
Neural Networks 155 (2022) 487–497

a

b

c

d
o
(
(
c
c
p
f
a
c
t
e
l
c

s
v

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Tf-GCZSL: Task-free generalized continual zero-shot learning
Chandan Gautam a,∗,1, Sethupathy Parameswaran b,1, Ashish Mishra c, Suresh Sundaram b

Institute for Infocomm Research (I2R), A*STAR, Singapore
Indian Institute of Science, Bangalore, India
Indian Institute of Technology Madras, India

a r t i c l e i n f o

Article history:
Available online 6 September 2022

Keywords:
Zero-shot learning
Continual learning
Experience replay
Continual zero-shot learning
VAE

a b s t r a c t

Learning continually from a stream of training data or tasks with an ability to learn the unseen
classes using a zero-shot learning framework is gaining attention in the literature. It is referred
to as continual zero-shot learning (CZSL). Existing CZSL requires clear task-boundary information
during training which is not practically feasible. This paper proposes a task-free generalized CZSL (Tf-
GCZSL) method with short-term/long-term memory to overcome the requirement of task-boundary in
training. A variational autoencoder (VAE) handles the fundamental ZSL tasks. The short-term and long-
term memory help to overcome the condition of the task boundary in the CZSL framework. Further,
the proposed Tf-GCZSL method combines the concept of experience replay with dark knowledge
distillation and regularization to overcome the catastrophic forgetting issues in a continual learning
framework. Finally, the Tf-GCZSL uses a fully connected classifier developed using the synthetic
features generated at the latent space of the VAE. The performance of the proposed Tf-GCZSL is
evaluated in the existing task-agnostic prediction setting and the proposed task-free setting for the
generalized CZSL over the five ZSL benchmark datasets. The results clearly indicate that the proposed
Tf-GCZSL improves the prediction at least by 12%, 1%, 3%, 4%, and 3% over existing state-of-the-art and
baseline methods for CUB, aPY, AWA1, AWA2, and SUN datasets, respectively in both settings (task-
agnostic prediction and task-free learning). The source code is available at https://github.com/Chandan-
IITI/Tf-GCZSL.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, conventional supervised learning frameworks in
eep learning architecture have shown remarkable performance
n various tasks (e.g., classification/recognition), computer vision
He, Zhang, Ren, & Sun, 2015), and natural language processing
Krizhevsky, Sutskever, & Hinton, 2012). Despite the recent suc-
ess, conventional learning frameworks cannot handle unseen
lasses during testing or overcome the catastrophic forgetting
roblem while continuously learning to acquire new knowledge
rom a stream of data. Recently, the first limitation has been
ddressed by the zero-shot learning (ZSL) framework, where we
lassified objects from classes that are not available at the training
ime (Chao, Changpinyo, Gong, & Sha, 2016; Li et al., 2019; Xie
t al., 2019; Zhu, Xie, Liu, & Elgammal, 2019). The continual
earning framework can handle the second limitation of the
onventional learning framework (Chaudhry, Dokania, Ajanthan
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and Torr, 2018; Kirkpatrick et al., 2017; Shin, Lee, Kim, & Kim,
2017). However, traditional ZSL approaches have difficulty with
sequential training, and continual learning approaches cannot
handle unseen classes. Therefore, a more preferable and desirable
approach is needed to tackle sequential training and unseen
classes problems simultaneously. This paper aims to leverage the
advantages of both zero-shot learning and continual learning in
a single framework.

Zero-shot learning (ZSL) is an interesting framework that has
attracted considerable attention in recent years due to its ability
to learn unseen/novel class examples. Earlier approaches for zero-
shot learning are based on the embedding function between
visual and semantic space and are therefore biased towards the
seen classes. The generative models synthesize visual features
directly from semantic class descriptors to address bias towards
seen class issues. Feature generative methods provide a shortcut
to cast the zero-shot learning problem into a conventional classi-
fication problem (Sohn, Lee, & Yan, 2015; Verma, Brahma, & Rai,
2020; Verma & Rai, 2017; Xian, Lorenz, Schiele, & Akata, 2018;
Xian, Sharma, Schiele, & Akata, 2019; Yu, Ji, Han, & Zhang, 2020).

The conventional ZSL framework trains the model on different

classes (of the same dataset) under the assumption that data
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Fig. 1. A Generic CZSL framework.
or all the seen classes is available a priori. However, such an
ssumption is restrictive and not practical. In a practical setup,
he training data arrives in a stream, and the training samples ar-
ived in the streammay have samples from newly added (unseen)
lasses (see Fig. 1). One needs to update the ZSL model based
n the newly arrived data. Otherwise, the prediction using the
SL model will not be accurate. One way to overcome this issue
s by retraining the ZSL model again, which is computationally
ntensive. Moreover, one needs to store the previous and current
raining data stream which requires a large memory.

Continual/incremental/lifelong learning (Chaudhry et al., 2019;
opez-Paz & Ranzato, 2017; Shin et al., 2017) can address the
bove concern by enabling the sequential training of the ZSL
odel by preserving the accumulated (previous) knowledge
hile acquiring the new knowledge. This kind of method is
nown as continual zero-shot learning (CZSL). It can update
ts current knowledge continuously without forgetting previous
nformation, in contrast to the conventional ZSL approaches. The
ZSL method is a broad generalization of zero-shot learning.
ere, it needs to be noted that in a traditional continual learning
etting, training and testing data contain the same number of
lasses for classification. However, in the CZSL setting, training
ata also contains some unseen classes with their description
n textual form, and a classifier should be able to classify these
nseen classes during testing.
Most recently, a few CZSL methods (Skorokhodov & Elhoseiny,

021; Wei, Deng, & Yang, 2020) have been proposed in the litera-
ure. Both of the existing methods in the literature (Skorokhodov
Elhoseiny, 2021; Wei et al., 2020) require task-boundary in-

ormation during the training of the CZSL methods. The method
roposed in Wei et al. (2020) considers one whole dataset as
task and trains a separate attribute encoder–decoder for each

ask (dataset); therefore, it is a very trivial setting (i.e., multi-
ead setting). Further, Skorokhodov and Elhoseiny (2021) develop
n A-GEM-based CZSL method for a single-head setting; how-
ver, it is not a strict single-head setting as task identity is
equired during training. Nevertheless, in realistic situations, it is
ot always possible to get data with well-defined task boundaries
i.e., task identity). Further, there may be cases where we have
ccess to only one sample at a time. These issues can be handled
ith task-free learning, which is closer to the realistic scenarios.
verall, both existing methods (Skorokhodov & Elhoseiny, 2021;
488
Wei et al., 2020) do not support task-free learning setup of CZSL;
therefore, the CZSL setup used in both papers is not suitable
for a single-head setting. Hence, first time in the literature, this
paper addresses a task free generalized CZSL (Tf-GCZSL) in a strict
single-head setting where task identity is neither known during
training nor during testing. For addressing this issue, Tf-GCZSL
deploys two VAEs with knowledge distillation (KD), a long-term
memory and a short-term memory. Here, KD and long-term
memory help in alleviating the catastrophic forgetting and short-
term memory makes the proposed method suitable for task-free
learning.

The contributions of our proposed approach are summarized
as:

1. To the best of our knowledge, this is the first work that pro-
poses continual zero-shot learning for the task-free setting.
The existing approaches (Skorokhodov & Elhoseiny, 2021;
Wei et al., 2020) are only compatible when task-boundary
is either present during training or during both training and
testing.

2. To enable the model for task-free learning, this paper pro-
poses two different task-free learning strategies based on
short-term memory, which are compatible with any ZSL
method.

3. To enable the generative model for CZSL, the proposed
approach employs experience replay with KD. Here, we
do not use the student–teacher network strategy for KD.
Instead of that, we store the required information in the
memory of the corresponding sample to perform KD. The
stored information is generally known as dark knowledge
(Hinton, Vinyals, & Dean, 2014).

4. This paper also provides the novel evaluation setting for
CZSL as the existing settings (Skorokhodov & Elhoseiny,
2021; Wei et al., 2020) are not suitable for task-free learn-
ing.

5. Extensive experimental results validate the effectiveness of
the proposed task-free CZSL method.

2. Related work

As CZSL mainly relies on continual learning and ZSL, this sec-
tion briefly discusses both topics in two subsequent subsections.
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.1. Zero-shot learning

Recently, ZSL has attracted considerable attention due to han-
ling unseen classes during testing. It transfers knowledge from
een classes to unseen classes via class attributes. Earlier pro-
osed approaches for ZSL primarily were discriminative or non-
enerative (i.e., embedding-based) in nature (Akata, Perronnin,
archaoui, & Schmid, 2016; Akata, Reed, Walter, Lee, & Schiele,
015; Fu, Hospedales, Xiang, Fu, & Gong, 2014; Hwang & Sigal,
014; Lampert, Nickisch, & Harmeling, 2013; Norouzi et al., 2013;
omera-Paredes & Torr, 2015; Socher, Ganjoo, Manning, & Ng,
013; Xian et al., 2016; Zhang & Saligrama, 2015; Zhang, Xiang,
Gong, 2017). Non-generative methods learn an embedding

rom visual space to semantic space or vice versa via a linear
ompatibility function (Akata et al., 2016; Lampert et al., 2013;
orouzi et al., 2013; Xian et al., 2016). In contrast, generative
odels synthesize the examples for seen and unseen classes
nd transform a ZSL problem into a typical supervised learning
roblem (Felix, Kumar, Reid, & Carneiro, 2018; Huang, Wang, Yu,
Wang, 2019; Li et al., 2019; Schonfeld, Ebrahimi, Sinha, Darrell,
Akata, 2019a, 2019b; Verma, Arora, Mishra, & Rai, 2018; Xian

t al., 2018, 2019; Zhu et al., 2019), which can be trained by any
upervised classifiers.

.2. Continual learning

Continual learning learns from streaming data with two
bjectives: avoiding catastrophic forgetting (preserving experi-
nce while learning on new tasks) and avoiding intransigence
updating new knowledge and transferring previous knowledge).
he whole work of continual learning can be broadly categorized
nto three parts: (i) regularization-based methods (Chaudhry,
okania et al., 2018; Kirkpatrick et al., 2017; Rebuffi, Kolesnikov,
perl, & Lampert, 2017), (ii) replay-based methods (Chaudhry,
anzato, Rohrbach and Elhoseiny, 2018; Chaudhry et al., 2019;
ayes, Cahill, & Kanan, 2019; Lopez-Paz & Ranzato, 2017;
hin et al., 2017), and (iii) parameter-isolation-based methods
Aljundi, Chakravarty, & Tuytelaars, 2017; Mallya, Davis, &
azebnik, 2018; Mallya & Lazebnik, 2018; Rosenfeld & Tsotsos,
018). Most of the earlier continual learning works are focused on
ulti-head setting (Chaudhry, Dokania et al., 2018; Kirkpatrick
t al., 2017; Rebuffi et al., 2017). In recent years, task-free
earning for traditional classification problem has received a
urge of interest among researchers (Aljundi, Kelchtermans
nd Tuytelaars, 2019; Aljundi, Lin, Goujaud and Bengio, 2019;
uzzega, Boschini, Porrello, Abati, & Calderara, 2020; Jin, Du, &
en, 2020) as it is a more practical continual learning setting than
multi-head setting. Instead of traditional classification problem,
his paper focuses on task-free learning for the GZSL problem.

.3. Continual zero-shot learning

In a traditional continual learning setting, training and testing
ata contain the same number of classes for classification. How-
ver, in the CZSL setting, training data also contains some unseen
lasses with their description in textual form, and a classifier
hould be able to classify these unseen classes during testing.
ost recently, CZSL (Skorokhodov & Elhoseiny, 2021; Wei et al.,
020) has drawn increasing interest. To the best of our knowl-
dge, only a handful the number of work is available for this
roblem. Chaudhry, Ranzato et al. (2018) developed an average
radient episodic memory (A-GEM) -based CZSL method for a
ulti-head setting. A generative model-based CZSL (Wei et al.,
020) method is also developed for multi-head setting. Most
ecently, Skorokhodov and Elhoseiny (2021) develop an A-GEM-
ased CZSL method for a single-head setting; however, it is not
 L
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a strict single-head setting as task identity is required during
training. This paper develops a CZSL method for a strict single-
head setting where task identity is neither known during training
nor testing.

3. Problem formulation

Formally, CZSL is divided among T tasks (t ∈ 1, . . . , T ),
where each tth task consists of training and testing data stream.
Generally, the training stream Dt

tr for tth task contains only the
information of seen classes, which consists of feature vector xti ,
ask identity ιti (it provides task-boundary), class label yti , and
lass attribute information ati . Where i represents ith sample
rom the whole training samples ntr of tth task. In addition,
raining stream also contains class attribute information for un-
een classes, i.e., UC = {(ai)

nuc
i=1} where nuc denotes number of

nseen classes. This is the key information which enables model
or performing CZSL. Similarly, testing stream Dt

ts consists of
(xti , ι

t
i , y

t
i )

nts
i=1}, where nts is total number of test samples for tth

ask. Here, testing class label is only used for evaluation purpose.
n this paper, we address single-head setting for two possible
ituations: (i) task-agnostic prediction: when task boundary is
nly available during training but not during testing, i.e., Dt

tr =

(xti , ι
t
i , y

t
i , a

t
i )

ntr
i=1} and Dt

ts = {(x
t
i , y

t
i )

nts
i=1}; (ii) task-free learn-

ng: when task boundary is neither available during training nor
esting, i.e., Dt

tr = {(xi, yi, ai)
ntr
i=1} and Dt

ts = {(xi, yi)
nts
i=1}.

. Task-free generalized continual zero-shot learning:
f-GCZSL

In this section, a task-free continual learning method is pro-
osed for the GZSL framework, i.e., task-free generalized contin-
al zero-shot learning (Tf-GCZSL). Tf-GCZSL is developed based
n the concept of VAE, experience replay (ER) with KD, regular-
zation, and short-term memory. The VAE helps in the GZSL tasks
y generating synthetic features at the latent space (i.e., output
f the encoder) and the output space (i.e., output of the decoder).
he proposed Tf-GCZSL method (as shown in Fig. 2) deploys two
istinct VAEs to process semantic and visual features separately.
hese VAEs generate discriminant features at the latent space
y minimizing various losses simultaneously. This latent space
nformation is used for classification and is utilized as a dark
nowledge for performing KD, which helps in alleviating the
roblem of catastrophic forgetting. Here, KD is performed by
sing the dark knowledge (Hinton et al., 2014) instead of using
he teacher network (i.e., the teacher network is the immediate
revious network in the case of continual learning). Dark knowl-
dge is the soft labels of the training samples of the previous
asks (Hinton et al., 2014), which is stored in the long-term mem-
ry for performing experience replay. This long-term memory
lso helps in alleviating catastrophic forgetting and regularizes
he model for better performance. Along with this long-term
emory, a short-term memory is also used to develop the Tf-
CZSL method for performing task-free learning with the CZSL
ramework. All the above-mentioned components are discussed
n this section further. First of all, we discuss four kinds of losses,
hich are mainly deployed with VAEs for performing GZSL tasks

n Tf-GCZSL. These losses are as follows:

ullback–Leibler (KL) divergence and reconstruction loss: It
inimizes two standard VAE losses simultaneously for the fea-

ure and the attribute encoder–decoder network: KL divergence
Kullback & Leibler, 1951) loss (LKL) and reconstruction loss (LRe).

istribution-alignment loss (DA): It minimizes the difference in
istribution between the latent space information of the feature
nd the attribute encoder.

2 1
2 − (Σ )

1
2 ∥

2 )
1
2 , (1)
DA = (∥µAf − µVf ∥2 + ∥(ΣAf ) Vf F
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Fig. 2. Proposed Task-free-GCZSL framework. Here LDA denotes the distribution alignment loss, LCA denotes the cross alignment loss, and LKD denotes the KD loss.
Algorithms to use short-term memory is described in detail in the Algorithms 1 and 2.
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where µVf and ΣVf are the mean and variance estimated by
visual encoder EVf , respectively. µAf and ΣAf are the mean and
variance estimated by the attribute encoder EAf , respectively, and
F represents Frobenius norm.

Cross-alignment loss (CA): It is cross-reconstruction loss be-
tween the output of the feature decoder and the attribute decoder
and is given as

LCA = |a− DAt (EVf (x))| + |x− DVf (EAf (a))|, (2)

where x, a, DAf , and DVf denote visual feature vector, class at-
tribute vector, attribute decoder, and visual decoder, respectively.

The overall loss (LG) of a generative method for performing
ZSL is as follows:

LG = LRe + βLKL + γLCA + δLDA, (3)

where β , γ and δ are the weighting factors.

4.1. ER and task-free strategies for CZSL

Experience Replay (ER) is a well-known method to alleviate
catastrophic forgetting in the continual learning framework for
handling the general classification task. However, in this paper,
we combine ER and KD for task-free generalized continual zero-
shot learning (Tf-GCZSL). In Tf-GCZSL, ER stores the previously
learned samples in a small memory M and replays it later for
training the model. The model is jointly trained by the samples
from the replay memory M and the samples from the current
streaming data. This joint training helps the model in retaining
the past knowledge. Here, we need to address two important
issues: (i) when the replay memory capacity M is full and (ii)
task-free setting during training. In order to handle these issues,
we employ reservoir sampling (Chaudhry et al., 2019; Vitter,
1985) which is a task-independent sampling technique. When the
memory is full, reservoir sampling replaces an existing random

sample in the memory with a new sample from the data stream

490
with probability M
l , where l is the number of samples seen so far.

Further, the CZSL model needs to train in the task-free setting.
In this setting, the samples arrive one by one to the model for
training. However, training the model each time using a single
sample can heavily overfit the CZSL model. Moreover, as the
task boundary is unknown, it is difficult to optimize the model
parameters and determine the stopping criteria. To handle these
issues, we propose two different task-free learning strategies
using short-term memory (it is to be noted that the short-term
memory is different from the memory (M) present in ER) as
follows:

(i) Task-free CZSL strategy-1 (see Fig. 3): When the memory M
reaches the maximum capacity for the first time, we stop the
incoming data stream for a while and optimize the model once
on the samples stored in the memory. After completing this one-
time optimization, the training data stream resumes with a very
small-sized short-term batch memory (Mb) to store the incoming
data stream. This short-term memory is simply a very small batch
passed only once to the model for training without multiple
epochs. After completing the training using Mb, the memory is
leared to store other samples from the incoming data stream.
he process is repeated until all the samples from the stream of
raining data are presented to the model. Since this strategy does
ot require multiple epochs, it is fast in learning the samples. It
s referred to as Tf-GCZSLMb . The pseudocode of this procedure
s provided in Algorithm 1.

ii) Task-free CZSL strategy-2 (see Fig. 4): In this strategy, we
mploy a larger short-term memory, i.e., Mst is larger than Mb.
he incoming samples are stored in Mst until it becomes full.

Once this memory becomes full, we stop the incoming training
samples for a while and train the model for multiple epochs for
better generalization. After completing the training usingMst , the
Mst is cleared to store other samples from the incoming data
stream. The process is repeated until there are no samples from
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Algorithm 1 Task-free Learning Strategy-1
Input: Data stream Dtr , Short-term memory Mb
Output: Trained model
1: optimization_done← False
2: for ith sample in Dtr do
3: Store the incoming ith sample in replay memory M using

Reservoir sampling strategy
4: if Replay memory M is full and optimization_done is False

then
5: Stop the incoming data stream
6: Train the CZSL model on M for multiple epochs on the

available data in replay memory M.
7: optimization_done← True
8: else
9: if optimization_done is True then
0: Store ith sample in a short-term batch memory Mb
1: if short-term batch memory Mb is full then
2: Train the CZSL model continuously on the in-

coming batch of samples available in Mb and samples taken
from replay memory M without running any epochs.

3: Clear the short-term batch memory Mb
4: else
5: Keep model in sleep for very small duration of

time

the data stream. Tf-GCZSL with this strategy is referred to as
Tf-GCZSLMst . The pseudo-code of this procedure is provided in
lgorithm 2.

Algorithm 2 Task-free Learning Strategy-2
Input: Data stream Dtr , Short-term memory Mst
Output: Trained model
1: for ith sample in Dtr do
2: Store the incoming ith sample in replay memory M using

Reservoir sampling strategy
3: Store the incoming ith sample in the short-term memory

Mst
4: if Mst is full then
5: Train the CZSL model on the samples taken from replay

memory M and short-term memory Mst for multiple epochs
to optimize the parameters

6: Clear the short-term memory Mst
7: else
8: Keep model in sleep until Mst is not full

4.2. Knowledge distillation using dark knowledge for CZSL

In addition to ER, Tf-GCZSL also performs KD with dark knowl-
dge for mitigating catastrophic forgetting of the model. For this
urpose, in addition to storing the training sample in M, class
ttribute information and latent space information (i.e., estimated
Vf , ΣVf µAf , and ΣAf by the encoder) corresponding to the

training samples are also stored. This latent space information is
dark knowledge, which is used to perform KD (Ldark

KD ) as:
dark
KD = ∥µAf − µAfM∥1 + ∥µVf − µVfM∥1 + ∥ΣAf −ΣAfM∥1

+ ∥ΣVf −ΣVfM∥1,
(4)

here µAfM , µVfM , ΣAfM and ΣVfM are retrieved from the stored
atent information for the corresponding sample in M. These
alues were estimated by the encoder at any point in time in
he past on the learning trajectory of the Tf-GCZSL. One should
ote that the approach does not store/use any previously trained
491
Table 1
Standard split of ZSL datasets.
Dataset Attribute dimension Seen classes Unseen classes Total classes

CUB 312 150 50 200
aPY 64 20 12 32
AWA1 85 40 10 50
AWA2 85 40 10 50
SUN 102 645 72 717

network as a teacher for performing KD. Instead, the knowledge
required to perform distillation is stored in the M with sample
information.

4.3. Overall training procedure of Tf-GCZSL:

Overall, Tf-GCZSL minimizes the following loss:

LG = LRe + βLKL + γLCA + δLDA + αLdark
KD , (5)

where β , γ , δ, and α are the weighting factors. For the task-free
CZSL, first, minimize the loss and follow one of the two above-
discussed task-free training strategies, i.e., either Tf-GCZSLMb or
Tf-GCZSLMst .

After completion of training, latent features are generated
by sampling based on the mean and variance estimated by the
visual/attribute encoder. The visual encoder is used to generate
latent features for the seen classes, and the attribute encoder is
used for the unseen classes. Since these latent features are very
discriminative, a simple linear classifier using Softmax is trained
on these latent features. The proposed Tf-GCZSL method can also
be used for the task-agnostic prediction where the task boundary
is known at the training time but not at the testing time. In
this case, Tf-GCZSL minimizes the same loss function without the
task-free learning strategy.

5. Performance evaluation

CZSL methods have been evaluated over five benchmark
ZSL datasets, namely Caltech-UCSD-Birds 200–2011 (CUB) (Wah,
Branson, Welinder, Perona, & Belongie, 2011), Attribute Pascal
and Yahoo (aPY) (Farhadi, Endres, Hoiem, & Forsyth, 2009),
Animals with Attributes (AWA1 and AWA2) (Farhadi et al., 2009),
and SUN (Patterson & Hays, 2012). The standard split of these ZSL
datasets is provided in Table 1. Here, we split these datasets and
prepare them for two kinds of CZSL settings, which are discussed
in the next subsection.

5.1. Settings and evaluation metrics

In the literature, two kinds of CZSL settings exist (Skorokhodov
& Elhoseiny, 2021; Wei et al., 2020). The setting proposed in Wei
et al. (2020) is a multi-head setting as shown in Fig. 5. Here,
each dataset is considered as a separate task. Moreover, a distinct
classifier and a distinct attribute encoder–decoder are deployed
for each tasks, which is not feasible in real-time.

Another setting is proposed in Skorokhodov and Elhoseiny
(2021), which is the CZSL setting for task-agnostic prediction as
task information is known during training but not known during
testing. In this section, we first discuss task-agnostic prediction
for the CZSL setting and its limitation, then discuss about the new
CZSL setting, i.e., task-free learning. Both experimental settings
(task-agnostic and task-free CZSL settings) are designed based on
the assumption of seen and unseen classes for each task. The
details of each CZSL setting are provided below:
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Fig. 3. Task free learning: Strategy-1.

Fig. 4. Task free learning: Strategy-2.

Fig. 5. CZSL setting in Wei et al. (2020).
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Fig. 6. Task-agnostic prediction and task-free learning for CZSL settings.
ZSL setting for task-agnostic prediction:
For task-agnostic prediction, we have used the setting men-

ioned in Skorokhodov and Elhoseiny (2021) for CZSL. In this
etting, first, data is divided among T tasks. Next, if the model
s training on tth task, then all classes till tth task are treated as
een classes, and all classes from (t + 1)th task to T tasks are
reated as unseen classes. Following evaluation metrics are used
o evaluate the model in case of task-agnostic prediction for the
th task (Skorokhodov & Elhoseiny, 2021):

• Mean Seen-class Accuracy (mSA)

mSA =
1
T

T∑
t=1

CAcc(D≤tts , A≤t ), (6)

where CAcc stands for per class accuracy.
• Mean Unseen-class Accuracy(mUA)

mUA =
1

T − 1

T−1∑
t=1

CAcc(D>t
ts , A>t ) (7)

• Mean Harmonic Accuracy (mH)

mH =
1

T − 1

T−1∑
t=1

H(D≤tts ,D>t
ts , A), (8)

where H stands for harmonic mean.

Here, D≤t denotes all the train/test samples from 1st to tth
task, and D>t denotes all the train/test samples from (t + 1)th to
ast task.

ataset division for task-agnostic prediction The 200 classes of
UB dataset are split into 20 tasks of 10 classes each. Similarly,
he aPY dataset, which contains 32 classes, is split into 8 tasks
ith 4 classes each. The AWA1 and AWA2 datasets which have
0 classes each, is split into 10 tasks with 5 classes each. The
UN dataset has 717 classes and is difficult to split evenly. Hence,
t is split into 15 tasks with 47 classes in the first 3 tasks and
8 classes in the remaining tasks. For all datasets, 20 percent of
ata from each task is taken as test data to compute the final
valuation metrics.

imitation of the CZSL Setting in Skorokhodov and Elhoseiny
2021): Since all classes from all tasks are available as a seen or
nseen class, the setting cannot be utilized for a class-incremental
493
setup of continual learning. Note that it is an infeasible assump-
tion that all classes’ attribute information is known at the first
task.

CZSL setting for task-free learning: The setting mentioned above
in Skorokhodov and Elhoseiny (2021) is not suitable for task-
free learning with CZSL, as seen and unseen classes are decided
based on the task boundary (see Fig. 6(a)). However, in task-free
learning, task boundary information is not available during the
training and testing of the model. Therefore, we propose a more
challenging and different CZSL setting for task-free learning, as
shown in Fig. 6(b). In the figure, the task name is mentioned;
however, we will not use it for task-free learning. We mentioned
the task name so that the proposed setting can also be used
to evaluate other CZSL methods which require task boundaries.
Here, for task-free learning, data is split into multiple blocks
based on the standard split of ZSL benchmark datasets and is
explained in detail in the subsequent paragraph. Each block con-
tains samples from distinct classes. First, we train the model
by streaming samples from these blocks one by one, then test
the model on the standard testing data available in the split of
ZSL benchmark datasets. The performance is evaluated using the
harmonic mean (H) and top-1 accuracy of seen-class accuracy
(SA) and unseen-class accuracy (UA).

Dataset division for task-free learning In this setting, it needs
to be noted that we divided the datasets into multiple blocks,
but this block information is neither used during training nor
testing because it is a task-free learning setting. These blocks are
only for streaming the samples in a systematic manner. The CUB
dataset is split into 20 blocks, with the first 10 blocks containing
7 seen classes and 3 unseen classes each and the next 10 blocks
containing 8 seen classes and 2 unseen classes each. Here, the test
data consists of the unseen classes and 20 percent data from seen
classes of each block. The aPY dataset splits into 8 blocks, with
the first 4 blocks containing 2 seen classes and 2 unseen classes
each and the remaining blocks containing 3 seen classes and 1
unseen class each. The AWA1 and AWA2 datasets are split into 10
blocks with 4 seen classes and 1 unseen class per block. The SUN
dataset splits into 15 blocks, with the first 3 blocks containing 43
seen classes and 4 unseen classes each and the remaining blocks
containing 43 seen classes and 5 unseen classes each.

5.2. Baseline methods

There are only a handful of works available for CZSL. Recently,
it is developed for multi-head setting (Wei et al., 2020) and task-
agnostic prediction (Skorokhodov & Elhoseiny, 2021); however,
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Table 2
CZSL results for task-agnostic prediction in terms of mean seen accuracy (mSA) for seen classes, mean unseen accuracy (mUA) for unseen classes, and their mean
of harmonic mean (mH). The best results in the table are presented in boldface.

CUB aPY AWA1 AWA2 SUN

mSA mUA mH mSA mUA mH mSA mUA mH mSA mUA mH mSA mUA mH

Seq-Tf-GCZSL 40.82 14.37 21.14 47.00 7.83 13.13 50.81 16.68 25.45 52.24 13.98 22.33 25.94 16.22 20.10
Seq-CVAE (Mishra,
Krishna Reddy, Mittal, &
Murthy, 2018)

24.66 8.57 12.18 51.57 11.38 18.33 59.27 18.24 27.14 61.42 19.34 28.67 16.88 11.40 13.38

AGEM+CZSLa (Chaudhry,
Ranzato et al., 2018)

40.96 17.9 23.57 48.01 14.36 21.84 57.95 29.97 39.01 58.61 26.08 35.97 26.76 14.51 18.45

AGEM+CZSL+CNa

(Skorokhodov & Elhoseiny,
2021)

36.98 18.34 23.71 37.33 22.86 28.21 62.07 34.55 42.74 61.52 35.73 43.73 27.62 17.99 21.25

EWC+CZSLa (Schwarz et al.,
2018)

30.72 9.03 13.67 20.73 25.52 21.63 40.97 20.11 26.48 41.45 21.72 28.12 15.99 17.05 16.23

EWC+CZSL+CNa

(Skorokhodov & Elhoseiny,
2021)

31.04 11.52 16.57 21.72 26.39 23.27 49.26 24.82 32.47 51.89 27.92 35.31 26.16 14.42 18.26

MAS+CZSL (Aljundi et al.,
2018)

– – 17.70 – – – – – – – – – – – 9.40

MAS+CZSL+CN
(Skorokhodov & Elhoseiny,
2021)

– – 23.80 – – – – – – – – – – – 14.20

GRCZSL (Gautam et al.,
2021)

41.91 14.12 20.48 62.27 12.57 20.46 77.36 23.24 34.86 80.57 24.35 36.57 17.74 11.50 13.73

CZSL-CV+res (Gautam et al.,
2020)

44.89 13.45 20.15 64.88 15.24 23.90 78.56 23.65 35.51 80.97 25.75 38.34 23.99 14.10 17.63

Tf-GCZSLNK 45.00 30.50 34.57 58.41 18.74 26.85 61.67 37.38 44.90 65.46 36.40 45.75 27.07 23.35 23.84
Tf-GCZSL 46.63 32.42 36.31 57.92 21.22 29.55 64.00 38.34 46.14 64.89 40.23 48.33 28.09 24.70 24.79

aIndicates that the results are obtained by rerunning the respective methods in our proposed setting.
r
o
A
p

t
p
A

there is no work available for task-free learning. For task-agnostic
prediction, the results are compared with the following methods:

• The sequential training of the proposed method without
considering any continual learning setting: Seq-Tf-GCZSL.
• Skorokhodov et al. developed various methods for CZSL

with and without class normalization (CN) (Skorokhodov &
Elhoseiny, 2021):

(i) With CN: AGEM+CZSL+CN,2 EWC+CZSL+CN, MAS+
CZSL+CN

(ii) Without CN: AGEM+CZSL1 (Chaudhry, Ranzato et al.,
2018), EWC+CZSL (Schwarz et al., 2018), MAS+CZSL
(Aljundi, Babiloni, Elhoseiny, Rohrbach, & Tuytelaars,
2018).

• GRCZSL (Gautam, Parameswaran, Mishra, & Sundaram,
2021): It is developed by using generative replay and a
vanilla conditional variational autoencoder (CVAE).
• CZSL-CV+ res (Gautam, Parameswaran, Mishra, & Sun-

daram, 2020): It is developed by using a long-term memory-
based experience replay strategy and CVAE.

or task-free learning, the results are compared with the offline
raining of the proposed method where one can assume all data
re available at once, which is basically an upper bound for the
roposed method. We also perform sequential training of the
roposed methods: Seq-Tf-GCZSLMb and Seq-Tf-GCZSLMst .

.3. Results

This section presents results for both cases of single head
etting, i.e. task-agnostic prediction and task-free learning. The

2 It is to be noted that we performed class-balanced reservoir sampling for
GEM implementation.
 t
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presented results for Tf-GCZSL are obtained using the hyperpa-
rameters and memory size mentioned in Tables 4 and 5.

Task-agnostic Prediction: Results for this setting are presented
in Table 2 for 5 CZSL datasets. The performance results of Tf-
GCZSL without KD are given in the table, i.e., Tf-GCZSLNK . It can be
observed from this table, Tf-GCZSL outperforms all existing CZSL
methods presented in Skorokhodov and Elhoseiny (2021) by at
least 12%, 1%, 3%, 4% and 3% margin for CUB, aPY, AWA1, AWA2
and SUN datasets in terms ofmH , respectively. It also significantly
outperforms the seq-Tf-GCZSL, which is obvious. Moreover, when
we compare the results of Tf-GCZSL and Tf-GCZSLNK , it has been
observed that KD using dark knowledge with ER improves the
performance and helps in alleviating the catastrophic forgetting
further.

Task Free Learning: Results for this setting are presented in
Table 3 for 5 CZSL datasets. We also provide the results of the
proposed methods in the sequential setting (i.e., Seq-Tf-GCZSLMb
and Seq-Tf-GCZSLMst ), and without ‘KD using dark knowledge’
(i.e., Tf-GCZSLMb−NK and Tf-GCZSLMst−NK ). It can be observed
from this table that the proposed methods outperform sequential
methods for all datasets. Further, dark knowledge improves the
performance for most of the cases if we use Mst . Overall, the
second strategy-based task-free learning (Tf-GCZSLMst ) outper-
forms significantly over the first strategy (i.e., Tf-GCZSLMb ) by
more than 5%, 6%, 2%, 9%, and 2% for CUB, aPY, AWA1, AWA2, and
SUN datasets, respectively in terms of H . Moreover, Tf-GCZSLMst
eaches closer to the upper bound (i.e., offline) as it lacks by
nly 8.55%, 9.28%, 4.38%, 1.49%, and 8.14% for CUB, aPY, AWA1,
WA2, and SUN datasets, respectively, in terms of H . This lack of
erformance is due to catastrophic forgetting.
The better performance of Tf-GCZSL in both settings is due

o the joint training of the samples from the long-term (i.e., re-
lay samples) and short-term (i.e., current samples) memories.
lthough the long-term memory does the repetitive training on
he already trained samples, it does not lead to overfitting or
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Fig. 7. Ablation study for task-agnostic prediction.
Fig. 8. Ablation study for task-free prediction.
Table 3
Results for task-free CZSL in terms of seen accuracy (SA) for seen classes, unseen accuracy (UA) for unseen classes, and their harmonic mean (H).

CUB aPY AWA1 AWA2 SUN

SA UA H SA UA H SA UA H SA UA H SA UA H

Offline (Upper bound) 53.5 51.6 52.4 59.36 30.36 40.18 72.8 57.3 64.1 75 55.8 63.9 35.7 47.2 40.6

Seq-Tf-GCZSLMb 38.73 21.42 27.58 23.51 1.68 3.14 20.37 2.12 3.85 14.64 9.43 11.47 27.89 18.88 22.52
Seq-Tf-GCZSLMst 42.48 20.46 27.61 57.23 3.90 7.30 55.00 13.99 22.31 59.67 18.37 28.09 26.42 17.84 21.30

Tf-GCZSLMb−NK 45.69 31.90 37.57 73.13 15.51 25.60 67.65 44.01 53.33 70.08 46.59 55.97 31.04 29.30 30.15
Tf-GCZSLMst−NK 46.70 43.09 44.82 77.68 16.67 27.46 66.24 53.28 59.06 69.38 55.07 61.40 26.86 37.56 31.32

Tf-GCZSLMb 45.08 34.02 38.78 72.55 14.33 23.94 65.64 51.46 57.69 68.42 42.74 52.62 31.00 29.37 30.16
Tf-GCZSLMst 44.52 43.21 43.85 72.12 19.66 30.90 61.79 57.77 59.72 67.42 58.08 62.41 27.76 39.09 32.46
Table 4
Hyperparameters for Tf-GCZSL.
Parameters aPY AWA1 AWA2 CUB SUN

Learning rate (VAE) 0.00015 0.00015 0.00015 0.00015 0.00015
Batch size (VAE) 50 50 50 50 50
Training epochs (VAE) 100 100 100 100 100
Learning rate (classifier) 0.001 0.001 0.001 0.001 0.001
Weight decay (classifier) 0.01 0.01 0.01 0.001 0.0003
Batch size (classifier) 32 32 32 32 32
Training epochs (classifier) 35 35 35 25 25

any adverse effect. In contrast, this joint training regularizes the
model for better generalization.

5.4. Ablation study on CUB dataset

In this section, an ablation study is presented for the CUB
ataset.

or task-agnostic prediction: The ablation study is presented in
terms of the following three factors:

• Task-wise analysis: Task-wise analysis is depicted in
Fig. 7(a). It can be observed from this figure that the per-
formance of Tf-GCZSL improves as the number of tasks
increases because as the number of tasks increases, then
task-relatedness between seen and unseen class samples
495
increases. Task-relatedness increases because the number of
seen samples also increases, and it enriches the knowledge
of the model. Although Tf-GCZSL improves performance
when tasks increase, seq-Tf-GCZSL performance decreases
as it does not use any continual learning strategy.
• Analysis on replay memory: The performance of Tf-GCZSL

is very sensitive to the size of the memory. Size is kept
in terms of the number of samples per class. If there are j
number of classes and k number of samples per class, then
the memory size is j ∗ k. It can be observed from Fig. 7(b)
that the performance of TF-GCZSL improves as memory size
increases, as the memory can store more samples from the
past experience.
• Analysis on latent dimensions: It is another important

factor for CZSL. The performance of TF-GCZSL is depicted
in 7(c) on different latent dimensions. This figure suggests
that the size of latent dimensions should not be very small
or very large. If it is very small, it cannot provide more
discriminative features. If it is very large, then the degree of
freedom increases, which will not provide compact features.

For task-free learning: Similarly, the ablation study is conducted
on memory size and latent dimensions for task-free prediction.
Since Tf-GCZSL uses two kinds of memories: replay memory M
and short-term memory Mst , analysis based on both memories
is presented in Figs. 8(a) and 8(c) for M and Mst , respectively. In
the case of M, performance increases as memory size increases
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Table 5
Memory size used in Tf-GCZSL.
Parameters aPY AWA1 AWA2 CUB SUN

Mst 500 500 500 500 500
Mb 50 50 50 50 50
M 25 ∗ total classes 25 ∗ total classes 25 ∗ Total classes 10 ∗ total classes 5 ∗ total classes

Batch size from ER Memory 100 100 100 100 100

C

C

C

C

F

F

F

G

G

H

H

H

H

H

J

K

K

K

L

L

L

M

due to the same reason as discussed above. In the case of Mst ,
ize is not impacting much on the performance as these samples
re jointly trained with the larger memory M in the task-free
etting. Therefore, performance is very similar for all the cases.
n the ablation of latent dimension in Fig. 8(b), we again observe
he similar plot as 7(c). Moreover, for all three plots in Fig. 8,
e also plot sequential results for better understanding, and
he results are obvious that the proposed methods outperform
equential methods for all cases. Additionally, it is interesting to
ote that since samples are presented only once in Tf-GCZSLMb it
as almost no overhead cost while Tf-GCZSLMst will add a little
verhead cost.

. Conclusion

This is the first work that tackles the continual Zero-shot
earning for the task-free set-up to the best of our knowledge.
his paper has proposed general task-free continual zero-shot
earning strategies using VAE, ER using long-term memory, KD
ith dark knowledge, and two kinds of short-term memories. The
erformance is evaluated on five benchmark data, and the results
ndicate that the Tf-GCSZL achieves results that are closer to the
pper bound with minimal catastrophic forgetting. The frame-
ork is generic; therefore, one can use other ZSL approaches to
evelop it for task-free CZSL.
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