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Learning continually from a stream of training data or tasks with an ability to learn the unseen
classes using a zero-shot learning framework is gaining attention in the literature. It is referred
to as continual zero-shot learning (CZSL). Existing CZSL requires clear task-boundary information
during training which is not practically feasible. This paper proposes a task-free generalized CZSL (Tf-
GCZSL) method with short-term/long-term memory to overcome the requirement of task-boundary in
Experience replay training. A variational autoencoder (VAE) handles the fundamental ZSL tasks. The short-term and long-
Continual zero-shot learning term memory help to overcome the condition of the task boundary in the CZSL framework. Further,
VAE the proposed Tf-GCZSL method combines the concept of experience replay with dark knowledge
distillation and regularization to overcome the catastrophic forgetting issues in a continual learning
framework. Finally, the Tf-GCZSL uses a fully connected classifier developed using the synthetic
features generated at the latent space of the VAE. The performance of the proposed Tf-GCZSL is
evaluated in the existing task-agnostic prediction setting and the proposed task-free setting for the
generalized CZSL over the five ZSL benchmark datasets. The results clearly indicate that the proposed
Tf-GCZSL improves the prediction at least by 12%, 1%, 3%, 4%, and 3% over existing state-of-the-art and
baseline methods for CUB, aPY, AWA1, AWA2, and SUN datasets, respectively in both settings (task-
agnostic prediction and task-free learning). The source code is available at https://github.com/Chandan-
IITI/Tf-GCZSL.
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1. Introduction

Recently, conventional supervised learning frameworks in
deep learning architecture have shown remarkable performance
on various tasks (e.g., classification/recognition), computer vision
(He, Zhang, Ren, & Sun, 2015), and natural language processing
(Krizhevsky, Sutskever, & Hinton, 2012). Despite the recent suc-
cess, conventional learning frameworks cannot handle unseen
classes during testing or overcome the catastrophic forgetting
problem while continuously learning to acquire new knowledge
from a stream of data. Recently, the first limitation has been
addressed by the zero-shot learning (ZSL) framework, where we
classified objects from classes that are not available at the training
time (Chao, Changpinyo, Gong, & Sha, 2016; Li et al., 2019; Xie
et al, 2019; Zhu, Xie, Liu, & Elgammal, 2019). The continual
learning framework can handle the second limitation of the
conventional learning framework (Chaudhry, Dokania, Ajanthan
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and Torr, 2018; Kirkpatrick et al., 2017; Shin, Lee, Kim, & Kim,
2017). However, traditional ZSL approaches have difficulty with
sequential training, and continual learning approaches cannot
handle unseen classes. Therefore, a more preferable and desirable
approach is needed to tackle sequential training and unseen
classes problems simultaneously. This paper aims to leverage the
advantages of both zero-shot learning and continual learning in
a single framework.

Zero-shot learning (ZSL) is an interesting framework that has
attracted considerable attention in recent years due to its ability
to learn unseen/novel class examples. Earlier approaches for zero-
shot learning are based on the embedding function between
visual and semantic space and are therefore biased towards the
seen classes. The generative models synthesize visual features
directly from semantic class descriptors to address bias towards
seen class issues. Feature generative methods provide a shortcut
to cast the zero-shot learning problem into a conventional classi-
fication problem (Sohn, Lee, & Yan, 2015; Verma, Brahma, & Rai,
2020; Verma & Rai, 2017; Xian, Lorenz, Schiele, & Akata, 2018;
Xian, Sharma, Schiele, & Akata, 2019; Yu, Ji, Han, & Zhang, 2020).

The conventional ZSL framework trains the model on different
classes (of the same dataset) under the assumption that data
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Fig. 1. A Generic CZSL framework.

for all the seen classes is available a priori. However, such an
assumption is restrictive and not practical. In a practical setup,
the training data arrives in a stream, and the training samples ar-
rived in the stream may have samples from newly added (unseen)
classes (see Fig. 1). One needs to update the ZSL model based
on the newly arrived data. Otherwise, the prediction using the
ZSL model will not be accurate. One way to overcome this issue
is by retraining the ZSL model again, which is computationally
intensive. Moreover, one needs to store the previous and current
training data stream which requires a large memory.

Continual/incremental/lifelong learning (Chaudhry et al., 2019;
Lopez-Paz & Ranzato, 2017; Shin et al., 2017) can address the
above concern by enabling the sequential training of the ZSL
model by preserving the accumulated (previous) knowledge
while acquiring the new knowledge. This kind of method is
known as continual zero-shot learning (CZSL). It can update
its current knowledge continuously without forgetting previous
information, in contrast to the conventional ZSL approaches. The
CZSL method is a broad generalization of zero-shot learning.
Here, it needs to be noted that in a traditional continual learning
setting, training and testing data contain the same number of
classes for classification. However, in the CZSL setting, training
data also contains some unseen classes with their description
in textual form, and a classifier should be able to classify these
unseen classes during testing.

Most recently, a few CZSL methods (Skorokhodov & Elhoseiny,
2021; Wei, Deng, & Yang, 2020) have been proposed in the litera-
ture. Both of the existing methods in the literature (Skorokhodov
& Elhoseiny, 2021; Wei et al., 2020) require task-boundary in-
formation during the training of the CZSL methods. The method
proposed in Wei et al. (2020) considers one whole dataset as
a task and trains a separate attribute encoder-decoder for each
task (dataset); therefore, it is a very trivial setting (i.e., multi-
head setting). Further, Skorokhodov and Elhoseiny (2021) develop
an A-GEM-based CZSL method for a single-head setting; how-
ever, it is not a strict single-head setting as task identity is
required during training. Nevertheless, in realistic situations, it is
not always possible to get data with well-defined task boundaries
(i.e., task identity). Further, there may be cases where we have
access to only one sample at a time. These issues can be handled
with task-free learning, which is closer to the realistic scenarios.
Overall, both existing methods (Skorokhodov & Elhoseiny, 2021;

Wei et al., 2020) do not support task-free learning setup of CZSL;
therefore, the CZSL setup used in both papers is not suitable
for a single-head setting. Hence, first time in the literature, this
paper addresses a task free generalized CZSL (Tf-GCZSL) in a strict
single-head setting where task identity is neither known during
training nor during testing. For addressing this issue, Tf-GCZSL
deploys two VAEs with knowledge distillation (KD), a long-term
memory and a short-term memory. Here, KD and long-term
memory help in alleviating the catastrophic forgetting and short-
term memory makes the proposed method suitable for task-free
learning.

The contributions of our proposed approach are summarized
as:

1. To the best of our knowledge, this is the first work that pro-
poses continual zero-shot learning for the task-free setting.
The existing approaches (Skorokhodov & Elhoseiny, 2021;
Wei et al., 2020) are only compatible when task-boundary
is either present during training or during both training and
testing.

2. To enable the model for task-free learning, this paper pro-
poses two different task-free learning strategies based on
short-term memory, which are compatible with any ZSL
method.

3. To enable the generative model for CZSL, the proposed
approach employs experience replay with KD. Here, we
do not use the student-teacher network strategy for KD.
Instead of that, we store the required information in the
memory of the corresponding sample to perform KD. The
stored information is generally known as dark knowledge
(Hinton, Vinyals, & Dean, 2014).

4, This paper also provides the novel evaluation setting for
CZSL as the existing settings (Skorokhodov & Elhoseiny,
2021; Wei et al.,, 2020) are not suitable for task-free learn-
ing.

5. Extensive experimental results validate the effectiveness of
the proposed task-free CZSL method.

2. Related work

As CZSL mainly relies on continual learning and ZSL, this sec-
tion briefly discusses both topics in two subsequent subsections.
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2.1. Zero-shot learning

Recently, ZSL has attracted considerable attention due to han-
dling unseen classes during testing. It transfers knowledge from
seen classes to unseen classes via class attributes. Earlier pro-
posed approaches for ZSL primarily were discriminative or non-
generative (i.e.,, embedding-based) in nature (Akata, Perronnin,
Harchaoui, & Schmid, 2016; Akata, Reed, Walter, Lee, & Schiele,
2015; Fu, Hospedales, Xiang, Fu, & Gong, 2014; Hwang & Sigal,
2014; Lampert, Nickisch, & Harmeling, 2013; Norouzi et al., 2013;
Romera-Paredes & Torr, 2015; Socher, Ganjoo, Manning, & Ng,
2013; Xian et al., 2016; Zhang & Saligrama, 2015; Zhang, Xiang,
& Gong, 2017). Non-generative methods learn an embedding
from visual space to semantic space or vice versa via a linear
compatibility function (Akata et al., 2016; Lampert et al., 2013;
Norouzi et al,, 2013; Xian et al., 2016). In contrast, generative
models synthesize the examples for seen and unseen classes
and transform a ZSL problem into a typical supervised learning
problem (Felix, Kumar, Reid, & Carneiro, 2018; Huang, Wang, Yu,
& Wang, 2019; Li et al., 2019; Schonfeld, Ebrahimi, Sinha, Darrell,
& Akata, 2019a, 2019b; Verma, Arora, Mishra, & Rai, 2018; Xian
et al,, 2018, 2019; Zhu et al., 2019), which can be trained by any
supervised classifiers.

2.2. Continual learning

Continual learning learns from streaming data with two
objectives: avoiding catastrophic forgetting (preserving experi-
ence while learning on new tasks) and avoiding intransigence
(updating new knowledge and transferring previous knowledge).
The whole work of continual learning can be broadly categorized
into three parts: (i) regularization-based methods (Chaudhry,
Dokania et al., 2018; Kirkpatrick et al., 2017; Rebuffi, Kolesnikov,
Sperl, & Lampert, 2017), (ii) replay-based methods (Chaudhry,
Ranzato, Rohrbach and Elhoseiny, 2018; Chaudhry et al., 2019;
Hayes, Cahill, & Kanan, 2019; Lopez-Paz & Ranzato, 2017;
Shin et al.,, 2017), and (iii) parameter-isolation-based methods
(Aljundi, Chakravarty, & Tuytelaars, 2017; Mallya, Davis, &
Lazebnik, 2018; Mallya & Lazebnik, 2018; Rosenfeld & Tsotsos,
2018). Most of the earlier continual learning works are focused on
multi-head setting (Chaudhry, Dokania et al., 2018; Kirkpatrick
et al, 2017; Rebuffi et al, 2017). In recent years, task-free
learning for traditional classification problem has received a
surge of interest among researchers (Aljundi, Kelchtermans
and Tuytelaars, 2019; Aljundi, Lin, Goujaud and Bengio, 2019;
Buzzega, Boschini, Porrello, Abati, & Calderara, 2020; Jin, Du, &
Ren, 2020) as it is a more practical continual learning setting than
a multi-head setting. Instead of traditional classification problem,
this paper focuses on task-free learning for the GZSL problem.

2.3. Continual zero-shot learning

In a traditional continual learning setting, training and testing
data contain the same number of classes for classification. How-
ever, in the CZSL setting, training data also contains some unseen
classes with their description in textual form, and a classifier
should be able to classify these unseen classes during testing.
Most recently, CZSL (Skorokhodov & Elhoseiny, 2021; Wei et al.,
2020) has drawn increasing interest. To the best of our knowl-
edge, only a handful the number of work is available for this
problem. Chaudhry, Ranzato et al. (2018) developed an average
gradient episodic memory (A-GEM) -based CZSL method for a
multi-head setting. A generative model-based CZSL (Wei et al,,
2020) method is also developed for multi-head setting. Most
recently, Skorokhodov and Elhoseiny (2021) develop an A-GEM-
based CZSL method for a single-head setting; however, it is not
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a strict single-head setting as task identity is required during
training. This paper develops a CZSL method for a strict single-
head setting where task identity is neither known during training
nor testing.

3. Problem formulation

Formally, CZSL is divided among T tasks (t € 1,...,T),
where each tth task consists of training and testing data stream.
Generally, the training stream D}, for tth task contains only the
information of seen classes, which consists of feature vector x{,
task identity Lf (it provides task-boundary), class label yf, and
class attribute information af. Where i represents ith sample
from the whole training samples n, of tth task. In addition,
training stream also contains class attribute information for un-
seen classes, i.e., U = {(af)?z”ﬁ} where n,. denotes number of
unseen classes. This is the key information which enables model
for performing CZSL. Similarly, testing stream D consists of
{(xE, o, y9), ), where ny is total number of test samples for tth
task. Here, testing class label is only used for evaluation purpose.
In this paper, we address single-head setting for two possible
situations: (i) task-agnostic prediction: when task boundary is
only available during training but not during testing, i.e., D,
{(xf, i, ¥, ab)im) and D {(xf, ¥1)5,); (i) task-free learn-
ing: when task boundary is neither available during training nor
testing, i.e., D, = {(x, yi, a;)i",} and DL = {(x;, yi)i, ).

learning:

4. Task-free generalized continual zero-shot

Tf-GCZSL

In this section, a task-free continual learning method is pro-
posed for the GZSL framework, i.e., task-free generalized contin-
ual zero-shot learning (Tf-GCZSL). Tf-GCZSL is developed based
on the concept of VAE, experience replay (ER) with KD, regular-
ization, and short-term memory. The VAE helps in the GZSL tasks
by generating synthetic features at the latent space (i.e., output
of the encoder) and the output space (i.e., output of the decoder).
The proposed Tf-GCZSL method (as shown in Fig. 2) deploys two
distinct VAEs to process semantic and visual features separately.
These VAEs generate discriminant features at the latent space
by minimizing various losses simultaneously. This latent space
information is used for classification and is utilized as a dark
knowledge for performing KD, which helps in alleviating the
problem of catastrophic forgetting. Here, KD is performed by
using the dark knowledge (Hinton et al., 2014) instead of using
the teacher network (i.e., the teacher network is the immediate
previous network in the case of continual learning). Dark knowl-
edge is the soft labels of the training samples of the previous
tasks (Hinton et al., 2014), which is stored in the long-term mem-
ory for performing experience replay. This long-term memory
also helps in alleviating catastrophic forgetting and regularizes
the model for better performance. Along with this long-term
memory, a short-term memory is also used to develop the Tf-
GCZSL method for performing task-free learning with the CZSL
framework. All the above-mentioned components are discussed
in this section further. First of all, we discuss four kinds of losses,
which are mainly deployed with VAEs for performing GZSL tasks
in Tf-GCZSL. These losses are as follows:

Kullback-Leibler (KL) divergence and reconstruction loss: It
minimizes two standard VAE losses simultaneously for the fea-
ture and the attribute encoder-decoder network: KL divergence
(Kullback & Leibler, 1951) loss (Lk;) and reconstruction loss (Lge).

Distribution-alignment loss (DA): It minimizes the difference in
distribution between the latent space information of the feature
and the attribute encoder.

1 1501
Loa = (lar — w3 + 11(Zar)2 — (Zvp)2 [1%)2, (1)
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Fig. 2. Proposed Task-free-GCZSL framework. Here Lps denotes the distribution alignment loss, Lc4 denotes the cross alignment loss, and Lgp denotes the KD loss.
Algorithms to use short-term memory is described in detail in the Algorithms 1 and 2.

where pyr and Xy are the mean and variance estimated by
visual encoder Eyf, respectively. us; and Xy are the mean and
variance estimated by the attribute encoder E,;, respectively, and
F represents Frobenius norm.

Cross-alignment loss (CA): It is cross-reconstruction loss be-
tween the output of the feature decoder and the attribute decoder
and is given as

Lca = |a — Dac(Evg(x))| + |x — Dyp(Ear(a))l, (2)

where x, a, Dyr, and Dyy denote visual feature vector, class at-
tribute vector, attribute decoder, and visual decoder, respectively.

The overall loss (£g) of a generative method for performing
ZSL is as follows:

L= Lre + BLxL + Y Lca + 3Lpa, (3)

where B, y and § are the weighting factors.
4.1. ER and task-free strategies for CZSL

Experience Replay (ER) is a well-known method to alleviate
catastrophic forgetting in the continual learning framework for
handling the general classification task. However, in this paper,
we combine ER and KD for task-free generalized continual zero-
shot learning (Tf-GCZSL). In Tf-GCZSL, ER stores the previously
learned samples in a small memory M and replays it later for
training the model. The model is jointly trained by the samples
from the replay memory M and the samples from the current
streaming data. This joint training helps the model in retaining
the past knowledge. Here, we need to address two important
issues: (i) when the replay memory capacity M is full and (ii)
task-free setting during training. In order to handle these issues,
we employ reservoir sampling (Chaudhry et al, 2019; Vitter,
1985) which is a task-independent sampling technique. When the
memory is full, reservoir sampling replaces an existing random
sample in the memory with a new sample from the data stream
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with probability % where [ is the number of samples seen so far.
Further, the CZSL model needs to train in the task-free setting.
In this setting, the samples arrive one by one to the model for
training. However, training the model each time using a single
sample can heavily overfit the CZSL model. Moreover, as the
task boundary is unknown, it is difficult to optimize the model
parameters and determine the stopping criteria. To handle these
issues, we propose two different task-free learning strategies
using short-term memory (it is to be noted that the short-term
memory is different from the memory (M) present in ER) as
follows:

(i) Task-free CZSL strategy-1 (see Fig. 3): When the memory M
reaches the maximum capacity for the first time, we stop the
incoming data stream for a while and optimize the model once
on the samples stored in the memory. After completing this one-
time optimization, the training data stream resumes with a very
small-sized short-term batch memory (M) to store the incoming
data stream. This short-term memory is simply a very small batch
passed only once to the model for training without multiple
epochs. After completing the training using Mj, the memory is
cleared to store other samples from the incoming data stream.
The process is repeated until all the samples from the stream of
training data are presented to the model. Since this strategy does
not require multiple epochs, it is fast in learning the samples. It
is referred to as Tf-GCZSL 4. The pseudocode of this procedure
is provided in Algorithm 1.

(ii) Task-free CZSL strategy-2 (see Fig. 4): In this strategy, we
employ a larger short-term memory, i.e., My is larger than M.
The incoming samples are stored in Mg until it becomes full.
Once this memory becomes full, we stop the incoming training
samples for a while and train the model for multiple epochs for
better generalization. After completing the training using My, the
Mg is cleared to store other samples from the incoming data
stream. The process is repeated until there are no samples from
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Algorithm 1 Task-free Learning Strategy-1

Input: Data stream Dy, Short-term memory M,
Output: Trained model
1: optimization_done <« False
2: for i™ sample in D, do
3: Store the incoming i sample in replay memory M using
Reservoir sampling strategy

4 if Replay memory M is full and optimization_done is False
then

5: Stop the incoming data stream

6: Train the CZSL model on M for multiple epochs on the
available data in replay memory M.

7: optimization_done < True

8: else

9: if optimization_done is True then

10: Store i" sample in a short-term batch memory M,

11: if short-term batch memory M, is full then

12: Train the CZSL model continuously on the in-
coming batch of samples available in M) and samples taken
from replay memory M without running any epochs.

13: Clear the short-term batch memory M,

14: else

15: Keep model in sleep for very small duration of

time

the data stream. Tf-GCZSL with this strategy is referred to as
Tf-GCZSL 4, . The pseudo-code of this procedure is provided in
Algorithm 2.

Algorithm 2 Task-free Learning Strategy-2

Input: Data stream Dy, Short-term memory Mg,

Output: Trained model

: for i" sample in Dy, do

2: Store the incoming i sample in replay memory M using
Reservoir sampling strategy

3: Store the incoming i sample in the short-term memory
M

—_

st

if My, is full then

5: Train the CZSL model on the samples taken from replay
memory M and short-term memory M, for multiple epochs
to optimize the parameters

6: Clear the short-term memory Mg
7: else
8: Keep model in sleep until My, is not full

4.2. Knowledge distillation using dark knowledge for CZSL

In addition to ER, Tf-GCZSL also performs KD with dark knowl-
edge for mitigating catastrophic forgetting of the model. For this
purpose, in addition to storing the training sample in M, class
attribute information and latent space information (i.e., estimated
wvr, Zvr pas, and X by the encoder) corresponding to the
training samples are also stored. This latent space information is
dark knowledge, which is used to perform KD (Lﬁf{") as:

Ldark

xo = llwar — ragnlln + v — e lln + 1 Zar — Zapaq

+ 1 2 — 2l

where fa,,, Hvfae Zaf, and Xy, are retrieved from the stored
latent information for the corresponding sample in M. These
values were estimated by the encoder at any point in time in
the past on the learning trajectory of the Tf-GCZSL. One should
note that the approach does not store/use any previously trained

(4)
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Table 1
Standard split of ZSL datasets.

Dataset Attribute dimension Seen classes Unseen classes Total classes
CUB 312 150 50 200

aPyY 64 20 12 32

AWA1 85 40 10 50

AWA2 85 40 10 50

SUN 102 645 72 717

network as a teacher for performing KD. Instead, the knowledge
required to perform distillation is stored in the M with sample
information.

4.3. Overall training procedure of Tf-GCZSL:

Overall, Tf-GCZSL minimizes the following loss:

L6 = Lre+ BLx + ¥ Lca + 8Lpa + aLink, (5)

where 8, v, §, and « are the weighting factors. For the task-free
CZSL, first, minimize the loss and follow one of the two above-
discussed task-free training strategies, i.e., either Tf-GCZSL,, or
Tf-GCZSL vy, -

After completion of training, latent features are generated
by sampling based on the mean and variance estimated by the
visual/attribute encoder. The visual encoder is used to generate
latent features for the seen classes, and the attribute encoder is
used for the unseen classes. Since these latent features are very
discriminative, a simple linear classifier using Softmax is trained
on these latent features. The proposed Tf-GCZSL method can also
be used for the task-agnostic prediction where the task boundary
is known at the training time but not at the testing time. In
this case, Tf-GCZSL minimizes the same loss function without the
task-free learning strategy.

5. Performance evaluation

CZSL methods have been evaluated over five benchmark
ZSL datasets, namely Caltech-UCSD-Birds 200-2011 (CUB) (Wah,
Branson, Welinder, Perona, & Belongie, 2011), Attribute Pascal
and Yahoo (aPY) (Farhadi, Endres, Hoiem, & Forsyth, 2009),
Animals with Attributes (AWA1 and AWA?2) (Farhadi et al., 2009),
and SUN (Patterson & Hays, 2012). The standard split of these ZSL
datasets is provided in Table 1. Here, we split these datasets and
prepare them for two kinds of CZSL settings, which are discussed
in the next subsection.

5.1. Settings and evaluation metrics

In the literature, two kinds of CZSL settings exist (Skorokhodov
& Elhoseiny, 2021; Wei et al., 2020). The setting proposed in Wei
et al. (2020) is a multi-head setting as shown in Fig. 5. Here,
each dataset is considered as a separate task. Moreover, a distinct
classifier and a distinct attribute encoder-decoder are deployed
for each tasks, which is not feasible in real-time.

Another setting is proposed in Skorokhodov and Elhoseiny
(2021), which is the CZSL setting for task-agnostic prediction as
task information is known during training but not known during
testing. In this section, we first discuss task-agnostic prediction
for the CZSL setting and its limitation, then discuss about the new
CZSL setting, i.e., task-free learning. Both experimental settings
(task-agnostic and task-free CZSL settings) are designed based on
the assumption of seen and unseen classes for each task. The
details of each CZSL setting are provided below:
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(b) Proposed CZSL setting

Fig. 6. Task-agnostic prediction and task-free learning for CZSL settings.

CZSL setting for task-agnostic prediction:

For task-agnostic prediction, we have used the setting men-
tioned in Skorokhodov and Elhoseiny (2021) for CZSL. In this
setting, first, data is divided among T tasks. Next, if the model
is training on tth task, then all classes till tth task are treated as
seen classes, and all classes from (t + 1)th task to T tasks are
treated as unseen classes. Following evaluation metrics are used
to evaluate the model in case of task-agnostic prediction for the
tth task (Skorokhodov & Elhoseiny, 2021):

e Mean Seen-class Accuracy (mSA)
1
mSA = T Z CAcc(DS", A=),
=1
where CAcc stands for per class accuracy.
e Mean Unseen-class Accuracy(mUA)

T—1
1

mUA = —— CAcc

T 2 CAc(

t=1

,D>t

ts

A>t)
e Mean Harmonic Accuracy (mH)
-
mH = —— H
T-1

t=1

<t >t
D[S 7D[S ’A

( ),

where H stands for harmonic mean.

Here, D=! denotes all the train/test samples from 1st to tth
task, and D! denotes all the train/test samples from (t 4+ 1)th to
last task.

Dataset division for task-agnostic prediction The 200 classes of
CUB dataset are split into 20 tasks of 10 classes each. Similarly,
the aPY dataset, which contains 32 classes, is split into 8 tasks
with 4 classes each. The AWA1 and AWA2 datasets which have
50 classes each, is split into 10 tasks with 5 classes each. The
SUN dataset has 717 classes and is difficult to split evenly. Hence,
it is split into 15 tasks with 47 classes in the first 3 tasks and
48 classes in the remaining tasks. For all datasets, 20 percent of
data from each task is taken as test data to compute the final
evaluation metrics.

Limitation of the CZSL Setting in Skorokhodov and Elhoseiny
(2021): Since all classes from all tasks are available as a seen or
unseen class, the setting cannot be utilized for a class-incremental
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setup of continual learning. Note that it is an infeasible assump-
tion that all classes’ attribute information is known at the first
task.

CZSL setting for task-free learning: The setting mentioned above
in Skorokhodov and Elhoseiny (2021) is not suitable for task-
free learning with CZSL, as seen and unseen classes are decided
based on the task boundary (see Fig. 6(a)). However, in task-free
learning, task boundary information is not available during the
training and testing of the model. Therefore, we propose a more
challenging and different CZSL setting for task-free learning, as
shown in Fig. 6(b). In the figure, the task name is mentioned;
however, we will not use it for task-free learning. We mentioned
the task name so that the proposed setting can also be used
to evaluate other CZSL methods which require task boundaries.
Here, for task-free learning, data is split into multiple blocks
based on the standard split of ZSL benchmark datasets and is
explained in detail in the subsequent paragraph. Each block con-
tains samples from distinct classes. First, we train the model
by streaming samples from these blocks one by one, then test
the model on the standard testing data available in the split of
ZSL benchmark datasets. The performance is evaluated using the
harmonic mean (H) and top-1 accuracy of seen-class accuracy
(SA) and unseen-class accuracy (UA).

Dataset division for task-free learning In this setting, it needs
to be noted that we divided the datasets into multiple blocks,
but this block information is neither used during training nor
testing because it is a task-free learning setting. These blocks are
only for streaming the samples in a systematic manner. The CUB
dataset is split into 20 blocks, with the first 10 blocks containing
7 seen classes and 3 unseen classes each and the next 10 blocks
containing 8 seen classes and 2 unseen classes each. Here, the test
data consists of the unseen classes and 20 percent data from seen
classes of each block. The aPY dataset splits into 8 blocks, with
the first 4 blocks containing 2 seen classes and 2 unseen classes
each and the remaining blocks containing 3 seen classes and 1
unseen class each. The AWA1 and AWA2 datasets are split into 10
blocks with 4 seen classes and 1 unseen class per block. The SUN
dataset splits into 15 blocks, with the first 3 blocks containing 43
seen classes and 4 unseen classes each and the remaining blocks
containing 43 seen classes and 5 unseen classes each.

5.2. Baseline methods
There are only a handful of works available for CZSL. Recently,

it is developed for multi-head setting (Wei et al., 2020) and task-
agnostic prediction (Skorokhodov & Elhoseiny, 2021); however,
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Table 2
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CZSL results for task-agnostic prediction in terms of mean seen accuracy (mSA) for seen classes, mean unseen accuracy (mUA) for unseen classes, and their mean

of harmonic mean (mH). The best results in the table are presented in boldface.

CUB aPY AWA1 AWA2 SUN

mSA mUA mH mSA mUA mH mSA mUA mH mSA mUA mH mSA mUA mH
Seq-Tf-GCZSL 40.82 1437 21.14 4700 7.83 13.13 50.81 1668 2545 5224 1398 2233 2594 1622 20.10
Seq-CVAE (Mishra, 2466  8.57 1218 51,57 1138 1833 5927 1824 27.14 6142 1934 28,67 1688 1140 13.38
Krishna Reddy, Mittal, &
Murthy, 2018)
AGEM+CZSL* (Chaudhry, 4096 179 23,57 48.01 1436 21.84 5795 2997 39.01 5861 26.08 3597 2676 1451 1845
Ranzato et al., 2018)
AGEM+CZSL+CN* 36.98 18.34 2371 37.33 2286 2821 62.07 3455 4274 6152 3573 4373 2762 1799 2125
(Skorokhodov & Elhoseiny,
2021)
EWC+CZSL? (Schwarz et al, 30.72 9.03 13.67 2073 2552 2163 4097 20.11 2648 4145 2172 2812 1599 17.05 16.23
2018)
EWC+CZSL+CN?* 31.04 1152 1657 2172 2639 2327 4926 2482 3247 5189 2792 3531 26.16 1442 18.26
(Skorokhodov & Elhoseiny,
2021)
MAS+CZSL (Aljundi et al., - - 1770 - - - - - - - - - - - 9.40
2018)
MAS+CZSL+CN - - 2380 - - - - - - - - - - - 14.20
(Skorokhodov & Elhoseiny,
2021)
GRCZSL (Gautam et al., 4191 1412 2048 62.27 1257 2046 7736 2324 3486 8057 2435 36,57 1774 1150 13.73
2021)
CZSL-CV+res (Gautam et al.,  44.89 1345 20.15 64.88 1524 2390 7856 2365 3551 80.97 2575 3834 2399 14.10 17.63
2020)
Tf-GCZSLnk 45.00 3050 3457 5841 1874 2685 6167 3738 4490 6546 3640 4575 27.07 2335 2384
Tf-GCZSL 46.63 3242 3631 5792 2122 2955 6400 3834 46.14 6489 40.23 4833 28.09 2470 24.79

4Indicates that the results are obtained by rerunning the respective methods in our proposed setting.

there is no work available for task-free learning. For task-agnostic
prediction, the results are compared with the following methods:

e The sequential training of the proposed method without
considering any continual learning setting: Seq-Tf-GCZSL.

e Skorokhodov et al. developed various methods for CZSL
with and without class normalization (CN) (Skorokhodov &
Elhoseiny, 2021):

(i) With CN: AGEM+CZSL+CN,2 EWC+CZSL+CN, MAS+
CZSL+CN

(ii) Without CN: AGEM+CZSL! (Chaudhry, Ranzato et al.,
2018), EWC+CZSL (Schwarz et al., 2018), MAS+CZSL
(Aljundi, Babiloni, Elhoseiny, Rohrbach, & Tuytelaars,
2018).

e GRCZSL (Gautam, Parameswaran, Mishra, & Sundaram,
2021): It is developed by using generative replay and a
vanilla conditional variational autoencoder (CVAE).

o CZSL-CV+ res (Gautam, Parameswaran, Mishra, & Sun-
daram, 2020): It is developed by using a long-term memory-
based experience replay strategy and CVAE.

For task-free learning, the results are compared with the offline
training of the proposed method where one can assume all data
are available at once, which is basically an upper bound for the
proposed method. We also perform sequential training of the
proposed methods: Seq-Tf-GCZSL 4, and Seq-Tf-GCZSL 4.

5.3. Results

This section presents results for both cases of single head
setting, i.e. task-agnostic prediction and task-free learning. The

2 1t is to be noted that we performed class-balanced reservoir sampling for
AGEM implementation.
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presented results for Tf-GCZSL are obtained using the hyperpa-
rameters and memory size mentioned in Tables 4 and 5.

Task-agnostic Prediction: Results for this setting are presented
in Table 2 for 5 CZSL datasets. The performance results of Tf-
GCZSL without KD are given in the table, i.e., Tf-GCZSLyy. It can be
observed from this table, Tf-GCZSL outperforms all existing CZSL
methods presented in Skorokhodov and Elhoseiny (2021) by at
least 12%, 1%, 3%, 4% and 3% margin for CUB, aPY, AWA1, AWA2
and SUN datasets in terms of mH, respectively. It also significantly
outperforms the seq-Tf-GCZSL, which is obvious. Moreover, when
we compare the results of Tf-GCZSL and Tf-GCZSLyy, it has been
observed that KD using dark knowledge with ER improves the
performance and helps in alleviating the catastrophic forgetting
further.

Task Free Learning: Results for this setting are presented in
Table 3 for 5 CZSL datasets. We also provide the results of the
proposed methods in the sequential setting (i.e., Seq-Tf-GCZSL 4,
and Seq-Tf-GCZSL 4, ), and without ‘KD using dark knowledge’
(i.e., T-GCZSLaq,—nk and Tf-GCZSLp4,—nk ). It can be observed
from this table that the proposed methods outperform sequential
methods for all datasets. Further, dark knowledge improves the
performance for most of the cases if we use M. Overall, the
second strategy-based task-free learning (Tf-GCZSL 4, ) outper-
forms significantly over the first strategy (i.e., Tf-GCZSLr,) by
more than 5%, 6%, 2%, 9%, and 2% for CUB, aPY, AWA1, AWA?2, and
SUN datasets, respectively in terms of H. Moreover, Tf-GCZSL 4,
reaches closer to the upper bound (i.e., offline) as it lacks by
only 8.55%, 9.28%, 4.38%, 1.49%, and 8.14% for CUB, aPY, AWAI,
AWA?2, and SUN datasets, respectively, in terms of H. This lack of
performance is due to catastrophic forgetting.

The better performance of Tf-GCZSL in both settings is due
to the joint training of the samples from the long-term (i.e., re-
play samples) and short-term (i.e., current samples) memories.
Although the long-term memory does the repetitive training on
the already trained samples, it does not lead to overfitting or
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Table 3
Results for task-free CZSL in terms of seen accuracy (SA) for seen classes, unseen accuracy (UA) for unseen classes, and their harmonic mean (H).
CUB aPY AWAT AWA2 SUN
SA UA H SA UA H SA UA H SA UA H SA UA H
Offline (Upper bound) 535  51.6 524 5936 3036 40.18 728 573  64.1 75 558 639 357 472 406
Seq-Tf-GCZSL pq, 3873 2142 2758 2351 168 3.14 2037 212 3.85 1464 943 1147 2789 1888 2252
Seq-Tf-GCZSL a4, 4248 2046 2761 5723 390 730 5500 1399 2231 5967 1837 28.09 2642 17.84 21.30
TE-GCZSL pn, —ni 4569 3190 3757 7313 1551 2560 67.65 4401 5333 7008 4659 5597 3104 2930 30.15
Tf-GCZSLaqy N 4670 43.09 4482 7768 1667 2746 6624 5328 59.06 6938 5507 6140 2686 3756  31.32
Tf-GCZSL g, 4508 3402 3878 7255 1433 2394 6564 5146 57.69 6842 4274 5262 3100 2937 30.16
Tf-GCZSL o1, 4452 4321 4385 7212 1966 3090 6179 5777 5972 6742 5808 6241 2776 39.09  32.46
Table 4 increases. Task-relatedness increases because the number of
Hyperparameters for Tf-GCZSL. seen samples also increases, and it enriches the knowledge
Parameters apy AWA1  AWA2  CUB SUN of the model. Although Tf-GCZSL improves performance
Learning rate (VAE) 0.00015 0.00015 0.00015 0.00015 0.00015 when tasks increase, seq-Tf-GCZSL performance decreases
Eat,ch, size (V/;E)(VAE) ?80 5]580 ?80 ?80 ?80 as it does not use any continual learning strategy.
raining epochs . . 3
Learning rate (classifier) 0001 0001 0001 0001  0.001 * Analysis on replay memory: The performance of Tf-GCZSL
Weight decay (classifier) 001 001 001 0001  0.0003 is very sensitive to the size of the memory. Size is kept
Batch size (classifier) 32 32 32 32 32 in terms of the number of samples per class. If there are j
Training epochs (classifier) 35 35 35 25 25 number of classes and k number of samples per class, then
the memory size is j % k. It can be observed from Fig. 7(b)
that the performance of TF-GCZSL improves as memory size
L . . increases, as the memory can store more samples from the
any adverse effect. In contrast, this joint training regularizes the . y p
o past experience.
model for better generalization. k . . . .
e Analysis on latent dimensions: It is another important

5.4. Ablation study on CUB dataset

In this section, an ablation study is presented for the CUB
dataset.

For task-agnostic prediction: The ablation study is presented in
terms of the following three factors:

e Task-wise analysis: Task-wise analysis is depicted in
Fig. 7(a). It can be observed from this figure that the per-
formance of Tf-GCZSL improves as the number of tasks
increases because as the number of tasks increases, then
task-relatedness between seen and unseen class samples

factor for CZSL. The performance of TF-GCZSL is depicted
in 7(c) on different latent dimensions. This figure suggests
that the size of latent dimensions should not be very small
or very large. If it is very small, it cannot provide more
discriminative features. If it is very large, then the degree of
freedom increases, which will not provide compact features.

For task-free learning: Similarly, the ablation study is conducted
on memory size and latent dimensions for task-free prediction.
Since Tf-GCZSL uses two kinds of memories: replay memory M
and short-term memory Mg, analysis based on both memories
is presented in Figs. 8(a) and 8(c) for M and My, respectively. In
the case of M, performance increases as memory size increases
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Table 5
Memory size used in Tf-GCZSL.
Parameters aPY AWA1 AWA2 CUB SUN
Mt 500 500 500 500 500
My 50 50 50 50 50
M 25 x total classes 25 x total classes 25 x Total classes 10 * total classes 5 x total classes
Batch size from ER Memory 100 100 100 100 100

due to the same reason as discussed above. In the case of My,
size is not impacting much on the performance as these samples
are jointly trained with the larger memory M in the task-free
setting. Therefore, performance is very similar for all the cases.
In the ablation of latent dimension in Fig. 8(b), we again observe
the similar plot as 7(c). Moreover, for all three plots in Fig. 8,
we also plot sequential results for better understanding, and
the results are obvious that the proposed methods outperform
sequential methods for all cases. Additionally, it is interesting to
note that since samples are presented only once in Tf-GCZSL 4, it
has almost no overhead cost while Tf-GCZSL 4, will add a little
overhead cost.

6. Conclusion

This is the first work that tackles the continual Zero-shot
learning for the task-free set-up to the best of our knowledge.
This paper has proposed general task-free continual zero-shot
learning strategies using VAE, ER using long-term memory, KD
with dark knowledge, and two kinds of short-term memories. The
performance is evaluated on five benchmark data, and the results
indicate that the Tf-GCSZL achieves results that are closer to the
upper bound with minimal catastrophic forgetting. The frame-
work is generic; therefore, one can use other ZSL approaches to
develop it for task-free CZSL.
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