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Abstract: An ideal vaccine provides long lasting protection against a pathogen by eliciting a
well-rounded immune response which engages both innate and adaptive immunity. However, we
have a limited understanding of how components of innate immunity, antibody and cell-mediated
adaptive immunity interact and function together at a systems level. With advances in high-throughput
‘Omics’ methodologies it has become possible to capture global changes in the host, at a cellular and
molecular level, that are induced by vaccination and infection. Analysis of these datasets has shown
the promise of discovering mechanisms behind vaccine mediated protection, immunological memory,
adverse effects as well as development of more efficient antigens and adjuvants. In this review, we
will discuss how systems vaccinology takes advantage of new technology platforms and big data
analysis, to enable the rational development of better vaccines.
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1. Introduction

Vaccines are one of the greatest breakthroughs in the field of Medicine and have saved and improved
human lives on a tremendous scale across the globe. Yet most of the current successful vaccines were
developed empirically through an ‘isolate, inactivate or attenuate, and inject’ approach [1,2]. Even with
technological advances and extensive knowledge of the human immune system, we still have a limited
understanding of what ensures that a vaccine will be successful. Development of effective vaccines
against important viral pathogens such as human immunodeficiency virus (HIV), influenza and dengue
viruses remain challenging. The major hurdles include identifying early markers of vaccine efficacy
or adverse reactions, developing relevant antigens and adjuvants, defining correlates of protection
and understanding mechanisms underlying long-lasting protective immune responses generated by
vaccination. The immune response to vaccines is highly complex, multifactorial and greater than
the sum of the parts. It involves multi-level interaction networks, linking intra-cellular biochemical
signaling pathways, inter-cellular communication and inter-organ cellular trafficking through space
and time. These interactive networks have emergent properties such as immunological memory and
protection from disease, which cannot be delineated by conventional reductionist approaches [3].
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The rapid emergence of high-throughput technology platforms in biology and the use of
systems-based approaches to analyze and integrate large and varied sets of Omics data holds
the promise of providing broader and deeper understanding of these complex phenomena [4]. Systems
biology involves (i) monitoring different components of the biological system in response to specific
perturbations, (ii) integration of multiple types of data over time, and (iii) creation of mathematical
models to predict the structure and behavior of the system in question.

Systems vaccinology is an emerging subdiscipline of systems biology, which aims to reconstruct a
comprehensive view at the organism level, of the dynamic responses to vaccines through measurement
of a multitude of Omics data types sampled in parallel. It requires the testing and validation of novel
hypotheses and insights that may arise from the first sets of data analysis and subsequent iterative
cycles of experimentation to improve predictive models (Figure 1). In the following sections we will
discuss how the use of high-throughput methodologies and systems vaccinology should enable the
transition from empirical towards rational vaccine design, especially in the context of viral pathogens.
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2. Antigen Discovery and Development

Traditionally, mapping of immunodominant B cell epitopes required identification of the whole
protein first, followed by the assessment of its fragments for reactivity with antibodies. This approach
to antigen discovery and epitope mapping is time consuming, labor intensive and expensive. Advances
in Omics approaches, such as protein microarrays to map the reactivity of antibodies and T cells to
antigens, availability of various databases related to host–pathogen protein–protein interactions, tools
for structural analyses and computational capabilities for theoretical predictions have tremendously
helped in antigen discovery [5–7]. In particular, the in silico analytical and predictive methods have
greatly facilitated all aspects of biological research including vaccinology. The approach of reverse
vaccinology has become an integral part of rational vaccine design. This involves computational
mining and analysis of large datasets related to immune responses to pathogens, host-pathogen
interactions and host and pathogens genomes to predict promising antigen candidates. This entails
large-scale sampling of potential antigens and down selection based on affinity for the antibodies or
major histocompatibility complex (MHC) molecules for experimental validation.
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Structural vaccinology is another approach which is facilitating rational design of better antigens.
The availability of structures of viral proteins as well as antigen-antibody complexes has made it
possible to carry out docking and modeling studies for prediction of B cell epitopes. This approach has
been used to develop strongly immunogenic vaccine candidates from respiratory syncytial virus (RSV)
glycoprotein and middle east respiratory syndrome (MERS) virus spike protein [8,9]. High-throughput
in vitro assays combined with structure-function analyses have been successfully used to discover
broadly neutralizing antibodies (bNAbs) against influenza HA stalk, HIV V2 and V3 glycans and
Dengue envelope protein [10–12]. Structural information of bNAbs-antigen complexes has been
used to graft linear as well as discontinuous HIV epitopes on to computationally designed scaffolds
to develop designer antigens [13,14]. NGS-based profiling of antibody repertoire induced by such
antigens can help in identification of bNAbs and improved antigens. By using this methodology,
improved vaccine candidates against RSV have been developed and bNAbs against HIV glycoprotein
have been discovered [14–16]. Combining orthogonal datasets related to immune response to vaccines
can also yield information about key antibody targets. Using this approach, Lee et al. performed a
high-resolution proteomics analysis of immunoglobulin coupled with high-throughput sequencing of
transcripts encoding B cell receptors. This allowed quantitative estimation of antibody repertoire at
the individual level before and after vaccination with trivalent seasonal influenza vaccine [17], and
identification of HA-head specific broadly protective antibodies.

In comparison to B cell antigens (mostly conformational), T cell epitopes (mostly linear) are
relatively simpler to predict, as the parameters required for data mining are based on the properties
of interaction between MHC proteins and the antigenic peptides. Although extensive diversity in
MHC haplotypes at individual level presents a major challenge in identifying broadly protective T
cell epitopes, it can be compensated to a significant degree by including most frequently present HLA
alleles across various populations in the epitope prediction protocol. The simplicity of peptides makes
them an attractive target for vaccine design; however, T cell-epitope based design has not been able
to deliver any commercial vaccine yet. This is because a standalone exogenous recombinant T cell
antigen-based vaccine will not elicit CD8 positive T cell response, unless cross-presentation is engaged.
This limitation has been overcome significantly by vaccines based on viral vectors, DNA vaccines and
use of adjuvants that facilitate cross-presenting dendritic cell recruitment. Furthermore, correlates
of cell mediated protection are still not well defined, and a combination of B and T cell-mediated
immunity might always be needed to counter most viral pathogens.

3. Molecular Signatures of Vaccine Efficacy

Vaccine-mediated protection is generated through a combination of antibody and cellular
immunity; however, current methods of predicting vaccine efficacy primarily rely on measuring
the antibody quantity and quality for several reasons: (i) Antibodies, and not cellular immunity, have
the potential to mediate sterile immunity (protection from infection); (ii) the vaccines are primarily
targeted towards eliciting a B cell response; and (iii) although T cell responses are elicited by many
vaccines, reliable standardized assays to predict the protective efficacy of cellular immunity are still
not available. With the use of Omics methodologies to measure systems level changes induced by
vaccines, molecular signatures of efficacy can be predicted. Such studies have now been conducted for
the yellow fever vaccine [18]. This vaccine consists of a live-attenuated strain (YF-17D) of the yellow
fever virus that induces both neutralizing antibodies as well as potent and long-lived CD8+ T cell
responses. Using microarray gene expression profiling, induction of an interferon and innate antiviral
gene signature was detected post vaccination in peripheral blood mononuclear cells (PBMCs) [19]. By
adding multiparameter flow cytometry data, activation of innate immune pathways was analyzed
through computational modeling and unique gene signatures for predicting the induction of efficient
CD8+ T cell and neutralizing antibody responses were identified. The predictive CD8+ T cell signature
included the expression of complement protein C1qB and the eukaryotic translation initiation factor 2
alpha kinase 4 (EIF2AK4), which is an orchestrator of the integrated stress response. Meanwhile the B
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cell growth factor receptor TNFRSF17 was among the genes that emerged in the antibody response
signature [20].

Following this initial study, systems biology approaches have been applied to study immune
responses to vaccines against a wide range of pathogens, including influenza virus, smallpox, and
HIV [21–23]. The study of transcriptional signatures induced by inactivated trivalent influenza vaccine
(TIV) on day 7 post vaccination revealed markers associated with expansion of plasmablasts and
the unfolded protein response in B cells, which were predictive of influenza virus-specific antibody
responses on day 28 [21]. Interestingly, TNFRSF17, which was predictive of antibody responses to
YF-17D, also appeared in the signatures predictive of TIV response. A critical question is whether there
are universal signatures capable of predicting antibody responses to different kinds of vaccines. To this
end, systems-based approaches were used to compare signatures induced by different types of vaccines
YF-17D, live attenuated influenza vaccine (LAIV), TIV, the carbohydrate meningococcal vaccine
(MPSV4), and the conjugate meningococcal vaccine (MCV4) [24]. Specifically, gene expression data in
human blood were curated from over 500 studies and 30,000 expression profiles and a master network
was created. From this, 334 Blood Transcriptional Modules (BTMs) were curated. The study concluded
that antibody response to inactivated vaccines (e.g., seasonal influenza virus vaccine, diphtheria toxoid
component of the conjugate meningococcal vaccine) are associated with transcriptional modules related
to plasmablast differentiation, whereas the antibody responses of live-attenuated vaccines (e.g., yellow
fever vaccine) are highly correlated with modules involving innate immunity and type I interferon
responses. Thus, signatures of immunity may vary with the class of vaccine [24]. The ‘immunologic
signatures’ representing a broad range of cell states and perturbations within the immune system
have been compiled in MSigDB, which is a collection of annotated gene sets for use with gene set
enrichment tools [25].

Omics approaches allow monitoring of systemic changes at molecular, cellular and organism
level in response to vaccination or infection. These approaches include genomics, proteomics and
metabolomics, which allow study of parameters shown in the figure in respective boxes. Integration
of these diverse systems level datasets using computational tools and mathematical models allows
prediction of markers of protection or adverse reactions to vaccines, development of improved vaccine
antigens and adjuvants. However, these predictions require validation through iterative cycles of
experimentation to get conclusive evidence and inclusion in vaccine formulation.

Integration of different types of Omics data can give further insight into molecular mechanisms
underlying vaccine efficacy. Franco et al. searched for genetic and transcriptional components
associated with the magnitude of antibody immune response to influenza vaccination, through
genome-wide single nucleotide polymorphism genotyping and transcriptional profiling. They were
able to map expression quantitative trait loci (eQTL) that could be important determinants of vaccine
immunogenicity [26]. Integration of metabolomics into models of vaccine immunity can reveal the
link between transcriptional events and biological mechanisms. To this end, Shuzhao et al. studied
the response to varicella zoster vaccine (Zostavax) by measuring transcriptomic and metabolomic
changes upon vaccination [27]. Further integration of orthogonal datasets related to transcription
and metabolite changes in cell populations and cytokine levels allowed them to create a multiscale,
multifactorial response network (MMRN) of immunity. They found that networks associated with
inositol phosphate, glycerophospholipids and sterol metabolism, especially the sterol regulatory
binding protein 1, are key predictors of antibody and T cell responses. This approach is broadly
applicable to study vaccine responses and identify predictors of efficacy.

4. Predictive Markers of Adverse Effects

Adverse reactions to vaccine candidates pose a major hurdle in regulatory approval. Although
mild reaction such as transient fever and local swelling at the injection site are fairly common, severe
adverse reactions have also been reported in a few rare instances. Fatal viscerotropic disease caused
by yellow fever vaccination (1 in 250,000 cases) and cases of narcolepsy in 2009 H1N1 pandemic
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vaccinees are a few examples. Immunological characterization of patients with viscerotropic disease
showed 200-fold elevated levels of CD14+CD16+ inflammatory monocytes [28]. Genetic background
studies of narcoleptic patients showed association of symptoms with ethnic background including
the HLA-DQB1*06:02 genotype [29]. These examples show that it is possible to identify clinical and
genetic markers that may lead to adverse reaction to a specific vaccine. Since such cases are very rare, it
is very important to have the appropriate clinical infrastructure and surveillance to identify such cases
and follow them over time to collect samples for analysis in order to identify molecular mechanisms
and predictive markers of severe adverse reactions.

5. Rational Use and Development of Adjuvants

Viral pathogens express pathogen associated molecular patterns (PAMPS) that are detected by
cellular pattern recognition receptors (PRRs) in mammalian cells. They trigger cellular innate immune
responses that build up an antiviral state and subsequently lead to induction of genes that are key
mediators of immune cell recruitment and the development of adaptive immunity [3]. For subunit
or inactivated vaccines that lack viral PAMPS, adjuvants are critical to fulfill the requirements of
eliciting the appropriate innate immune responses. This opens the possibility of designing ligands that
stimulate specific PRRs in order to get the desired type and intensity of adaptive immune response
against specific pathogens. In silico designing, homology modeling, molecular docking and in vitro
screening approaches have been used to develop ligands for Toll like receptors (TLRs) to enhance
antigen presenting cell recruitment [30]. Similarly, CCR4 receptor antagonists have been developed to
enhance T cell and antibody responses and CD1d agonists to activate natural killer T cells [31,32].

The current understanding of adjuvant function is that they induce controlled inflammation
and recruitment of antigen presenting cells. However, details of how this leads to specific types
of adaptive immunity are not completely understood. For example, for the most commonly used
adjuvant, alum, the molecular events leading to enhanced immune response are still not clear, although
the NALP3 inflammasome has been implicated [33]. After alum, MF59 was the first adjuvant
used in licensed human vaccines and shown to elicit strong antibody responses to co-administered
antigens [34]. MF59 has been reported to enhance the diversity and affinity of the antibody response
as well as the longevity of protection elicited following influenza vaccination in humans [35]. This
effect is also attributed to enhanced recruitment and activation of antigen-presenting cells that
stimulate vaccine-specific CD4+T cells, leading to the induction of specific antibodies targeting
broader neutralizing epitopes [36]. Comparison of the transcriptional profile induced in mice in
response to alum and MF59 shows three-times as many genes induced by MF59 than by alum at
the injection site, including the transcription factor Jun B, and suggestive of an effect through type
I IFN independent mechanisms [37,38]. Similarly, the GSK-adjuvants AS03 (contains α-tocopherol)
and AS04 (contains TLR4 ligand) have also been shown to induce stronger transcriptional responses
through the NFkB pathway leading to higher expression of immune cell-recruiting chemokines and
pro-inflammatory cytokines than alum [39–41]. Transcriptional profiling of human subjects in response
to HIV-1 envelope vaccine adjuvanted with TLR4 agonist glucopyranosyl lipid revealed BTMs, related
to innate immune cell activation at early time points and T and B cell activation at the later time points
post-immunization [42]. Recently, unique and shared transcriptional profiles of alum, CAF01, IC31
and GLA-SE, were studied using genome-wide transcriptomic analysis of whole blood (WB) and
draining lymph nodes (dLNs) in mice at early time points post immunization [43]. Large variations in
transcriptional profile, both in magnitude and kinetics, were observed among these adjuvants, with
alum and GLA-SE inducing the least and greatest transcriptional responses, respectively.

As discussed here, systems-based approaches to understanding the basis of adjuvanticity have
been limited mostly to transcriptional data sets. This approach should be extended to proteomic and
metabolomics data sets obtained from individuals vaccinated with or without adjuvants. Integration
of this information can inform the optimal use of the existing vaccine adjuvants, as well as the
development of rationally engineered adjuvants for human vaccines.
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6. Conclusions and Prospective

With advances in Omics methodologies, it is now possible to obtain global readouts of cellular and
molecular events, leading to a more comprehensive understanding of the immune responses to vaccines
and pathogens. Systems-level understanding of vaccine-induced immunity will require integration of
increasingly accessible varied data types. This will require continued efforts towards development of
open access computational tools for epitope prediction, databases related to host–pathogen interactions
and omics data analyses. Several selected online resources related to this subject have been listed
in Table 1. Furthermore, it is crucial to standardize technology platforms, data acquisition and
analysis methodologies to improve reproducibility of the Omics data and allow inter-lab comparisons.
Management of standardized Omics datasets for easy access to scientific community, which enables
better integration and meta-analysis, is critical. Furthermore, systems analysis is mostly useful for
generating hypotheses that require validation in relevant in vitro and in vivo models and, subsequently,
in clinical studies. If successful, discovery and use of the molecular signatures of protection or adverse
effects of new vaccines can save resources, accelerate vaccine research and development, reduce
the length and cost of clinical trials, and lead to enhanced pandemic and epidemic preparedness.
So far, systems-level analysis of immune responses to vaccines has generally depended on datasets
generated from PBMCs, molecular measurements from serum and profiling of immune cell populations.
Moving forward, additional parameters such as age, sex, ethnicity, pre-existing immunity, diseases
such as diabetes, obesity and chronic infections, stress, nutrition, microbiome, environmental and
socioeconomic factors should be considered, as well. With all these parameters, systems vaccinology
and use of Omics methodologies holds the promise of personalized vaccine development, i.e., giving
the right vaccine to the right person, at the right dose, through the right route and at the right time. To
deliver all the promises and realize the full potential of systems vaccinology, immunologists, virologists,
computational biologists and mathematicians must work together to move towards next generation of
rationally designed viral vaccines.

Table 1. Online resources for application in vaccine design and development.

Online Resource Application & URL References

Antigen Prediction

IEDB http://www.iedb.org/ Zhang et al., 2008 [44,45]

EpiJen http://www.ddg-pharmfac.net/epijen/
EpiJen/EpiJen.htm Doytchinova et al., 2006 [46]

MULTIPRED2 http://cvc.dfci.harvard.edu/multipred2/
index.php Zhang et al., 2011 [47]

Propred http://crdd.osdd.net/raghava/propred/ Singh et al., 2001 [48]
Bcepred http://crdd.osdd.net/raghava/bcepred/ Saha et al., 2004 [49]

Gene Set Enrichment and Network Analysis

Metascape http://metascape.org/gp/index.html#
/main/step1 Tripathi et al., 2015 [50]

Reactome https://reactome.org/ Joshi-Tope et al., 2005 [51]
Cytoscape https://cytoscape.org/ Shannon et al., 2003 [52]

DAVID https://david.ncifcrf.gov/ Jiao et al., 2011 [53]

Data repositories and Analysis tools

ImmPort https://www.immport.org/home Bhattacharya et al., 2014 [54]
Immunespace https://www.immunespace.org/ Brusic et al., 2014 [55]

10,000 Immunomes http://10kimmunomes.ucsf.edu/ Zalocusky et al., 2018 [56]

MSigDB http://software.broadinstitute.org/gsea/
msigdb Liberzon et al., 2011 [25]

Gene Expression Omnibus https://www.ncbi.nlm.nih.gov/geo/ Edgar et al., 2002 [57]

http://www.iedb.org/
http://www.ddg-pharmfac.net/epijen/EpiJen/EpiJen.htm
http://www.ddg-pharmfac.net/epijen/EpiJen/EpiJen.htm
http://cvc.dfci.harvard.edu/multipred2/index.php
http://cvc.dfci.harvard.edu/multipred2/index.php
http://crdd.osdd.net/raghava/propred/
http://crdd.osdd.net/raghava/bcepred/
http://metascape.org/gp/index.html#/main/step1
http://metascape.org/gp/index.html#/main/step1
https://reactome.org/
https://cytoscape.org/
https://david.ncifcrf.gov/
https://www.immport.org/home
https://www.immunespace.org/
http://10kimmunomes.ucsf.edu/
http://software.broadinstitute.org/gsea/msigdb
http://software.broadinstitute.org/gsea/msigdb
https://www.ncbi.nlm.nih.gov/geo/
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