Central (ENC), Central (C), Northeast
(NE), Southeast (SE), South (S), Southwest (SW), and West
(W)—over the CONUS (Karl and Koss, 1984). The univari-
ate bias-corrected monthly precipitation and temperature for
the historical runs of these three GCMs' are obtained from
the BOR's BCSD climate projections archive (https://gdo-
dcp.ucllnl.org/downscaled_cmip_projections/). Raw GCM
outputs are also obtained from the same archive; however,
raw GCM outputs can also be downloaded from CMIP5 data
archive (https://esgf-node.llnl.gov/search/cmip5/). BCSD
method follows three major steps to correct a model bias:
(a) It re-grids the raw GCM simulations and projections to
1� spatial resolution; (b) it constructs cumulative distribution
functions based on the GCM simulations and the observed
data for 1950–1999 to identify the model bias; and (c) it

adjusts the bias in the quantile maps of historical simulations
and future projections. The CNRM has a spatial resolution
of 1.4�, while the IPSL and MPI both have a spatial resolu-
tion of 1.8�. In the current study, to compare the cross-
correlation values from the three GCMs, raw historical runs
are further re-gridded to ~1� using bilinear interpolation.
The gridded observed monthly precipitation and monthly
average temperature data set over the CONUS is provided
by Ed Maurer's research group (Maurer et al., 2007). We
obtained the observed data set from BOR's climate projec-
tions archive, which provides the data set at a spatial resolu-
tion of 1� and as monthly values.

The GCM historical runs may have more than one
ensemble member. We calculate the two cross-correlations
between precipitation and temperature for each ensemble
member: (a) raw cross-correlation—correlation between the
precipitation and temperature from a raw GCM run, (b) bias-
corrected cross-correlation—correlation between the bias-
corrected precipitation and temperature. Additionally, we
estimate the observed cross-correlation—the correlation
between the observed monthly precipitation and observed
monthly average temperature.

The observed cross-correlations are checked for their statis-

tical significance using the equation [±1:96=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n−3ð Þp

] based
on 95% confidence interval, where n is the number of years
of observation. If a grid point exhibits a statistically signifi-
cant cross-correlation between precipitation and temperature,
it will henceforth be referred to as a “significant grid point.”

2.2 | Spatial patterns of observed cross-
correlation

The motivation behind investigating the limitations of univari-
ate linear bias correction is the significant cross-correlation
between the observed precipitation and temperature for four
different months over the CONUS (Figure 1). We superim-
pose the climate region boundaries on the CONUS map. We
consider 4 months (January, April, July, and October) to
exhibit the results. These 4 months represent the four seasons
(summer, fall, spring, and winter) of the year over the
CONUS. In January (Figure 1), a strong linear dependency
exists between precipitation and temperature over the north-
eastern, central, and southern parts of the United States, with

TABLE 1 Description of GCM data set

Model name Organization Experiment Time length
Ensemble
members

CNRM-CM5 Centre National de Recherches Météorologiques-Groupe d'étude
de l'Atmosphère Météorologique) and CERFACS (Voldoire et al., 2013)

Historical 1950–1999 5

MRI-ESR-LR Max-Planck-Institut Fur Meteorologie (Giorgetta et al., 2013) Historical 1950–1999 1

IPSL-CM-LR Institute Pierre' Simon Laplace (Dufresne et al., 2013) Historical 1950–1999 4

BHOWMIK AND SANKARASUBRAMANIAN 4481
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the cross-correlation values closer to one. West north central
United States experiences statistically significant but negative
cross-correlation values between −0.5 and −0.75. During
April, most of the grid points across the United States experi-
ence positive cross-correlations. Western United States expe-
riences a higher number of significant grid points during
April as compared to the rest of the climate regions. During
July, half of the significant grid points have negative cross-
correlation values. This is expected since Trenberth and Shea
(2005) reported that global P–T cross-correlation during sum-
mer is positive over the land, whereas, for the high latitudes,
the cross-correlation during winter season is positive. In
October, a negative dependency is observed for the grid
points over western and northwestern United States. This
strong interdependency between precipitation and temperature
across different months and over different climate regions
indicates the importance of reproducing the observed cross-
correlation structure in downscaled GCM fields. For instance,
if the cross-correlation of the downscaled GCM attributes is
overestimated in the summer over the ENC, where a substan-
tial fraction (around 0.7 annually) of precipitation is lost as
evapotranspiration (Sanford and Selnick, 2013), it could
impact the estimated evapotranspiration under potential cli-
mate change scenarios. We refer to ENC as the region experi-
ences negative cross-correlation during the summer indicating
a strong role of land-surface and atmosphere feedback,

whereas for other regions with strong dependency between
precipitation and temperature, the amount of precipitation lost
as evapotranspiration is lower compared to the ENC. For
these regions, although the cross-correlation is strong, other
factors (e.g., land cover, vegetation type) are reducing the
impact of P–T cross-correlation on the hydrologic process.
Detailed spatial patterns of the cross-correlation could be
analysed based on false discovery rate (Wilks, 2006; Ivanov
et al., 2018a; 2018b), which explores the spatial dependence
in cross-correlation. We conclude that the bias in estimating
the cross-correlation is an important attribute to consider in
the case of bias-corrected variables.

3 | UNIVARIATE BIAS
CORRECTION: LIMITATIONS AND
BOUNDS

For univariate linear bias correction, we assume two inde-
pendent linear regression models that correct the bias in pre-
cipitation and temperature separately. Readers are requested
to note that the current study considers simple linear and
asynchronous regressions from a relatively large set of uni-
variate approaches available. The findings of biased estima-
tion of cross-correlation is true for only two univariate
methods, linear regression and asynchronous regression
(or quantile mapping), in bias-correcting GCM outputs.

FIGURE 1 Observed cross-correlation between monthly precipitation and monthly average temperature for the period 1950–1999. Grid points
with significant cross-correlation are marked. Observed cross-correlations are checked for their statistical significance using the equation [±1.96/
√(n − 3)] based on 95% confidence interval, where n is the number of years of observation. NCDC climate region boundaries are imposed on the
country map [Colour figure can be viewed at wileyonlinelibrary.com]
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This cannot be true for other methods such as resampling
procedure based on univariate methods. Between the two
univariate methods, asynchronous regression (also known as
the quantile mapping) is extremely popular among hydro-
climate community to preprocess GCM outputs for long-
term hydrologic simulation (Tao et al., 2014; Johnson and
Sharma, 2015; Reclamation, 2013; Seo et al., 2016). We
employ two frameworks (Fisher z-transformation and boo-
tstrapping) to evaluate whether the bias-corrected cross-
correlation is statistically different from the observed cross-
correlation (Fisher, 1925; Lall and Sharma, 1996). We com-
bine the analytical expression from the linear regression
model along with the 95% upper and lower confidence limits
(permissible bounds) of the observed cross-correlation.
Finally, we investigate the GCMs' ability to estimate the
observed cross-correlation under univariate linear bias cor-
rection based on a combination of the analytical expression
and the permissible bound.

3.1 | Limitation of univariate linear bias
correction in estimating cross-correlation

Bias correction using the univariate linear method typically
considers the linear regression between the observed and the
GCM simulated variable over the past period. The estimated
regression parameters from the past (Equations (1) and (2))
are applied to obtain the bias-corrected GCM projections for
the future period. The current study implements a univariate
asynchronous linear regression model at each grid point for
bias correction. The original linear asynchronous regression
model was proposed by Dettinger et al. (2004), which was
later modified to an asynchronous piece-wise linear regression
by Stoner et al. (2012). Our study uses the simplified version:
asynchronous linear regression. The regression model relates
the sorted (i.e., ascending/descending) observations (pr/tas)
and GCMs as predictands and predictors, respectively. In gen-
eral, a sorted GCM variable exhibit strong linear dependency
with the sorted observed variable (see Stoner et al., 2012, figs
2 and 3). For example, we found that the regression slope
between sorted observed precipitation and sorted GCM pre-
cipitation during January has a spatial mean of one (see Fig-
ures S1 and S2, Supporting Information). A regression model
with sorted variables implies an asynchronous regression or
quantile mapping for bias correction. Thus, the developed uni-
variate models can be written as

P̂BC= â:PGCM+ b̂, ð1Þ

T̂BC= ĉ:TGCM+ d̂, ð2Þ

where model parameters [â, b̂] and [ĉ, d̂] are estimated based
on the observed (Pobs, Tobs) and raw GCM projections of

precipitation and temperature (PGCM, TGCM). P̂BC and T̂BC

are the bias-corrected precipitation and temperature, respec-
tively. Standard statistical property states that linear transfor-
mation does not alter the correlation between the original
and the transformed variable. However, the implication of
the statistical property on independent bias corrections of
multiple variables and the associated cross-correlation struc-
ture has not been documented yet. We consider two indepen-
dent asynchronous regressions to derive the analytical
expressions for the estimated cross-correlation from the bias-
corrected P̂BC and T̂BC (see Equations (A1)–(A6)),

corr P̂BC, T̂BC
� �

=corr PGCM,TGCMð Þ: ð3Þ

The bias-corrected GCM cross-correlation will be the
same as that of the raw GCM cross-correlation if regression
based univariate bias correction is applied individually to
multiple variables using the linear regression model structure
(Equation (3)). Equation (3) confirms that the reason behind
the limitation of simple linear and asynchronous regressions
to yield the observed cross-correlations is the linearity of
these univariate approaches, which ensures that the transfer
function is linear (or close to linear) at the grid points. The
relation between raw and bias-corrected cross-correlation
remains unchanged as long as we apply a linear model struc-
ture for the bias correction. Thus, irrespective of an asyn-
chronous or a regular linear regression, the findings qualify
for bias correcting both climate forecasts (i.e., monthly-to-
seasonal forecasts) and climate change projections.

We verify the analytical expression (Equation (3)) after
comparing the raw GCM cross-correlation obtained from
the CNRM-CM5 model with the bias-corrected cross-
correlation for the same GCM obtained from the BOR's
BCSD database (Figure 2). Bias-corrected GCM outputs
and raw GCM variables of 815 grid points over the
CONUS are gathered for 4 months (January, April, July,
and October). We examine the raw and the bias-corrected
GCM cross-correlation individually for each of the
4 months. The results show that the bias-corrected GCM
cross-correlation is almost equal to the raw GCM cross-cor-
relation, thereby not reducing the bias in cross-correlation
in the latter. The average absolute differences from the
identity line (1:1 line), to yield the raw cross-correlation by
the bias-corrected BCSD products from the BOR, are 0.03,
0.03, 0.05, and 0.04 for January, April, July, and October,
respectively. Deviations of the bias-corrected cross-
correlations from the identity line are due to the nonlinear
transfer functions between the raw and bias-corrected
GCM cross-correlations. Figure 2 confirms that the univari-
ate linear bias-corrected variables simply reproduce the raw
GCM cross-correlations without correcting for the
observed cross-correlation. This limitation is critical since

BHOWMIK AND SANKARASUBRAMANIAN 4483
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the univariate linear bias-corrected cross-correlation will
not be the same as the observed cross-correlation on the
significant grid points (Figure 1). Accordingly, assessing
whether the raw cross-correlation is statistically different
from the observed cross-correlation will provide us an
insight into when and where the univariate procedure is
likely to produce biased cross-correlations.

3.2 | Sampling distribution of cross-
correlation based on Fisher z-transformation

The Fisher z-transformation transforms the correlation distri-
bution into a distribution that is closer to a Gaussian

distribution. In the current study, the Fisher z-transformation
is considered to estimate the sampling distribution of the
correlation. R. A. Fisher proposed the implementation of the
z-transformation of sample correlation (Fisher, 1925; 1950)
when the sampling distribution of a correlation is skewed
and the population correlation is not equal to zero. The
Fisher z-transformation is commonly used to test the null
hypothesis that two independent correlations are signifi-
cantly different from one another (Devineni and
Sankarasubramanian, 2010a; 2010b). We incorporate the
Fisher z-transformation to evaluate whether the estimated
cross-correlation is significantly different from the observed
cross-correlation.

FIGURE 2 Comparison between raw GCM cross-correlation and bias-corrected GCM cross-correlation. Each dot represents a grid point on
the CONUS, X value indicates the raw GCM cross-correlation at that grid point, and the Y value indicates the bias-corrected GCM cross-correlation
at that grid point. Bias-corrected and raw CNRM-CM5 values for 1950–1999, over the CONUS, are collected from the BOR's achieve (BCSD
climate projections). A single ensemble member from the CNRM-CM5 historical run is used for demonstration. The linear fit equation is provided
in the inset

4484 BHOWMIK AND SANKARASUBRAMANIAN
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The current study assumes that the bias-corrected/raw
(ρBC or ρGCM) and observed cross-correlations (ρobs) follow
a bivariate normal distribution and applies the Fisher z-

transformation [Zobs and ZGCM,based onZ=0:5 lnð1+ρ
1−ρ)] on

them. This method forces the cross-correlations to follow a
normal distribution with standard deviation equal to

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n−3ð Þp

, where n is the number of data points used to
calculate the cross-correlation. The test statistic,

Ẑ (Ẑ = Zobs−ZGCM
σZobs−ZGCM

), to retain or reject the null hypothesis

(which states that two independent correlations are signifi-
cantly different from one another) follows a standard normal
distribution. Our interest lies in determining whether the two
cross-correlations can be considered the same for the chosen

confidence interval. We calculate both ρBC=GCMhigh and ρBC=GCMlow

(see Appendix B), which are the permissible values of the
bias-corrected/raw cross-correlation, given ρobs, n and the
chosen confidence interval (Equations (4a) and (4b)),

ρBC=GCMlow =
C−1ð Þ+ρobs C+1ð Þ
C+1ð Þ+ρobs C−1ð Þ

� �
, ð4aÞ

ρBC=GCMhigh =
1−C+ρobs 1+Cð Þ
1+C+ρobs 1−Cð Þ

� �
, ð4bÞ

where C=1:96× 2√2
√ n−3ð Þ (for 95% CI).

3.3 | Sampling distribution of cross-
correlation based on bootstrapping

The current study also undertakes a bootstrapping algorithm
to obtain the sampling distribution of cross-correlation for
the grid points where pr and tas do not follow a bivariate
normal distribution. The Fisher z-transformation assumes
that the sample data follows a bivariate normal distribution.
However, meteorological variables may not follow a bivari-
ate Gaussian distribution and may experience a high magni-
tude of skewness. When tested, we found that the
multivariate skewness coefficient value (Mardia, 1970) for a
grid point on CONUS can be either substantial and statisti-
cally significant from zero or small but statistically insignifi-
cant from zero (results are not included in the current study).
Therefore, we design a bootstrapping algorithm to construct
95% upper and lower confidence limits (permissible bounds)
of cross-correlations for the grid points that experience a sta-
tistically significant from zero and substantial multivariate
skewness coefficient value. Note that a multivariate skew-
ness coefficient value higher than 1.13 (approximately) for a
50-year long pr and tas data set is generally considered to be
statistically significant from zero. Therefore, we consider a
multivariate skewness coefficient of 1.13 as a threshold for

the current data set. If a grid point experiences a multivariate
skewness lesser than this threshold, we apply the Fisher
z-transformation to construct the sampling distribution of
cross-correlation; otherwise, the bootstrapping algorithm is
followed to obtain the confidence limits

− ρBC=GCMhigh ,ρBC=GCMlow

h i
. We follow a nonparametric

resampling with replacement to synthetically generate a time
series for the pr and tas data set (Lall and Sharma, 1996;
Hamill, 1999; Devineni and Sankarasubramanian, 2010b;
Libera and Sankarasubramanian, 2018). The equally likely
samples of pr and tas are simultaneously obtained from the
observed data set. For each synthetic series, the cross-
correlation between pr and tas is estimated to form the sam-
pling distribution of cross-correlation. The null hypothesis
assumes that the observed cross-correlation and the GCM
cross-correlation are from the same population. Details of
the bootstrapping sampling distribution are provided in
Appendix C.

Following the two approaches, Fisher z and boo-
tstrapping, we demonstrate the shape of the confidence
limits with respect to the observed cross-correlation magni-
tudes. Figure 3a (Fisher z) and Figure 3b (bootstrapping)
indicate the approaches that the current study follows to
count the grid points that have a raw GCM cross-correlation
beyond the confidence limits. Equations (4a) and (4b) are
used to estimate the permissible bounds of the raw cross-
correlation by varying observed cross-correlations between
−1 to 1 at a 95% confidence interval (Figure 3a) for n = 50.
On the other hand, bootstrapping is applied to construct con-
fidence limits based on the observed cross-correlation values
for July. Therefore, the range of observed cross-correlation
(the X-axis) in Figure 3b is restricted to the actual observed
cross-correlation values for July. Figure 3a,b also shows the
raw GCM cross-correlations for July from the CNRM-CM5
historical runs. For the current demonstration, we apply a
fourth order polynomial on the bootstrapping confidence
limits to obtain a smoother curve. For the Fisher z-transfor-
mation, the observed cross-correlation values closer to zero
have a broader bandwidth of permissible bound (Figure 3a)
as compared to the observed cross-correlation values closer
to −1 or 1. The bound becomes narrower as the length of the
observation record increases (figure not shown). The raw
cross-correlation from a 30-year simulation has a higher
sampling variability as compared to the cross-correlation
estimated using the 50-year data set. In bootstrapping, the
95% upper and lower confidence limits do not follow a regu-
lar shape as compared to the confidence limits of the Fisher
z. However, the shape should become finite as the number
of synthetic simulations increase. Nevertheless, Figure 3b
shows that the confidence bounds become narrower as the
absolute values of the observed cross-correlation increase.
Additionally, we infer that the width of the confidence limits
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is narrower in the case of bootstrapping than the Fisher z. In
each plot (Figure 3a,b), each dot represents a raw GCM
cross-correlation value for a particular grid point. Thereafter,
we count the number of grid points that are outside the 95%
upper and lower confidence limits.

Finally, we assess the statistical difference between the
two cross-correlations (observed and raw) by calculating the
monthly failure fraction. Failure fraction denotes the fraction
of grid points over the CONUS or a climate region that wit-
ness raw cross-correlation values beyond the permissible
bound (Equation (5)).

Failure fraction f m=

Pk
i=1

PJ
j=1 I

i,m, j

k×L

" #
, ð5Þ

where (m = 1,…, 12), i(i = 1,…, k), and j( j = 1,…, L)
denote month, grid point, and ensemble member respec-

tively, with Ii,m, j = 0 if either ρi,mlow>ρ
i,m, j
GCM or ρi,m, jGCM>ρ

i,m
high

which is otherwise one.

4 | RESULTS

For sections 4.1 and 4.2, we consider only the significant
grid points. Non-significant grid points exhibit a smaller
magnitude of cross-correlation values as compared to signif-
icant grid points, resulting in a broader permissible bound
(from Fisher z-transformation). Therefore, the results related
to non-significant grid points are excluded from sections 4.1
and 4.2. Furthermore, if the multivariate skewness coeffi-
cient for a grid point is higher (lower) than its threshold
value, bootstrapping (Fisher z-transformation) is applied to
obtain the 95% upper and lower confidence limits. From
Equation (3) it is clear that the bias-corrected GCM cross-
correlation (using univariate linear bias correction) is same
as the raw GCM cross-correlation. Therefore, following sec-
tions 4.1–4.3 consider raw GCM cross-correlation for the
analysis.

4.1 | Comparison across raw GCM outputs in
estimating the observed cross-correlation

The failure fraction values from Fisher z and boo-
tstrapping for three GCMs (CNRM-CM5, IPSL, and MPI)
over a period of 12 months over the CONUS are calcu-
lated and their results are shown in Figure 4. The second-
ary axis presents the number of grid points considered
during the calculation. Under the Fisher z-transformation,
the failure fraction values from CNRM (around 0.3) and
MPI (around 0.5) historical runs are higher during April
than the other months. The IPSL exhibits the highest mag-
nitude of failure fraction (approximately 0.4) during
December. During July, when half of the total grid points
are statistically significant, the univariate linear bias cor-
rection could potentially yield cross-correlations that dif-
fer significantly from the observed ones in up to 40% of
the grid points. However, the failure fraction values
related to bootstrapping exhibit that almost all grid points
(failure fraction values around 0.9) fail to reproduce the
observed cross-correlation, irrespective of the GCM or the
month of the year. Overall, all the three climate models
exhibit a more or less similar performance to yield the
observed cross-correlation. However, the IPSL exhibits
slightly lower failure fraction values under the Fisher

FIGURE 3 Raw GCM cross-correlations from CNRM-CM5
historical runs (July) plotted based on the observed cross-correlation
and its 95% upper and lower confidence limits (permissible bounds).
Permissible bounds are estimated using Fisher z-transformation (a) and
bootstrapping (b). Each dot represents a grid point on the CONUS,
X value indicates the observed cross-correlation at that grid point, and
the Y value indicates the raw GCM cross-correlation at that grid point.
The study used Fisher z-transformation (bootstrapping) to create the
permissible bound for a grid point whose multivariate skewness
coefficient is lesser (higher) than the threshold value. A multivariate
skewness coefficient value greater than the threshold value is
statistically significant at zero, and vice versa. The permissible bound
from bootstrapping is constructed by fitting a fourth degree polynomial
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z-transformation as compared to the values exhibited by
the other two models. Summer months witness lower
values of failure fraction under the Fisher z-transforma-
tion, which signifies that GCMs efficiently estimate the
negative cross-correlation between precipitation and tem-
perature. All three models imprecisely estimate the

observed cross-correlation over the CONUS, emphasiz-
ing that the application of simple linear regression or
asynchronous regression could result in biased estima-
tions of the observed cross-correlation. For further anal-
ysis in sections 4.2 and 4.3, we consider only one
GCM: the CNRM-CM5. Since our current analysis
shows that the performances of the three GCMs exhibit
similar patterns across months, conclusions from the fol-
lowing subsections can be extended to the other GCMs
as well.

4.2 | Performance of CNRM-CM5 in
reproducing cross-correlations across climate
regions

The CNRM-CM5's performance is evaluated by estimating
the failure fraction. Table 2a (Fisher z-transformation) and
Table 2b (bootstrapping) show the fraction of grid points
over the NCDC climate regions whose cross-correlation esti-
mates fall outside the permissible bound for the period
1950–1999. The number of grid points considered for the
analysis is presented in parenthesis.

Under the Fisher z-transformation, the WNC and S
have a higher number of grid points as compared to the
other regions (Table 2a). However, the CNRM-CM5's per-
formances on WNC and S do not remain uniform across
months. For example, it exhibits a failure fraction of 0.14
over the WNC during January, efficiently estimating the
positive observed cross-correlation (Figure 1). However,
during July, the CNRM-CM5 performs poorly over the
WNC, with a failure fraction value of 0.58. For a particu-
lar month, the CNRM-CM5 exhibits varying failure frac-
tion values across climate regions depending on the
GCM's ability to capture the linear dependency between
precipitation and temperature. For example, during April,
the CNRM-CM5 historical runs have failure fraction
values of 0.38 and 0.48 over the NW and SW, respec-
tively. Results from Table 2a confirm the CNRM-CM5's
varying ability under the Fisher z-transformation to capture
the interdependency of precipitation and temperature over
different months and across the nine climate regions. How-
ever, the failure fraction values related to bootstrapping
remain uniform across months and across climate regions
(Table 2b). Although the grid points are not common
between Fisher z and bootstrapping, the latter rejects more
grid points in comparison to the Fisher z-transformation,
with failure fraction values of around or more than 0.9.
Since the sampling variability of the null distribution from
bootstrapping is smaller than the Fisher z-transformation,
the raw GCM cross-correlation typically rests outside the
95% upper and lower confidence limits. Overall, we con-
clude that the failure fraction varies across months and

FIGURE 4 Failure fraction for three GCMs' (CNRM-CM5,
MPI, and IPSL) historical runs, calculated over the CONUS. Failure
fraction is calculated using Fisher z-transformation and
bootstrapping. Fisher z-transformation (bootstrapping) is considered
for statistically significant grid points that have multivariate skewness
coefficient values lesser (greater) than the threshold. Raw GCM
cross-correlation (which is same as the bias-corrected GCM cross-
correlation under the univariate linear bias corrections) is estimated
for the current analysis

BHOWMIK AND SANKARASUBRAMANIAN 4487

 10970088, 2019, 11, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.6086 by L
ibrarian In-C

harge, W
iley O

nline L
ibrary on [12/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



across climate regions for grid points that have multivari-
ate skewness coefficient values lesser than the threshold.
However, for grid points that have multivariate skewness
coefficient values greater than the threshold, the CNRM-
CM5's performance is poor and the performance remains
uniform across months as well as climate regions.

4.3 | Performance across different cross-
correlation ranges

We expect that univariate bias correction based on regres-
sion techniques' inability to yield observed cross-correlations
to change with a change in the magnitude of the observed
cross-correlation values. The shape of a permissible bound,

TABLE 2 Failure fraction from (a) Fisher z-transformation and (b) bootstrapping for raw GCM cross-correlation across NCDC climate regions
(CNRM, historical simulations, 1950–1999)

(a) Month NW WNC ENC C NE SE S SW W

Jan 0.05 (2) 0.14 (43) 0 (4) 0.29 (34) 0 (4) 0.2 (1) 0.17 (24) 0.05 (15) 0 (1)

Apr 0.38 (3) 0.26 (22) 0 (0) 0 (2) 0.47 (1) 0.22 (4) 0 (17) 0.48 (47) 0.7 (47)

Jul 0.1 (44) 0.58 (84) 0.25 (6) 0.1 (29) 0.28 (1) 0.13 (14) 0.22 (89) 0.46 (22) 0 (1)

Oct 0.02 (43) 0.02 (36) 0 (0) 0 (0) 0 (0) 0.2 (3) 0.1 (8) 0.38 (52) 0 (27)

(b) Month NW WNC ENC C NE SE S SW W

Jan 0.8 (2) 0.88 (43) 0.95 (4) 0.91 (34) 0.75 (4) 0.6 (1) 0.96 (24) 0.87 (15) 1 (1)

Apr 1 (3) 0.98 (22) 0 (0) 1 (2) 1 (1) 0.95 (4) 0.95 (17) 0.95 (47) 0.94 (47)

Jul 0.89 (44) 0.94 (84) 1 (6) 0.96 (29) 1 (1) 0.96 (14) 0.95 (89) 0.99 (22) 1 (1)

Oct 0.88 (43) 0.92 (36) 0 (0) 0 (0) 0 (0) 0.93 (3) 0.93 (8) 0.94 (52) 0.9 (27)

Note: The number of grid points considered for the analysis is shown within brackets.

FIGURE 5 Fraction of grid points yield raw GCM cross-correlations that differ significantly from observations for different intervals of
absolute observed cross-correlation. Number of grid point within an interval plotted on the secondary axis. Fisher z-transformation (bootstrapping) is
considered grid points that have multivariate skewness coefficient values lesser (greater) than the threshold. Single ensemble member from CNRM-
CM5 is considered for the study. Vertical lines indicate that observed cross-correlation values to the right of the line are statistically significant
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especially for the Fisher z-transformation, suggests that the
failure is expected to be higher when the observed cross-
correlation values are closer to ±1. Note that for the current
analysis, we used raw GCM outputs without any bias correc-
tion. In Figure 5, we show the CNRM-CM5's performance
in estimating the absolute values of the observed cross-
correlation across different intervals. The total number of
grid points within a range is shown on the secondary axis.
The vertical lines at the observed cross-correlation range of
0.3–0.4 indicate that the observed cross-correlation values
towards their right are statistically significant. Similar to
sections 4.1 and 4.2, for a particular grid point, 95% confi-
dence limits are constructed by applying the Fisher
z-transformation (bootstrapping) when the multivariate
skewness coefficient at the grid point is lower (higher) than
the threshold value.

Under the Fisher z-transformation, the CNRM-CM5 fails
to yield the observed cross-correlation on 25% of the grid
points (approx.) if the absolute observed cross-correlations
are within the 0.3–0.4 range. During July, the CNRM-CM5's
performance under the Fisher z-transformation improves
with the increase in the absolute values of the observed
cross-correlation. However, during April and October, the
CNRM-CM5's performance under the Fisher z-
transformation decreases with the increase in the absolute
values of observed cross-correlation, following our hypothe-
sis. On the other hand, the confidence limits from the boo-
tstrapping do not change substantially with the change in the
absolute value of the observed cross-correlation. Therefore,
the CNRM-CM's performance under the bootstrapping
remains almost constant across different ranges of observed
cross-correlations. The performance under bootstrapping
algorithm exhibits similar trends as the performance under
Fisher z-transformation, but almost 90% of the grid points
fail to yield the observed cross-correlation under boo-
tstrapping. These findings indicate that if statistically signifi-
cant cross-correlation (e.g., negative correlation between
precipitation and temperature over the Midwest) exhibits
over a region, then it would be prudent to consider a multi-
variate bias correction scheme or a complex univariate bias
correction scheme to preserve the cross-correlation.

5 | DISCUSSION AND CONCLUDING
REMARKS

This study demonstrated the limitations of univariate linear
bias correction (in particular, simple linear regression and
asynchronous regression) in reproducing observed cross-
correlations between precipitation and temperature in a bias-
corrected data set. We found that two univariate linear
approaches simply reproduce the GCM-estimated cross-
correlation (Raw cross-correlation) in the bias-corrected data

set, since the transfer function between the raw and the bias-
corrected GCM data sets is linear across the grid points. We
validated this finding with a popular univariate bias correc-
tion product from the BOR archive, which followed quantile
mapping to correct the model bias. We calculated 95% lower
and upper confidence limits (permissible bounds) in the
observed cross-correlation based on the Fisher z-
transformation and bootstrapping. Permissible bounds inves-
tigate whether the GCM-estimated (raw or bias-corrected)
cross-correlation is statistically different from the observed
cross-correlation. Since the permissible bounds are indepen-
dent of GCMs and bias correction procedures, the procedure
to calculate the bounds can be extended to evaluate any
bias-corrected GCM cross-correlation structure. Failure of a
grid point is largely dependent on GCMs; therefore, permis-
sible bounds help to compare between multiple GCMs. It is
expected since the performance of bias correction procedure
depends on the raw GCM's values. During the analysis,
we considered only those grid points where the observed
cross-correlations are statistically significant. The significant
grid points were further divided into two groups
(a) significant grid points whose multivariate skewness coef-
ficient values are lesser than its threshold value, and (b) the
remaining significant grid points where the multivariate
skewness coefficient are substantial, hence higher than the
threshold value. A Fisher z-transformation assumes that
dependent variables follow a bivariate Gaussian distribution.
Therefore, a Fisher z-transformation is applied to the first
group of grid points while bootstrapping is considered for
the second group of grid points to construct the permissible
bounds. Based on the permissible bounds, we identified the
grid points and climate regions whose raw GCM cross-
correlations are significantly different from the observed
ones. The current study considered only the raw GCM
cross-correlation since it remains unaltered by univariate
linear bias correction approaches.

Results show that a high amount of bias exists between
the observed and raw GCM cross-correlations from 20th
century simulations. GCM historical runs are unable to
reproduce the observed cross-correlation on 30–50% (over
90%) of the first (second) group of grid points over the
CONUS, indicating that the univariate linear bias correction
is not suitable for these grid points. Although Fisher z and
bootstrapping were not applied for a common set of grid
points, we infer that the framework related to the Fisher z-
transformation is a conservative one as compared to the boo-
tstrapping framework. Since all three GCMs exhibit similar
failure fraction values, we decided to consider only one rep-
resentative GCM (CNRM-CM5) for further analysis. Under
the Fisher z-transformation, the performance of the CNRM-
CM5 in yielding the observed cross-correlation varies across
climate regions and over months. For example, the WNC
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exhibits a failure fraction value of 0.14 during January,
whereas almost half of the grid points over the WNC fail to
yield the observed cross-correlation during July. However,
under bootstrapping, the performance of the CNRM-CM5 in
reproducing the observed cross-correlation remains almost
same across climate regions and over different months, with
a failure fraction value higher than 0.8. Following this, we
examined the CNRM-CM5's ability to reproduce the
observed cross-correlation against varying magnitudes of
absolute observed cross-correlations. Typically, under the
Fisher z-transformation, the number of grid points fails to
reproduce the observed cross-correlation, which increases

with an increase in the absolute magnitude of the observed
cross-correlation. We found that up to 25% of the grid
points, where the absolute observed cross-correlation values
are around 0.3–0.4, fail to reproduce the observed cross-
correlation. Since the sampling variability of cross-
correlation under bootstrapping is narrower as compared to
the Fisher z-transformation, the framework related to the lat-
ter provides a conservative evaluation of univariate bias
correction.

Since our study reported that univariate linear bias cor-
rection has a limited role to play in reproducing observed
cross-correlations, the focus is now shifted towards

FIGURE 6 Bias-corrected GCM cross-correlations, using a multivariate bias-correcting technique (ACCA), from CNRM-CM5 historical runs
overlaid on permissible bounds. Each dot represents a grid point on the CONUS, X value indicates the observed cross-correlation at that grid point,
and the Y value indicates the bias-corrected GCM cross-correlation at that grid point. Permissible bounds are calculated using Fisher
z-transformation. Only one ensemble member is considered for plotting
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multivariate and nonlinear univarite bias correction tech-
niques. We briefly investigate the potential of a multivariate
bias correction algorithm (Das Bhowmik et al., 2017), an
ACCA, to reproduce the observed cross-correlation. We
apply the permissible bounds from the Fisher z-
transformation on the CNRM-CM5 cross-correlations esti-
mated by the ACCA for the selected 4 months (Figure 6).
The multivariate bias-corrected data set is obtained by first
applying a bivariate sorting, followed by developing a
canonical correlation regression. Multivariate bias-corrected
GCM cross-correlations are within the sampling variability
of the observed cross-correlations. Multivariate bias correc-
tions have a better ability to yield observed cross-
correlations than the univariate linear approach. Hence, our
analysis emphasize on applying multivariate bias correction
techniques, which can also be trusted to estimate the joint
likelihood of the relevant variables better than the univariate
bias correction approach. Besides ACCA, there are also
other multivariate bias correction approaches that can reduce
bias in multiple variables. A recently developed technique,
MACA (Hidalgo et al., 2008; Abatzoglou and Brown,
2012), corrects the bias in GCM simulations by identifying
the patterns between the GCM and observed fields using
constructed analogs. He et al. (2012) proposed a bivariate
approach by extending the concept of quantile mapping to
bivariate asynchronous measurements. Bias correction and
statistical downscaling procedures are modified to yield a
joint dependence among multiple variables (Zhang and
Georgakakos, 2012; Mehrotra and Sharma, 2016). In recent
years, efforts were made to develop multivariate bias correc-
tion techniques focusing particularly on the intervariable
dependence between climate variables (He et al., 2012; Piani
and Haerter, 2012; Li et al., 2014; Cannon, 2016; Das
Bhowmik et al., 2017). Li et al. (2014) showed that their
proposed joint bias correction (JBC) methodology corrects
the bias in the cross-correlation along with reducing the
biases in mean and in the variance. Piani and Haerter (2012)
proposed a 2D bias correction technique that improves pre-
cipitation and temperature copula during validation. A recent
study (Guo et al., 2019) proposed two stage quantile map-
ping that is capable of reproducing intervariable rank corre-
lations. Nevertheless, these studies did not explore the
reason behind univariate linear approach's limited perfor-
mance to yield the observed cross-correlation. Traditionally,
multivariate approaches were considered because either they
exhibit an improved performance metric as compared to uni-
variate approaches or they ease the computation when multi-
ple variables are to be downloaded. The permissible bounds
we suggested could be potentially applied to any multivari-
ate methods and evaluated for preserving observed cross-
correlations.

The main novelty of the current study is that it states that
the inability of univariate linear bias correction approach to
yield the observed correlation is because of its linear model
structure. In addition, the study provides a spatiotemporal
investigation of raw GCM outputs' performance to yield the
observed cross-correlation, which can be extended further
for hydroclimate modelling. However, criticism of the cur-
rent study might arise primarily from three perspectives:
(a) assumptions related to the Fisher z-transformation,
(b) temporal resolution of the data, and (c) the linear depen-
dency measure. First, for hypothesis testing, the Fisher
z-transformation assumes that the two variables used to esti-
mate the correlation follow a bivariate normal distribution.
However, the precipitation and temperature values on a grid
point may not follow a bivariate normal distribution. Hence,
a prior examination of multivariate normality, such as
Cox-Small test, should improve the precision in estimating
the bias-corrected cross-correlation. Apart from the normal-
ity assumption, 95% upper and lower confidence limits from
the Fisher z-transformation are not constant across different
climate model runs, since the limits are the function of the
respective sample lengths. For instance, the hindcast runs
(Taylor et al., 2012) are typically 10-/30-year-long runs;
therefore, the confidence interval of a hindcast is wider than
that of a historical run. Thus, the GCMs' performance in rep-
roducing observed cross-correlations should be carefully
examined depending on the sample length of the data.

Second, the current study did not evaluate the impact of
univariate bias correction on a daily data set. Daily data
tends to be affected by lag-correlation, for which additional
consideration is required during bias correction. For exam-
ple: variations of univariate linear bias correction techniques
need to be adopted to account zero precipitation values. The
derivation of the bias in a cross-correlation (Equation (3)) is
useful even for daily data while the framework
(Equations (4a) and (4b)) is significant even for the applica-
tion of daily data, if it exhibits a temporal independence.
Therefore, the limitations of univariate linear bias correction
procedures, simple linear regression, and asynchronous
regression, discussed in this study is invariant of the time-
scale of the GCM data.

Finally, our study assumes the Pearson correlation coeffi-
cient to calculate the dependence between two variables,
which measures the linear dependency. Nonparametric
dependency measures such as Spearman or Kendall's Tau
could have been considered to capture the monotonic depen-
dence between precipitation and temperature. For instance,
we could have applied Spearman's rank correlation for the
resampled precipitation and temperature from the boo-
tstrapping algorithm. Since we find that GCM estimated
Pearson correlation and GCM estimated Spearman's rank
correlations exhibits similar values (see Figure S3), we did
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not consider Spearman's rank correlation. Furthermore,
Fisher z-transformation may not be applicable on Spearman's
rank correlation since underlying assumptions related to
Fisher z-transformation is based on linear dependency
(Fisher, 1950). Hence, we expressed the dependency
between precipitation and temperature using Pearson's corre-
lation. An extension of the current research should include
the nonlinear dependency between precipitation and temper-
ature to assess the performance of GCMs and bias correction
techniques.

The current study has a major implication on hydro-
climate studies, in projecting future changes in hydrologic
regimes. A linear dependency between precipitation and
temperature has a direct influence on the estimation of
evapotranspiration. Earlier studies have reported that around
60% of the precipitation could be lost in the form of evapo-
transpiration (Oki and Kanae, 2006; Sanford and Selnick,
2013). We infer that an inaccurate estimation of evapotrans-
piration by empirical approaches, resulting from the bias in
GCM estimated cross-correlations, could influence the
water-balance model at a watershed scale. Additionally,
simulations/projections of various hydrologic fluxes
(e.g., soil moisture and overland flow) rely on cross-
correlations among climate variables for preserving cross-
correlations across land-surface fluxes. Hydrologic models
forced with climate variables that have a bias in their cross-
correlation will result in a biased simulation of land-surface
attributes (Seo et al., 2019; Chen et al., 2018). Thus, the
emphasis laid here on bias-correcting GCM outputs could
also potentially apply to bias-correcting land-surface models
and semi-distributed watershed model outputs (Libera and
Sankarasubramanian, 2018). A recent study (Seo et al.,
2019) considered two sets of monthly climate forcing to run
long-term simulation of hydrologic fluxes. One set of
monthly forcing preserve the observed cross-correlation,
while the other set ignores it. They found that hydrologic
simulation of subsurface variable is improved by preserving
the linear dependence. These findings confirm a substantial
influence of linear dependence between climate variables on
long-term hydrologic simulations. Raw cross-correlations
with low-bias have also improved the joint likelihood of rel-
evant attributes (Das Bhowmik et al., 2017). Thus, it is
important to consider multivariate bias correction procedures
for the dissemination of bias-corrected products.
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APPENDIX A: ANALYTICAL ANALYSIS OF
UNIVARIATE LINEAR APPROACH

Linear model is fitted between [PGCM, TGCM] and [Pobs,
Tobs]. Model parameters are a, b, c, and d. ξp and ξt are the
model errors of precipitation and temperature, respectively,

Pobs =aPGCM+b+ξp, ðA1Þ

Tobs =cTGCM+d+ξt: ðA2Þ

Regression slopes can be expressed as using ordinary
least squares

â=
cov PGCM,Pobs

� �
var PGCM

� � , ĉ=
cov TGCM,Tobs

� �
var TGCM

� � ,

where cov(.,.) denotes the temporal covariance between the
specified variables and var(.) denotes the temporal variance
of the variable within the parenthesis. Bias-corrected precipi-

tation (P̂
BC
) and temperature (T̂

BCÞ variables are estimated
using model parameters,

P̂
BC

= âPGCM+ b̂, ðA3Þ

T̂
BC

= ĉTGCM+ d̂: ðA4Þ

Hence, the covariance between the bias-corrected vari-
ables can be written as

cov P̂
BC
, T̂

BC
� �

=cov âPGCM+ b̂, ĉTGCM+ d̂
� �

= â:ĉ:cov PGCM,TGCM� �
:

Writing the cross-correlation between bias-corrected vari-
ables as

corr P̂
BC
, T̂

BC
� �

=
cov P̂

BC
, T̂

BC
� �
σBC
P̂
σBC
T̂

=
â:ĉ:cov PGCM,TGCM

� �
σBC
P̂
σBC
T̂

:

ðA5Þ

Since, var(P̂
BCÞ= â2var PGCM

� �
and var

(T̂
BCÞ= ĉ2var TGCM

� �
from the model formulation, we sub-

stitute them by taking the square roots in the denominator
for the standard deviations of the bias-corrected variables,

corr P̂
BC
, T̂

BC
� �

=
â:ĉ:cov PGCM,TGCM

� �
â:ĉ:σGCMP σGCMT

=corr PGCM,TGCM� �
:

ðA6Þ

This results in Equation (A6) show analytically that the
bias-corrected cross-correlations will always be equal to the
GCM estimated cross-correlation at a grid point.

APPENDIX B: FISHER z-TRANSFORMATION

ρobs and ρBC are the observed and bias-corrected cross-
correlations.

Null hypothesis: ρobs = ρBC.
Z-transformation:

Zobs =0:5: ln
1+ρobs

1−ρobs

� �
, ðB1Þ

ZBC=0:5: ln
1+ρBC

1−ρBC

� �
: ðB2Þ

Test statistic :ez= Zobs−ZBC

σZobs−ZBC
: ðB3Þ

Test statistics ez follows standard normal distribution,ez�N 0,1ð Þ and σZobs−ZBC =
ffiffiffiffiffiffiffi
2

n−3

q
. “n” is the number of

observations. Bounds for test statistic ez are [−1.96, 1.96] and
[−2.58, 2.58] to retain the null hypothesis with 95 or 99%
CI, respectively. Let us assume, the allowable range for
bias-corrected cross-correlation is [ρBChigh,ρ

BC
low�. Considering

the lower confidence interval for ez, we back-calculated the
highest value of allowable bias-corrected cross-correlation,

ezlow=−CI or,
1

2:σZobs−ZBC
ln

1+ρobs
� �

1−ρBChigh

� �
1+ρBChign

� �
1−ρobsð Þ

24 35

=−CI or,
1+ρobs
� �

1−ρBChigh

� �
1+ρBChigh

� �
1−ρobsð Þ

=exp −CI×2×σZobs−ZBCð Þ

=C whereC=exp −CI×
2×

ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffi
n−3

p
	 
� �

or,
1−ρBChigh

� �
1+ρBChigh

� �

=C×
1−ρobs
� �
1+ρobsð Þ or,

1
2
+
ρBChigh
2

=
1+ρobs

1+Cð Þ+ρobs 1−Cð Þ or,

ρBChigh=
1−C+ρobs 1+Cð Þ
1+C+ρobs 1−Cð Þ :

Similarly, back-calculating for positive bound of CI gives
us ρBClow, which is
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ρBClow=
C−1+ρobs C+1ð Þ
1+C+ρobs C−1ð Þ :

APPENDIX C: BOOTSTRAPPING ALGORITHM

1. Resample monthly observed raw precipitation and tem-
perature of 50 years to generate synthetic time series of
precipitation and temperature. Generate a random num-
ber from a uniform distribution between 1 and 50; what-
ever is the number that we obtain, select X and Y from
observed precipitation and temperature data set for that
year for the given grid point “i” at time step “t.”

2. Repeat step 1 for 50 times (corresponds to 50 years of
data) to obtain [Xi,Yi]. Calculate the cross-correlation ρXY1 .

3. Repeat steps 1 and 2 for 1,000 times to obtain the sam-
pling distribution of ρ,

ρ= ρXY1 ,ρXY2 …ρXY1;000

h i
:

Sampling distribution of ρ must be centred on ρiobs.

4. Assume the null hypothesis,

Null hypothesis : ρiobs =ρiGCM,

Alternate hypothesis : ρiobs 6¼ ρiGCM:

Consider the sampling distribution of ρ to construct 95%
confidence limits of ρiGCM which will retain the null
hypothesis,

ρhigh=lowBC=GCM=�ρ±1:96×σρ,

where �ρ is the mean of the sampling distribution and σρ is
the sampling variability.
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