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Abstract: A multi-step Volterra integral equation-based algorithm was developed to measure
the electric field auto-correlation function from multi-exposure speckle contrast data. This
enabled us to derive an estimate of the full diffuse correlation spectroscopy data-type from a
low-cost, camera-based system. This method is equally applicable for both single and multiple
scattering field auto-correlation models. The feasibility of the system and method was verified
using simulation studies, tissue mimicking phantoms and subsequently in in vivo experiments.
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1. Introduction

Quantitative in vivo imaging of blood flow using laser speckles have been investigated by
several researchers in the past. Some of the techniques for quantifying blood flow includes,
laser speckle contrast imaging (LSCI) [1–3], laser doppler flowmetry (LDF) [4,5], diffuse
correlation spectroscopy (DCS) [6–8] and its three dimensional tomographic extension called
diffuse correlation tomography (DCT) [9–11]. While LSCI and LDF have been used to quantify
blood flow in relatively superficial layers of tissue, the deep tissue blood flow is quantified using
DCS and DCT.
The seminal work to employ laser speckles for imaging blood flow was reported in Ref [12],

where the time integrated speckles recorded using camera was used to photograph blood flow in
human retina. Although limited to the imaging depth of approximately 1 mm, LSCI provided
inexpensive and faster way of real time blood flow imaging with relatively simpler optical
instrumentation. Based on LSCI method, multi-exposure recording of the speckle data was
utilized for a quantitative recovery of absolute flow which is termed as multi-exposure speckle
contrast imaging (MESI) [13]. In MESI, the measured multi-exposure speckle contrast images
were fitted against single scattering flow models to quantify the flow.

Meanwhile the possibility of extending the dynamic light scattering to account for multiple
scattering was explored in [14,15], which resulted in the development of diffusing wave
spectroscopy (DWS). In DWS, under the ergodicity assumption, the temporal auto-correlation of
the intensity speckles were utilized to measure the dynamics of the media [16,17]. Subsequently,
the development of the correlation diffusion model led to diffuse correlation spectroscopy (DCS)
which is extensively used in measuring deep tissue (> 1 cm) blood flow [8,18–20].

A single channel DCS system comprises of a sensitive and expensive photo counting device
like photon multiplier tube (PMT) or avalanche photo diode (APD) along with a hardware or
software auto-correlator [6,8]. In this regard, usually multi channel acquisition systems are
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desired, as employing many detectors at a given spatial location improves the signal-to-noise ratio
(SNR) of the system [21]. Also inorder to spatially resolve the blood flow, leading to a diffuse
correlation tomography (DCT) system, many source detector (SD) pairs have been employed.
For instance, in Ref. [9], 24 SD pairs were used to image over an area of 72 mm2, while Ref. [11]
used 48 SD pairs to scan the area of 100 mm2 in rat brain. One of the primary requirements of
DCS/DCT system is many source detectors pairs which makes it a relatively expensive imaging
modality. A solution to the above mentioned problem was proposed by Speckle Contrast Optical
Spectroscopy (SCOS) by employing a camera, wherein each pixel of the camera acts a detector to
simultaneously measure time integrated speckles for deep tissue flow imaging in Ref. [22,23], for
both phantoms as well as invivo studies. SCOS employed a quantitative recovery of the flow by
using the correlation diffusion model [6,8] and noise corrected speckle contrast measurements.
SCOS was further extended to achieve three dimensional tomographic imaging of blood

flow as presented in Ref. [24] termed as speckle contrast optical tomography (SCOT). A high
density version of SCOT was successfully applied to generate the tomographic images of the
reduction in cerebral blood flow during local ischemic stroke in mice brain [25]. In Ref. [26], an
electron multiplying charge coupled device (EMCCD) camera was employed to generate three
dimensional flow images, in phantoms. Several successive publications have discussed the utility
of employing array detectors like CCD or CMOS (complementary metal-oxide semiconductor)
camera to probe tissue blood flow by measuring the speckle contrast data [27–32]. A compact
version of SCOS using single photon avalanche diode (SPAD) array sensor was introduced in
[33], wherein the flow was quantified using a multi-exposure speckle contrast measurement.
In a theoretical perspective, all the aforesaid methods were based on a relation connecting

speckle contrast to normalized field auto-correlation [34] which in turn is related to flow. The
speckle contrast is a time average over exposure of the normalized field auto-correlation. Hence,
a multi-exposure speckle contrast data was used to quantify flow using least square minimization,
without attempting to recover the field auto-correlation function [13,23,33]. A direct intensity
auto-correlation measurement of blood flow is not possible due to the relatively larger exposure
time of the camera which results in the time averaged measurements. Utilizing CCD / CMOS
camera to directly measure intensity auto-correlation function has been attempted for DWS
studies in Ref [35]. However the dynamics of the media utilized in this study, is slower when
compared to dynamics of blood flow. Recently interferometric DCS has been attempted in Ref.
[36], to measure blood flow using a CMOS camera, which is based on the principle of multi-mode
fiber based interferometry.
In this paper, using a new algorithm, we present an inexpensive system using low frame rate

CCD or CMOS cameras which can be employed for the recovery of the DCS data-type for
invivo blood flow measurements. To the best of our knowledge, an inexpensive, low-frame rate
camera has not been previously used to recover the full auto-correlation function, i.e. the DCS
data-type. The algorithm is based on multi-step Volterra integral method (MVIM) [37] which uses
multi-exposure speckle contrast measurement to recover the normalized field auto-correlation.
Though the speckle contrast, at a given exposure, has averaged out the correlation decay, we
retrieve the field auto-correlation function from multi-exposure speckle contrast data using
MVIM. We demonstrate the system and method in imaging flow in tissue mimicking phantoms
and also during human hand-cuff occlusion experiment. By recovering field auto-correlation
function from multi-exposure speckle contrast data, we also prove that, speckle contrast infact
contains information on the field auto-correlation. This fact is demonstrated by multi-exposure
speckle contrast methods, as reported in previous publications [13,23,33], wherein the flow is
quantified directly by least square fitting against speckle contrast.
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2. Multi-step Volterra integral method (MVIM): theory and algorithm

The relation connecting speckle contrast (κ(r, T)) and normalized electric field auto-correlation
function (g1(r, τ)) is given by

κ2(r,T) =
2β
T

∫ T

0
(1 −

τ

T
) | g1(r, τ) |2 dτ. (1)

Here, κ(r, T) is the speckle contrast given at a source detector separation r and at exposure time
T , τ is the correlation delay time and β is the experimental constant accounting for the collection
optics. In order to recover g1(r, τ) at each source detector separation r and for all relevant τ’s, we
pose the Eq. (1) in terms of volterra integral equation of first kind [38] as follows,

κ2(r,T)T2 = 2β
∫ T

0
Ψ(T , τ) | g1(r, τ) |2 dτ, (2)

where the term Ψ(T , τ) is called the kernel defined as Ψ(T , τ) ≡ (T − τ). With these definitions,
the problem to recover field auto-correlation function using MVIM is stated as follows: Given
κ2(r,T) for all T ∈ [Tmin,Tmax] and for every source detector separation r, find g1(r, τ) for all τ
∈ [τmin, τmax]. The selection of range of T’s([Tmin, Tmax]) and τ’s([τmin, τmax]) will be discussed
later.

The standard method to solve volterra integral equations requires the kernel to be non-zero at
T = τ [39]. Since the kernel in Eq. (2) violates this condition, we adopt the method given in Ref.
[37] to solve the integral equation. In simpler terms, the method suggests to introduce a small
shift in τ by δτ, so that T , τ as they differ by δτ. The Eq. (2) is valid for every source detector
(SD) separation r and hence we can drop the argument r from the function henceforth.

The MVIM algorithm to recover field auto-correlation was implemented numerically by
discretizing the integral in Eq. (2) using trapezoidal integral rule as given below,

2βh[0.5(Tn+1−τ0) | g1(τ0) |2 +
n∑

j=1
(Tn+1−τj) | g1(τj) |

2]−κ2(Tn+1)T2
n+1 = 0, 0 ≤ n ≤ N.

(3)
Here, h is the step size, N is the number of discretization of the interval [0, T] and n is the index
of the discretization. In matrix form, the above equation can be represented as,

2βh



1
2 (T1 − τ0)
1
2 (T2 − τ0) (T2 − τ1)
1
2 (T3 − τ0) (T3 − τ1) (T3 − τ2)

. . . .

. . . . .

. . . . .
1
2 (TN − τ0) (TN − τ1) (TN − τ2) . . (TN − τN−1)





g21(τ0)

g21(τ1)

g21(τ2)

g21(τ3)

.

.

.

g21(τN−1)



=



κ2(T1)T2
1

κ2(T2)T2
2

κ2(T3)T2
3

κ2(T4)T2
4
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.
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.

The above matrix equation is of the form Ax = b, where [A]N×N is the kernel matrix, [x]N×1
corresponds to g21(τ), and [b]N×1 is the measurement κ2T2. For simulation studies, speckle
noise was added by using the noise model given in [32,40] . The standard deviation of the
above-said noise model is given by σκ = κ(

√
κ2 + 0.5)/

√
P, where P is the number of pixels used

for calculating speckle contrast.
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The matrix A is a lower triangular matrix and hence the best way to solve the above matrix
equation is to apply the method of successive substitution. But due to the practical difficulties of
measuring a dense multi-exposure speckle contrast data and the presence of associated noise,
we adopted Tikhonov regularized least square minimization to solve the above matrix equation.
The cost function | |Ax − b| |22 + λ | |x − x0 | |22 was minimized for x, where λ is the regularization
parameter determined by L-curve method [41] and x0 is the prior information on g1(τ). Three
parameters that play a key role in the above minimization problem are correlation delay time (τ),
exposure time (T) and the prior information (x0). The optimal selection of the above parameters
for the better recovery of g1(τ), is explained in the following sections.

2.1. Optimal selection of minimization parameters

2.1.1. Correlation delay time τ

Let the range of τ′s at which we seek the normalized field auto-correlation function g1(τ), be
[τmin : ∆τ : τmax]. By looking at the limits of integration of Eq. (1), it is clear that τ should
be restricted to Tmax, which is the maximum exposure time. Hence, the maximum allowed
correlation delay time τmax = Tmax. The value of τmin has to be selected depending on the
characteristic correlation delay time (τc) of the sample under measurement. To capture correlation
decay, τmin should be selected such that τmin<<τc.

The correlation delay time step ∆τ was determined by comparing the accuracy of the numerical
solution of Eq. (1) against the analytical solution. The numerical speckle contrast κN(T) was
obtained by applying a trapezoidal integration to Eq. (1). The expression for analytical speckle
contrast to Eq. (1) for single scattering case is given by κA(T) = β e−2x−1+2x

2x2 , where x = T/τc;
Here the field auto-correlation model used was g1(τ) = e−τ/τc [34]. We select ∆τ such that the
percentage error between κN and κA was less than a pre-determined value.

2.1.2. Exposure time T

The range of the exposure time needed to generate multi-exposure speckle contrast data are often
limited by the dynamic range of the camera. We adopted the speckle contrast sensitivity analysis,
wherein the sensitivity is defined as Sa = −T dκ

d(T/τc)
as given in [40,42] , to find an optimal

exposure time. In Ref. [42], it was proved that the speckle contrast has maximum sensitivity
when T equals τc, the characteristic decay time of the sample. Although the above scenario was
shown to hold for single scattering case as in LSCI, we have found that it is equally applicable for
diffusing regime as well (see section 4.1). Hence Tmin was to be chosen as Tmin ≤ τc, while Tmax
was chosen to cover the whole correlation decay. We found that Tmax of approximately 100 time
τc (where g1(τ) → 0) serves the purpose.

2.1.3. Prior information

While minimizing the cost function to recover the field auto-correlation, the selection of prior,
i.e., x0, plays a crucial role. When τ<<τc, the value of normalized field auto-correlation function
will tend to unity, i.e. g1(τ<<τc) ≈ 1 and hence we chose x0 = 1 for appropriately small τ values.
Note that the prior x0 is a function of τ and hence by x0 = 1 implies it has a value of unity for all
τ’s. This assumption, can lead to certain errors between the actual and reconstructed g21(τ) and
hence we also adopt an iterative scheme to update the prior at each iteration.

2.2. Iterative algorithm for MVIM

As explained above, we adopt an iterative algorithm to update the prior x0 at each iteration by
fitting the recovered g1(τ) against the appropriate model. The flow chart of the iterative scheme is
shown in Fig. 1. The algorithm starts by recovering g1(τ) using MVIM with a prior of x0 = 1 for
all relevant τ′s. The recovered g1(τ) was fitted for DB or τc for the cases of multiple scattering or
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single scattering respectively. The Correlation Diffusion Equation (CDE) was used as the model
for multiple scattering [6] while single scattering utilizes simple model like g1(τ) = e−(τ/τc) [34].
The gf

1 corresponding to fitted DB or τc was used as the prior to next iteration. This process
was continued till the percentage error between two consecutive recovered g1(τ) lies below a
tolerance level. Note that the prior information from second iteration will not be unity for all τ
values, instead it will move closer to actual g1(τ) to be recovered. In case the model is unknown
(as in the case of two layer or multi layer models), we may choose to fit for an empirical model:
such as f (τ) = aeb

√
τor f (τ) = aeb

√
τ + ced

√
τ , where a,b,c,d are the coefficients of fit.

Fig. 1. Flow chart of Iterative MVIM scheme: Here at each iteration the prior x0 is updated
by fitting the recovered g1(τ) against the appropriate model.

3. Experimental method

3.1. Proposed system

The experimental setup to validate the proposed method to measure field auto-correlation function
using an inexpensive low frame rate camera is given in Fig. 2. A current and temperature
controlled laser diode (785 nm, 90 mW, Thorlabs), with beam shaping optics (aspheric lens,
anamorphic prism, aperture and focusing lens) was used to form a pointed source of diameter
less than 1 mm diameter. The beam was focused to the sample (tissue or phantoms) and the
scattered intensity was measured using a CCD camera (Basler acA-640-120-um) in the reflection
geometry. An objective lens of focal length of 50 mm and f-number f /# of 8 was used to match
the speckle size to pixel size of the camera. Additionally, a LSCI system was developed for single
scattering case wherein uniform illumination was produced by using diffusers.

The scattered intensity from the phantom or tissue at different exposure times (T) were recorded
by the camera. The speckle contrast was calculated temporally over 500 frames and was corrected
for dark and shot noise as given in [23,24]. To calculate speckle contrast κ(r,T) at a given
Source Detector SD separation (r) with high SNR (Signal to Noise Ratio), we defined detectors
in form of annuals (or rings) with radius r from the source with inner and outer diameters being
r− 0.01cm and r+ 0.01cm respectively [23]. The speckle contrast that falls within these detectors
for a given r was averaged and was used as speckle contrast for a given SD separation r and this
was repeated for every exposure time T.
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Fig. 2. Experimental Setup of the proposed system using low frame rate camera. LD -
Laser Diode; AL- Aspheric Lens; AM- Anamorphic Prism; AP - Aperture; FL- Focusing
Lens; M - Mirror; Ob - Objective lens.

3.2. Tissue mimicking phantoms

To create tissue mimicking phantoms of varying dynamic properties, two phantoms based on
Intralipid (Fresenius Kabi India, Intralipid 20%) were made. The phantoms, one with distilled
water as base (hereafter denoted as “Intralipid phantom”) and another with glycerol as base
(hereafter denoted as “Glycerol phantom”) were prepared as per the recipe given in [23,43,44].
The absorption coefficient (µa) and the reduced scattering coefficient (µ′s) of both the phantoms
were estimated by fitting against the analytical solution of diffusion equation [45]. The µa and
µ′s of intralipid phantom (Da

B) was estimated to be 0.021 cm−1 and 8.1 cm−1 respectively and
while that of glycerol phantom (Db

B) was 0.021 cm−1 and 10.5 cm−1 respectively. The value
of β was determined by calculating κ at small exposure time T, such that T<<τc. In addition,
flow phantoms were made, where the flow was controlled using a syringe pump (NewEra pump
systems Inc.). The liquid phantoms were made to flow on a semi circular shaped tube, embedded
on silicon elastomer cavity (Slygard 184 mixed with TiO2), with a diameter such that, the
light does not interact with the boundaries of the supporting cavity and hence the semi-infinite
geometry for light propagation can be adopted.

3.3. In vivo experiment

To show the feasibility of working of the proposed method to measure field auto-correlation
function for in vivo tissues, we have performed a human forearm cuffing experiment, wherein the
blood flow in human arm was occluded by using a standard sphygmomanometer. This work was
undertaken with approval of the Institute Ethical Committee of the Indian Institute of Technology
- Bombay, Approval Number: IITB-IEC/2018/017. The optical properties such as µa and µ′s were
calculated from the scattered intensity data by fitting it against the solution of diffusion equation
[46]. The multi-exposure speckle contrast data was acquired at pre-occlusion, occlusion and
post-occlusion phases (measured after 120 s from releasing the cuff of sphygmomanometer). This
multi-exposure speckle contrast data was used for recovering normalized field auto-correlation
function (g1(τ)) using MVIM. The blood flow index (BFI), which is αDB [8], was quantified
from the recovered field auto-correlation, where the quantification can be carried out using CDE
model (Green’s function solution used in this work) [8] or using other approximations such as
the modified Beer Lambert law for DCS [47,48] or high order linear algorithms based on Monte
Carlo using Taylor polynomial expansion [49,50].
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4. Results

We have validated the MVIM algorithm, to measure field auto-correlation function using the
camera based system, by both numerical simulations as well as experimental measurements.
We have shown the numerical results for both single scattering and multiple scattering cases.
Subsequently, we have also experimentally validated our method by tissue mimicking phantoms
and human in vivo experiments.

4.1. Validation of MVIM using numerical simulations

In this section, we present the numerical simulations to validate MVIM for both single and
multiple scattering regimes. The single scattering model for field auto-correlation utilizes
g1(τ) = e−(τ/τc) as in LSCI [13,34], whereas, the CDE was used to generate field auto-correlation
for multiple scattering as adopted in DCS [6]. Trapezoidal integration rule was adopted to
evaluate the integral in Eq. (1) to compute the speckle contrast for the assumed auto-correlation
models. As mentioned in Section 2, speckle noise model given in [32,40] was used to add noise
to the simulated speckle contrast data.
The simulated multi-exposure speckle contrast data generated as mentioned above was fed

to the MVIM algorithm presented in Section 2. We have chosen an optimal exposure time
by computing the sensitivity of speckle contrast to exposure time. The sensitivity shows a
maximum, when the exposure time equals the characteristic decay time, i.e., T = τc [42]. Hence
the multi-exposure speckle contrast data will be sensitive to the characteristic decay time of the
sample, if the exposure time is selected in the vicinity of τc. Here we have selected T such that,
τc ≤ T ≤ Tmax and utilize the speckle contrast data to recover g1(τ) using MVIM.
The range of correlation delay time τ, at which we seek the field auto-correlation function

g1(τ), was selected to be [10−10 : Tmax]. The correlation delay time step ∆τ was determined by
comparing the accuracy of the numerical solution (κN) of Eq. (1) against the analytical solution
(κN) as mentioned in section 2. A plot of percentage error (E) between the κN and κA for a single
scattering case against the number of τ’s (in the range of 10−10 to 1 ms with τc = 1 ms) is shown
in Fig. 3. We have used N = 250, where the percentage error E is almost negligible, as shown in
Fig. 3.

Fig. 3. Plot between Number of τ′s, N, and percentage error (E = κA−κN
κA
×100) indicating

that at around 250 intervals the percentage error is almost negligible (less than 0.002%)

The dependence of recovered g1(τ) on the prior information x0 was explained in the section
2, where the rationale for adopting an iterative scheme was mentioned. We present simulation
results of the MVIM algorithm under following special cases: (a) With and without prior i.e.,
x0 = 1 and x0 = 0 respectively, (b) with an optimal exposure range i.e., τc ≤ T ≤ Tmax and (c)
iterative scheme as explained in section 2 (see Fig. 1). In addition, we also present the recovery of
g1(τ) for a two layer model (i.e. particle diffusion coefficient DB assumes two different values in
two different layers) wherein we computed the corresponding speckle contrast data using a Finite
Element Method (FEM) based forward solver for CDE [51]. Here g1(τ) exhibits two different
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decay characteristics corresponding to each layers which was also recovered successfully using
MVIM.

4.1.1. Single scattering

In the single scattering case, we have used the normalized field correlation model of the form
g1(τ) = e(−τ/τc) [13,34]. We have used two different τc values, which are τa

c = 1 ms and τb
c =

100 ms to generate g1(τ) and κ(T) from the analytical models [34]. Note that we have added
speckle noise only to the speckle data generated for τb

c = 100 ms to differentiate the cases with
and without noise. For the samples, with characteristic time τa

c and τb
c , the exposure ranges, i.e.

Tmin to Tmax, used were 1 µs to 1 s and 1 µs to 100 s respectively. The number of exposures used
was 50, spaced equally in the above exposure range in logarithmic scale for both the samples.

Figure 4(a) shows the recovered g1(τ) from κ(T) for two different τc values, where the prior
information is chosen to be x0 = 0. Here the exposure time was not chosen optimally with
respect to τc. Instead, a wide range of T, such that Tmin ≤ T<τc ≤ Tmax was used to generate the
simulated multi-exposure speckle contrast data. The recovered g1(τ) shows a transient from 0
to unity for lower τ values (τ<Tmin, which was 10−6s) due to fact that x0 is chosen to be zero.
Figure 4(b) shows similar plots for the case, where x0 = 1. The initial transient of g1(τ) as
seen in Fig. 4(a) is absent here because of the fact that prior is now at x0 = 1, which causes the
minimization problem to search for an optimal solution in the vicinity of g1(τ) = 1.

Fig. 4. Recovered g1(τ) from κ(T) using MVIM compared against original g1(τ), where (a)
without prior information i.e., x0 = 0 was used and (b) prior information i.e., x0 = 1 was
used. gO

1 and gM
1 indicates the original and recovered g1(τ) respectively.

Measuring speckle contrast (κ(T)) for a wide range of exposure time is practically not feasible
and hence we adopt the sensitivity analysis as described before to find an optimal exposure time.
The sensitivity curves which plots Sa against T/τc is shown in Fig. 5(a). Here the range D shows
the optimal set of exposure times T, where T ≥ τc. The speckle contrast data is plotted against the
exposure time in Fig. 5(b), wherein the range of optimal exposure time (i.e., range D in Fig. 5(a))
used to recover g1(τ) has been highlighted. By employing MVIM, we recover g1(τ) from the
above mentioned optimal exposure time T, such that T ≥ τc and the recovered g1(τ) is shown in
Fig. 6(a). It shows several ripples specifically for larger τ values, which is due to the fact that
number of τ’s at which the g1(τ) is sought, is larger than the number of exposure values used.
Note that, in this case, the prior information x0 = 1 was used in recovery of g1(τ). The noise
added to multi-exposure data and the prior information (x0 = 1) also contributes to the above
mentioned ripples.
In order to minimize the ripples, we decided to adopt an iterative algorithm for MVIM as

discussed in Section 2.2, where the prior was updated by fitting g1(τ) against single scattering
model (see Fig. 1). The results of the iterative scheme are shown in Fig. 6(b), where amount
of ripples is reduced. The residual between the original and the recovered g1(τ) is shown in
Fig. 7(a) and 7(b) for the above-said two τc values by using iterative scheme. The recovered g1(τ)
is fitted for τc using the single scattering model for field auto-correlation and the residual norm
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Fig. 5. (a) Sensitivity curves plotted as a function of T/τc, indicating that speckle contrast
(κ(T)) has a maximum sensitivity, when T = τc ; The range “D” indicates the region of
data (κ(T)), where T ≥ τc. (b) Speckle contrast data plotted against exposure time, where
highlighted region shows speckle contrast for T which belongs to region D. Here κ21 and κ22
corresponds to τc values of 10−3s and 10−1 s respectively.

Fig. 6. Recovery of g1(τ) by using MVIM from κ(T), with optimal exposure time T,
τc ≤ T ≤ Tmax, when (a) x0 = 1 is used as prior (b) Iterative method is used to update the
prior information.

between original and recovered g1(τ), is tabulated in Table 1. The results in the Table 1 suggest
that employing MVIM using appropriate prior and optimal exposure along with an iterative
scheme, ensures a better recovery of field auto-correlation function g1(τ) from multi-exposure
speckle contrast data.

Fig. 7. Residual between original and recovered g1(τ) using MVIM by iterative scheme
(plot in Fig. 6(b)), is shown for (a) τa

c , i.e., noiseless data (b) τb
c , i.e., noisy data case

4.1.2. Multiple scattering

The analytical solution of CDE was used for simulating the normalized field auto-correlation
function for multiple scattering case [6,46]. The µa and µ′s used were 0.1 cm−1 and 8 cm−1
respectively and SD separation of 1 cm was used. Two different particle diffusion coefficients
(DB), i.e. Da

B = 2 X 10−8 cm2/s and Db
B = 2 X 10−10 cm2/s were used and the speckle noise was
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Table 1. Table comparing original and recovered τc values and residual norm (l2), where the first
two rows shows the recovered τc without and with prior and the third row shows the recovered τc ,

with speckle contrast data in optimal exposure range. The fourth row shows recovered τc and
residual norm for the iterative scheme.

MVIM based recovered g1(τ) fitted to τc (in seconds)

Without noise With noise

τa
c = 1X10−3s | | gO

1 − gM
1 | |2 τb

c = 1X10−1s | | gO
1 − gM

1 | |2

Prior x0 = 0 0.967X10−3 6.2689 0.958X10−1 5.3858

Prior x0 = 1 1.05X10−3 0.4783 1.03X10−1 0.3537

With optimal exposure 0.987X10−3 0.3868 0.992X10−1 0.4356

Iterative scheme 0.990X10−3 0.1993 1.03X10−1 0.2680

added to the latter (speckle contrast data corresponding to Db
B) using the noise model mentioned

in Section 2. The exposure range i.e., Tmin to Tmax used were 0.01 µs to 0.1 s and 1 µs to 100 s
for Da

B and Db
B samples respectively with 50 exposures equally spaced in logarithmic scale.

Figure 8 shows the results of MVIM method, where g1(τ) has been recovered from multi-
exposure speckle contrast data. Figure 8(a) shows the recovered normalized field auto-correlation
using MVIM, when no prior information, i.e., x0 = 0, was used for two different DB values and
it can be seen that there is transient curve from 0 to 1 at τ ≤ Tmin. Different exposure ranges
were used for different samples to demonstrate the initial transient curve during recovery, when
no prior information, i.e., x0 = 0 was used. Here, from Fig. 8(a), we see that g1(τ) can only be
recovered for τ′s, such that τ ≥ Tmin, when no prior information i.e. x0 = 0 is used. Similarly,
Fig. 8(b) shows the plot for the case where the prior information x0 = 1 was used. As seen in
Fig. 8(b), the initial transient curve is absent due to use of prior information x0 = 1. Here, a wide
range of exposure time T, i.e., Tmin ≤ T ≤ Tmax were used.
We adopt the sensitivity analysis as described in single scattering case, where Sa is plotted

against T/τc as shown in Fig. 8(c). Although the relation between DB and τc has been derived in
[48], we choose to follow a simpler method of choosing τc = τ such that g1(τ) = 1/e ≈ 0.37.
The τc values were 50 µs and 5 ms for the samples Da

B and Db
B respectively. The optimal exposure

time T is chosen such that τc ≤ T ≤ Tmax and g1(τ) is recovered as shown in Fig. 8(d). To utilize
the prior information in an adaptive manner for better reconstruction, the iterative scheme as
described in Section 2 (Fig. 1) was used. The results of iterative scheme based recovery of g1(τ)
is shown in Fig. 8(e). The residual between the original and recovered g1(τ) for the noisy speckle
contrast data (iterative scheme) is shown in Fig. 8(f). The g1(τ) recovered was fitted for DB by
using CDE model and is tabulated in Table 2, along with the residual norm between the original
and recovered g1(τ).

Table 2. Table comparing original and recovered DB and residual norms (l2), for multiple scattering
case, where the first two rows shows the recovered DB without and with prior and the third row
shows the recovered DB , with speckle contrast data in optimal exposure range. The fourth row

shows recovered DB for the iterative scheme.

MVIM based recovered g1(τ) fitted to DB(in cm2/s)

Without noise With noise

Da
B − 2X10−8cm2/s | | gO

1 − gM
1 | |2 Db

B − 2X10−10cm2/ | | gO
1 − gM

1 | |2

Prior x0 = 0 2.39X10−8 3.4714 2.50X10−10 3.8500

Prior x0 = 1 2.30X10−8 0.2210 2.35X10−10 1.1345

With optimal exposure 2.27X10−8 0.3048 2.32X10−10 0.9780

Iterative scheme 2.11X10−8 0.1645 2.28X10−10 0.3747
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Fig. 8. Recovered g1(τ) at r= 1 cm usingMVIM, from κ(T) for (a) without prior information
i.e., x0 = 0 (b) with prior information i.e., x0 = 1; (c) Sensitivity curve is plotted as a
function of T/τc [42], where τc was chosen as time τ, when g1(τ) = 1/e ≈ 0.37. From this
curve it can be seen that maximum sensitivity is achieved, when T ≈ τc; Recovered g1(τ)
from κ(T) by (d) using optimal exposure range i.e., T ≥ τc (e) iterative scheme; (f) Residual
between original and recovered g1(τ) using iterative scheme. Here the superscript M in the
legend indicates that it is MVIM recovered and O indicates that it is original g1(τ)

4.1.3. Two layer model

In order to validate our method in two layer tissue models, we have simulated the auto-correlation
function, g1(τ) using FEM based forward solver [51] for CDE. The sample has two different DB
values for two layers (first layer up to 1 cm thickness with DB = 2 × 10−12cm2/s and the other
layer of DB = 2 × 10−8cm2/s) and the SD separation was 2 cm with µa = 0.1 cm−1 and µ′s = 8
cm−1. The multi-exposure speckle contrast (κ(T)) was computed numerically using Eq. (1) and
statistical noise was added [42]. The exposure range used was 10−6s to 102s with 50 exposures
spaced in logarithmic scale with a decorrelation time (τc) of 0.4 ms. Figure 9 shows the results
of MVIM based recovery of g1(τ) for a two layer model. Figure 9(a) shows the original and
recovered g1(τ) using MVIM, when prior information, x0 = 0 was used. Figure 9(b) and (c)
shows the similar plots, wherein g1(τ) was recovered from the noise added speckle contrast,
by using prior information x0 = 1 and iterative scheme respectively. Figure 9(d) shows the
sensitivity curve, as discussed in single scattering case, with two maxima’s indicating that there
are two different flows (or DB values).
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Fig. 9. By employing MVIM, we have recovered g1(τ) at r = 2 cm for a two layer model for
(a) without prior i.e., x0 = 0 (from κ(T) without noise) (b) with prior information i.e., x0 = 1
(from κ(T) with noise) (c) by iterative scheme (from κ(T) with noise) (d) Sensitivity curves
indicating that there are two peaks, as there are two different flows.

4.2. Experimental results: validation of MVIM algorithm

4.2.1. Single scattering

The experimental system shown in Fig. 2 (as explained in section 3) was modified to generate
LSCI data (κ(T)). The speckle contrast was calculated from 500 images with 20 exposures
in equally spaced in logarithmic scale with different exposure ranges for different flows due
to limited dynamic range of the camera. For flow τa

c , the exposure range was 0.6 ms to 8 ms.
Similarly for τb

c and τc
c , the exposure ranges used were, 1.5 ms to 16 ms and 5 ms to 100 ms

respectively. From the multi-exposure speckle contrast data (κ(T)), by using MVIM, g1(τ) was
recovered and was fitted for τc using the analytical model of g1 = exp(−τ/τc).
Figure 10(a) shows the recovered g1(τ) using MVIM with prior information, x0 = 1, and

compares it with g1(τ), computed for τc fitted by MESI [13]. Figure 10(b) shows similar plot,
wherein iterative scheme was employed. As the flow increases, the g1(τ) shifts towards left
indicating the increase in flow. Table 3 compares the τc values of MESI and MVIM based
methods and it can be seen that they are in reasonable agreement with one another.

Fig. 10. Recovery of g1(τ) by using MVIM from κ(T) and compared with MESI fitted τc,
when (a) x0 = 1 used as prior (b) iterative scheme used to update the prior.



Research Article Vol. 10, No. 10 / 1 October 2019 / Biomedical Optics Express 5407

Table 3. Comparison of MVIM Fitted τc and MESI Fitted τc , indicating that they are in reasonable
agreement with one another.

τc MVIM fitted τc MESI Fitted τc

τa
c 6.49(±0.09)X10−4 6.22(±0.17)X10−4

τb
c 1.95(±0.08)X10−3 1.91(±0.12)X10−3

τc
c 8.29(±0.11)X10−3 8.38(±0.14)X10−3

4.2.2. Multiple scattering

A laser source was focused on to the sample to form a point source as shown in Fig. 2 and
the multi-exposure speckle contrast data (κ(T)) was measured. As mentioned in Section 3, the
speckle contrast was measured for a SD separation r of 0.5 and 1 cm for both intralipid and
glycerol phantoms at different exposures. For the calculation of speckle contrast, we have used
500 frames with 20 exposure times ranging from 0.05 ms to 2 ms for intralipid phantom and 1
ms to 100 ms for glycerol phantom. The multi-exposure speckle contrast data as a function of
exposure time at two different SD separations are shown in Fig. 11.

Fig. 11. Speckle Contrast plotted as a function of Exposure time T, with mean and Standard
deviation (repeated 5 times) for (a) intralipid Phantom and (b) glycerol Phantom

Using MVIM, the normalized field auto-correlation function was recovered for both intralipid
and glycerol phantoms for the above mentioned SD separations and the results are shown in
Fig. 12 and Fig. 13. It is compared with g1(τ) computed for DB fitted by SCOS [23]. Figure 12
shows the recovered g1(τ) by MVIM using prior information x0 = 1, where (a) shows the results
of intralipid phantom and (b) shows the results of glycerol phantom. Similar plot is shown in
Fig. 13 by using iterative scheme, wherein solution of CDE [6,46] was used as model for updating
the prior information.

Fig. 12. Recovered g1(τ) using MVIM, using prior (x0 = 1) and compared against g1(τ)
fitted using SCOS with SD - 0.5 and 1 cm for (a) intralipid phantom (b) glycerol phantom.

The recovered g1(τ) was fitted for DB against CDE model [6,46]. For Intralipid phantom, with
prior information (x0 = 1), the fitted DB values are 1.46 X 10−8cm2/s and 1.04 X 10−8cm2/s
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Fig. 13. Recovered g1(τ) using MVIM, using iterative scheme and compared against g1(τ)
fitted using SCOS with SD - 0.5 and 1 cm for (a) intralipid phantom (b) glycerol phantom.

respectively for SD of 0.5 and 1 cm. Similarly by using iterative scheme, the fitted DB values
are 1.50 X 10−8cm2/s and 1.02 X 10−8cm2/s. The above values are in reasonable agreement
with SCOS [23] fitted DB of 1.31 X 10−8 cm2/s. Similarly for glycerol phantom, the recovered
g1(τ), using prior information (x0 = 1), the fitted DB values are 4.11 X 10−10cm2/s and 4.15 X
10−10cm2/s respectively and by using iterative scheme, the fitted DB values are 4.18 X 10−10cm2/s
and 4.16 X 10−10cm2/s respectively for SD of 0.5 and 1 cm. These values also are in agreement
with SCOS fitted DB value of 4.30 X 10−10cm2/s.

Subsequently, using flow phantoms controlled by syringe pump, different flows were made
and speckle contrast at different exposures were measured at an SD separation of 0.75 cm. By
using MVIM, normalized field auto-correlation (g1(τ)) function was recovered and is plotted in
Fig. 14(a) for different flows. Here iterative MVIM algorithm was employed to recover g1(τ).
The g1(τ) was fitted for DB values against solution of CDE and plotted against the flow velocity
is shown in Fig. 14(b) where it can be seen that the DB value increases linearly with velocity of
the syringe pump. The DB fitted for MVIM is compared against the DB fitted for SCOS and is
tabulated in Table 4.

Fig. 14. (a) Recovered g1(τ) using the proposed method and g1(τ) based on SCOS fit for
different flows is plotted. The shift of the curve from the right to left indicates the increase
in flow. (b) MVIM fitted DB values plotted against the velocity of the syringe pump. It can
be seen that as the velocity of the flow increases, the DB value also increases linearly.

4.2.3. in vivo experiment

We validate the proposed system and method in vivo, by performing a human hand blood cuff
experiment, for 5 healthy volunteers. The experimental protocol involves 90 s measurement of
multi-exposure speckle contrast for each pre-cuff, cuff and post cuff phases. The multi-exposure
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Table 4. Comparison between MVIM fitted DB and SCOS fitted DB for different flow rates. The
superscripts ’M’ and ’S’ refers to the MVIM and SCOS based fit for DB values respectively, which

corresponds to the curves shown in Fig. 14(a).

DB MVIM Fitted DB(cm2/s) DB SCOS fitted DB(cm2/s)

DM1
B 6.18X10−10 DS1

B 6.36X10−10

DM2
B 2.36X10−9 DS2

B 2.44X10−9

DM3
B 5.97X10−9 DS3

B 5.85X10−9

DM4
B 1.02X10−8 DS4

B 1.03X10−8

DM5
B 2.29X10−8 DS5

B 2.26X10−8

data was acquired at 15 exposures in the range of 0.5 ms to 20 ms spaced in logarithmic scale, with
200 frames in each exposure to calculate the speckle contrast. The results of MVIM recovered
g1(τ) is plotted, along with results of g1(τ) obtained by DB fitted for SCOS at a SD separation of
1 cm, in Fig. 15(a). The relative blood flow rBF [33] is plotted for each phase in Fig. 15(b) . It
can be seen that on an average for 5 volunteers, there is almost 70 − 80% decrease in blood flow
between pre-cuff and cuff phases and the flow is recovered back during post cuff phase, which is
comparable with results reported in Ref. [23,33].

Fig. 15. (a) The g1(τ), measured by the proposed MVIM algorithm using the camera based
system, is compared with SCOS fitted g1(τ) for human hand blood cuff experiment during
pre-cuff, cuff and post cuff phases. The shift in g1(τ) curve towards right indicating the
decrease in blood flow. (b) Relative blood flow (rBF) for the five volunteers for pre-cuff, cuff
and post cuff phases. It can be seen that there is almost 70 − 80% decrease in blood flow
between pre-cuff and cuff phases. Here the superscript M and S in the legend indicates that
it is MVIM recovered and SCOS fitted g1(τ) respectively.

In nut-shell, we have validated the proposed MVIM algorithm to measure field auto-correlation
function using a camera based system, for tissue mimicking phantoms and for in vivo experiments.

5. Discussion and conclusion

An algorithm and formalism for the recovery of the DCS data-type from speckle contrast
measurements using a system based on an inexpensive CCD/CMOS camera to measure blood
flow is presented. A direct auto-correlation on the measured intensity speckles requires a camera
with high frame rate (typically few MHz) along with a good sensitivity (Quantum Efficiency
(QE) > 50% and dynamic range > 30000 e−), high SNR (readout noise < 2e−) and a wide range
of exposure control (typically 250 ns to few seconds). Although high frame rate cameras are
commercially available (with typically around 106 FPS), there is always a trade-off between
frame rate and SNR. However, in Ref. [52], the intensity correlation was measured for laser
speckle contrast imaging using camera of high frame rate (20000 Hz). The measured field auto
correlation was used to understand the appropriate model for the blood flow. This is one of the
potential applications where a direct recovery of the autocorrelation function is required instead
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of a least square fitted blood flow index (BFI). In the above method, the authors have employed
a high frame rate of 20000 fps due to the fact that the de-correlation time (τc) is in the order
of milliseconds. By recovering DCS data-type using MVIM method and an inexpensive low
frame rate camera, we circumvent the need of a high frame rate camera. The MVIM method
utilizes the fact that speckle contrast is a definite integral of normalized field auto-correlation
function over correlation delay time integrated upto exposure time of the camera. We identified
this integral equation as Volterra integral equation of first kind and hence we adopted a multi-step
method to solve it. The proposed multi-step volterra integral method (MVIM) was successfully
integrated with the camera based laser imaging system to recover the field auto-correlation from
the multi-exposure speckle contrast data. The camera employed was a CCD camera with a low
frame rate (<120 frames), but with reasonably good sensitivity (QE of 42%, dynamic range
17800e−) and exposure control (4µs to 10 s).

This method is equally applicable for measuring superficial tissue blood flow (LSCI) as well
as deep blood flow (DCS), as the relation connecting speckle contrast and field auto-correlation
is common for both the cases. Although the single exposure speckle contrast integrates the
field auto-correlation over correlation delay time (upto the exposure time of camera), the multi-
exposure speckle contrast retains the details of auto-correlation decay of the sample. This fact
is utilized by MVIM for recovery of field auto-correlation function g1(τ). Methods such as
MESI [13] for single scattering case and SCOS [22,23,33] for multiple scattering case utilize
multi-exposure speckle contrast data. These methods have quantified blood flow either through τc
or DB by a direct least square fit on the multi-exposure speckle contrast data without attempting
to recover the field auto-correlation. Infact, by using the proposed MVIM based system, we have
proved that a direct recovery of g1(τ) for every τ values is possible instead of quantifying flow by
a least square fit on multi-exposure speckle contrast data.

The volttera integral equation connecting κ(T) and g1(τ)was discretized numerically and posed
as matrix equation. Although the volterra integral equation of first kind is not an ill-posed problem
[53], due to the presence of noise in the measured speckle contrast and practical difficulties of
measuring κ(T) for dense and wide range of exposure times, Tikhonov regularization based
non-linear least square minimization was used for solving the above equation. The optimal
measurement and minimization parameters such as optimal exposure time and sampling interval
of correlation delay time has been presented along with an iterative scheme for better recovery of
field auto-correlation function. The simulation and experimental results, that includes recovery
of g1(τ) in flow phantoms and in vivo experiments, validates the presented MVIM based system
to measure field auto-correlation function.
The results presented in this paper shows that our method is infact comparable to existing

speckle contrast methods. There are two aspects of the presented work that we would like to
mention, which are “inexpensive” nature of the measurement system compared to conventional
DCS and preliminary study on the “information content” of the multi exposure speckle contrast
data. The former is evident from the fact that by using the speckle contrast as the measurand, we
do not need a fast and sensitive detector array, and, yet, still recover the full DCS data-type. For
addressing the second aspect of the proposed method namely ’information content’ of speckle
contrast data, we have proved via MVIM that a multi exposure data has enough information
to retrieve the DCS data-type for a relevant range of delay times (at each source detector SD
separation).

Though we have shown the MVIM method for recovering the normalized field auto-correlation
function g1(τ), we can also recover the normalized intensity auto-correlation, g2(τ), by posing the
integral equation as (κ2(T)+ 1) = 2

T

∫ T
0 (1−

τ
T )g2(τ)dτ. Note that this equation is independent of

β and any uncertainties in measuring β will not affect the recovery of g2(τ).
We have experimentally validated the working of the proposed method using SD separations

of 0.5 cm to 1 cm which are shorter when compared to the usually used SD separations in DCS
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for measurements on the adults (i.e., 2cm to 3 cm). This is due to the current limitations of
the camera. However, MVIM method is applicable for multi exposure speckle contrast data
at every SD separation. We may use a better camera with a higher sensitivity (in terms of
quantum efficiency and full well capacity) to achieve a higher SD separations, still staying on the
in-expensive side. We note that these SD separations are relevant in terms of animal imaging
studies [10,11,25]. We have demonstrated the working of two layer models via simulations,
however, experimental validation was not performed. This is primarily due to the low dynamic
range of the camera used for the experiment. Since, two different correlation decay demands the
data acquisition for a larger range of exposure time, the dynamic range acts as a constraining
factor. We also note that the proposed non-iterative MVIM method does not require any field
auto-correlation model (such as CDE or e−τ/τc) for recovering field auto-correlation function
g1(τ). We have adopted the above mentioned models in this paper for validating the results
against MESI and SCOS.
In order to acquire the multi-exposure speckle contrast data, we need to frequently vary the

exposure time. This can be achieved by either (a) keeping the camera exposure time constant
but limiting the laser exposure using an external modulator [13] or (b) by changing the camera
exposure time. Here, we have used the second approach which is not tedious since most modern
cameras allow this to be controlled in an automated manner by software. One of the limitations
of the system is, that the low frame rate of the camera constrains performing certain experiments,
where in the flow parameters to be measured changes rapidly with time. For instance, we
were not able to retrieve the reactive hyperaemia, during blood cuff experiment as we need
to measure multi-exposure speckle contrast data within a short duration of time. The current
implementation of calculating speckle contrast is slow as we calculate the speckle contrast
over time. Alternatively, it can be calculated over space so that only one frame is needed per
exposure time. With the current frame-rate, this would allow data acquisition at a much faster
rate (approximately 2 seconds). One of the limitations of the MVIM method is that, even though
we use iterative scheme, we could not completely eliminate the ripples present in the recovered
field auto-correlation at the larger correlation delay time (τ values). This can be improved by
averaging more frames (as the SNR increases by square root of number of frames) and by using a
high sensitive camera. The above-mentioned limitations of both system and the method have to
be improved in order to adapt the system for clinical studies.
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