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A systematic study of arsenic 
adsorption and removal 
from aqueous environments 
using novel graphene oxide 
functionalized UiO‑66‑NDC 
nanocomposites
Simranjeet Singh1,8, T. S. Sunil Kumar Naik2, Basavaraju U2, Nadeem A. Khan3,8, 
Abdul Basit Wani4, Sushant Kumar Behera2, Bidisha Nath5, Shipra Bhati6, Joginder Singh7 & 
Praveen C. Ramamurthy1*

This study investigates the removal of As(V) from aqueous media using water stable UiO‑66‑NDC/
GO prepared via the solvothermal procedure. The synthesized material was analyzed by Raman 
spectroscopy, UV–visible, X‑ray powder diffraction (XRD), Transmission electron microscopy (TEM), 
Fourier Transform Infrared spectroscopy (ATR‑FTIR), scanning electron microscopy (SEM), and 
Brunauer–Emmett–Teller (BET) support its applicability as a super‑adsorbent for the adsorption 
of As(V) ions from aqueous solutions. The effect of various parameters, including initial ion 
concentration, temperature, adsorbent dose, and pH on the adsorption of As(V) was studied to 
recognize the optimum adsorption conditions. The  qmax obtained for this study using Langmuir 
isotherms was found at 147.06 mg/g at room temperature. Thermodynamic parameters ΔH°, ΔG°, 
and ΔS° were also calculated and negative values of ΔG° represent that the As(V) adsorption process 
occurred exothermically and spontaneously. Meanwhile, theoretical density functional simulation 
findings are accommodated to support these experimental results. It is observed that the dynamic 
nature of graphene oxide and the UiO‑66 NDC nanocomposite system becomes superior for 
adsorption studies due to delocalized surface states. UiO‑66‑NDC/GO also showed high reusability for 
up four regeneration performances using 0.01 M HCl as a regenerant.

Groundwater pollution is currently a major environmental issue all over the world, and it is frequently caused 
by the presence of different wastewater  contaminants1,2. Arsenic (As) is one of the world’s top 20 hazardous 
chemicals and it can be found in a variety of inorganic and organic forms. Combustion of fossil fuels, Mining, and 
insecticides are all examples of anthropogenic and natural sources of As  pollution3. The World Health Organiza-
tion (WHO) and Environmental Protection Agency United States (EPA) both recommended a 10-ppb threshold 
for drinking  water4. Arsenic in inorganic forms (arsenate and arsenite), is more toxic than arsenic in organic 
forms and is found naturally in groundwater and  soil5. Arsenic in inorganic forms affects more than 200 million 
population worldwide, and its long-term exposure causes serious illness, dysfunction of the nervous system, 
skin cancer, lung cancer, kidney failure, liver diseases, urinary bladder cancer, cardiovascular and peripheral 
 disease6. Large-scale groundwater poisoning by As in Bangladesh in the 1990s was the world’s largest poisoning 
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 occurrence7. The health of nearly 100 million Indians is threatened by groundwater contamination of  As8. As a 
result, arsenic contamination is a severe issue that requires the development of effective clean-up technologies.

Various treatment techniques have been documented for arsenic removal from water, including adsorp-
tion, bioremediation, coagulation-flocculation, ion exchange, electrochemistry, sedimentation, precipitation, 
membrane filtration, reverse osmosis, normal filtration, and lime  softening9. From the above-stated methods, 
the adsorption process has been reported most regarding the eradication of arsenic because of its flexibility in 
process design, cost-effectiveness, and operational simplicity. To date, different adsorbents have been developed 
by researchers, including activated carbon, titanium oxide, activated alumina, zirconium oxide, iron oxide, 
Fe (III) loaded resins, iron oxide, metal oxides, agricultural biomasses, goethite, zerovalent iron, mesoporous 
alumina, different metal-based nanocomposites for removal of As from contaminated aquatic  bodies10–12. All 
these materials are efficient, and their application on a large scale is restricted due to high operational cost, low 
adsorption potential, and extended time of consumption. Therefore, there is a continuous demand to synthesize 
novel and efficient adsorbents with improved adsorption capacity for arsenic decontamination from water.

A new hybrid material, commonly known as Metal–organic frameworks (MOFs), built from inorganic metal 
and the organic linker, has gained large attraction over the last few years. Owing to their customizable chemical 
functionalities, good thermal stability, tunable pore size, and versatile architectures, having broader applications 
in sensing, gas storage, catalysis, wastewater treatment, separation, etc. In recent years, Zr-MOF-based composites 
have potentially been applied for the As (III) and As(V) removal from water due to their excellent adsorption 
capacity. Guo et al. synthesized a composite membrane Zr-based MOF (UiO-66) and polyacrylonitrile (PAN) for 
efficient removal of both arsenite (AsIII) and arsenate (AsV) from  water13. As a result, in most arsenic removal 
procedures, oxidation of arsenate to arsenite occurs as a pre-treatment  phase14.

Arsenic removal studies were carried out on different MOFs such as Fe-BTC MOF, MIL-53, and ZIF-8. 
However, no noteworthy results were found compared to other synthetic commercial and adsorbents. There-
fore, developing and exploring new MOF nano adsorbents having high adsorption capacities are particularly 
interesting. In recent years, Zr-MOF-based composites have potentially been applied for the removal of As(V) 
from water due to their excellent adsorption capacity. For the adsorption of Arsenic (V) heavy metal from an 
aqueous solution, a new nano adsorbent material was synthesized in this research work by employing graphene 
oxide (GO) and a zirconium-based metal–organic framework. The UiO-66-NDC is a three-dimensional structure 
of one octahedral centre hole cage and eight tetrahedral corner cages of secondary building units  Zr6O4(OH)4 
and twelve bridge ligands 1,4-NDC. It has a significant number of coordinatively unsaturated  Zr4+ sites and a 
strong ZrO bond, which aids in adsorption and mass transfer. These materials are resistant to hydroxide ions 
and protons and are stable in a variety of wastewater types and pH levels.

In the present study, a novel nanocomposite adsorbent material was synthesized using graphene oxide (GO) 
and a zirconium-based metal–organic framework, i.e., UiO-66-NDC  [Zr6O4(OH)4(1,4-NDC)6]n and used as 
an adsorbent to uptake aquatic arsenate As(V). The UiO-66 framework consists of  Zr6O4(OH)4 clusters and 1,4-
NDC, i.e., 1,4-naphthalene dicarboxylate linker. The As(V) adsorption capacity was examined by detailed charac-
terizations and adsorption mechanism studies. This research reveals the superior performance of the MOF-based 
nano-adsorbent in the removal of arsenic from water, which could lead to new insights into the use of MOFs in 
water treatment and the development of an enhanced adsorbent material for the arsenic decontamination sector.

Results and discussion
Simulation output. Geometry optimized state of the GO and nanocomposite systems have been obtained 
via Broyden-Fletcher-Goldfarb-Shanno (BFGS)  algorithm15–17. It is obvious from the total energy values that 
nanocomposite system (− 839.231 Ry) achieves dynamic superiority over the GO system (− 179.291 Ry) because 
of the Zr and Cl atoms present in the system. As a result, this dynamic stability of the UiO-66-NDC/GO nano-
composite makes a relevant platform to adsorb arsenic (As) like metalloids metals and can be used as the perfect 
candidate for adsorption studies. Eventually, a pristine GO system has only localized states of a carbon atom, 
which gives less total energy without any dynamic nature for adsorption. Similarly, Zr based delocalized surface 
states are coming into the picture in the UiO-66-NDC/GO nanocomposite system, compared to the localized 
surface states of carbon in the GO system. Generally, surface states are states on the surface, and their electronic 
wavefunction can be localized (i.e., trapped) or delocalized (i.e., conductive or in-motion). If the surface states 
are caused by composite formation, then it is most likely that the resulting surface states are delocalized. How-
ever, all functional parameters strongly depend on surface states and their relaxation. In another case, surface 
states caused by surface defects or some passivating molecules are, most likely, localized surface states. This 
phase transformation from the localized state in GO to delocalized states in nanocomposite makes the nano-
composite system a relevant surface to adsorb As metalloids. It makes the nanocomposite surface adsorption 
active for As adsorption and removal process supporting the aforementioned experimental results strongly.

UV–Vis results. In UV–Vis spectra of UiO-66-NDC/GO nanocomposite, there are two characteristic 
absorption peaks with maxima at 261 and 346 nm (Fig. 1). The absorption centred at 346 nm is because of the 
π–π* transition of naphthalene  rings18, whereas absorption at 261 nm is shifted π–π* transition of graphene 
oxide in UiO-66-NDC/GO  nanocomposite19. There is a prominent change in the absorption spectrum of nano-
composite after As(V) uptake. The absorption peak at 346 nm completely disappeared while there was a redshift 
(with hypochromic effect) to the π–π* transition of naphthalene rings to 284 nm. These notable alterations sug-
gest the binding of As(V) on UiO-66-NDC/GO nanocomposite.

FTIR studies before and after As(V) adsorption. The functional characterization of UiO-66-NDC/GO 
was carried out using FTIR spectroscopy in ATR mode. The FTIR spectrum of UiO-66-NDC/GO was recorded 
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before and after As(V) adsorption. The peak at 3355  cm−1, which is attributed to the O–H stretching vibration of 
the carboxylic acid group, completely disappeared after As(V) adsorption. The asymmetric stretch at 1546  cm−1 
and symmetric stretch at 1364  cm−1 are attributed to  COO− groups of UiO-66-NDC/GO  nanocomposite20. After 
As(V) adsorption, both of these antisymmetric and symmetric stretching vibrations are shifted with a prominent 
decrease in intensity. C-H bending vibration at 784  cm−1 and C=C bending vibration at 648  cm−1 got shifted by 
adsorption of  As21. In other groups, such as C=O and C–O group related to carboxyl, no significant change was 
observed after arsenate adsorption; only the intensity of the peak was found to be decreased. These results imply 
the efficiency of O–H and aromatic C=C groups in arsenate adsorption. The prominent shifts in the FTIR spec-
trum after adsorption of As(V) establish the robust interaction between the nanocomposite and As(V) (Fig. 2).

Raman studies. After that, Raman measurements were carried out to understand the structural variation 
of UiO-66-NDC/GO. Raman data was collected as synthesized GO/ UiO-66-NDC and As(V) adsorbed UiO-66-
NDC/GO. Raman vibrational peaks at 1580  cm−1 and 663  cm−1 are related to C=C stretching and in-plane bend-
ing vibrational frequency of aromatic ring of NDC linker. Raman vibrational peaks at 1354  cm−1 and 1516  cm−1 
were related to in-plane ring deformation band of NDC linker. The Raman doublet peaks in the range of 1400 
– 1500  cm−1 are related to the in-plane symmetric stretching vibrational band of O=C–O group in NDC linker. 
The Raman peak at 773  cm−1 was related to C–H in-phase wagging band of NDC linker. However, we could not 

Figure 1.  UV–Vis analysis of UiO-66-NDC/GO nanocomposite before and after experiment.

Figure 2.  FTIR spectrum of UiO-66-NDC/GO nanocomposite before and after experiment.
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resolve Raman bands related to GO owing to a strong and competitive peak position of NDC  linker22. The Raman 
vibrational bands in synthesized material are well matched with previously reported data of UiO-66-NDC. After 
As(V) adsorption, there are no significant changes in Raman peak position and FWHM of UiO-66-NDC/GO. It 
means that Raman vibrational bands of GO/UiO-66-NDC are not influenced by the As(V) adsorption (Fig. 3).

XRD studies. To understand the structural changes during the adsorption process, XRD analyses are carried 
out for UiO-66-NDC/GO nanocomposite. The diffraction lines at 2θ of 7.39° and 8.4° are represented charac-
teristic peaks of UiO-66. Hence, the synthesized UiO-66-NDC has the same crystalline structure. These dif-
fraction line intensities are drastically decreased after the adsorption of As(V), which says that reduction in the 
crystalline nature of UiO-66-NDC/GO, is shown in Fig. 4. The amorphous nature complements the adsorption 
properties providing defect sites for heavy metal adsorption. The sharp resonances near 7 deg. is characteristic 
of graphene  oxide23.

SEM characterization. In order to reveal the surface structure of the UiO-66-NDC/GO before and after 
As(V) adsorption, the SEM–EDS was performed. As represented in Fig. 5, changes were observed in the struc-
ture and morphology of the GO-UiO66-NDC nanocomposite after As(V) adsorption. After the adsorption stud-
ies, it is clearly notable that the As(V) was adsorbed on the surface of the GO-UiO66-NDC nanocomposite. 

Figure 3.  Raman data of as synthesized and As(V) adsorbed UiO-66-NDC/GO nanocomposite.

Figure 4.  XRD spectra analysis of GO/UiO-66-NDC nanocomposite before and after experiment.
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From EDS data, we observed that there is no existence of As element in synthesized UiO-66-NDC/GO; however, 
in the other sample, 2.44 atomic% of As element is observed. This clearly indicates that the As(V) is adsorbed on 
the UiO-66-NDC/GO surface.

Based on the EDS observations of the UiO-66-NDC/GO nanocomposite, there are different elements, includ-
ing carbon, zirconium, and oxygen (Fig. 4c). EDX analysis after As(V)adsorption clearly represents the presence 
of As species in the UiO-66-NDC/GO nanocomposite structure, which is likely to the adsorption As(V) (Fig. 4d). 
Furthermore, a decrease in the intensity of carbon peaks is evident in the EDX analysis of UiO-66-NDC/GO 
following the As(V) sorption process supporting the successful adsorption of As(V) by UiO-66-NDC/GO.

TEM measurements. To study the chemical composition and surface morphology of the UiO-66-NDC/
GO before and after the As(V) adsorption, TEM with EDS mapping was performed. The particles of UiO-66-
NDC/GO are separated in some areas and agglomerated in others, as seen in Fig. 6a. The elemental analysis of 
the UiO-66-NDC/GO was also determined by TEM-EDS mapping. Before the experiment, bare UiO-66-NDC/
GO showed an abundance of zirconium, carbon and oxygen (Fig. 6c–e) at the surface and after adsorption, 
traces of As (Fig. 6g) were also seen along with the pristine UiO-66-NDC/GO. As(V) adsorption on the surface 
of the UiO-66-NDC/GO may be the reason why the TEM structure of the UiO-66-NDC/GO showed a smoother 
surface after the As(V) was removed.

BET measurements. BET measurements were carried out before and after As(V) studies and the data 
is represented in Fig.  7. The volume of pore and surface area for the UiO-66-NDC/GO was determined as 
0.394917  cm3/g and 279.7756  m2/g, respectively. After the adsorption experiment, the surface area and pore vol-
ume decreased to 58.1915  m2/g and 0.134  cm3/g. This decrease suggests that the As(V) species permeate into the 
pores of UiO-66-NDC/GO. The UiO-66-NDC/GO surface pores and comparably adequate active surface allow 
for fast transfer and adsorption of As(V) from an aqueous solution to the UiO-66-NDC/GO.

Effect of the pH on As(V) adsorption. The pH of the solution is an important parameter in arsenate 
adsorption studies since it influences arsenate speciation, distribution of contaminant species, and the adsor-

Figure 5.  SEM micrograph analysis of UiO-66-NDC/GO nanocomposite before and after experiment.
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bent’s surface charge. The pH effect on arsenate removal by UiO-66-NDC/GO adsorbent was examined at pH 
levels ranging from 2 to 7 and the results are shown in Fig. 8. The adsorption process for As(V) increased with 
an increment in pH from 2 to 3 and decreased dramatically with the increase in pH values from 4 to 7. The 
maximum removal capacity of 98.31% was observed at pH3 with 5 mg  L−1 of initial As(V) concentration at an 
adsorbent dose of 0.1 g  L−1. Further increasing the pH to 7; however, the arsenate removal efficiency decreased 
considerably to 42.5%. Based on the above observation, the possible removal mechanism can be explained as 
follows: The arsenate exists in various forms in water, such as: at pH below 2.0, it exists in  H3AsO4,  H2AsO4

− at 
pH from 2.0 to 3.0, and at pH 4.0–10.0 as  HAsO42− respectively. The point of zero charges (pHpzc) was found 
to be 5.61, representing a positively charged outer surface of UiO-66-NDC/GO adsorbent at pH below 5.61 and 
at pH above 5.61 signifies a negatively charged outer surface. Therefore, when the pH is 3, negatively charged 
As(V) species  (H2AsO4

−) are attracted to the positively charged surface of the UiO-66-NDC/GO nanocomposite 
adsorbent. As(V) uptake increases due to electrostatic interaction between the sorbent and the  H2AsO4

− ions, 
and the adsorption mechanism was through electrostatic attraction. However, below pH 3.0, a decreased adsorp-
tion capacity is observed due to the arsenate being present as  H3AsO4 and a strong competition existed between 
 H3AsO4 and protons for adsorption sites. At higher pH, i.e., between pH 4.0–7.0, excessive  OH− ions compete 

Figure 6.  TEM analysis and mapping of UiO-66-NDC/GO before (a–e) and after the As(V) adsorption (f–j).

Figure 7.  Pore size distribution and  N2 sorption isotherms of UiO-66-NDC/GO before and after As(V) 
adsorption.
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with predominant species of arsenate, i.e.,  HAsO42− ions, for adsorption on the adsorbent surface, of which 
 OH− ions dominate.

Therefore, the adsorption capacity of As(VI) decreases with an increase in the pH. The adsorption mechanism 
of As(V) was mainly coordination and ion exchange with metal nodes of the composite material. The influence of 
electrostatic forces at pH 3 drew anionic arsenate species to the vicinity of positively charged adsorbents, resulting 
in improved adsorption performance. The highest removal performance was obtained at pH 3 due to electrostatic 
force and acid–base interaction between adsorbent and arsenic species. At high acidic conditions (pH 2),  H3AsO4 
releases H ions and is attached to the hydroxyl sites in UiO-66-NDC/GO facilitating the arsenic uptake process.

Effect of the UiO‑66‑NDC/GO dose on As(V) adsorption. The effect of adsorbent concentration on 
As(V) removal is illustrated in Fig. 9. The adsorbent was highly effective and quickly removed As(V) from water. 
The removal percentage was more than 98.67% at a low concentration of adsorbent dosages. The adsorption 
capacity decreased slightly as the dosage of the adsorbent increased from 0.1 to 0.5 g. As the adsorption period 
increases, the remaining concentration of As(V) in the solution decreases, lowering the static driving force of 
mass transfer. As a result, adsorption is rapid at first, while the concentration gradient is high and slows after 
30 min as the system approaches equilibrium. This could be due to the accumulation of MOFs and the sorbent’s 
reduced effective active site for pollutant  removal24. As a result, the best adsorbent dose for As(V) sorption was 
determined to be 0.1 g/L. At this dose, the adsorption efficiency for As(V) was 98.67%, respectively.

Effect of the initial concentration on As(V) adsorption. Changes in As(V) initial concentrations 
clearly impacted As(V) removal efficiencies. The removal percentage of As(V) declined significantly as the initial 

Figure 8.  Effect of pH (a) and PZc (b) on As(V) removal and adsorption. pH = 2–7, T = 25 °C, and UiO-66-
NDC/GO dose = 0.1 g/L, As(V) concentration = 5 mg/L.

Figure 9.  Effect of dose on As(V) removal and adsorption. pH = 3, T = 25 °C, and UiO-66-NDC/GO dose = 0.5–
1.5 g/L, As(V) concentration = 5 mg/L.
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As(V) concentration increased in 30 min, but these rates were near all the same after 30 min. As the initial con-
centration of As(V) increased from 5 to 25 mg/L, the adsorption capacity increased from 48.64 to 181.05 mg/g 
of the nanocomposite (Fig. 10), explaining that adsorbent had a high adsorption capacity to As(V) at different 
initial concentrations. This increased adsorption capacity could be owing to a higher mass transfer driving force 
between the As(V) solution and the adsorbent, as well as a higher possibility of As(V) colliding with MOF nano-
composite. In addition to the previously described factors, the increase in adsorption capacity with increasing 
initial As(V) concentrations can be attributed to the driving force created in response to the concentration gradi-
ent, as well as strong interactions between the As(V) species and the MOF adsorbent.

Adsorption kinetics. Six kinetic models (pseudo-first-order and five different types of Pseudo second 
order) were used to investigate the adsorption behaviour of adsorption processes whose limiting step may entail 
chemical reactions, surface adsorption, or diffusion transport. Pseudo-order kinetic models (1 and 2) are the 
most frequent models used to study adsorption kinetics. In addition to this, on linear Elovich model was also 
used to study the chemical nature of adsorption behaviour of UiO-66-NDC/GO on to As(V) ions in Eq. (3).

According to a pseudo-kinetic (first-order) model, the change in the rate concentration solute with time, as 
well as changes in concentration of adsorbate and adsorbent dose over time (1), are logarithmically proportional. 
According to a pseudo-second-order kinetic model, the number of active sites occupied on the material is directly 
proportional to the adsorption capacity (2).

where  qe = equilibrium adsorption capacity (mg/g),α = initial adsorption rate, β = desorption constant,  qt adsorbed 
amount at a time (mg/g) and  k1 and  k2are rate constants of pseudo order first and second respectively. The data 
obtained from the kinetic model are represented in Fig. 11. Table 1 illustrates the data obtained from kinetic 
parameters according to the value of the correlation coefficient.

The kinetics of As(V) adsorption on UiO-66/GO followed the pseudo-second-order model type 2, as shown 
by the correlation coefficient  (R2). The theoretical values calculated for type 2 pseudo order kinetics are almost 
similar to the experimental one representing the chemisorption mechanism. Although type 2 PSO can deter-
mine whether overall adsorption rate but can’t predict the diffusion process during adsorption. Furthermore, 
the results obtained from the pHpzc studies and adsorption kinetics studies of the composites demonstrated the 
effectiveness of the surface complexation and/or ion exchange processes as well as the electrostatic interaction 
in the arsenate adsorption on the composites.

(1)log
(

qe − q
)

= log
(

qe
)

−
K1t

2.303

(2)
t

q
=

1

K2q2e
+

1

qe
t

(3)qt =
1

β
ln(αβt + 1)

Figure 10.  Effect of initial ion concentration on As(V) removal and adsorption. pH = 3, T = 25 °C, and UiO-66-
NDC/GO dose = 0.5 g/L, As(V) concentration = 5–25 mg/L.
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Adsorption isotherms. The isotherms of As(V) adsorption on UiO-66-NDC/GO nano adsorbent are 
examined at pH 7.8 and 30 °C, which are shown to be the best conditions. At a temperature of 298 K, 10 mg of 
adsorbent is added to 100 mL of aqueous samples (pH = 3) of adsorbate, with varied arsenate concentrations 
ranging from 5 to 25 mg/L. As demonstrated in Fig. 10, the adsorption capabilities of UiO-66-NDC/GO increase 
as the amount of As(V) in the solution sample increases. Due to a greater concentration gradient, more arsenate 
molecules are available in the vicinity of the active sites on the surface of the UiO-66-NDC/GO particles, result-
ing in this expected trend (the driving force of mass transfer).

The following linearized Langmuir, Freundlich and Temkin isotherms are used to analyze the data:

where, qe—adsorption capacity (mg/g) at equilibrium, Ce -As(V) equilibrium concentration (mg/L),  qmax is the 
maximum adsorption capacity, B = heat constant (J/mol), AT = Temkin constant, and T = temperature at 298 K, 
 KL—equilibrium constant (L  mg−1) representing the binding strength, and n, KF (mg/L) are the Freundlich 
constants specifying the adsorption and intensity capacity, respectively.

Experimental data for UiO66-NDC-GO nano adsorbent is well fitted with all the isotherms as plotted in the 
Fig. 12 and the different parameters are represented in Table 2

Based on the criteria of the correlation coefficient, the maximum adsorption capacity using Langmuir iso-
therms was found to be 147.06 mg/g. A prior investigation utilizing Zn-MOF-74 for As(V) adsorption found a 
close match to the maximal capacity (99 mg/g). Our nano adsorbent removes almost one and a half time As(V) 
from simulated water under lab conditions. UiO-66-NDC/GO has a higher adsorption capacity than previ-
ously reported adsorbents for removing As(V), including 48.7 mg/g in HTZn-MOF-74, 99.0 mg/g in RT-Zn-
MOF-7425 and 45 mg/g in zirconium  oxide26. These findings highlight the significance of controlling particle size 

(4)
1

qe
=

1

kLqmax
·
1

Ce
+

1

qmax

(5)qe = Kf + Ce
1

n

(6)qe = BlnAt + BlnCe

Figure 11.  As(V) adsorption kinetics of UiO-66-NDC/GO as determined by PSO adsorption kinetics (Type 2).

Table 1.  Kinetic parameters of As(V) adsorption on UiO-66-NDC/GO determined from best fits to PSO 
(Type 2) model using linearized fits.

Parameters Pseudo-second-order kinetic model (type 2)

y = mx + c y = 1.53x + 0.19 y = 1.10x + 0.10 y = 0.76x + 0.07 y = 0.70x + 0.06 y = 0.60x + 0.05

Intercept 0.19591 0.1049 0.0745 0.0620 0.05138

Slope 1.5322 1.1070 0.7631 0.7093 0.6092

Experimental 4.86 8.97 12.96 15.27 18.10

Theoretical 5.10 9.53 13.42 16.10 19.45

R2 0.97 0.98 0.95 0.96 0.95
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in adsorption processes. The results obtained from all characterization studies of composites performed after 
arsenate adsorption suggest that surface complexation and/or ion exchange processes are effective mechanisms 
in arsenate adsorption on the surface of the composites.

Thermodynamic analysis. Adsorption data at three different temperatures are used to find the thermo-
dynamic parameters of As(V) adsorption, such as variations in the standard enthalpy (H°), standard free Gibbs 
energy (G°), and standard entropy (S°), to provide a better description for the mechanism and nature of As(V) 
adsorption onto the UiO-66-NDC/GO surface. The thermodynamic nature of As(V) removal by UiO-66-NDC/
GO is determined by calculating the values using Van’t Hoff equation at 298, 303, 308, and 313 K.

Figure 12.  As(V) Adsorption isotherms of UiO-66-NDC/GO at 298 K., Good  R2 values to adsorption data 
were obtained successfully obtained using linear fits of the Langmuir, Temkin, and Freundlich models.

Table 2.  Different adsorption isotherms for adsorption of As(V) onto UiO-66-NDC/GO.

Intercept Slope qmax (mg/g) KL RL R2

Langmuir isotherm

0.00680 0.0019 147.06 3.58 0.01 0.939

Intercept Slope 1/n Kf R2

Freundlich isotherm

1.96876 0.31801 0.31801 93.05935 0.984

Intercept Slope BT KT R2

Temkin isotherm

103.8909 30.64 30.64 29.68658 0.969
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where K = qe/Ce, ∆H° = Change in enthalpy, T = temperature, (∆G° = ∆H° − T∆S).
The positive value of H° corroborated the endothermic nature of arsenate adsorption on UiO-66-NDC/GO. 

∆H° value of 0.80 kJ/mol−1 is likely due to chemisorption, which involves the dehydration of the metal atom 
and its surroundings (Table 3). As a result, the stated endothermic process is attributable to the arsenate anion, 
which gets more favoured as the temperature rises, replacing numerous water molecules. Furthermore, a positive 
value of S° suggests that the degree of freedom of the adsorbed arsenate increases with increased randomization 
at the solid/solution interface, implying that the stated dehydration happens mostly at the pore region and apart 
from the Zirconium cluster of the nanocomposite. The ΔH° and ΔS° values are calculated from the intercept and 
slope of 1/T versus lnkL. It is observed that the degree of the spontaneity of the adsorption process for As(V) 
decreased and increased in temperature. The adsorption process for As(V) using UiO-66-NDC/GO is physical 
as the value of enthalpy is less than 40 kJ  mol−1. A positive value of entropy represents the random collision of 
As(V) species across the surface of the UiO-66-NDC/GO nanocomposite.

Comparison studies of As(V) adsorption with previously reported adsorbents. As indicated in 
Table 4 below, different researchers have explored As(V) adsorption by various adsorbents. In comparison, novel 
synthesized UiO-66-NDC/GO is found to be a highly effective adsorbent for the adsorption of As(V) ions from 
water. The GO functionalized UiO-66-NDC have been proven to be a cost-effective alternative adsorbent for the 
removal of hazardous metals, particularly As(V) effluents, before they are discharged into the environment in 
this study.

Desorption experiment of As(V) loaded on the UiO‑66‑NDC/GO. UiO-66-NDC/GO desorption-
regeneration tests were carried out to check the reuse feasibility and recovery. The removal efficiencies of UiO-
66-NDC/GO following six cycles of desorption-regeneration with 0.1 M HCl solution are shown in Fig. 13. After 
three regenerations, the removal effectiveness of MOF had dropped somewhat from 91.06 to 88.6%, respectively. 

ln(K) =

(

�Ho

R

)

1

T
+

�So

R

Table 3.  Thermodynamic behaviour of UiO-66-NDC/GO for adsorption of As(V). Significant values are in 
bold.

Temperature (K) ∆G° ∆S° ∆H° R2

298.15 − 14.5897 51.63468 0.806552

0.9916
303.15 − 14.8446

308.15 − 15.1041

313.15 − 15.3639

Table 4.  Comparison of UiO-66-NDC/GO for As(V) adsorption with previously reported studies.

Material/nano-composite Adsorption capacity (mg/g) pH Surface area  (m2/g) Dose Temperature (K) References

UiO-66-NDC/GO 147.06 3 279.77 0.1 g  L−1 298.15 This work

CCBB 26.13 6.7 38.27 – 298.15 27

MCBB 79.49 6.7 52.48 1.5 g  L−1 298.15 27

Turbinaria vulgaris sp. 25.64 4.41 – 0.3 g  L−1 298.32 28

Egg shell 8.43 4.1 7.91 ± 0.49 1 g  L−1 293.15 29

PEI-coated bacterial biosorb-
ent 62.9 4.0 – 3.0 g  L−1 293.15 30

MnO2 impregnated alginate 
beads 6.5 6.5 2.04 ± 0.002 10 g  L−1 298.15 31

Tea waste 4.92 7.0 4.03 ± 0.61 1 g  L−1 293.15 29

IMIGAC 16.0 4.0 420.12 3.33 g  L−1 293 K 32

RGO-MFT 77.6 6.0 275.23 0.2 g  L−1 303.15 33

Fe-TNTs 36.41 2.5 162.8 0.2 g  L−1 298.15 34

TiO2-Fe2O3 bi-composite

12.4 5.0

133.5 – 298.15 357.79 7.0

6.48 9.0

Ce-Ti oxide 7.5 6.5 38.2–68.8 – 298.15 36

NHITO 14.3 7.0 77.8 2.0 g  L−1 303.15 37

m-TiO2-αFe2O3 99% 7.0 95 – 298.15 38
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After five cycles, their removal efficiency was only about 52.24% of what it was at the start, indicating that UiO-
66-NDC/GO may have a potential recycling property for As(V) removal as shown in Fig. 14.

Conclusion
In this study, UiO-66-NDC/GO was reported for the first time as the adsorbent for the removal of As(V) from 
water. This is the first time UiO-66-NDC/GO has been used to remove arsenic from water, to our knowledge. 
The UiO-66-NDC/GO performed well across a wide pH range, from extremely acidic 1 to basic 10, with the best 
adsorption efficacy at pH 3. At the ideal pH, the UiO-66-NDC/GO adsorbent had a remarkable As(V) uptake 
capacity of 147.06 mg/g. This is the highest recorded arsenate adsorption capacity, far above other synthetic and 
commercial adsorbents. All UiO-66-NDC/GO characterization investigations conducted after arsenate adsorp-
tion indicate that surface complexation and/or ion exchange processes are effective mechanisms in arsenate 
adsorption on the UiO-66-NDC/GO surface.

Interestingly, the theoretical simulation calculations confirm the dynamic superiority of UiO-66-NDC/GO 
nanocomposite with finite values of delocalized Zr atoms over the surface compared to the GO system making 
the nanocomposite system a relevant source of As adsorption. This simulation output is fully supporting the 
discussed experimental results for in-depth understanding. To summarise, this research adds to our understand-
ing of the use of UiO-66-NDC/GO in water treatment. The extremely porous structure incorporating zirconium 
oxide clusters provided a greater contact area and more active sites in unit space, allowing UiO-66-NDC/GO 
adsorbent to have a higher adsorption capacity than most typical nanoparticle adsorbents. UiO-66-NDC/GO 
could be a promising advanced adsorbent in the arsenic clean-up business due to its high adsorption efficiency 
toward aquatic arsenic species.

Figure 13.  As(V) adsorption isotherms of UiO-66-NDC/GO as a function of temperature.

Figure 14.  Regeneration and reusability UiO-66-NDC/GO for As(V) removal.
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Methodology
Theoretical first principle‑based simulation details. Theoretically, the pristine graphene oxide (GO) 
and UiO-66-NDC/GO nanocomposite systems are considered for the first principle-based density functional 
simulation studies. Primary geometry optimization with total energy values has been performed with the Quan-
tum Espresso  softwares39 within generalized gradient approximation (GGA) following Perdew-Burke-Ernzerhof 
(PBE)  format40. Van der Waals dispersion correction (vdW-DF) has been implemented for both systems to get 
accurate results throughout the calculations. Specific k-point grids of 9 × 9 × 1 have been considered here at plane 
wave cutoff energy of 540 Ry with a force of less than 0.001 eV/Å to get optimized structure. It is necessary to fix 
a vacuum region of 20 Å along the z-direction to minimize the periodic image interaction during the simulation.

Reagents. All chemicals, reagents, and salts were of the highest purity and were used without any purifica-
tion. Graphite powder (< 20 μm Sigma-Aldrich), Zirconium (IV) chloride (99.95% STREM), Potassium per-
manganate (≥ 99.0% Sigma-Aldrich), and 1,4-Napthalenedicarboxylic acid (> 95% TCI). 1,4-Napthalenedicar-
boxylic acid was used as an organic linker and Zirconium (IV) chloride as a precursor. N,N-Dimethylformamide 
(99.8% Sigma Aldrich) was used as a solvent to dissolve the reactants. Sodium arsenate  (Na2HAsO4.7H2O 99%, 
SDFCL) was used for the preparation of the stock solution, in which a specific amount of  Na2HAsO4.7H2O was 
dissolved in pure water. The stock solution was then diluted in deionized water for the preparation of various 
batches for adsorption studies.

Synthesis procedure for graphene oxide (GO). GO was synthesized using the improved hummers 
method in which graphite powder and  KMnO4 (1:6 ratio) were dispersed in a mixture of phosphoric acid and 
sulfuric acid (1:9 ratio) for 12 h at 65 °C. After that, the reaction mixture was allowed to cool, and 400 mL of 
ice-cold water was added along with 5 mL of hydrogen peroxide. Then allow the mixture to stir for half an hour. 
centrifuge the reaction mixture for 6 min at 8000 rpm. The product material was washed with a succession of 
deionized water, ethanol, HCl, and finally diethyl ether. The resultant was dried at room temperature in an air-
controlled vacuum chamber for 6  h41.

Synthesis of UiO‑66‑NDC/GO. UiO-66-NDC/GO was prepared using a solvothermal procedure. 0.5 
wt.% of graphene oxide was sonicated for 8 h in DMF and then mixed with zirconium chloride (0.005 mol and 
left on a magnetic stirrer for 12 h. after that, add 0.005 mol of 1,4-naphthalene dicarboxylic acid to the mixture 
solution and mix it completely. Pour the mixture into a Teflon liner within a stainless-steel autoclave (200 mL), 
and the solution was heated to 120 °C for 24 h. after 24 h, allow the material to cool, centrifuge the reaction 
mixture at 5000 rpm for 10 min, and wash 3 to 4 times with DMF and ethanol. The precipitate was collected and 
washed several times with DMF and ethanol to ensure the purity of the synthesized nano adsorbent.

Characterization. Morphological and structural characteristics of the nano-adsorbent were studied using 
Raman, UV, FTIR, SEM–EDS, XRD, and BET techniques. Raman characterization of the synthesized mate-
rial was recorded on STR-300 confocal Raman spectrometer (Seki Technotron Corp., Japan), with diode laser 
excitation at 785  nm. The data deconvolution of Raman was done by GRAMS/AI data processing software. 
UV spectrum was performed on a Perkin Elmer (Lambda 35) ranging from 200 to 800 nm at a sweep rate of 
480 nm/min. TEM of the UiO-66-NDC/GO before and after the experiment was recorded on Titan Themis 
(Thermofisher) operated at 300 kV. The UiO-66-NDC/GO were grounded into a fine powder using pestle mortar 
and then mixed with ethanol for dispersion. An ultrasonic bath was used for further dispersion processes. For 
observational purposes, a drop of the suspension was dropped onto a typical copper grid with carbon coating. 
Functional groups of the synthesized material were recorded on a Bruker spectrometer (TENSOR II) in ATR 
mode from 400 to 4000  cm−1 of the spectral region at a resolution of 4  cm−1. Composition and Surface morphol-
ogy was carried out using SEM–EDS on Zeiss ULTRA 55. XRD analysis of the nano-adsorbent was examined on 
a Bruker D8 Advance X-ray diffractometer at a scan speed of 6°/min from with 2θ ranging from 5° to 80°. Sur-
face area and pore size distribution were measured using Micromeritics ASAP 2020. The sample was degassed 
for 150 min overnight, and calculations were made. All the structural and morphological characterization of the 
UiO-66-NDC/GO were recorded in the premises of the IISc Bangalore.

Surface charge of nano‑adsorbent. The point of zero charges for nano-adsorbent was determined by 
following the salt addition method 0.1 M of  NaNO3 in 250 mL flasks was attuned to various pH of 2–11  (pHinitial) 
using 0.1 M NaOH and 0.1 M HCl. 100 mg of the adsorbent were added to all the flasks and kept at 180 rpm in 
a shaker at room temperature. The pH of all the flasks was measured after 24 h  (pHfinal) using a pH meter, and 
the obtained readings were plotted against the initial pH  (pHinitial). The initial pH at which change in pH is zero 
exhibits a point of zero  charges42.

Adsorption experiments for As(V). As(V) removal by adsorption using nano-adsorbent was carried out 
using batch adsorption studies. All As(V) adsorption experiments were performed at 25 °C, excluding the ther-
modynamics studies. The equilibrium capacity for As(V) was calculated using

where  Ct—initial As(V) concentration, C—equilibrium As(V) concentration, m = mass of nano-adsorbent, V—
the volume of As(V).

(7)q =
(Ct − C)V

m
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For adsorption studies, a stock solution of 10 mM of As(V) by mixing a known quantity of  Na2HAsO4.7H2O in 
a 500 ml conical flask for further experimentation. For studying pH effect on adsorption, solutions with different 
pH (2–11) were mixed with 0.1 g/L of nano-adsorbent in an incubator for 3 h. Different parameters for optimiza-
tion, such as adsorbent dose and initial ion concentration, were carried out by changing dose and concentration 
at fixed pH. Each flask was filtered using a 0.22 um syringe filter and analysis was done on Thermo X Series II, 
and the data was taken in replicates to ensure a standard error of less than 1% (Supplementary information S1).

Data availability
The data that support the findings of this study are available from [Praveen C Ramamurthy]. Still, restrictions 
apply to the availability of these data, which were used under license for the current study, and so are not pub-
licly available. However, data are available from the authors upon reasonable request and with permission of 
[Praveen C Ramamurthy].
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