
ARTICLE

Projected topological branes
Archisman Panigrahi 1,2, Vladimir Juričić 3,4✉ & Bitan Roy 2,5✉

Nature harbors crystals of dimensionality (d) only up to three. Here we introduce the notion

of projected topological branes (PTBs): Lower-dimensional branes embedded in higher-

dimensional parent topological crystals, constructed via a geometric cut-and-project proce-

dure on the Hilbert space of the parent lattice Hamiltonian. When such a brane is inclined at a

rational or an irrational slope, either a new lattice periodicity or a quasicrystal emerges. The

latter gives birth to topoquasicrystals within the landscape of PTBs. As such PTBs are shown

to inherit the hallmarks, such as the bulk-boundary and bulk-dislocation correspondences,

and topological invariant, of the parent topological crystals. We exemplify these outcomes by

focusing on two-dimensional parent Chern insulators, leaving its signatures on projected one-

dimensional (1D) topological branes in terms of localized endpoint modes, dislocation modes

and the local Chern number. Finally, by stacking 1D projected Chern insulators, we showcase

the imprints of three-dimensional Weyl semimetals in d= 2, namely the Fermi arc surface

states and bulk chiral zeroth Landau level, responsible for the chiral anomaly. Altogether, the

proposed PTBs open a realistic avenue to harness higher-dimensional (d > 3) topological

phases in laboratory.
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Crystals foster periodic structures, characterized by a set of
discrete symmetries, such as translations, rotations and
reflections, with their dimensionality limited to three in

nature. In crystalline materials electrons experience periodic
potential generated by the underlying periodic lattice, which in
turn yields a rich manifold of electronic band structures. The
latter can exhibit nontrivial topological properties, giving birth to
topological crystals with remarkably universal features, such as
boundary gapless modes, encoding the hallmark bulk-boundary
correspondence1–13. By now the role of crystalline symmetries
has been explored exhaustively, giving rise to general classifica-
tions of insulating and gapless topological states, as well as their
material realizations, which are naturally limited to three spatial
dimensions14–22. However, the pursuit of extending the jur-
isdiction of topological crystals beyond three spatial dimensions
in real materials thus far remained elusive.

Here we propose a novel solution to this practical challenge by
introducing the notion of Projected topological branes (PTBs):
Holographic images of higher-dimension topological crystals on
lower-dimensional branes. Depending on the orientation of such
branes in the parent crystal, they can either manifest an emergent
lattice periodicity or aperiodic quasicrystals, as illustrated in
Fig. 1. The latter give birth to topoquasicrystals within the larger
territory of PTBs. In particular, the PTBs are constructed by
implementing the top-bottom geometric cut-and-project proce-
dure on the lattice models of the parent topological crystals.
Remarkably, the PTBs inherit and manifest the key topological
features of parent crystals: the bulk-boundary [Fig. 2] and the
bulk-lattice defect [Figs. 3 and 4] correspondences, and topolo-
gical invariant [Fig. 5] for insulators. Topological semimetals on
PTBs inherit the bulk-boundary correspondence [Fig. 6] and
topological response [Fig. 7] of the parent phase.

General framework. PTBs are described by the Hamiltonian for
sharp quasiparticles with infinite lifetime

HPTB ¼ H11 � H12H
�1
22 H21; ð1Þ

realized by integrating out the sites living outside the lower-
dimensional brane. Here H11 and H22 are the Hamiltonian for the

sites residing within and falling outside such brane, respectively,
and H12 captures the coupling between them, with H21 ¼ Hy

12.
The Hamiltonian for the parent crystal thus takes the block form

Hparent ¼
H11 H12

H21 H22

� �
: ð2Þ

By construction, this framework is insensitive to the dimension-
ality and symmetry class of the parent system, the range of
hopping and the slope of the brane therein, as long as the inverse
of H22 exists. The latter condition can be satisfied as possible
singularities (zero modes of H22) are always isolated, and there-
fore can be regularized by taking a proper limiting procedure23.
See Supplementary Note 1 of the Supplemental Information (SI).
Therefore, gapped phases on the parent crystal yield gapped states
on the branes, while here we conjecture that the PTBs possibly
inherit gapless topology from the parent gapless phase, as a
specific example with isolated point nodes (Weyl semimetal)
suggests [Figs. 6 and 7]. Notice that both Hparent and HPTB are
Hermitian, thereby always yielding real energy eigenvalue spectra.

From the structural point of view, when such a brane is
inclined with a rational and irrational slope within the parent
crystal, the projected lattice constitutes a lower-dimensional
crystal with an emergent periodicity and a quasicrystal, devoid of
the translational symmetry, respectively24,25. If the parent
Hamiltonian (Hparent) contains only nearest-neighbor hopping
elements, each of the components is schematically shown in
Fig. 1.

In the context of quasicrystals, here we bridge a long-standing
gap between the description of their quantum-mechanical electro-
nic and geometric properties by introducing the notion of
topoquasicrystal that realizes the dimensional descendent in the
Hilbert space of the electronic wavefunctions through the
projection of the parent Hamiltonian onto the quasicrystalline
brane. This approach is fundamentally different than earlier works,
either implementing specific topological models directly on
quasicrystal networks26–29 or allowing access to specific quasicrys-
tals in the presence of aperiodic potentials30–33. Most importantly,
as we demonstrate here, both crystal and quasicrystal branes inherit

Fig. 1 Construction of a one-dimensional (1D) projected lattice. The projected lattice is constituted by the sites residing within the (a) orange and (b) red
lines, from a parent two-dimensional (2D) square lattice of lattice spacing a. These lines are defined by yi ¼ Sðx� ~xiÞ þ xi for i= u and d, with xu > xd, ~xu ¼ 1
and ~xd ¼ 2. Here x measures the horizontal coordinate of lattice sites. In (a) S= 2/3 and in (b) S= φ−1, where φ ¼ ð1þ ffiffiffi

5
p Þ=2 is the golden ratio. Notice

2/3 is a rational approximant of φ−1. When the garnered sites (blue dots) are projected (shown by black dashed lines) onto a 1D chain (green dots), a new
lattice periodicity emerges in (a), while in (b) they constitute a Fibonacci quasicrystal, devoid of periodicity. Thermodynamic limit can be approached by
increasing xu for a fixed xd, which does not alter the periodicity in (a) or Fibonacci sequence in (b), such that the number of sites within the brane N/L2→ 0,
where L is the linear dimension of the parent square lattice in x and y directions, as both N, L→∞. The solid black (blue) lines constitute the hopping matrix
elements of H22 (H11) and purple dashed lines to H12 and H21 appearing in HPTB [Eq. (1)], originating from a parent Hamiltonian containing only nearest-
neighbor hopping elements [Eq. (3)].
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the electronic topology of the parent crystal, opening a path to
explore the electronic topology of higher-dimensional crystals,
otherwise inaccessible in laboratory.

Key results. Here we illustrate generic features of PTBs by
focusing on a paradigmatic and possibly the simplest example:
parent 2D Chern insulator on a square lattice. By implementing
the geometric cut-and-project procedure on the corresponding
lattice regularized Hamiltonian, we showcase its footprint on an
emergent 1D crystal as well as on the 1D Fibonacci quasicrystal.
In particular, we find that in the entire parameter regime of the
parent 2D Chern insulator, the projected 1D chain hosts topo-
logical endpoint modes [Fig. 2]. In addition, when the 2D Chern

insulator is translationally active, featuring finite momentum
band inversion, e.g., at the M point of the 2D Brillouin zone,
dislocation lattice defects harbor robust topological modes
around its core, as long as the defect core is confined within the
projected 1D chain [Figs. 3 and 4]. In addition, both parent 2D
Chern insulator and 1D Chern insulator on PTBs possess
quantized local Chern number [Fig. 5]. Finally, by stacking such
1D projected Chern insulators we construct Weyl semimetals in
two dimensions, bearing hallmarks of a parent 3D Weyl semi-
metal. Specifically, we show the existence of gapless Weyl nodes,
Fermi arc surface states [Fig. 6], as well as the chiral zeroth
Landau level. The latter is responsible for chiral anomaly, which
we anchor by numerically computing the associated universal
coefficient [Fig. 7].

Fig. 2 Bulk-boundary correspondence of a projected Chern insulator in one dimension. The underlying 1D chain is embedded in a parent 2D square lattice
at a rational (a–c) and an irrational (d–f) slopes. Energy spectra of HPTB [Eq. (1)] for (a) m/t0= 2 and 6 (yielding identical energy spectra), and (b)
m/t0=− 2 and 10 (yielding identical energy spectra) with periodic (black) and open (red) boundary conditions. Here we set t= 2t0= 1 [Eq. (3)]. Only in
the topological regime (a) we find near zero-energy mid-gap modes in systems with open boundary condition. c The local density of states of these modes
are highly localized at the endpoints of the 1D chain hosting projected Chern insulators, as shown in (i) for m/t0= 2 and 6. As we approach the band gap
closing, these modes start to delocalize as shown in (ii) for m/t0= 3.5 and 4.5, and (iii) for m/t0= 3.8 and 4.2. d–f Are analogous to (a–c), respectively.
Here we consider a parent square lattice with linear dimension L= 60 in both x and y directions, and 1D chains are constructed with xu= 12 and xd= 6
[Fig. 1], such that it contains only 10.5% (a–c) and 11.0% (d–f) sites of the parent crystal.

Fig. 3 Construction of a single edge dislocation. Volterra cut-and-paste procedure on a parent 2D square lattice by removing a line of atoms (cyan
circles), ending at its center or core (red circle) and subsequently reconnecting the sites living on the edges across it. Projected (a) 1D crystal and (b) 1D
quasicrystal in the presence of a dislocation, with its core falling within the brane. The Burgers vector b= aex in both cases resides within the hyperplane of
the parent crystal. Rest of the details are the same as in Fig. 1.
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Results
Model. We consider the spinless Bernevig-Hughes-Zhang model
for 2D insulators4

H ¼ t ∑
j¼x;y

sinðkjaÞτj � m� 2t0 ∑
j¼x;y

1� cosðkjaÞ
h i� �

τz: ð3Þ

Here k= (kx,ky) is the spatial momentum and a is the lattice
spacing. The vector Pauli matrices τ= (τx,τy,τz) operate on sub-
lattice index. This model harbors topological insulator for
0 <m/t0 < 8. Otherwise, the system describes a trivial or normal
insulator. Within the former regime, there are two distinct pha-
ses. Namely, (a) the Γ phase for 0 <m/t0 < 4, with the band
inversion at the Γ= (0,0) point of the Brillouin zone, and (b) the
M phase for 4 <m/t0 < 8, featuring the band inversion at the
M= (π, π)/a point. These two phases are characterized by the
nontrivial bulk topological invariant, the first Chern number
C=− 1 and+ 1, respectively, while C= 0 for normal insulator.
See Supplementary Note 2A and Supplementary Fig. 1 of the SI.

Bulk-boundary correspondence. We numerically diagonalize H
[Eq. (3)] upon implementing it on a square lattice with open
boundary conditions, which yields one-dimensional edge modes
only when 0 <m/t0 < 8, manifesting the bulk-boundary corre-
spondence. Next, we construct the effective Hamiltonian (HPTB)
following the prescription shown in Eq. (1) on the 1D chain,
embedded in the parent square-lattice crystal. See Supplementary
Note 2B of the SI. In the entire topological regime we find near
zero-energy in-gap modes, which are highly localized at the end
points of such a 1D chain. By contrast, in the trivial regime the
spectra ofHPTB are devoid of such endpoint modes. To anchor this
claim, we repeat this procedure in a system with periodic boundary

condition, for which the edge and end-point in-gap modes there-
fore disappear from the spectra of H and HPTB, respectively. The
results are displayed in Fig. 2. We arrive at identical conclusions
irrespective of the slope of the embedded 1D chains in the parent
square lattice. These observations in turn strongly suggest the
existence of insulating PTBs on 1D crystals and Fibonacci quasi-
crystals from the bulk-boundary correspondence, with the end-
point in-gap modes as the holographic images of the 1D edge
modes of parent Chern insulators on 2D square lattice.

Dislocations. To further corroborate the topological nature of the
1D projected brains, we study their response to the bulk-
dislocation defects, known to be sensitive to the electronic
topology34–39. In particular, despite supporting robust gapless
edge modes, the Γ and M phases are distinguishable by the first
Chern number. Furthermore, the band inversion is at different
momentum (Kinv) in these two phases. Therefore, the bulk dis-
location lattice defects, being sensitive to Kinv, are instrumental to
distinguish them.

A dislocation on the parent 2D square lattice is created by
removing a line of atoms up to a site, known as its core or center,
and subsequently joining the sites across the missing line of
atoms: Volterra cut-and-paste procedure. As a result, any closed
loop around the dislocation core features a missing translation by
the Burgers vector b, with b= aex in Fig. 3. See also
Supplementary Fig. 2 of the SI. Consequently, an electron in a
topological insulator encircling the dislocation core picks up a
hopping phase exp½iΦ�, where Φ=Kinv ⋅ b (modulo 2π)34. Thus
in the Γ phase Φ= 0, while Φ= π in the M phase, implying that
the dislocation defect hosts a zero energy mid-gap state in the M
phase35. As dislocation defects are associated with the breaking of

Fig. 4 Single edge dislocation with Burgers vector b= aex [Fig. 3] as a bulk probe of translationally active projected Chern insulator in one dimension.
The underlying 1D chain is embedded in a 2D square lattice with rational (a–c) and irrational (d–f) slopes. Zero energy dislocation modes (in red) can be
found in the spectra of HPTB [Eq. (1)] only for (a) the M phase (m/t0= 6), but not for (b) the Γ phase (m/t0= 2) of the parent 2D Chern insulator. Here we
take t= 2t0= 1 [Eq. (3)], and impose periodic boundary condition in the x direction. The linear dimension of the parent square lattice is L= 60 in both x
and y directions, and dislocation core at (31a,30a) falls within the projected 1D chain. Such a chain is constructed with xu= 12 and xd= 10 (a–c), and xu= 14
and xd= 12 (d–f), respectively containing 7.8% and 8.7% of the sites from parent square lattice [Fig. 1]. c The local density of states for the zero-energy
dislocation modes are strongly localized at the core of the dislocation, after being projected onto the 1D chain, for (i)m/t0= 6. As we approach the band
gap closing these modes delocalize as shown in (ii) for m/t0= 4.02 and (iii) for m/t0= 4.01, which can be seen from the prominent gradual decay of the
local density of states for the dislocation mode at its core. In addition, the local density of states spreads significantly over the entire 1D brane as we
approach the band gap closing point at m/t0= 4, also indicating the melting of the dislocation mode. A tiny fraction of the spectral weight for zero energy
mode appears on the right side of the 1D brane even for m/t0= 6.0 due to the leakage of dislocation mode to the y-directional edges in the parent square
lattice, as we impose the open boundary condition in the y direction with a single edge dislocation with the Burgers vector b= aex. A weak left-right
asymmetry arises since the 1D brane breaks such symmetry in the parent square lattice [Fig. 3]. d–f Are analogous to (a–c), respectively.
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lattice translational symmetry, the M phase is referred to as
translationally active16.

Next we numerically diagonalize the projected Hamiltonian
HPTB [Eq. (1)] in the presence of a single dislocation on the
parent 2D square lattice, such that the core or center of the defect
resides within the embedded 1D chain [Fig. 3]. See Supplemen-
tary Note 3 of the SI. Irrespective of its slope, we find zero-energy
dislocation mode in the M phase of the 2D Chern insulator. The
local density of states of the dislocation mode is strongly localized
around the center of this defect even when projected onto the 1D
chain. Nor the Γ phase neither the trivial insulator accommodate
zero-energy dislocation modes. See Fig. 4.

A comment is due at this stage. Recall Fibonacci quasicrystal is
devoid of translational symmetry. Still it continues to accommo-
date robust dislocation modes when the M phase is projected onto
the quasicrystalline brane. By contrast, when the Hamiltonian in
Eq. (3) is directly implemented on an amorphous or a 2D
quasicrystalline network, both of which lack the translational
symmetry, the system only features a Chern insulator with
C=− 1, the shadow of the Γ phase, and a normal insulator with
C= 040. However, the footprint of the M phase disappears. In this

regard, 1D PTBs are genuine holographic images of the 2D Chern
insulator, harnessing all the phases of the original topological
crystal with dislocations as the smoking gun probe of translation-
ally active phase therein, as long as its core resides within the brane.

Topological invariant of PTBs. To establish a one-to-one cor-
respondence between the parent 2D Chern insulator on a square
lattice and its realizations on 1D PTBs, finally we show that both
of them possess the same topological invariant, namely the on site
or local Chern number (CL)41. The details are discussed in Sup-
plementary Note 2C and 2D of the SI. The local Chern number is
quantized to CL=− 1 and+ 1 respectively for 0 <m/t0 < 4 and
4 <m/t0 < 8, when computed on the sites that are buried in the
interior of the square lattice. On 1D PTBs, CL also takes the same
quantized values, when computed on the sites that are residing at
middle of two confining lines, defining the boundaries of the
PTBs within the parent square lattice. These sites are shown in
blue, which fall on a line shown in green in Fig. 5a, c. The var-
iation of CL along these lines is shown in Fig. 5b, d, when the PTB
is inclined at a rational and an irrational slope, respectively. For
additional results, see Supplementary Fig. 1 of the SI.

Fig. 5 Topological invariant of projected Chern insulators on 1D branes. a Local Chern number (CL) is computed on the blue sites, residing around the
green lines, given by ymid= (yu+ yd)/2 when the brane is inclined at a rational slope [Fig. 1]. b The variation of CL along the green line, on which the sites
are indexed by N, is shown for m/t0= 2 (blue dots) and m/t0= 6 (red dots) [Eq. (3)], displaying its quantized values, equal to the Chern number (C) of
parent 2D Chern insulator. c and d Are analogous to (a) and (b), respectively, but when the brane is inclined at an irrational slope. For details see
Supplementary Note 1 and Supplementary Fig. 1 of the SI. The results are obtained by constructing the branes from a parent square lattice of linear
dimension L= 100 in both x and y direction for xu= 22 and xd= 12, such that they contain (b) 10.3% and (d) 10.6% of sites of parent square lattice [Fig. 1].
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Fig. 6 Projected Weyl semimetal (PWSM). PWSM is constructed by stacking 1D projected Chern insulator in the z direction in a translationally invariant
fashion. The underlying 1D chain is inclined at a rational [irrational] slope in the parent 2D square lattice in (a–c) [(d–f)]. a Energy spectra of HPTB(kz) [Eq.
(1)] for m= 4 and t= tz= 2t0= 1 [Eqs. (3) and (4)], displaying two Weyl nodes at kz= ± π/2 (see Inset). Here kz is measured in units of a−1 and we
impose periodic boundary condition in both x and y direction. b Fermi arc states of HPTB(kz) in between two Weyl nodes with open boundary conditions in
the x and y directions. As we approach the Weyl nodes, the Fermi arcs get delocalized, and at kz= ± π/2 they leak through the bulk to connect two ends of
the underlying projected 1D chain. For (a) and (b) the linear dimension of the square lattice is L= 32 in both x and y directions, and the 1D chain is
constructed with xu= 8 and xd= 6, such that it contains 19.7% [(a–c)] and 20.0% [(d–f)] of the sites of parent square lattice [Fig. 1]. c Fermi arcs with
open boundary conditions along all three directions in a system with linear dimensions L= 16 in the x and y directions, and L= 19 in the z direction. The 1D
brain for each z is constructed with xu= 7 and xd= 5 in (a–c), and xu= 8 and xd= 6 in (d–f), respectively containing 14.5% and 15.6% of the sites of the
parent 3D cubic lattice. The local density of states shows left-right asymmetry as the embedded 1D chain breaks such symmetry in the parent 2D square
lattice [Fig. 1]. d–f Are analogous to (a–c), respectively.

Fig. 7 Chiral zeroth Landau level and chiral anomaly in a projected Weyl semimetal (PWSM). The underlying 1D chain (hosting projected Chern or
normal insulators) is embedded in a parent 2D square lattice at a rational [(a) and (b)] and an irrational [(c) and (d)] slopes. a Energy spectra of
HPTB(kz, B) [Eq. (1)] in the presence of a uniform magnetic field B ¼ Bẑ with periodic (open) boundary condition along x (y) direction. Chiral zeroth Landau
level (red dots) crosses the zero energy at kz= ± π/2, locations of the Weyl nodes [Fig. 6]. b Accumulated charge (δQ) around a magnetic flux tube
piercing a PWSM in the z direction as a function of Φ/Φ0, where Φ (Φ0) is the magnetic flux (flux quantum). Within the numerical accuracy the slope of
the straight line is π/2, in agreement with field theoretic prediction50,51. c and d Are analogous to (a) and (b), respectively. The linear dimension of the
system L= 32 in the x and y directions, and we set xu= 8 and xd= 6 [Fig. 1].
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Weyl branes. Translationally invariant stacking of topological
insulators in the out of the hyperplane direction give rise to weak
topological phases. Generically, they inherit the topological
invariant of the underlying insulator. As such weak topological
phases can be insulating or gapless, with 3DWeyl semimetal as its
prominent representative42, which we now use to illustrate a
rather simple example of a weak PTB.

Weyl semimetal can be constructed by stacking 2D Chern
insulators on a cubic crystal, captured by the Hamiltonian
Hweak=H+Hz, where

Hz ¼ tz cosðkzaÞτz ð4Þ
and tz is the interlayer hopping in the z direction. This model
accommodates both Weyl semimetals and weak Chern insulators
in the (m/t0,tz/t0) plane43. For example, we find Weyl semimetals
with two Weyl nodes at k ¼ k?± , where k?± ¼ ðπ=a; π=a; ± k?z Þ,
with k?z ¼ π=ð2aÞ for m= 4 and t= tz= 2t0= 1. See Supplemen-
tary Fig. 3 of the SI. Next we search for analogous Weyl systems
in two spatial dimensions by stacking 1D projected Chern
insulators in the z direction, thus named projected Weyl
semimetal (PWSM) hereafter.

Treating kz as a good quantum number, we construct HPTB(kz)
from the parent Hamiltonian Hweak following the prescription
from Eq. (1), with periodic boundary conditions in the x and y
directions. See Supplementary Note 4 of the SI. The resulting
energy spectra display two Weyl nodes at kz ¼ ± k?z for m= 4
and t= tz= 2t0= 1. Thus 2D PWSM hosts Weyl nodes exactly at
the same points in the 1D Brillouin zone as its parent 3D
counterpart [Fig. 6a, d].

Fermi arcs. The bulk-boundary correspondence of Weyl semi-
metal is encoded by the Fermi arc states between two Weyl
nodes42. See Supplementary Fig. 4 of the SI. Notice a PWSM is
constructed by stacking 1D projected Chern insulators between
the Weyl nodes (jkzj≤ k?z ), beyond which trivial insulators occupy
the 1D Brillouin zone along kz. Each copy of such 1D projected
Chern insulator supports endpoint modes, a locus of which
constitute the Fermi arc states, when jkzj≤ k?z . Also notice that for
each kz, the localization length of the endpoint modes is inversely
proportional to the bulk gap of the underlying 1D projected
Chern insulator. The latter is maximum for kz= 0 and decreases
symmetrically as we approach the Weyl nodes at kz ¼ ± k?z ,
where it vanishes. Consequently, the Fermi arc is maximally
localized at the end points of the underlying 1D chain for kz= 0,
while it is completely delocalized and leaks through the bulk Weyl
nodes at kz ¼ ± k?z , where opposite ends of the 1D chain of the
PWSM get connected. These features are shown in Fig. 6b, e.
Extended Fermi arcs are also observed, when we implement open
boundary condition along all three directions. See Supplementary
Note 4B of the SI. We show their localization along the brane in
each 2D layer in Fig. 6c, f. These outcomes are qualitatively
insensitive to whether 1D chain displays emergent crystalline or
quasicrystalline order.

Chiral anomaly. Yet another hallmark of 3D Weyl semimetals is
the chiral anomaly, stemming from the 1D chiral zeroth Landau
level44. Specifically, when a Weyl semimetal is immersed in a
quantizing magnetic field (B) the electronic bands quench onto a
set of Landau levels that are dispersive in the field direction (say ẑ),
along which momentum (kz) is a conserved quantity. Of particular
interest is the zeroth one, the only Landau level that crosses the zero
energy at the Weyl nodes. See Supplementary Fig. 5 of the SI. Then
in the presence of an external electric field (E), applied in the
direction of the B field, the zeroth Landau level causes pumping of
electric charge from the left to the right chiral Weyl nodes,

respectively located at k?± , for example. Consequently, the number
of the left and right chiral fermions is not conserved individually,
leading to the celebrated chiral anomaly in quantum crystals44–46.
The total charge, however, remains conserved.

Next we show that the concept of chiral anomaly remains
equally operative in PWSM, as it continues to host chiral zeroth
Landau level crossing the zero energy at ± k?z . To this end we
introduce a uniform magnetic field in a 3D Weyl semimetal via
the Peierls substitution exp

�
2πi
Φ0

R rj
ri
A � dr� to the hopping

amplitudes between the sites at ri and rj, where Φ0= 2πℏ/e is
the magnetic flux quantum, ℏ= 1 is the Planck’s constant, A ¼
�Byx̂ is the vector potential, and B ¼ ∇ ´A ¼ Bẑ. We impose
periodic (open) boundary condition in the x (y) direction and set
B= 1/Ly, where Ly is the linear dimension of the system in the y
direction. Subsequently, we construct the effective Hamiltonian
for PWSM HPTBðkz;BẑÞ, following Eq. (1). See Supplementary
Note 4C of the SI. Numerical diagonalization of HPTBðkz;BẑÞ
reveals chiral zeroth Landau level in 2D PWSM, crossing the zero
energy exactly at kz ¼ ± k?z , irrespective of whether the projected
1D system features lattice periodicity or Fibonacci sequence, as
respectively shown in Fig. 7a, c, inheriting the signatures of parent
3D Weyl semimetal. Thus 2D PWSM is expected to feature chiral
anomaly.

To quantify chiral anomaly in PWSM, we note that parent
time-reversal symmetry breaking 3D Weyl semimetal supports
anomalous Hall conductivity, which is captured by a Chern-
Simons term47–51. Its temporal component for a B-field in the z
direction yields a charge density ρ ¼ e2ðk?zajBjÞ=ð2π2Þ. To this
end we insert a singular magnetic flux tube in the Hamiltonian
for parent 3D Weyl semimetal Hweak(kz), such that B= Bδ(r−
r0), where r and r0 are measured in units of the lattice spacing a.
See Supplementary Note 4D of the SI. The accumulated charge
δQ (in units of e/π) in the close vicinity of such magnetic flux tube
in a 3D Weyl semimetal is predicted to be50,51 (see Supplemen-
tary Note 5 and Supplementary Fig. 6 of the SI)

δQ ¼ QðjBjÞ � Qð0Þ ¼ 	
k?za


ðΦ=Φ0Þ: ð5Þ
Next we project Hweak(kz) to construct the corresponding HPTB,
such that the core of the flux tube resides within the underlying
projected 1D chain. We compute δQ in a 2D PWSM for Φ/
Φ0≪ 1, such that the magnetic length is sufficiently large and
field theoretic predictions remain operative. The results are
shown in Fig. 7b, d, respectively when the underlying 1D chain
shows lattice periodicity and Fibonacci sequence. Within the
numerical accuracy the straight lines in the (Φ/Φ0,δQ) plane
display a slope equal to π/2, confirming the chiral anomaly in 2D
PWSMs, with its universal coefficient quantitatively matching the
field theoretic prediction.

Discussions
Considering simple, but paradigmatic representatives of topolo-
gical insulators and semimetals, namely 2D Chern insulator and
3D Weyl semimetal on parent crystals, here we demonstrate their
incarnations as, respectively, 1D and 2D PTBs that feature either
emergent crystalline or aperiodic quasicrystalline order. Most
importantly, the proposed mechanism is sufficiently general to
open a vast unexplored territory of higher-dimensional (d > 3)
topological phases that can now be harnessed in three-
dimensional world. For example, topological phases defined on
five- and six-dimensional cubic lattices can be realized on 2D
Penrose and 3D icosahedral topoquasicrystals, respectively. This
is so because the construction of the effective Hamiltonian HPTB

is insensitive to the dimensionality of the parent topological
crystal and PTB. As such, the concept of PTBs should motivate
systematic symmetry-based investigations of electronic band

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-01006-x ARTICLE

COMMUNICATIONS PHYSICS |           (2022) 5:230 | https://doi.org/10.1038/s42005-022-01006-x | www.nature.com/commsphys 7

www.nature.com/commsphys
www.nature.com/commsphys


structures in d > 3. The proposed methodology should also be
applicable to driven or Floquet crystals, where similar outcomes
will lead to the construction of projected Floquet topological
branes, hosting nondissipative topological quasimodes on lower-
dimensional dynamic branes. In addition, this construction can
be useful to study the interaction and/or disorder effects on
higher-dimensional crystals by focusing on their lower-
dimensional branes. These novel avenues will be explored sys-
tematically in the future.

As far as the experimental realizations of PTBs are concerned,
the designer electronic materials stand as a promising
platform52–55, where our proposal can be tested by tailoring
requisite hopping elements of HPTB. Robust topological modes on
designer PTBs can be detected using a scanning tunneling
microscope. Moreover, the projected Hamiltonian HPTB is equally
germane to classical systems. Therefore, PTBs can also be engi-
neered on various metamaterials, among which topolectric
circuits56–58, phononic59,60 and photonic61 lattices are the most
promising ones. Topological modes on projected circuit branes
can be detected from a diverging electrical impedance, while those
in projected photonic (phononic) branes can be identified from
two-point pump probe or reflection spectroscopy (mechanical
susceptibility). In future it will be worthwhile to investigate the
robustness of PTBs on the range of hopping therein, given that
longer-range hopping elements are generated by the projection.
Such analysis will further increase the prospect of material rea-
lizations of PTBs at least in designer and metamaterials. Indeed,
longer-range hoppings have recently been engineered on topo-
lectric circuits62, which can possibly be also implemented on
photonic and phononic lattices.

Methods
To capture topological properties of PTBs featuring either emergent crystalline or
quasicrystalline Fibonacci order [Fig. 1], we compute the corresponding effective
Hamiltonian (HPTB) from the parent higher-dimensional crystal, described by the
Hamiltonian Hparent. This procedure is summarized in Eqs. (1) and (2). For the
sake of concreteness, here we focus on 2D square lattice quantum anomalous Hall
insulator and capture its footprints on 1D PTBs. Then from the energy spectra and
the spatial distribution of the near zero energy modes of HPTB we demonstrate the
bulk-boundary [Fig. 2] and bulk-dislocation [Fig. 4] correspondences. For the
latter, we ensure that the dislocation core resides within the PTB [Fig. 3]. The local
Chern number for PTBs is computed from the eigenfunctions of all the filled states
at negative eigenenergies of HPTB [Fig. 5]. While constructing the effective
Hamiltonian for projected Weyl branes in two dimensions from the parent 3D
Weyl semimetals, realized by stacking layers of 2D Chern insulators in the z
direction in a translationally invariant fashion, we treat kz as good quantum
number and therefore the projection is performed only on the xy plane. This
procedure is employed to compute the effective band structure and Fermi arcs
[Fig. 6], as well as Landau level spectra and chiral anomaly [Fig. 7] of 2D projected
Weyl branes. To compute the universal coefficient associated with the chiral
anomaly, we ensure that the core of the magnetic flux tube threads the PTB. To
capture the real space structure of the Fermi arcs [Fig. 6], we also consider a parent
3D system with finite linear dimension in the z direction. Still then we perform the
projection only on the xy plane to construct 2D Weyl brane. Additional technical
details for each scenario are discussed in the Supplemental Information.

Data availability
The data and software code for generating the figures presented in the main text and
supplementary materials are available at https://doi.org/10.5281/zenodo.6851134.
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