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Abstract
We prove an exact analogue of Ingham’s uncertainty principle for the group Fourier
transform on the Heisenberg group. This is accomplished by explicitly constructing
compactly supported functions on theHeisenberg groupwhose operator valuedFourier
transforms have suitable Ingham type decay and proving an analogue of Chernoff’s
theorem for the family of special Hermite operators.

Mathematics Subject Classification Primary: 43A80 ; Secondary: 22E25 · 33C45 ·
26E10 · 46E35

1 Introduction

Roughly speaking, the uncertainty principle for the Fourier transform on R
n says

that a function f and its Fourier transform ̂f cannot both have rapid decay. Several
manifestations of this principle are known: Heisenberg–Pauli–Weyl inequality, Paley–
Wiener theorem and Hardy’s uncertainty principle are some of the most well known.
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But there are lesser known results such as theorems of Ingham and Levinson. The best
decay a non trivial function can have is vanishing identically outside a compact set and
for such functions it is well known that their Fourier transforms extend to C

n as entire
functions and hence cannot vanish on any open set. For any such function of compact
support, its Fourier transform cannot have any exponential decay for a similar reason:
if | ̂f (ξ)| ≤ Ce−a|ξ | for some a > 0, then it follows that f extends to a tube domain
in C

n as a holomorphic function and hence it cannot have compact support. So it is
natural to ask the question: what is the best possible decay, on the Fourier transform
side, that is allowed of a function of compact support? An interesting answer to this
question was provided by Ingham [14] in 1934 who proved the following theorem.

Theorem 1.1 (Ingham) Let �(y) be a nonnegative even function on R such that �(y)
decreases to zero when y → ∞. There exists a nonzero continuous function f on
R, equal to zero outside an interval (−a, a) whose Fourier transform ̂f satisfies the
estimate | ̂f (y)| ≤ Ce−|y|�(y) if and only if

∫ ∞
1 �(t)t−1dt < ∞.

This theorem of Ingham and its close relatives Paley -Wiener ([25–27]) and Levin-
son ([19]) theorems have received considerable attention in recent years. In [2],
Bhowmik et al proved analogues of the above theorem forR

n, the n-dimensional torus
T
n and step two nilpotent Lie groups. See also the recent work of Bowmik–Pusti–Ray

[3] for a version of Ingham’s theorem for the Fourier transform on Riemannian sym-
metric spaces of non-compact type. As we are interested in Ingham’s theorem on the
Heisenberg group, let us recall the result proved in [2]. Let H

n = C
n × R be the

Heisenberg group. For an integrable function f on H
n , let ̂f (λ) be the operator val-

ued Fourier transform of f indexed by non-zero reals λ. Measuring the decay of the
Fourier transform in terms of the Hilbert-Schmidt operator norm ‖ ̂f (λ)‖HS Bhowmik
et al. have proved the following result.

Theorem 1.2 (Bhowmik-Ray-Sen) Let �(λ) be a nonnegative even function on R

such that �(λ) decreases to zero when λ → ∞. There exists a nonzero, compactly
supported continuous function f onH

n,whoseFourier transform satisfies the estimate
‖ ̂f (λ)‖HS ≤ C |λ|n/2e−|λ|�(λ) if the integral

∫ ∞
1 �(t)t−1dt < ∞.On the other hand,

if the above estimate is valid for a function f and the integral
∫ ∞
1 �(t)t−1dt diverges,

then the vanishing of f on any set of the form {z ∈ C
n : |z| < δ} × R forces f to be

identically zero.

As the Fourier transform on the Heisenberg group is operator valued, it is natural
to measure the decay of ̂f (λ) by comparing it with the Hermite semigroup e−aH(λ)

generated by H(λ) = −�Rn + λ2|x |2. In this connection, let us recall the following
two versions of Hardy’s uncertainty principle. Let pa(z, t) stand for the heat kernel
associated to the sublaplacian L on the Heisenberg group whose Fourier transform
turns out to be the Hermite semigroup e−aH(λ). The version in which one measures
the decay of ̂f (λ) in terms of its Hilbert-Schmidt operator norm reads as follows. If

| f (z, t)| ≤ Ce−a(|z|2+t2), ‖ ̂f (λ)‖HS ≤ Ce−bλ2 (1.1)

then f = 0 whenever ab > 1/4. This is essentially a theorem in the t-variable and can
be easily deduced from Hardy’s theorem on R, see Theorem 2.9.1 in [37]. Compare
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this with the following version [37, Theorem 2.9.2]. If

| f (z, t)| ≤ Cpa(z, t), ̂f (λ)∗ ̂f (λ) ≤ Ce−2bH(λ) (1.2)

then f = 0 whenever a < b. Here and throughout the rest of this paper, we use
the following standard operator theoretic notation: Given two self-adjoint operators A
and B on a Hilbert space H , we write A ≤ B whenever B − A ≥ 0 or equivalently,
(Bu, u) ≥ (Au, u) for all u ∈ H . Coming back to the discussion, this latter version
is the exact analogue of Hardy’s theorem for the Heisenberg group, which we can
view not merely as an uncertainty principle but also as a characterization of the heat
kernel. Hardy’s theorem in the context of semi-simple Lie groups and non-compact
Riemannian symmetric spaces are also to be viewed in this perspective.

We remark that the Hermite semigroup has been used to measure the decay of the
Fourier transform in connection with the heat kernel transform [17], Pfannschmidt’s
theorem [39] and the extension problem for the sublaplacian [29] on the Heisenberg
group. In connection with the study of Poisson integrals, it has been noted in [38]
that when the Fourier transform of f satisfies an estimate of the form ̂f (λ)∗ ̂f (λ) ≤
Ce−a

√
H(λ), then the function extends to a tube domain in the complexification of

H
n as a holomorphic function and hence the vanishing of f on an open set forces

it to vanish identically. It is therefore natural to ask if the same conclusion can be
arrived at by replacing the constant a in the above estimate by an operator �(

√
H(λ))

for a function � decreasing to zero at infinity. Our investigations have led us to the
following exact analogue of Ingham’s theorem for the Fourier transform on H

n .

Theorem 1.3 Let �(λ) be a nonnegative function on [0,∞) which decreases to zero
as λ → ∞. Then there exists a nonzero compactly supported continuous function f
on H

n whose Fourier transform ̂f satisfies the estimate

̂f (λ)∗ ̂f (λ) ≤ Ce−2�(
√
H(λ))

√
H(λ), λ 
= 0, (1.3)

if and only if � satisfies the condition
∫ ∞
1 �(t)t−1dt < ∞.

Under the assumption that
∫ ∞
1 �(t)t−1dt = ∞, the above theorem demonstrates

that any compactly supported functionwhose Fourier transform satisfies (1.3) vanishes
identically. This can be viewed as an uncertainty principle in the sense mentioned in
the first paragraph. Recently this aspect of Ingham’s theorem has been proved in the
context of higher dimensional Euclidean spaces and Riemannian symmetric spaces
with amuchweaker hypothesis on the function.As observed in [11], for theHeisenberg
group case, the hypothesis can be weakened considerably if we slightly strengthen the
condition (1.3). More precisely, the second and the last author proved the following
theorem in this context.

Theorem 1.4 [11] Let�(λ) be a nonnegative function on [0,∞) such that it decreases
to zero as λ → ∞, and satisfies the conditions

∫ ∞
1 �(t)t−1dt = ∞. Let f be an
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integrable function on H
n whose Fourier transform satisfies the estimate

f̂ (λ)∗ f̂ (λ) ≤ C e−2|λ| �(|λ|)e−2
√
H(λ)�(

√
H(λ)). (1.4)

Then f cannot vanish on any nonempty open set unless it is identically zero.

Comparing the decay condition (1.3) and (1.4), it is not difficult to see that the
Theorem 1.3 is a significant improvement of the Theorem 1.4 in terms of the Ingham
type decay condition. However, we believe that the necessary part of the Theorem 1.3
is true under the weaker hypothesis on the function as in the Theorem 1.4. In what
follows, we shed more light on the difficulties in this regard.

The sufficiency part of Theorem 1.3 is proved in Section 4.1 by explicitly construct-
ing compactly supported functions whose Fourier transforms satisfy the stated decay
condition. Though at present we are not able to prove the necessary part of the theorem
under the assumption that f vanishes on an open set, a slightly different version can
be proved. Recall that the Fourier transform ̂f is defined by integrating f against the
Schrödinger representations πλ:

̂f (λ) =
∫

Hn
f (z, t)πλ(z, t)dz dt .

Since πλ(z, t) = eiλt πλ(z, 0), it follows that ̂f (λ) = Wλ( f λ), where f λ(z) is the
inverse Fourier transform of f (z, t) in the central variable and

Wλ( f
λ) =

∫

Cn
f λ(z)πλ(z, 0)dz

is theWeyl transform of f λ.With these notations we prove the following improvement
on the necessary part of Theorem 1.3.

Theorem 1.5 Let �(λ) be a nonnegative function on [0,∞) such that it decreases to
zero when λ → ∞, and satisfies the condition

∫ ∞
1 �(t)t−1dt = ∞. Let f be an

integrable function on H
n whose Fourier transform ̂f satisfies the estimate

̂f (λ)∗ ̂f (λ) ≤ Ce−2�(
√
H(λ))

√
H(λ), λ 
= 0. (1.5)

If for every λ 
= 0, there exists an open set Uλ ⊂ C
n on which f λ vanishes, then

f = 0.

Remark 1.1 Note thatwhen f is compactly supported the function f λ is also compactly
supported and hence vanishes on an open set. The same is true if we assume that f is
supported on a cylindrical set {z ∈ C

n : |z| < a} × R. As ̂f (λ) = Wλ( f λ), the above
can be considered as a result for the Weyl transform of functions on C

n .

Theorem 1.1 was proved in [14] by Ingham by making use of Denjoy–Carleman
theorem on quasi-analytic functions. In [2], the authors have used Radon transform
and a several variable extension of Denjoy–Carleman theorem due to Bochner and
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Taylor [5] in order to prove the n-dimensional version of Theorem 1.1. An L2 variant
of the result of Bochner–Taylor which was proved by Chernoff in [8] has turned out
to be very useful in establishing Ingham type theorems.

Theorem 1.6 [8, Chernoff] Let f be a smooth function on R
n . Assume that �m f ∈

L2(Rn) for all m ∈ N and that
∑∞

m=1 ‖�m
Rn f ‖− 1

2m
2 = ∞. If f and all its partial

derivatives vanish at 0, then f is identically zero.

As the Laplacian is translation invariant, 0 can be replaced by any other point in
the above theorem. As a matter of fact, this theorem shows how partial differential
operators generate the class of quasi-analytic functions. Recently, Bhowmik–Pusti–
Ray [3] have established an analogue of Chernoff’s theorem for the Laplace-Beltrami
operators on non-compact Riemannian symmetric spaces and use the same in proving
a version of Ingham’s theorem for the Helgason Fourier transform.

In the context of the Heisenberg group, we prove Theorem 1.5, and hence The-
orem 1.3, by using the following analogue of Chernoff’s theorem for the family of
special Hermite operators Lλ. These operators on C

n are defined via the relation
L( f (z)eiλt ) = eiλt Lλ f (z) where L is the sublaplacian on H

n . It turns out that when
λ = 0, the special Hermite operator Lλ reduces to the Laplacian �Cn on C

n . We refer
the reader to Sect. 2.3 for more details.

Theorem 1.7 For any fixed λ ∈ R, let f ∈ C∞(Cn) be such that Lm
λ f ∈ L2(Cn) for

all m ≥ 0 and that
∑∞

m=1 ‖Lm
λ f ‖− 1

2m
2 = ∞. If f and all its partial derivatives vanish

at some w ∈ C
n, then f is identically zero.

When λ = 0, the above is just Chernoff’s theorem for the Laplacian on C
n . For

λ = 1, a weaker version of the theorem, namely under the assumption that f vanishes
on an open set, has been proved in [10, Theorem 4.1]. The weaker version is in fact
good enough to prove Theorems 1.5 and 1.3. However, in this paper, we prove the
above improvementwhich is the exact analogue of Theorem1.6 for the specialHermite
operators and the second main result of this article.

Remark 1.2 The interest in Ingham type theorems for the Fourier transforms in various
settings was revived by Bhowmik and his collaborators in a series of papers [2–4].
Theseworksmainly dealtwith theFourier transformonRiemannian symmetric spaces.
The second and the last authors treated the case of Fourier transform on Heisenberg
groups and eigenfunction expansions in [10] and [11]. In order to help the reader to
get a better understanding of the status of the investigations in this interesting area of
research, we would like to conclude this introduction with the following remarks.

(i)Ingham’s theorem: One of the two parts of Ingham’s theorem is the construction
of a compactly supported functionwith prescribed decay on the Fourier transform side.
This construction is not only required to prove the sharpness of the theorem, but also
plays a major role in the proof of the direct part of the theorem. In the context of higher
dimensional Euclidean spaces and Riemannian symmetric spaces, this construction
easily follows from the original construction of Ingham on R. On the other hand,
the construction on the Heisenberg group is much more involved and difficult as the
Fourier transform is operator valued.
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Let us mention in passing that this new construction has already been used without
proof in the work of [11]. More precisely, the authors in [11] convolved the function
constructed in this paper with a suitable compactly supported function in the central
variable in order to construct a function satisfying (1.4). See [11, Sect. 4] for more
details.

Furthermore, in the construction of functions in [10] where the second and the last
author proved (among other things) analogues of Ingham’s theorem for the spectral
projections associated with Hermite and special Hermite operators, the example con-
structed in this paper played a very important role. Exploiting the connection between
the Weyl transform and the Fourier transform on Heisenberg group coupled with a
periodization technique, the example for the special Hermite case has been derived
from the function constructed in this paper. Also, the function for the Hermite case
has been deduced from the special Hermite case. For a detailed account of this, we
refer the reader to the article [10, Sect. 6].

We would also like to point out that, in proving Theorem 1.4, the authors used a
weaker version of Chernoff’s theorem for the full Laplacian on the Heisenberg group.
This explains why they have demanded the slightly stronger Ingham-type decay (1.4)
in their work. As opposed to this, in this paper, we use a version of Chernoff’s theorem
for the family of special Hermite operators {Lλ}λ
=0. As we shall see later, this allows
us to dispense with the extra decay corresponding to the central variable, getting a
significantly improved analogue of Ingham’s theorem on the Heisenberg group.

(ii)Chernoff’s theorem: Following the earlier works on Ingham’s theorem we also
use Chernoff’s theorem as an important tool in our proof. Apart from this, another idea
used is the reduction technique which allows us consider only radial functions. In the
earlier work [10, Theorem 4.1] the authors used the twisted spherical means to effect
this reduction and then used a Chernoff type theorem for the radial part of the special
Hermite operator. This technique demanded the restriction of the vanishing condition,
resulting in a Chernoff-type theorem for L1 with a strong vanishing condition as men-
tioned above. As opposed to this, in this paper, we use bi-graded spherical harmonics
along with Hecke–Bochner type identity for the special Hermite projections to reduce
the matter to the radial case. This allows us to replace the stronger vanishing condi-
tion with a weaker one, retaining the quasi-analytic nature of the theorem. Unlike the
previous one, this technique has also been proven to be beneficial in the contexts of
rank one Reimannian symmetric spaces. See [12] for further details in this regard.

In proving Theorem 1.7 in [11] the authors have used Chernoff’s theorem for the
full Laplacian on the Heisenberg which required the slightly stronger hypothesis on
the Fourier transform side. In this paper the proof of Ingham’s theorem is based on
Chernoff’s theorem for the family of special Hermite operators Lλ. Thus, we only
need to assume the decay condition of ̂f (λ) for each λ fixed. Moreover, when f is
compactly supported, the same is true for of f λ for each λ as functions on C

n . These
two ideas allowed us to prove a stronger version of Ingham’s theorem in this paper.We
would also like to remark that the proof of Chernoff’s theorem uses a theorem of de Jeu
( see Theorem 2.3 in [15] ) related to themoment problem. Thus the similarity between
proofs of Chernoff’s theorem for operators in different settings is not a coincidence.
However, details differs in terms of the degree of difficulties involved.
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Let us mention that proving the exact analogue of Chernoff’s theorem still remains
as an interesting open problem. Our attempts to follow the original ideas of Chernoff in
the case ofHeisenberg groupmetwith serious difficulties even for the full Laplacian on
H

n . Thus, Chernoff’s theorem for the full Laplacian and sublaplacian on H
n remains

as an interesting open problem worthy of further investigation.

Here is a brief outline of the organization of the paper. After recalling the required
preliminaries regarding harmonic analysis on Heisenberg group in Sect. 2, we prove
an analogue of Chernoff’s theorem for the special Hermite operators (Theorem 1.7) in
Sect. 3. In Sect. 4, we prove the Ingham’s theorems on the Heisenberg group, namely
Theorems 1.3, and 1.5.

2 Preliminaries on Heisenberg groups

In this section, we collect the results which are necessary for the study of uncertainty
principles for the Fourier transform on the Heisenberg group. We refer the reader to
the two classical books Folland [9] and Taylor [34] for the preliminaries of harmonic
analysis on the Heisenberg group. However, we will be closely following the notations
of the books of Thangavelu [36] and [37].

2.1 Heisenberg group and Fourier transform

Let H
n := C

n × R denote the (2n + 1)-dimensional Heisenberg group equipped with
the group law

(z, t).(w, s) :=
(

z + w, t + s + 1

2
�(z.w̄)

)

, ∀(z, t), (w, s) ∈ H
n .

This is a step two nilpotent Lie group where the Lebesgue measure dzdt onC
n ×R

serves as the Haar measure. The representation theory of H
n is well-studied in the

literature. In order to define Fourier transform, we use the Schrödinger representations
as described below.

For each non-zero real number λ, we have an infinite dimensional representation
πλ realised on the Hilbert space L2(Rn). These are explicitly given by

πλ(z, t)ϕ(ξ) = eiλt eiλ(x ·ξ+ 1
2 x ·y)ϕ(ξ + y),

where z = x + iy and ϕ ∈ L2(Rn). These representations are known to be unitary
and irreducible. Moreover, by a theorem of Stone and Von-Neumann (see e.g., [9]),
these account, upto unitary equivalence, for all the infinite dimensional irreducible
unitary representations of H

n which act as eiλt I , λ 
= 0, on the center. Also, there is
another class of one dimensional irreducible representations that corresponds to the
case λ = 0. As they do not contribute to the Plancherel measure we will not describe
them here.
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The Fourier transform of a function f ∈ L1(Hn) is the operator valued function
obtained by integrating f against πλ:

f̂ (λ) =
∫

Hn
f (z, t)πλ(z, t)dzdt .

Note that f̂ (λ) is a bounded linear operator on L2(Rn). Now, by definition of πλ and
f̂ (λ), it is easy to see that

̂f (λ) =
∫

Cn
f λ(z)πλ(z, 0)dz,

where f λ stands for the inverse Fourier transform of f in the central variable:

f λ(z) :=
∫ ∞

−∞
eiλt f (z, t)dt .

This motivates the following definition. Given a function g on C
n , we consider the

following operator defined by

Wλ(g) :=
∫

Cn
g(z)πλ(z, 0)dz.

With these notations, we note that f̂ (λ) = Wλ( f λ). These transforms are called the
Weyl transforms and for λ = 1, they are simply denoted by W (g) instead of W1(g).
We have the following Plancherel formula for the Weyl transforms (See [37, 2.2.9,
Page no-49])

‖Wλ(g)‖2HS|λ|n = (2π)n‖g‖22, g ∈ L2(Cn). (2.1)

This, in view of the relation between the group Fourier transform and the Weyl
transform, proves that when f ∈ L1 ∩ L2(Hn), its Fourier transform is actually a
Hilbert-Schmidt operator and one has

∫

Hn
| f (z, t)|2dzdt = (2π)−(n+1)

∫ ∞

−∞
‖ ̂f (λ)‖2HS|λ|ndλ,

where ‖.‖HS denotes the Hilbert-Schmidt norm. The above allows us to extend the
Fourier transform as a unitary operator between L2(Hn) and the Hilbert space of
Hilbert-Schmidt operator valued functions on R which are square integrable with
respect to the Plancherel measure dμ(λ) = (2π)−n−1|λ|ndλ. We polarize the above
identity to obtain

∫

Hn
f (z, t)g(z, t)dzdt =

∫ ∞

−∞
tr( ̂f (λ)ĝ(λ)∗) dμ(λ).
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Also for suitable functions f on H
n we have the inversion formula

f (z, t) =
∫ ∞

−∞
tr(πλ(z, t)

∗
̂f (λ))dμ(λ).

Moreover, the Fourier transform behaves well with the convolution of two functions
defined by

f ∗ g(x) :=
∫

Hn
f (xy−1)g(y)dy.

In fact, for any f , g ∈ L1(Hn), it follows from the definition that

f̂ ∗ g(λ) = f̂ (λ)ĝ(λ).

We end this subsection by recording an important property of the group Fourier
transform. Let δr stand for the non-isotropic dilation on H

n defined by δr (z, t) =
(r z, r2t) for (z, t) ∈ H

n . Given a function f on H
n , we denote the dilation of f by

δr f defined by δr f (z, t) := f (δr (z, t)). The group Fourier transforms of δr f and f
are connected via the relation

̂δr f (λ) = r−(2n+2)dr ◦ ̂f (r−2λ) ◦ d−1
r (2.2)

where dr is the standard dilation onR
n given by drϕ(x) = ϕ(r x).This can be obtained

by an easy calculation. Indeed, first observe that

πλ(r z, 0) = d−1
r ◦ πλr2(z, 0) ◦ dr (2.3)

which can be easily checked using the definition of πλ. Now a simple change of
variable yields

̂δr f (λ) =
∫

Hn
f (r z, r2t)πλ(z, t)dzdt = r−2n−2

∫

Cn
f λ/r2(z)πλ(r

−1z, 0)dz.

But in view of the above observation (2.3), we see that the right hand side of the above
equals to

r−2n−2dr ◦
(∫

Cn
f λ/r2(z)πλ/r2(z, 0)dz

)

◦ d−1
r

from which follows (2.2) immediately.
In the following subsection,we describe the role of special functions in the harmonic

analysis onH
n and show that the groupFourier transformof a suitable class of functions

take a nice form.
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2.2 Special functions and fourier transform

For each λ 
= 0, we consider the following family of scaled Hermite functions indexed
by α ∈ N

n :


λ
α(x) := |λ| n4 
α(

√|λ|x), x ∈ R
n,

where 
α denote the n−dimensional Hermite functions (see [35]). It is well-known
that these scaled functions 
λ

α are eigenfunctions of the scaled Hermite operator
H(λ) := −�Rn + λ2|x |2 with eigenvalue (2|α| + n)|λ| and {
λ

α : α ∈ N
n} forms an

orthonormal basis for L2(Rn). As a consequence,

‖ ̂f (λ)‖2HS =
∑

α∈Nn

‖ ̂f (λ)
λ
α‖22.

In view of this, the Plancheral formula takes the following very useful form

∫

Hn
| f (z, t)|2dzdt =

∫ ∞

−∞

∑

α∈Nn

‖ ̂f (λ)
λ
α‖22 dμ(λ).

Given σ ∈ U (n), we define Rσ f (z, t) = f (σ.z, t). We say that a function f on
H

n is radial if it is invariant under the action ofU (n) i.e., Rσ f = f for all σ ∈ U (n).

The Fourier transforms of such radial integrable functions are functions of the Hermite
operator H(λ). In fact, if H(λ) = ∑∞

k=0(2k+n)|λ|Pk(λ) is the spectral decomposition
of this operator, then for a radial intrgrable function f we have

̂f (λ) =
∞
∑

k=0

Rk(λ, f )Pk(λ).

Here, Pk(λ) stands for the orthogonal projection of L2(Rn) onto the kth eigenspace
spanned by scaled Hermite functions 
λ

α with |α| = k. The coefficients Rk(λ, f ) are
given by

Rk(λ, f ) = k!(n − 1)!
(k + n − 1)!

∫

Cn
f λ(z)ϕn−1

k,λ (z) dz. (2.4)

In the above formula, ϕn−1
k,λ are the Laguerre functions of type (n − 1):

ϕn−1
k,λ (z) = Ln−1

k

(

1

2
|λ||z|2

)

e− 1
4 |λ||z|2 ,

where Ln−1
k denotes the Laguerre polynomial of type (n−1). Formore about Laguerre

functions, we refer the reader to Sect. 2.4. Furthermore, given two radial integrable
functions f and g on H

n , in view of the formula f̂ ∗ g(λ) = ̂f (λ)ĝ(λ), from basic
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spectral theory it follows that

f̂ ∗ g(λ) =
∞
∑

k=0

Rk(λ, f )Rk(λ, g)Pk(λ)

which yields
Rk(λ, f ∗ g) = Rk(λ, f )Rk(λ, g), ∀k ≥ 0. (2.5)

2.3 The sublaplacian and special Hermite operators

We let hn stand for the Heisenberg Lie algebra consisting of left invariant vector fields
on H

n . A basis for hn is provided by the 2n + 1 vector fields

X j = ∂

∂x j
+ 1

2
y j

∂

∂t
, Y j = ∂

∂ y j
− 1

2
x j

∂

∂t
, j = 1, 2, ..., n, and T = ∂

∂t
.

These correspond to certain one parameter subgroups of H
n . The sublaplacian on H

n

is defined by

L := −
n

∑

j=1

(X2
j + Y 2

j )

which can be explicitly calculated as

L = −�Cn − 1

4
|z|2 ∂2

∂t2
+ N

∂

∂t
,

where �Cn stands for the Laplacian on C
n and N is the rotation operator defined by

N =
n

∑

j=1

(

x j
∂

∂ y j
− y j

∂

∂x j

)

.

This is a sub-elliptic operator and homogeneous of degree 2 with respect to the non-
isotropic dilation given by δr (z, t) = (r z, r2t). The sublaplacian is also invariant
under rotation i.e., Rσ ◦ L = L ◦ Rσ , σ ∈ U (n). For each λ 
= 0, special Hermite
operator Lλ is defined via the relation

L(eiλt f (z)) = eiλt Lλ f (z).

Furthermore, it is not hard to see that (L f )λ(z) = Lλ f λ(z). It turns out that Lλ is
explicitly given by

Lλ = −�Cn + 1

4
λ2|z|2 + iλN .
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This family of special Hermite operators has a useful translation invariance property
coming from the sublaplacian.

Recall that the sublaplacian L is invariant under the left translations defined by
τy f (x) := f (y−1x), x, y ∈ H

n . In other words, τy(L f ) = L(τy f ). Now, with
x = (w, 0) ∈ H

n, taking inverse Fourier transform in the central variable gives us

(τx (L f ))λ(z) = Lλ(τx f )
λ(z)

which, after simplification leads to

e
iλ
2 �(w.z̄)Lλ f

λ(z − w) = Lλ(e
iλ
2 �(w.z̄) f λ(z − w)).

This observation in turn implies that the special Hermite operator Lλ is invariant under
the λ-twisted translation T λ

w, w ∈ C
n , defined by

T λ
wg(z) := e

iλ
2 �(w.z̄)g(z − w). (2.6)

In other words,
T λ

w(Lλg) = Lλ(T
λ
wg), w ∈ C

n . (2.7)

It is also known that these Lλ’s are elliptic operators on C
n with an explicit spectral

decomposition. The spectrum consists of the real numbers of the form (2k+n)|λ|, k ≥
0, and the eigenspaces associated to each of these eigenvalues are infinite dimensional.

In the following, we describe the spectral decomposition for the case when λ = 1.
For the sake of simplicity, we write L instead of L1. In this regard, we also need to
introduce twisted convolution f × g defined by

f × g(z) =
∫

Cn
f (z − w)g(w)e

i
2�(z·w̄)dw.

It is known that ([37, page no. 58]) the special Hermite expansion of a function
f ∈ L2(Cn) and Parseval’s identity reads as

f (z) = (2π)−n
∞
∑

k=0

f × ϕn−1
k (z), ‖ f ‖22 = (2π)−n

∞
∑

k=0

‖ f × ϕn−1
k ‖22 (2.8)

and each f ×ϕn−1
k is an eigenfunction of the operator L with eigenvalue (2k+n).Now

if g(z) = g0(|z|) is a radial function on C
n , then Lλg takes the form Lλg = Lλ,n−1g0

where Lλ,n−1 is the scaled Laguerre operator of type (n − 1) given by

Lλ,n−1 := − d2

dr2
− 2n − 1

r

d

dr
+ 1

4
λ2r2.

In what follows, when λ = 1, we simply denote the radial part of the special Hermite
operator L1,n−1 by Ln−1. Also, in order to prove Chernoff’s theorem for the special
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Hermite operator, we need to use Laguerre operators of more general type which are
obtained by replacing (n−1) by any δ ≥ − 1

2 and eigenfunction expansion associated
with them. In the following subsection, we develop notations and record required
results related to Laguerre expansions in this connection.

2.4 Laguerre expansions

To start with, we first recall the definition of Laguerre polynomials. For any δ ≥ − 1
2 ,

the Laguerre polynomials of type δ are defined by

e−t tδLδ
k(t) = 1

k!
dk

dtk
(e−t t k+δ)

for t > 0, and k ≥ 0. The explicit form of Lδ
k(t) which is a polynomial of degree k,

is given by

Lδ
k(t) =

k
∑

j=0

�(k + δ + 1)

�( j + δ + 1)�(k − j + 1)

(−t) j

j ! .

We now introduce the normalised Laguerre functions Lδ
k defined as follows.

Lδ
k(t) =

(

�(k + 1)

�(k + 1 + δ)

) 1
2

e− t
2 t

δ
2 Lδ

k(t), t > 0.

Then it is well-known that for any fixed δ ≥ − 1
2 ,

{Lδ
k

}∞
k=0 is an orthonormal basis for

L2(R+, dt). Now, fix δ ≥ − 1
2 and consider the following Laguerre functions of type

δ defined by

ϕδ
k (r) := Lδ

k

(

1

2
r2

)

e− 1
4 r

2
, r > 0.

For any λ 
= 0, the λ-scaled Laguerre function is defined by the relation ϕδ
k,λ(r) :=

ϕδ
k (

√|λ|r). However, we also use the the following normalised Laguerre functions of
type δ :

ψδ
k (r) := �(k + 1)�(δ)

�(k + δ + 1)
Lδ
k

(

1

2
r2

)

e− 1
4 r

2
, r > 0

so that ψδ
k (0) = 1. It turns out that these are eigenfunctions of the following Laguerre

operator of type δ given by

Lδ := − d2

dr2
− 2δ + 1

r

d

dr
+ 1

4
r2
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with eigenvalue (2k+δ+1) i.e., Lδψ
δ
k = (2k+δ+1)ψδ

k .This can be checked using the
relations [35, 1.1.48, 1.1.49] satisfied by the Laguerre polynomials. We will see later
that for δ = n − 1, Lδ corresponds to the radial part of the special Hermite operator.
Now, using the orthogonality property of the functions Lδ

k (mentioned above), it is not
difficult to see that {ψδ

k : k ≥ 0} forms an orthogonal basis for L2(R+, r2δ+1dr). In
view of this, for f ∈ L2(R+, r2δ+1dr) we have

f (r) =
∞
∑

k=0

cδ
k Rδ

k( f )ψ
δ
k (r), ‖ f ‖22 =

∞
∑

k=0

cδ
k |Rδ

k( f )|2, (2.9)

where (cδ
k)

−1 := ∫ ∞
0 |ψδ

k (r)|2r2α+1dr , and Rδ
k( f ) denotes the Laguerre coefficients

of f given by

Rδ
k( f ) =

∫ ∞

0
f (r)ψδ

k (r)r
2δ+1dr , k ≥ 0. (2.10)

We have the following Chernoff type theorem for Lδ:

Theorem 2.1 Let δ ≥ − 1
2 and f ∈ L2(R+, r2δ+1dr) be such that Lm

δ f ∈
L2(R+, r2δ+1dr) for all m ≥ 0, and satisfies the Carleman condition
∑∞

m=1 ‖Lm
δ f ‖−1/(2m)

2 = ∞. If Lm
δ f (0) = 0 for all m ≥ 0, then f is identically

zero.

For a proof of this result, we refer the reader to Theorem 2.4 and the Remark 2.5
after that in [10].

We end this subsection by recalling the following asymptotic properties of Laguerre
functions which are needed in estimating the Fourier transforms of radial functions.
We state them here for the general case though we need them only for the Laguerre
functions ϕn−1

k,λ of type (n− 1). Asymptotic properties of Lδ
k(r) are well-known in the

literature, see [35, Lemma 1.5.3]. The estimates in [35, Lemma 1.5.3] are sharp, see
[20, Sect. 2] and [21, Sect. 7]. For our convenience, we restate the result in terms of
ϕn−1
k,λ (r).

Lemma 2.2 Let ν(k) = 2(2k + n) and Ck,n =
(

k!(n−1)!
(k+n−1)!

) 1
2
. For λ 
= 0, we have the

estimates

Ck,n |ϕn−1
k,λ (r)|

≤ C(r
√|λ|)−(n−1)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

( 12ν(k)r2|λ|)(n−1)/2, 0 ≤ r ≤
√
2√

ν(k)|λ|

( 12ν(k)r2|λ|)− 1
4 ,

√
2√

ν(k)|λ| ≤ r ≤
√

ν(k)√|λ|

ν(k)− 1
4 (ν(k)

1
3 + |ν(k) − 1

2 |λ|r2|)− 1
4 ,

√
ν(k)√|λ| ≤ r ≤

√
3ν(k)√|λ|

e− 1
2 γ r2|λ|, r ≥

√
3ν(k)√|λ| ,

where γ > 0 is a fixed constant and C is independent of k and λ.
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3 An analogue of Chernoff’s theorem for the special Hermite operator

Our next aim is to prove Theorem 1.7. For the sake of simplicity, we assume that
λ = 1 and prove the Theorem 1.7 for L. In proving the weaker version of Chernoff’s
theorem for L , in [10], the authors used twisted spherical means and a Chernoff type
theorem for its radial part which is a Laguerre operator of type (n − 1). However,
in this case, we have to consider Laguerre operators of general type δ as well as the
eigenfunction expansion that goes with them, which has already been described at end
of the previous section. Furthermore, we will use Hecke-Bochner type identity for
special Hermite projections, which requires some preparations. To begin with, closely
following the notations of [37, Sect. 5, Chapter 2] we describe bi-graded spherical
harmonics on C

n .

Bi-graded spherical harmonics: Let p and q be two non-negative integers. Sup-
pose Pp,q denotes the set of all polynomials in z and z̄ of the form

P(z) =
∑

|α|=p, |β|=q

cα,β z
α z̄β

which clearly has the following homogeneity property: P(λz) = λpλ̄q P(z), λ ∈ C.

Now, in terms of the vector fields ∂
∂z j

, ∂
∂ z̄ j

, j = 1, 2, .., n, the Laplacian on C
n has

the form �Cn = 4
∑n

j=1
∂2

∂z j ∂ z̄ j
. In view of this, it can be checked that �Cn : Pp,q →

Pp−1,q−1. We denote the kernel of �Cn byHp,q . More precisely,

Hp,q := {P ∈ Pp,q : �Cn P = 0},

which is called the set of all bi-graded solid harmonics of degree (p, q). We define

Sp,q := {P|S2n−1 : P ∈ Hp,q}.

The elements of Sp,q are called the bi-graded spherical harmonics of degree (p, q).
This turns out be a Hilbert space under the usual inner-product of L2(S2n−1). Let
d(p, q) denote the dimension of this Hilbert space. Now, it is well-known that we can
choose an orthonormal basis Bp,q := {S j

p,q : 1 ≤ j ≤ d(p, q)} for Sp,q , for each pair
of non-negative integers (p, q) such thatB := ∪p,q≥0Bp,q forms an orthonormal basis
for L2(S2n−1). For our purpose, we require the following Hecke-Bochner identity in
the context of special Hermite projections.

Theorem 3.1 Suppose f ∈ L1(Cn) has the form f = Pg where g is radial and
P ∈ Hp,q for some p, q ≥ 0. Then f × ϕn−1

k = 0 unless k ≥ p, in which case

f × ϕn−1
k (z) = (2π)−ng × ϕ

n+p+q−1
k−p (z)P(z),

where the twisted convolution on the right hand side is on C
n+p+q .
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For a proof of this result, we refer the reader to [37, Theorem 2.6.1]. Hecke-Bochner
identity for theWeyl transformwas first proved byGeller in [13] fromwhich the above
theorem can be deduced. In [37] a different proof has been given. Both proofs are long
and involved and we refer the reader to these references for details. We are now in a
position to prove the Theorem 1.7.

Proof of Theorem 1.7 Let f be as in the statement. The main idea is to reduce the
matters to radial case by expanding f in terms of bi-graded spherical harmonics and
then use Chernoff’s theorem for Laguerre operator of suitable type. The proof will be
completed in the following steps.

Step 1:(Reduction of vanishing condition) Suppose f and all its partial derivatives
vanish at a point 0 
= w ∈ C

n . Consider the function g defined by g = T 1−w f , which
is nothing but the twisted translation of f by−w (See (2.6)). In the following, we will
be using standard multi-index notations. Using the product rule of partial derivatives,
an easy calculation shows that ∂αg(z) is equal to

∂α(e− i
2�(w.z̄) f (z + w)) =

∑

β≤α

(

α

β

)

∂β(e− i
2�(w.z̄))∂α−β( f (z + w))

=
∑

β≤α

(

α

β

)

(e− i
2�(w.z̄))Pβ(w, w̄)∂α−β( f (z + w)),

where Pβ(w, w̄) is some polynomial in w and w̄ whose explicit form is not required
for our purpose. Note that for any multi-index α, we have from the equation above

∂αg(0) =
∑

β≤α

(

α

β

)

Pβ(w, w̄)∂α−β f (w) = 0

by the the assumption that ∂α f (w) = 0 for all α. Furthermore, using the twisted
translation invariance of L (See (2.7)), it is not hard to see that ‖Lmg‖2 = ‖Lm f ‖2,
whence ‖Lmg‖2 also satisfy the Carleman condition. Therefore, if f and all its partial
derivatives vanish at any point, we can simply work with a suitable twisted translate
of f . So, there is no loss of generality in assuming that f and all its partial derivatives
vanish at 0.

Step 2: (Spherical harmonic coefficients of Lm f ) The spherical harmonic expansion
of f reads as

f (z) =
∞
∑

p,q=0

d(p,q)
∑

j=1

〈 f (r .), S j
p,q〉L2(S2n−1)S

j
p,q(ω), z = rω.

Writing f j
p,q(r) = r−p−q〈 f (r .), S j

p,q〉L2(S2n−1), and P j
p,q(z) = |z|p+q S j

p,q(ω), we
observe from the above that

Lm f (z) =
∞
∑

p,q=0

d(p,q)
∑

j=1

Lm( f j
p,q P

j
p,q)(z) =

∞
∑

p,q=0

d(p,q)
∑

j=1

LmF j
p,q(z),
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where we have written F j
p,q(z) := f j

p,q(|z|)P j
p,q(z). Let us calculate the special

Hermite projections of F j
p,q . In view of the Theorem 3.1, we see that for k ≥ p,

F j
p,q × ϕn−1

k (z) = (2π)−n P j
p,q(z)

(

f j
p,q × ϕ

n+p+q−1
k−p (z)

)

= (2π)−n P j
p,q(z) Rδ(p,q)

k−p ( f j
p,q) ϕ

δ(p,q)
k−p (z)

where δ(p, q) := n+ p+q−1. In the last equality, we have used the fact that f j
p,q can

be thought of as a radial function on C
n+p+q , and the notation introduced in (2.10).

Therefore, we obtain from the special Hermite expansion (see (2.8)) of F j
p,q that

LmF j
p,q(z)

= (2π)−n
∞
∑

k=0

(2k + n)mF j
p,q × ϕn−1

k (z)

= (2π)−2n P j
p,q(z)

∞
∑

k=p

(2k + n)m Rδ(p,q)
k−p ( f j

p,q) ϕ
δ(p,q)
k−p (z)

= (2π)−2n P j
p,q(z)

∞
∑

k=0

(2k + 2p + n)m Rδ(p,q)
k ( f j

p,q) ϕ
δ(p,q)
k (z)

= (2π)−2n S j
p,q(ω) r p+q

∞
∑

k=0

(2k + 2p + n)m Rδ(p,q)
k ( f j

p,q) ϕ
δ(p,q)
k (r), z = rω.

(3.1)

Thus, for a fixed m the spherical harmonic coefficients of Lm f (r ·) are given by

G j
p,q(r) := 〈Lm f (r .), S j

p,q〉L2(S2n−1)

= (2π)−2n r p+q
∞
∑

k=0

(2k + 2p + n)m Rδ(p,q)
k ( f j

p,q) ϕ
δ(p,q)
k (r) (3.2)

for any r > 0.Now, by using the orthogonality of the Laguerre functions, we get from
(3.2) that

∫ ∞

0
G j

p,q(r)ϕ
δ(p,q)
k (r)r2n+p+q−1dr

= (2π)−2n(2k + 2p + n)m Rδ(p,q)
k ( f j

p,q) ‖ϕδ(p,q)
k ‖22

= cn (2k + 2p + n)m
k!(n + p + q − 1)!

(k + n + p + q − 1)!R
δ(p,q)
k ( f j

p,q). (3.3)

Step 3:(Carleman condition) We consider the function f j
p,q for fixed j, p and q.

With δ(p, q) as above, in view of the Plancherel formula (2.9), we see that for any
m ≥ 1,
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‖Lm
δ(p,q) f

j
p,q‖22 =

∞
∑

k=0

(2k + δ(p, q) + 1)2m cδ(p,q)
k |Rδ(p,q)

k ( f j
p,q)|2

=
∞
∑

k=0

C(k,m, p, q, n)

∣

∣

∣

∣

∫ ∞

0
G j

p,q(r) ϕ
δ(p,q)
k (r) r2n+p+q−1dr

∣

∣

∣

∣

2

,

(3.4)

where we have used (3.3). Here, C(k,m, p, q, n) is given by

C(k,m, p, q, n) :=
(

2k + δ(p, q) + 1

2k + 2p + 1

)2m

cδ(p,q)
k

(

(k + n + p + q − 1)!
k!(n + p + q − 1)!

)2

.

Now, using the value of δ(p, q), we see that

2k + δ(p, q) + 1

2k + 2p + 1
≤ 1 + q

p
:= ap,q .

Using this, we have from (3.4) that

‖Lm
δ(p,q) f

j
p,q‖22 ≤ a2mp,q

∞
∑

k=0

cδ(p,q)
k

∣

∣

∣

∣

∫ ∞

0
r−p−qG j

p,q(r) ψ
δ(p,q)
k (r) r2n+2p+2q−1dr

∣

∣

∣

∣

2

(3.5)

where we have used the notation that ψ
δ(p,q)
k (r) = (k+n+p+q−1)!

k!(n+p+q−1)! ϕ
δ(p,q)
k (r) (see

Sect. 2.4). This allows us to observe that the expression inside the modulus sign
on the right hand side is the Laguerre coefficientRδ(p,q)

k (r−p−qG j
p,q). Therefore, by

the Plancherel formula (2.9), we obtain

‖Lm
δ(p,q) f

j
p,q‖22 ≤ a2mp,q

∫ ∞

0
|r−p−qG j

p,q(r)|2r2n+2p+2q−1dr

= a2mp,q

∫ ∞

0
|G j

p,q(r)|2 r2n−1dr .

Recalling the definition of G j
p,q(r), we observe that

|G j
p,q(r)| = |(Lm f (r .), S j

p,q)L2(S2n−1)| ≤ ‖Lm f (r .)‖L2(S2n−1).

Using this in the equation above and integrating in polar coordinates, we obtain

‖Lm
δ(p,q) f

j
p,q‖22 ≤ a2mp,q‖Lm f ‖22. (3.6)
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Thus, the Carleman condition on Lm f implies the Carleman condition

∞
∑

m=1

‖Lm
δ(p,q) f

j
p,q‖−1/(2m)

2 = ∞ (3.7)

for any spherical harmonic coefficient f j
p,q .

Step 4:(Vanishing condition) We have assumed that f and all its partial derivatives
vanish at the origin. However, for our purpose, it is more convenient to work with the
following equivalent vanishing condition written in terms of polar coordinates:

(

d

dr

)m

f (rω)|r=0 = 0, for all ω ∈ S
2n−1, m ≥ 0. (3.8)

Indeed, it can be checked that

(

d

dr

)k

f (rω) =
∑

|α|=k

∂α f (rω)ωα.

Hence, ( d
dr )

k f (rω)|r=0 = 0, for all k if and only if ∂α f (0) = 0, for all α. We recall

that f j
p,q is explicitly given by

f j
p,q(r) = r−p−q

∫

S2n−1
f (rω)S j

p,q(ω)dσ(ω).

In view of the vanishing condition (3.8), a calculation using repeated application
of L’Hospital rule, we verify that all the derivatives of f j

p,q at 0 are zero. Thus,

Lm
δ(p,q) f

j
p,q(0) = 0, for all m ≥ 0. Hence, by Chernoff’s theorem for Lδ(p,q) (See

Theorem 2.1), we have f j
p,q = 0, for all j, p, q. Therefore, we conclude that f = 0,

thereby completing the proof. ��

4 Ingham’s theorem on the Heisenberg group

In this sectionwe proveTheorems 1.3, and 1.5 usingChernoff’s theorem for the special
Hermite operator. We first show the existence of a compactly supported function f
on H

n whose Fourier transform has a prescribed decay as stated in Theorem 1.3.
This proves the sufficiency part of the condition on the function � appearing in the
hypothesis. We then use this part of the theorem to prove the necessity of the condition
on �. We begin with some preparations.

4.1 Construction of F

The Koranyi norm of x = (z, t) ∈ H
n , is defined by |x | = |(z, t)| = (|z|4 + t2)

1
4 . In

what follows, we work with the following left invariant metric defined by d(x, y) :=
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|x−1y|, x, y ∈ H
n . Given a ∈ H

n and r > 0, the open ball of radius r with centre at
a is defined by

B(a, r) := {x ∈ H
n : |a−1x | < r}.

With this definition, we note that if f , g : H
n → C are such that supp( f ) ⊂ B(0, r1)

and supp(g) ⊂ B(0, r2), then we have

supp( f ∗ g) ⊂ B(0, r1).B(0, r2) ⊂ B(0, r1 + r2),

where f ∗ g(x) = ∫

Hn f (xy−1)g(y)dy is the convolution of f with g.
Suppose {ρ j } j and {τ j } j are two sequences of positive real numbers such that both

the series
∑∞

j=1 ρ j and
∑∞

j=1 τ j are convergent. We let BCn (0, r) stand for the ball
of radius r centered at 0 in C

n and let χS denote the characteristic function of a set S.

For each j ∈ N, we define functions f j on C
n and g j on R by

f j (z) := ρ−2n
j χBCn (0,aρ j )(z), z ∈ C

n;
g j (t) := τ−2

j χ[−τ 2j /2,τ
2
j /2](t), t ∈ R, (4.1)

where the positive constant a is chosen so that ‖ f j‖L1(Cn) = 1. We now consider the
functions Fj : H

n → C defined by

Fj (z, t) := f j (z)g j (t), (z, t) ∈ H
n .

In the following lemma, we record some useful, but easily proven properties of these
functions.

Lemma 4.1 Let Fj be as above and define GN = F1 ∗ F2 ∗ ..... ∗ FN . Then we have

(1) ‖Fj‖L∞(Hn) ≤ ρ−2n
j τ−2

j , ‖Fj‖L1(Hn) = 1,

(2) supp(Fj ) ⊂ BCn (0, aρ j ) × [−τ 2j /2, τ
2
j /2] ⊂ B(0, aρ j + cτ j ), where 4c4 = 1.

(3) For any N ∈ N, supp(GN ) ⊂ B(0, a
∑N

j=1 ρ j + c
∑N

j=1 τ j ), ‖GN‖1 = 1.

(4) Given x ∈ H
n, and N ∈ N, F2 ∗ F3..... ∗ FN (x) ≤ ρ−2n

2 τ−2
2 .

Wealso recall a result aboutHausdörffmeasurewhichwill be used in the proof of the
next theorem. Let Hn(A) denote the n-dimensional Hausdorff measure of A ⊂ R

n .

Hausdörff measure coincides with the Lebesgue measure for Lebesgue measurable
sets. For sets inR

n with sufficiently nice boundaries, the (n−1)-dimensionalHausdorff
measure is same as the surface measure. For more about this, we refer the reader to
[33, Chapter 7 ]. Let A�B stand for the symmetric difference between any two sets
A and B. See [31] for a proof of the following theorem.

Theorem 4.2 Let A ⊂ R
n be a bounded set. Then for any ξ ∈ R

n,

Hn(A�(A + ξ)) ≤ |ξ |Hn−1(∂A),

where A + ξ is the translation of A by ξ and ∂A is the boundary of A.
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An analogue of Ingham’s theorem on the Heisenberg group

Theorem 4.3 The sequence defined by Gk = F1 ∗ F2 ∗ .....∗ Fk converges in L2(Hn),

as well as in L1(Hn), to a compactly supported non-trivial function F.

Proof In order show that {Gk} is Cauchy in L2(Hn), we first estimate ‖Gk+1 −
Gk‖L∞(Hn). As all the functions Fj have unit L1 norm, we have for any x ∈ H

n

Gk+1(x) − Gk(x) =
∫

Hn
Gk(xy

−1)Fk+1(y)dy − Gk(x)
∫

Hn
Fk+1(y)dy

=
∫

Hn

(

Gk(xy
−1) − Gk(x)

)

Fk+1(y)dy.

Since Fj ’s are even, we can change y into y−1 in the above and estimate the same as

|Gk+1(x) − Gk(x)| ≤
∫

Hn
|Gk(xy) − Gk(x)| Fk+1(y)dy. (4.2)

By defining Hk−1 = F2 ∗ F3...... ∗ Fk , we note that Gk = F1 ∗ Hk−1. Thus,

Gk(xy) − Gk(y) =
∫

Hn

(

F1(xyu
−1) − F1(xu

−1)
)

Hk−1(u)du.

Using the estimate (4) in Lemma 4.1, we get that

|Gk(xy) − Gk(x)| ≤ ρ−2n
2 τ−2

2

∫

Hn

∣

∣

∣F1(xyu
−1) − F1(xu

−1)

∣

∣

∣ du. (4.3)

The change of variables u → ux transforms the integral in the right hand side of the
inequality above into

∫

Hn

∣

∣

∣F1(xyu
−1) − F1(xu

−1)

∣

∣

∣ du =
∫

Hn

∣

∣

∣F1(xyx
−1u−1) − F1(u

−1)

∣

∣

∣ du.

Since the group H
n is unimodular, another change of variables u → u−1 yields

∫

Hn

∣

∣

∣F1(xyx
−1u−1) − F1(u

−1)

∣

∣

∣ du =
∫

Hn

∣

∣

∣F1(xyx
−1u) − F1(u)

∣

∣

∣ du.

Let x = (z, t) = (z, 0)(0, t), y = (w, s) = (w, 0)(0, s).As (0, t) and (0, s)belong
to the center of H

n , an easy calculation shows that xyx−1 = (w, 0)(0, s + �(z · w̄)).

With u = (ζ, τ ) we have

xyx−1u = (w + ζ, 0)(0, τ + s + �(z · w̄) − (1/2)�(ζ · w̄)).

Since F1(z, t) = f1(z)g1(t), we see that the integrand F1(xyx−1u) − F1(u) in the
above integral takes the form

f1(w + ζ )g1(τ + s + �(z · w̄) − (1/2)�(ζ · w̄)) − f1(ζ )g1(τ ).
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By setting b = b(s, z, w, ζ ) = s+�(z · w̄)− (1/2)�(ζ · w̄), we can rewrite the above
as

(

f1(w + ζ ) − f1(ζ )
)

g1(τ + b) + f1(ζ )
(

g1(τ + b) − g1(τ )
)

. (4.4)

In order to estimate the contribution of the second term in (4.4) to the integral under
consideration, we first estimate the integral in τ -variable as follows:

∫ ∞

−∞
|g1(τ + b) − g1(τ )|dτ = τ−2

1 |(−b + Kτ )�Kτ |,

where Kτ = [− 1
2τ

2
1 , 1

2τ
2] is the support of g1. For ζ in the support of f1, we have

|ζ | ≤ aρ1, and hence

|(−b + Kτ )�Kτ | ≤ 2|b(s, z, w, ζ )| ≤ (2|s| + |z||w| + aρ1|w|).

Thus, we have proved the following estimate

∫

Hn
f1(ζ )|g1(τ + b) − g1(τ )|dζdτ ≤ C

(

2|s| + (aρ1 + |z|)|w|). (4.5)

As the integral of g1 is one, the contribution of the first term in (4.4) is given by

∫

Cn
| f1(w + ζ ) − f1(ζ )|dζ = ρ−2n

1 H2n ((−w + BCn (0, aρ1))�BCn (0, aρ1)) .

By appealing to Theorem 4.2 in estimating the above, we obtain

∫

Hn
| f1(w + ζ ) − f1(ζ )| g(τ + b) dζdτ ≤ C |w|. (4.6)

Using the estimates (4.5) and (4.6) in (4.3) we obtain

|Gk(xy) − Gk(x)| ≤ Cρ−2n
2 τ−2

2

(|s| + (c1 + c2|z|)|w|).

This estimate, when used in (4.2), in turn gives us

|Gk+1(z, t) − Gk(z, t)| ≤ C
∫

Hn

(|s| + (c1 + c2|z|)|w|)Fk+1(w, s) dw ds (4.7)

where the constants c1, c2 and C depend only on n. Recalling that on the support of
Fk+1(w, s) = fk+1(w)gk+1(s), |w| ≤ ρk+1 and |s| ≤ τ 2k+1, the above yields the
estimate

|Gk+1(z, t) − Gk(z, t)| ≤ C
(

τ 2k+1 + (c1 + c2|z|)ρk+1
)

. (4.8)

It is easily seen that the support of Gk+1 − Gk is contained in B(0, aρ + cτ) where
ρ = ∑∞

j=1 ρ j and τ = ∑

τ j
. Consequently, from the above we conclude that

‖Gk+1 − Gk‖2 ≤ ‖Gk+1 − Gk‖∞
(|B(0, aρ + cτ)|)1/2 ≤ C

(

τ 2k+1 + c3ρk+1
)

.
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From the above, it is clear that {Gk} is Cauchy in L2(Hn), and hence converges to
a function F ∈ L2(Hn) whose support is contained in B(0, aρ + cτ). The same
argument shows that {Gk} converges to F in L1. As ‖Gk‖1 = 1 for any k, it follows
that ‖F ||1 = 1 and hence F is nontrivial. ��

4.2 Estimating the Fourier transform of F

Suppose now that � is an even, decreasing function on R for which
∫ ∞
1 �(t)t−1dt <

∞. We want to choose two sequences of positive real numbers {ρ j } and {τ j } in terms
of � so that the series

∑∞
j=1 ρ j and

∑∞
j=1 τ j both converge. We can then construct

a function F as in Theorem 4.3 which will be compactly supported. Having done
the construction we now want to compute the Fourier transform of the constructed
function F and compare it with e−�(

√
H(λ))

√
H(λ). This can be achieved by a judicious

choice of the sequences {ρ j } and {τ j }. As � is given to be decreasing, it follows that
∑∞

j=1
�( j)
j < ∞. It is then possible to choose a decreasing sequence {ρ j } such that

ρ j ≥ c2ne
2 �( j)

j (for a constant cn to be chosen later) and
∑∞

j=1 ρ j < ∞. Similarly,

we choose another decreasing sequence {τ j } such that
∑∞

j=1 τ j < ∞.

In the proof of the following lemmawe require good estimates for theLaguerre coef-
ficients of the function f j (z) = ρ−2n

j χBCn (0,aρ j )(z)where a chosen so that ‖ f j‖1 = 1.
These coefficients are defined by

Rn−1
k (λ, f j ) = k!(n − 1)!

(k + n − 1)!
∫

Cn
f j (z)ϕ

n−1
k,λ (z)dz. (4.9)

Lemma 4.4 There exists a constant cn > 0 such that

|Rn−1
k (λ, f j )| ≤ cn

(

ρ j

√

(2k + n)|λ|)−n+1/2
.

Proof By abuse of notation we write ϕn−1
k,λ (r) in place of ϕn−1

k,λ (z) when |z| = r . As
f j is defined as the dilation of a radial function, the Laguerre coefficients are given
by the integral

Rn−1
k (λ, f j ) = 2πn

�(n)

k!(n − 1)!
(k + n − 1)!

∫ a

0
ϕn−1
k,λ (ρ j r)r

2n−1dr . (4.10)

When a ≤ (ρ j
√

(2k + n)|λ|)−1, we use the bound k!(n−1)!
(k+n−1)! |ϕn−1

k,λ (r)| ≤ 1 (See [35])
to estimate

2πn

�(n)

k!(n − 1)!
(k + n − 1)!

∫ a

0
ϕn−1
k,λ (ρ j r)r

2n−1dr ≤ πnan+1/2

�(n + 1)

(

ρ j

√

(2k + n)|λ|)−n+1/2
.

When a > (ρ j
√

(2k + n)|λ|)−1, we split the integral into two parts, one ofwhich gives
the same estimate as above. To estimate the integral taken over (ρ j

√
(2k + n)|λ|)−1 <
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r < a, we use the bound stated in Lemma 2.2 which leads to the estimate

2πn

�(n)

k!(n − 1)!
(k + n − 1)!

∫ a

(ρ j
√

(2k+n)|λ|)−1
ϕn−1
k,λ (ρ j r)r

2n−1dr

≤ Cn
(

ρ j

√

(2k + n)|λ|)−n+1/2
∫ a

0
rn−1/2dr =C ′

na
n+1/2(ρ j

√

(2k + n)|λ|)−n+1/2
.

Combining the two estimates we get the lemma. ��
Theorem 4.5 Let � : R → [0,∞) be an even, decreasing function with
limλ→∞ �(λ) = 0 for which

∫ ∞
1

�(λ)
λ

dλ < ∞. Let ρ j and τ j be chosen as above.
Then the Fourier transform of the function F constructed in Theorem 4.3 satisfies the
estimate

̂F(λ)∗ ̂F(λ) ≤ e−2�(
√
H(λ))

√
H(λ), λ 
= 0.

Proof Observe that F is radial since each Fj is radial and hence the Fourier transform
̂F(λ) is a function of the Hermite opertaor H(λ). More precisely,

̂F(λ) =
∞
∑

k=0

Rn−1
k (λ, F)Pk(λ) (4.11)

where the Laguerre coefficients are explicitly given by (see (2.4.7) in [37]. There is a
typo- the factor |λ|n/2 should not be there)

Rn−1
k (λ, F) = k!(n − 1)!

(k + n − 1)!
∫

Cn
Fλ(z)ϕn−1

k,λ (z)dz.

In the above, Fλ(z) stands for the inverse Fourier transform of F(z, t) in the t variable.
Expanding any ϕ ∈ L2(Rn) in terms of 
λ

α it is easy to see that the conclusion
̂F(λ)∗ ̂F(λ) ≤ e−2�(

√
H(λ))

√
H(λ) follows once we show that

(Rn−1
k (λ, F))2 ≤ Ce−2�(

√
(2k+n)|λ)

√
(2k+n)|λ|

for all k ∈ N and λ ∈ R
∗. Now note that, by definitions of f j and g j and the choice

of a, (see (4.1)) we have

|̂g j (λ)| =
∣

∣

∣

∣

∣

sin( 12τ
2
j λ)

1
2τ

2
j λ

∣

∣

∣

∣

∣

≤ 1, |Rn−1
k (λ, f j )| ≤ 1.

The bound on Rn−1
k (λ, f j ) follows from the fact that |ϕn−1

k,λ (z)| ≤ (k+n−1)!
k!(n−1)! . This

shows that for any j we also have |Rn−1
k (λ, Fj )| ≤ 1.
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In estimating Rn−1
k (λ, F) we make use of the following facts about the map f →

Rn−1
k (λ, f ) where f ∈ L1(Hn) is radial. From the definition of Rn−1

k (λ, f ) and the
uniform estimate for ϕn−1

k,λ (z) it follows that

|Rn−1
k (λ, f )| ≤

∫

Cn
| f λ(z)|dz ≤ ‖ f ‖1.

Since F is constructed as the L1 limit of the N -fold convolution GN = F1 ∗ F2...... ∗
FN we observe that Rn−1

k (λ, F) is the limit of Rn−1
k (λ,GN ) as N tends to infinity.

Moreover, in view of the fact that Rn−1
k (λ, f ∗ g) = Rn−1

k (λ, f )Rn−1
k (λ, g) (See

(2.5)) and the bounds |Rn−1
k (λ, Fj )| ≤ 1 we see that

(Rn−1
k (λ,GN+1))

2 = (�N+1
j=1 Rn−1

k (λ, Fj ))
2 ≤ Rn−1

k (λ,GN ))2

and hence (Rn−1
k (λ,GN ))2 decreases to (Rn−1

k (λ, F)2. Thus, for any N

(Rn−1
k (λ, F))2 ≤ (Rn−1

k (λ,GN ))2 = (�N
j=1R

n−1
k (λ, Fj ))

2.

Therefore, it is enough to show that for a given k and λ one can choose N = N (k, λ)

in such a way that

(�N
j=1R

n−1
k (λ, Fj ))

2 ≤ Ce−2�(
√

(2k+n)|λ|)√(2k+n)|λ|. (4.12)

where C is independent of N . From the definition of GN it follows that

̂GN (λ) = �N
j=1

̂Fj (λ) = �N
j=1

( ∞
∑

k=0

Rn−1
k (λ, Fj )Pk(λ)

)

and hence Rn−1
k (λ,GN ) = �N

j=1R
n−1
k (λ, Fj ). As Fj (z, t) = f j (z)g j (t), we have

Rn−1
k (λ,GN ) = (

�N
j=1ĝ j (λ)

)(

�N
j=1R

n−1
k (λ, f j )

)

.

As the first factor is bounded by one, it is enough to consider the product
�N

j=1R
n−1
k (λ, f j ).

We now choose ρ j satisfying ρ j ≥ c2n e
2 �( j)

j , where cn is the same constant

appearing in Lemma 4.4. We then take N = ��(((2k + n)|λ|) 1
2 )((2k + n)|λ|) 1

2 �, and
consider

�N
j=1R

n−1
k (λ, f j ) ≤ �N

j=1cn(ρ j

√

(2k + n)|λ|)−n+1/2

where we have used the estimates proved in Lemma 4.4. As {ρ j } is decreasing

�N
j=1cn(ρ j

√

(2k + n)|λ|)−n+1/2 ≤ cNn
(

ρN

√

(2k + n)|λ|)−(n−1/2)N
. (4.13)
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By the choice of ρ j , it follows that

ρ2
N (2k + n)|λ| ≥ c4ne

4�(N )2

N 2 (2k + n)|λ|.

As � is decreasing and N ≤ √
(2k + n)|λ|), we have �(N ) ≥ �(

√
(2k + n)|λ|) and

so

�(N )2(2k + n)|λ| ≥ �
(
√

(2k + n)|λ|)2(2k + n)|λ| ≥ N 2

which proves that ρ2
N (2k + n)|λ| ≥ c4ne

4. Using this in (4.13) we obtain

�N
j=1cn

(

ρ j

√

(2k + n)|λ|)−n+1/2 ≤ (c2ne
2)−(n−1)Ne−N .

Finally, as N + 1 ≥ �(((2k + n)|λ|) 1
2 )((2k + n)|λ|) 1

2 , we obtain the estimate (4.12).
��

4.3 Ingham’s theorem

We can now complete the proofs of Theorems 1.3, and 1.5. Since half of the theorem
has been already proved, as already mentioned in Sect. 1, we only need to prove the
Theorem 1.5.

Proof of Theorem 1.5 Fix λ 
= 0. By the hypothesis, f λ vanishes on an open set Uλ

in C
n . First we assume that �(λ) ≥ c |λ|− 1

2 , |λ| ≥ 1. In view of Plancherel formula
(2.1) for the Weyl transform, we have

(2π)n‖Lm
λ f λ‖22 = |λ|n‖Wλ(L

m
λ f λ)‖2HS = |λ|n‖ ̂f (λ)H(λ)m‖2HS .

Using the formula for Hilbert-Schmidt norm of an operator we have

(2π)n‖Lm
λ f λ‖22 = |λ|n

∑

α

((2|α| + n)|λ|)2m‖ f̂ (λ)
λ
α‖22.

Now, the given condition on the Fourier transform leads to the estimate

(2π)n‖Lm
λ f λ‖22 ≤C |λ|n

∑

α

((2|α| + n)|λ|)2me−2�(((2|α|+n)|λ|) 12 )((2|α|+n)|λ|) 12

≤C |λ|
∞
∑

k=0

((2k + n)|λ|)2m+n−1e−2�(((2k+n)|λ|) 12 )((2k+n)|λ|) 12 .

(4.14)
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We write the last sum as I1 + I2, where

I1 :=
∑

k≥0,(2k+n)|λ|≤m8

((2k + n)|λ|)2m+n−1e−2�(((2k+n)|λ|) 12 )((2k+n)|λ|) 12 ,

and

I2 :=
∑

k≥0,(2k+n)|λ|>m8

((2k + n)|λ|)2m+n−1e−2�(((2k+n)|λ|) 12 )((2k+n)|λ|) 12 .

Now, we estimate each sum separately. Notice that when (2k + n)|λ| ≤ m8, we have

�(((2k + n)|λ|) 1
2 ) ≥ �(m4), as � is decreasing. This shows that

I1 ≤
∑

k≥0,(2k+n)|λ|≤m8

((2k + n)|λ|)2m+n−1e−2�(m4)((2k+n)|λ|) 12

which can be dominated by

∑

k≥0,(2k+n)|λ|≤m8

((2k + n)|λ|)n
∫ (

√
(2k+n)|λ|+1)2

(2k+n)|λ|
x2m−1e−2�(m4)(

√
x−1)dx

≤ e2�(m4)m8n
∫ ∞

0
x2m−1e−2�(m4)

√
xdx .

The change of variable y = 2�(m4)
√
x transform the last expression into

e2�(m4) m8n

(2�(m4))4m

∫ ∞

0
y4m−1e−ydy = e2�(m4) m8n

(2�(m4))4m
�(4m).

This along with the fact that �(m4) ≤ �(1) shows that

I1 ≤ C
m8n

(2�(m4))4m
�(4m).

Using Stirling’s formula (see Ahlfors [1]) �(x) = √
2π xx−1/2 e−x eθ(x)/12x , 0 <

θ(x) < 1, which is valid for x > 0, for large m, we observe that

I1 ≤ C

(

2m

�(m4)

)4m

. (4.15)
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Now, to estimate I2, we make use of the initial assumption that �(t) ≥ c t−1/2 for
t ≥ 1. Following the same procedure as above, we observe that I2 is dominated by

∑

k≥0,(2k+n)|λ|>m8

∫ ((2k+n)|λ|)2

(2k+n)|λ|
x2m+n−1e−2c

√
xdx

≤ e−c m4 ∑

k≥0,(2k+n)|λ|>m8

∫ ((2k+n)|λ|)2

(2k+n)|λ|
x2m+n−1e−c

√
xdx

= e−c m4
∫ ∞

0
x2m+n−1e−2c

√
xdx .

Again the change of variables y = c
√
x transforms the above integral into

2c−(4m+2n−2)
∫ ∞

0
y4m+2n−1e−ydy = 2c−(4m+2n−2)�(4m + 2n).

Hence, we obtain

I2 ≤ 2c−(4m+2n−2)�(4m + 2n)e−cm4
.

Now, for large m, using the fact that �(4m + 2n) ≤ �(5m), and Stirling’s formula we
have

I2 ≤ C(c−4(5m)5e−cm3
)m .

But the right hand side of above goes to zero as m → ∞. Hence, in view of (4.15),
for large m, we conclude that

I1 + I2 ≤ C

(

2m

�(m4)

)4m

(4.16)

which from (4.14) yields for large m

(2π)n‖Lm
λ f λ‖22 ≤ C |λ|

(

2m

�(m4)

)4m

.

The hypothesis on �, namely
∫ ∞
1

�(t)
t dt = ∞, implies that

∫ ∞
1

�(y4)
y dy = ∞.

Hence, by integral test we get
∑∞

m=1
�(m4)

m = ∞. Therefore, it follows that

∞
∑

m=1

‖Lm
λ f λ‖− 1

2m
2 = ∞.
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Since f λ vanishes on an open set, by the Theorem 1.7 ( analogue of Chernoff’s
theorem for Lλ) we conclude that f λ = 0 which is true for all λ 
= 0. Hence f = 0.

Now, we consider the general case. In other words, we now proceed to remove
the assumption that �(t) ≥ ct−1/2 for t ≥ 1. Notice that the function �(y) =
(1+|y|)−1/2 satisfies

∫ ∞
1

�(y)
y dy < ∞.ByTheorem 4.3we can construct a compactly

supported radial function F ∈ L2(Hn) such that

F̂(λ)∗ F̂(λ) ≤ e−2�(
√
H(λ))

√
H(λ), λ 
= 0.

We can further arrange that supp(F) ⊂ BCn (0, δ) × (−a, a) for some δ, a > 0. We
now consider the function h = f ∗ F . Notice that

hλ(z) = ( f ∗ F)λ(z) =
∫

Cn
f λ(z − w)Fλ(w)e

iλ
2 �(z.w̄)dw.

As f λ is assumed to vanish on Uλ, the function hλ vanishes on a smaller open set
Uλ,δ ⊂ Uλ. We now claim that

̂h(λ)∗̂h(λ) ≤ e−2
(
√
H(λ))

√
H(λ), (4.17)

where 
(y) = �(y) + �(y). Aŝh(λ) = ̂f (λ)̂F(λ), for any ϕ ∈ L2(Rn) we have

〈̂h(λ)∗̂h(λ)ϕ, ϕ〉 = 〈 ̂f (λ)∗ ̂f (λ)̂F(λ)ϕ, ̂F(λ)ϕ〉.

The hypothesis on f gives us the estimate

〈 ̂f (λ)∗ ̂f (λ)̂F(λ)ϕ, ̂F(λ)ϕ〉 ≤ C〈e−2�(
√
H(λ))

√
H(λ)

̂F(λ)ϕ, ̂F(λ)ϕ〉.

As F is radial, ̂F(λ) commutes with any function of H(λ) and hence the right hand
side can be estimated using the decay of ̂F(λ):

〈̂F(λ)∗ ̂F(λ)e−�(
√
H(λ))

√
H(λ)ϕ, e−�(

√
H(λ))

√
H(λ)ϕ〉≤C〈e−2(�+�)(

√
H(λ))

√
H(λ)ϕ, ϕ〉.

This proves our claim (4.17) on ̂h(λ) with 
 = � + �. As 
(y) ≥ |y|−1/2, by the
already proved part of the theorem we conclude that h = 0. In order to conclude that
f = 0 we proceed as follows.
Given F as above, let us consider δr F(z, t) = F(r z, r2t). It has been shown (see

(2.2)) that

δ̂r F(λ) = r−(2n+2)dr ◦ ̂F(r−2λ) ◦ d−1
r
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where recall that dr is the standard dilation on R
n given by drϕ(x) = ϕ(r x). The

property of the function F, namely F̂(λ)∗ F̂(λ) ≤ e−2�(
√
H(λ))

√
H(λ) gives us

δ̂r F(λ)∗̂δr F(λ) ≤ Cr−2(2n+2)dr ◦ e
−2�

(√
H(λ/r2)

)√
H(λ/r2) ◦ d−1

r .

Testing against 
λ
α we can simplify the right hand side which gives us

δ̂r F(λ)∗̂δr F(λ) ≤ Cr−2(2n+2)e−2�r (
√
H(λ))

√
H(λ),

where �r (y) = 1
r �(y/r). If we let Fε(x) = ε−(2n+2)δε−1F(x), then it follows that

Fε is an approximate identity. Moreover, Fε is compactly supported and satisfies the
same hypothesis as F with�(y) replaced by ε�(εy)which has the same integrability
and decay conditions. Hence, working with Fε we can conclude that f ∗ Fε = 0 for
any ε > 0. Letting ε → 0 and noting that f ∗ Fε converges to f in L1(Hn), we
conclude that f = 0. This completes the proof. ��
Remark 4.1 It would be interesting to see whether the conclusion of the Theorem 1.5
still holds true under the assumption that the function vanishes on a non-empty open
subset of H

n . A moment’s thought staring at the above proof reveals that this can be
achieved if we use an analogue of the Theorem 1.6 for the sublaplacian instead of
special Hermite operators. But it turns out that proving an analogue of Theorem 1.6 is
a very interesting and difficult open problem.We hope to revisit this in the near future.
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