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Abstract. Entanglement entropy (EE) of a state is a measure of correlation or entanglement between two
parts of a composite system and it may show appreciable change when the ground state (GS) undergoes
a qualitative change in a quantum phase transition (QPT). Therefore, the EE has been extensively used
to characterise the QPT in various correlated Hamiltonians. Similarly fidelity also shows sharp changes at
a QPT. We characterized the QPT of frustrated antiferromagnetic Heisenberg spin-1/2 systems on 3/4,
3/5 and 5/7 skewed ladders using the EE and fidelity analysis. It is noted that all the non-magnetic to
magnetic QPT boundary in these systems can be accurately determined using the EE and fidelity, and
the EE exhibits a discontinuous change, whereas fidelity shows a sharp dip at the transition points. It is
also noted that in case of the degenerate GS, the unsymmetrized calculations show wild fluctuations in the
EE and fidelity even without actual phase transition, however, this problem is resolved by calculating the
EE and the fidelity in the lowest energy state of the symmetry subspaces, to which the degenerate states
belong.

1 Introduction

Quantum phase transition (QPT) involves a qualitative
change in the nature of the ground state (GS) in the
phase space of the Hamiltonian parameters. The prereq-
uisite for a Hamiltonian to exhibit QPT is that it should
consist of noncommuting terms. In this case the quan-
tum fluctuations drive the QPT. In 1-D and 2-D Hamil-
tonians the fluctuations are dominant, making them
viable candidates to exhibit QPT. Many interesting
and exotic quantum phases observed include the dimer
phase [1–10], spin liquid phase [4–6,8,9,11], charge den-
sity waves [12–15], spin density waves [16–18], vector
chiral phase [2,19–21], the valence bond solid [22–24]
and topological phases [25–28], to name a few. The
QPT is different from the classical or thermal phase
transition in which phase transition is driven by the
competition between energy and thermal entropy at
finite temperature. Quantum fluctuations are dominant
in confined systems like one, quasi-one or two dimen-
sional systems and lead to many interesting quantum
phases. In a quantum system the EE which indirectly
measures the correlation between different parts of the
system is expected to change in QPT. The extent of
entanglement depends on Hamiltonian parameters such
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as system geometry, competing interaction parameters,
magnetic and electric fields.

Effective low dimensional systems such as spin chains
and spin ladders are of enduring interest for the past
many decades. Fundamentally different spectral gaps in
spin-1/2 and spin-1 chains predicted by Haldane, spin-
Peierls’ distortion in spin-1/2 chains predicted from
theory, and occurrence of magnetization plataeus in
spin ladders have all been observed experimentally [29–
41]. Thus, most theoretical predictions of spin chains
have been vindicated by experiments, mostly in molec-
ular systems and magnetically low-dimensional systems
characterized by strong exchange in one direction and
much weaker exchange in orthogonal directions [42]. In
fact, experimentally, there is evidence of systems [43]
which belong to different regions of the quantum phase
diagram in the well studied J1- J2-δ model of spin
chains, where J1 is the first neighbour exchange inter-
action, J2 is the second neighbour exchange interac-
tion and δ is the dimerization in the nearest neighbour
exchange strength.

Belonging to the class of spin ladders is a class of
skewed ladders where one or more rung bonds in the
unit cell is slanted. This ladder system can also be
mapped into zigzag ladders with periodically missing
bonds as shown in Fig. 1. The skewed ladder is classi-
fied as n/m ladder where n and m are the ring sizes
of adjacent rings in the ladder. These systems, in our
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opinion, are realizable in concatenated transition metal
complexes. This class of systems show a very interest-
ing quantum phase diagram as a function of the ratio
of the rung exchange (J1) to the nearest neighbour
leg exchange (J2). Depending upon this ratio n/m and
J1/J2 and system size, the skewed ladders show remark-
able switching in the GS spin, exhibit bond order wave,
spin density wave and chiral vector phases [44]. The
Heisenberg antiferromagnetic (HAF) spin-1/2 system
on 5/7, 3/4, 3/5 and 5/5 skewed ladders shows interest-
ing magnetic and non-magnetic QPT in the parameter
space of the rung and the leg spin exchange constants
[44,45]. Recent work on HAF spin-1 on 5/7 [46], 3/4 and
3/5 [47] skewed ladders has also shown existence of sim-
ilar magnetic and non-magnetic phase transitions. The
quantum phases of HAF spin-1/2 system on 3/4, 5/5
and 3/5 skewed ladders studied at finite external axial
magnetic field B are found to show various magnetic
plateau phases which follow the Oshikawa, Yamanaka,
and Affleck (OYA) [48] rule, in the B − J1 − J2 param-
eter space.

In general correlation functions, energy crossovers,
GS symmetry changes and local order parameters are
studied to characterize the QPT. However, hidden
order like topological properties can not be detected by
conventional procedures. Therefore, to study the long
range correlations in the system and to characterize the
phase boundaries sharply, we have studied the entan-
glement properties of this system. Where entanglement
does not show sharp features, fidelity of the GS is a use-
ful tool for determining the phase boundary. The QPT
of frustrated J1−J2 model has been characterised using
EE in earlier studies [49]. Simillarly the QPT of XXZ
model has been studied using the fidelity as a prop-
erty obtained from exact diagonalization and density
matrix renormalization group methods [50]. The fidelity
approach to characterize QPT is reviewed in [51].

We find that fidelity is very sensitive to changes in
the GS and shows sharp changes even when the spin
gap vs J1/J2 plots show only a change in the slope or
when there is a cross over in the two low-lying excited
states. When there is symmetry breaking, the fidelity
in one of the subspaces shows a sharp change while
in another subspace there is no change. This allows us
to identify the symmetry before and after a quantum
phase transition. In this work, we follow the changes in
EE and fidelity of different skewed spin-1/2 ladders. We
mainly focus on exact diagonalization studies of these
ladders. We also employ symmetries such as the con-
servation of the z-component of total spin, Sz, and the
reflection symmetry at degeneracies to follow changes
in EE and fidelity. We find that in the 3/4 skewed lad-
der, EE shows sharp changes at the critical value of
J1. Fidelity also shows a similar sharp changes and we
can identify the critical J1 value very accurately. In the
skewed ladders 3/5 and 5/7, both EE and fidelity show
sharp changes and the critical J1 values for QPT can
be determined highly accurately. In what follows, we
discuss the results of our studies on the 3/4, 3/5 and
5/7 ladder systems and show how both EE and fidelity

can be used to accurately find critical J1 values at the
transition points.

This paper is divided into five sections. In Sect. 2 we
provide a brief introduction to entanglement entropy
and fidelity. We then present the model Hamiltonian
and numerical methods in Sect. 3. The results are dis-
cussed in Sect. 4 under three subsections. The summary
of our results are presented in Sect. 5.

2 Entanglement entropy and fidelity

Entanglement entropy (EE) has been studied exten-
sively from a quantum information perspective due to
the promise that quantum computing holds. It has
also been shown in many studies that EE is a use-
ful tool for studying phase transition in quantum sys-
tems. Given two subsystems A and B and spanning
Hilbert spaces HA and HB with full system Hilbert
space H = HA × HB , we can always find an orthonor-
mal bases {φA} and {φB} such that any state |ψAB〉 in
the Hilbert space belonging to H, can be expressed as

|ψAB〉 =
∑

i,j

αij |φi〉A|φj〉B . (1)

The reduced density matrix of the subsystem B is given
by

ρB = TrA (|ψAB〉〈ψAB |) , (2)

and the jj
′th matrix element of the reduced density

matrix ρB is,

(ρB)jj′ =
∑

i

αijα
∗
ij′ . (3)

If the eigenvalues of ρB are λi then we can define EE in
many different ways. If we restrict ourselves to exten-
sivity of entropy, i.e. SAB = SA + SB , we can define
entropy of a state in two ways. In condensed matter
physics, the widely used entropy is the von Neumann
entropy which is given by [52]

S = −
∑

i

λi log2 λi, (4)

where λi
′s are the eigenvalues of the reduced density

matrix. Von Neumann entropy is the generalization of
the classical Shannon entropy. Another entropy func-
tion which is Rényi entropy SR

A,α is defined as [53]

SR
A,α =

1
1 − α

log

[
∑

i

(ρA
i )α

]
(5)

where α can take values between 0 and ∞. Rényi
entropy reduces to von Neumann entropy in the limit
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α → 1 and it is maximum when α = 0 and minimum
when α → ∞.

In this work, we employ von Neumann entropy to
analyze the QPT as von Neumann entropy is the most
widely used entropy to study the QPT. We also restrict
ourselves to equal sizes of the subsystems A and B as
von Neumann entropy is maximum in this case. In frus-
trated one-dimensional spin chains, which are known as
the J1 − J2 chains, the GS EE cannot identify the crit-
ical J2 value (J2c) below which the system is gapless
and above which the system is gapped. However, the
GS EE can identify the Majumdar-Ghosh point which
is not surprising since the GS corresponds to nearest
neighbor singlets [54]. The J2c is correctly identified
from EE when the J2 corresponding to crossing of the
EE of the first excited triplet and the second singlet is
extrapolated from finite size calculations to the ther-
modynamic limit [54]. EE has also been studied in spin
ladders and it has been shown that the area law of
entanglement is valid upto seven legs [55].

A more sensitive property to follow QPT is fidelity
and fidelity susceptibility. Fidelity (F (ω)) at a param-
eter ω of the Hamiltonian is given by the overlap of the
desired state of the Hamiltonian at ω with that in its
neighborhood ω + δω i.e.

F (ω) = 〈ψ(ω)|ψ(ω + δω)〉. (6)

We can also define fidelity susceptibility χ(ω) as

χ(ω) =
2(1 − F (ω))

(δω)2
(7)

which follows from a Taylor series expansion of F (ω).
It has been shown that fidelity of the GS in the J1 −J2

model can give accurate value of J2c [56]. In the J1−J2

model, the critical value of J2 has also been determined
by following the fidelity of the first excited state of short
Heisenberg chains to determine J2(N) and extrapolat-
ing it to the thermodynamic limit N → ∞ [57]. In
the J1 − J2 − δ model, using EE, it is not possible to
obtain the quantum phase diagram accurately; the EE
contours show phase changes although phase boundries
remain fuzzy. We have obtained the EE and fidelity of
the 3/4, 3/5, and 5/7 skewed ladders; these systems
show quantum phase transition for fixed next nearest
neighbor exchange J2 and varying nearest neighbor J1

exchange.

3 Model Hamiltonian and numerical
method

In our study, we consider a spin-1/2 model on 3/4, 3/5
and 5/7 skewed ladders as shown in Fig. 1a–c. The rung
bond interaction is J1 and the leg bond interaction is
J2. All the exchange interactions in the Hamiltonians
we consider are antiferromagnetic in nature. The sites
are numbered in such a way that the even numbered

sites are on the top of the leg and odd numbers are
on the bottom of the leg. The leg bond interaction J2

is set to 1 and it defines the energy scale. The model
Hamiltonian of 3/4 skewed ladder is written as

H3/4 = J1

∑

i

[
(Si,1 · Si,2 + Si,3 · Si,2)

+ (Si,4 · Si,5 + Si,6 · Si,5)
]

+J2

∑

i

[
(Si,5 · Si+1,1 + Si,6 · Si+1,2)

+
4∑

k=1

(Si,k · Si,k+2)
]
, (8)

where i labels the unit cell and k the spins within the
unit cell. The first term denotes the rung bond interac-
tion and the second term denotes the leg bond interac-
tion. Similarly, the model Hamiltonian for the 3/5 and
5/7 systems can be written as

H3/5 = J1

∑

i

(Si,1 · Si,2 + Si,3 · Si,2)

+J2

∑

i

(
Si,3 · Si+1,1 + Si,4 · Si+1,2

+
2∑

k=1

Si,k · Si,k+2

)
, (9)

and

H5/7 = J1

∑

i

(Si,1 · Si,2 + Si,4 · Si,5)

+J2

∑

i

(
Si,7 · Si+1,1 + Si,8 · Si+1,2

+
6∑

k=1

Si,k · Si,k+2

)
. (10)

We have carried out the computations using exact diag-
onalization technique on a system with 24 spin-1/2
sites, in all cases. We have employed cyclic boundary
conditions and the EE computed is the von Neumann
entropy. The environment and the system, both have
equal number of sites, i.e. 12 sites. The reduced den-
sity matrix of the left half of the system is obtained by
tracing over the right half of the system,

ρLL′ =
∑

R

CLRCL′ R (11)

where the GS wavefunction ψg is expressed in the direct
product basis of the Fock space of the system (L)
and the surroundings (R). The dimensionality of the
Fock space of the system block, and hence the order of
the density matrix is 212 × 212 or 4096 × 4096. After
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(a)

(b)

(c)

Fig. 1 Schematic diagram of a 3/4 skewed ladder, b 3/5
skewed ladder, and c 5/7 skewed ladder. The nearest neigh-
bor or rung interaction is J1 and the next-nearest neighbor
(according to our numbering scheme) interaction is J2. The
sites on the top leg are even numbered and on the bottom
leg are odd numbered. The unit cell for each ladder system
is indicated by a rectangle with dashed red lines. The mirror
plane for each ladder system is represented by a perpendic-
ular blue line

obtaining all the eigenvalues {λi} of the reduced den-
sity matrix, the von Neumann entropy is obtained from
Eq. 4. We have computed the fidelity F (J1) of the state
using the normalized ground states and Eq. 6. We have
varied J1 in very small steps of δ(= 0.001) near the
quantum phase transitions obtained from the spin gap
data. The spin gap Γl is defined as the energy gap
between the lowest eigenstates Sz = l and Sz = 0 man-
ifolds, where Sz is the z-component of the total spin.

Γl = E0(Sz = l) − E0(Sz = 0), (12)

where l is an integer. The GS spin (SG) = l, for l that
satisfies Γl = 0 and Γl+1 > 0. The excitation gap Γσ at
a fixed SG between the lowest energy states in different
reflection symmetry subspaces σ(−) and σ(+) is defined
as

Γσ = E0(SG, σ(−)) − E0(SG, σ(+)). (13)

The GS is in odd subspace (σ(−)) when Γσ < 0, even
subspace (σ(+)) when Γσ > 0 and doubly degenerate
when Γσ = 0.

Fig. 2 Spin gaps Γl for a 3/4 skewed ladder of 24 spins
with PBC shown as a function of J1. The GS spin SG = 0
for J1 < 1.581 and SG = 4 for J1 ≥ 1.581

4 Results and discussions

4.1 3/4 skewed ladder

This is the simplest of the skewed ladders to show a
transition in the spin of the GS. However, there is a
transition in the GS near J1 = 1.3 which does not
involve change in the GS spin. We notice in the Γl vs
J1 plot (Fig. 2) that there is a kink near J1 = 1.3, but
it is not possible to pin point the J1 value at which
this kink appears from the Γl plot. However, the EE
shows a sharp change at J1 = 1.340 and it is also
seen more clearly in the fidelity, where it vanishes at
J1 = 1.340 but has a value of 1.0 for other J1 values
(Fig. 3). Closer examination of the full eigenvalue spec-
trum of the Hamiltonian shows that at this value of
J1, the singlet GS is doubly degenerate and there is a
cross over from one singlet GS to another singlet GS.
The transition to the highest spin states occurs sharply,
when the GS spin changes to SG = 4. The transition
occurs at J1 = 1.581 and there is a sharp drop in EE
at this point. Fidelity also goes to zero at J1 = 1.581
but assumes a value of 1, at the neighboring points.
For larger system sizes, the level crossing method is
used to calculate the transition points, and it has been
reported that the transition points do not change sig-
nificantly with system size (Ref. [44]). In this system,
we have been able to determine the parameter at which
the QPT occurs very accurately and we also find that
there is a transition at J1 = 1.340 which is not evident
from the plots of the spin gaps.

4.2 3/5 skewed ladder

The GS of 3/5 skewed ladder is nonmagnetic for J1 <
2.026 and the spin of the GS progressively increases
from SG = 0 to SG = 3 form J1 = 2.026 to 2.297
(Fig. 4a). The spin of the GS remains 3 as J1 is
increased further until J1 = 6.859 and for J1 > 6.859
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(a1)

(a2) (b2)

(b1)

Fig. 3 The behaviour of EE (S) and fidelity (F) in the
range 1.337 ≤ J1 ≤ 1.343 of a 3/4 skewed ladder with
N = 24 spins are shown in (a1) and (a2) respectively. The
EE changes abruptly and a sharp drop in fidelity occurs
at J1 = 1.340. At other values of J1 fidelity is constant
(= 1). Simillary the behaviour of EE and fidelity in the
range 1.578 ≤ J1 ≤ 1.584 are shown in (b1) and (b2). At
J1 = 1.581, the entropy changes and fidelity shows a sharp
drop

the state reenters the nonmagnetic phase. EE and
fidelity are shown in (Fig. 4b,c) over the entire range
of our study, namely 1 ≤ J1 ≤ 8. In this ladder sys-
tem, both EE and fidelity give the critical value of J1

to be 1.217 (Fig. 5) and at this value of J1 both the low-
est energy state and first excited state are same upto
third decimal space in Sz = 0 sector. Here again it is
likely due to broken spatial symmetry in the GS. At
J1 = 6.859, we find a sharp transition in both EE and
fidelity to the reentrant nonmagnetic phase.

For J1 in the neighborhood of 2, fidelity and EE seem
to indicate many transitions. The system has a reflec-
tion symmetry, as shown in Fig. 1b. The lowest energy
states for 2.026 ≤ J1 ≤ 2.046 and 2.290 ≤ J1 ≤ 2.296,
in the σ(+) and σ(−) manifold are degenerate. A lin-
ear combination of the degenerate states can lead to a
broken symmetry state (see Ref. [44] for details). The
intervals of J1 for which the GS is doubly degenerate are
shown in third column of Table 1. The EE of the eigen-
state with symmetry shows a kink at J1 = 2.025 below
which the GS is in the σ(−) space (σ is the reflection
symmetry) and the EE in the σ(+) space shows a kink
at 2.046 (Fig. 6a). The fidelity of the GS in σ(−) space
show a drop at 2.025 and that in the σ(+) space shows
a drop at 2.046 (Fig. 6b). In the region between these
values, the GS is doubly degenerate and any linear com-
bination of these states is also an eigenstate and hence
the EE and fidelity, calculated from unsymmetrized
GS show wild fluctuations. For 2.290 ≤ J1 ≤ 2.296
the GS is degenerate. So the unsymmetrized calcula-
tion for both EE and fidelity shows wild fluctuations
in this range of J1. In symmetrized calculation, both
the EE and fidelity change at J1 = 2.289 and 2.296
(Fig. 6c,d). The | Γσ | value vanishes in the interval
2.290 ≤ J1 ≤ 2.296. The GS below 2.290 has σ(+)

(a)

(b)

(c)

Fig. 4 a The spin gaps Γ1, Γ2 and Γ3 are shown as a func-
tion of J1 for N = 24 sites in a 3/5 skewed ladder with
PBC. For J1 < 2.026 and J1 > 6.859, Γ1 becomes 0 and
the system shows nonmagnetic behaviour. In the region
2.026 ≤ J1 ≤ 2.297 the GS spin gradually changes from
0 to 3. b shows the EE and c shows the fidelity for the
unsymmetrized GS as a function of J1. The EE exhibits
a discontinuous change, while fidelity shows a sharp drop
at the transition points. The thick line near the vicinity of
J1 = 2 indicates many transitions both in EE and fidelity

(a1) (b1)

(a2) (b2)

Fig. 5 The behaviour of EE (S) and fidelity (F) in the
range of J1 (1.214 ≤ J1 ≤ 1.22) of a 3/5 skewed ladder
with N = 24 spins are shown in (a1) and (a2) respectively.
The change in entropy and sharp drop in fidelity occurs at
J1 = 1.217. For other values of J1 the fidelity is constant
(= 1). Simillary behaviour of the entropy and fidelity in the
range of J1 (6.856 ≤ J1 ≤ 6.862) are shown in (b1) and (b2)
respectively. At J1 = 6.859, the entropy changes and fidelity
shows a sharp drop

symmetry whereas above 2.296 the GS has σ(−) sym-
metry. Therefore fidelity for the σ(+) subspace shows
a sharp dip at J1 = 2.289 and that of state σ(−) shows
a dip at J1 = 2.296.
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(a) (c)

(b) (d)

Fig. 6 The EE (S) and fidelity (F) of lowest energy states
of a 3/5 skewed ladder for 24 sites with periodic boundary
condition in different reflection symmetry subspaces ((σ(+))
and (σ(−)). Both the EE and fidelity for the unsymmetrized
GS is represented by the black curve whereas for the sym-
metrised GS these are represented by the red and blue
curves

4.3 5/7 skewed ladder

Among the skewed ladders we have studied, the 5/7
skewed ladder has by far the most interesting quantum
phase transitions. For fixed J2 = J1 = 1, the GS spin
of the system, SG, increases with system size, a feature
we have not observed in the other systems studied here.
In this work, we focus on the EE and fidelity for a
24 spin 5/7 ladder with periodic boundary condition
as a function of J1. From the plot of spin gaps vs. J1

(Fig. 7a) and earlier studies it is established that the
GS switches from a singlet to a triplet at J1 = 1.427.
For 1.734 < J1 < 1.872 the GS of the system again
becomes a singlet and for J1 > 1.872 the GS changes
spin, finally attaining a SG = 3 for J1 ≥ 2.355. In
(Fig. 7b, c) we show how the EE and fidelity varies
as a function of J1. At the first transition, both these
quantities show a sharp change. In the region of the
reentrant phase, the variations are violent. In the region
1.872 < J1 < 2.176, EE shows smooth variation and the
fidelity also does not change. In this region the GS spin,
SG = 1. Although the SG value continues to be 1 in the
region 2.176 < J1 < 2.355, the EE as well as fidelity
show very sharp changes. Finally beyond J1 = 2.355,
EE is almost constant and fidelity stays at 1.

The first transition from a singlet to a triplet is simple
and the critical J1 value can be pinned down both from
EE and fidelity. This occurs at J1 = 1.427. To under-
stand the behavior at other values of J1, we recognize
that the system has a reflection symmetry perpendic-
ular to the legs. So, the states of the system can be
classified as σ(+) or σ(−) depending on the symmetry
of the space in which the GS is found [44]. The range of
J1 for the lowest energy state in different subspaces is
shown in Table 2. We see that the change in the spin
of the GS from SG = 0 to SG = 1 at J1 = 1.427 is also

Table 1 The interval of J1 for the GS in different sub-
spaces of a 3/5 skewed ladder with N = 24 spins. The
first column represents the range of J1 for which the GS
is in σ(+) subspace, the second column represents the GS
in σ(−) subspace. The third column gives the range of J1

for which the difference between the lowest energies of two
different subspaces is zero

σ(+) σ(−) | Γσ |= 0

1 < J1 ≤ 1.217 1.217 ≤ J1 < 2.025 2.026 ≤ J1 ≤ 2.046
and and and

2.046 < J1 < 2.290 J1 > 2.296 2.290 ≤ J1 ≤ 2.296

(a)

(b)

(c)

Fig. 7 a The spin gaps Γ1, Γ2 and Γ3 are shown as a func-
tion of J1 for 24 site spins in a 5/7 skewed ladder with PBC.
For J1 < 1.427, Γ1 becomes nonzero and the system shows
nonmagnetic behaviour. The system enters a reentrant non-
magnetic phase for 1.734 < J1 < 1.872 where Γ1 is nonzero.
The EE for the unsymmetrized GS is shown in (b), and
the fidelity is shown in c as a function of J1 for the unsym-
metrized GS. The EE exhibits a discontinuous change, while
fidelity shows a sharp drop at the transition points. Wild
fluctuations (many transitions) in both the EE and fidelity
around J1 = 1.8 and 2.3 are due to the degeneracy in the
GS energy

Table 2 The range of J1 over which the GS have different
symmetries in a 5/7 skewed ladder with N = 24 spins. The
first column represents the range of J1 for which the GS
symmetry is σ(+) and similarly the second column repre-
sents the GS is σ(−) subspace. The third column gives the
intervals of J1 for which the GS is doubly degenerate

σ(+) σ(−) | Γσ |= 0

1 < J1 ≤ 1.427 1.427 ≤ J1 ≤ 1.753 1.753 < J1 ≤ 1.871
and and and

1.871 < J1 ≤ 2.176 J1 > 2.355 2.176 < J1 ≤ 2.355
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(a)

(b)

Fig. 8 For a 5/7 skewed ladder with 24 sites in PBC, a
EE and b fidelity are plotted as a function of J1 for both
the reflection symmetry subspaces (σ(+) and σ(−)). Black
curve corresponds to the σ(+) subspace, whereas the red
curve represents the σ(−) subspace

accompanied by vanishing of |Γσ|. EE shows a jump
and fidelity shows a sharp dip at J1 = 1.615 and 1.725.
The change in EE and fidelity at 1.615 is associated
with the maximum in the |Γσ| gap. Beyond J1 = 1.615,
the |Γσ| gap begins to close and at J1 = 1.754 the gap
vanishes. In region between 1.753 and 1.871, |Γσ| van-
ishes. In the unsymmetrized calculations both fidelity
and entropy show sharp fluctuations, which are sup-
pressed when the degenerate ground states are obtained
in the σ(+) and σ(−) subspaces (Fig. 8). In the J1

region between 2.176 to 2.355 the GS is a spin triplet
and |Γσ| also vanishes. Fidelity of the σ(+) and σ(−)
show a sharp dip at J1 = 2.176 and 2.355 respectively;
the GS below 2.176 has σ(+) symmetry and becomes
degenerate with the lowest state in σ(−) symmetry in
the region of J1 (2.176 < J1 ≤ 2.355) and for J1 value
above 2.355 the GS switches back to σ(−) subspace.
There are no sharp changes in either entropy or fidelity
beyond J1 = 2.355.

5 Summary

We have studied EE and fidelity to characterize the
quantum phase transitions in skewed ladder systems.
While correlation function also give a measure of the
extent of interactions between sites, EE embodies long
range correlation between different parts of the system.
In the regions of J1 where the system has a nondegener-
ate GS without change in spin or spatial symmetry the
entropy change is gradual and fidelity remains at one.
At the transition points, the entropy shows a discontin-
uous change and fidelity shows a sharp dip. The transi-
tion points are accurately determined from these char-
acteristic changes. In regions where the GS is degener-
ate, the unsymmetrized calculations show sharp fluctu-
ations in EE and fidelity. However, in the symmetrized

calculations they show abrupt changes only at the tran-
sition. We also find that for regions where |Γσ| vanishes,
the fidelity does not change in either subspace. But at
the beginning and at the end of the transition, fidelity
shows sharp dip in the lowest eigenstate of one of the
symmetry subspaces.
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Lees, O. Petrenko, D.M.K. Paul, D. Khomskii, Quan-
tum tunneling of the magnetization in the ising chain
compound ca3co2o6. J. Mater. Chem. 14, 1231–1234
(2004). https://doi.org/10.1039/B316717H

34. V. Hardy, D. Flahaut, M.R. Lees, O.A. Petrenko, Mag-
netic quantum tunneling in ca3co2o6 studied by ac sus-
ceptibility: temperature and magnetic-field dependence
of the spin-relaxation time. Phys. Rev. B 70, 214439
(2004). https://doi.org/10.1103/PhysRevB.70.214439

35. V. Hardy, C. Martin, G. Martinet, G. André, Mag-
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