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Subgap two-particle spectral weight in disordered s-wave superconductors:
Insights from mode coupling approach
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We study the two-particle spectral functions and collective modes of weakly disordered superconductors using
a disordered attractive Hubbard model on a square lattice. We show that the disorder-induced scattering between
collective modes leads to a finite subgap spectral weight in the long-wavelength limit. In general, the spectral
weight is distributed between the phase and the Higgs channels, but as we move towards half filling the Higgs
contribution dominates. The inclusion of the density fluctuations lowers the frequency at which this mode occurs
and results in the phase channel gaining a larger contribution to this subgap mode. Near half filling, the proximity
of the system to the charge density wave instability leads to strong fluctuations of the effective disorder at
the commensurate wave vector ([π, π ]). We develop an analytical mode coupling approach where the pure
Goldstone mode in the long-wavelength limit couples to the collective mode at [π, π ]. This provides insight into
the location and distribution of the two-particle spectral weights between the Higgs and the phase channels.
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I. INTRODUCTION

The superconductor-insulator transition in two-
dimensional films as a function of disorder strength is
one of the most studied quantum phase transitions in nature
[1–3]. There is strong experimental [2–4] and theoretical
evidence [5–7] that the transition is driven by the disordering
of the phase of the Cooper pairs, rather than by weakening
of the amplitude of their formation. Several interesting
phenomena, including the existence of a single-particle gap
[2,4], high-frequency inductive electric response [4], and
high magnetoresistance [8] across the transition, support the
idea that the Cooper pairs exist across the transition. Hence
the focus naturally shifts to the properties of the two-particle
spectral functions, which include the low-energy collective
fluctuations of the superconducting order parameter. The
fluctuations of the phase and the amplitude of the order
parameter constitute the low-energy spectral weight in a
clean superconductor. The long-wavelength amplitude mode,
related to the Higgs excitation [9,10] of high-energy physics
[11], has been observed through nonlinear spectroscopy
[12–18].

A key observation from a recent experiment [19] is
the availability of optical spectral weight well below the
two-particle continuum in a disordered superconductor. The
presence of this low-energy spectral weight together with
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a hard single-particle gap was surprising. It is well known
that in a clean superconductor, the long-wavelength collec-
tive mode occurs at zero frequency (Goldstone mode) and
there is no spectral weight until one reaches the two-particle
continuum threshold at twice the single-particle gap [10,20–
22]. Recent theoretical work [23–26] which constructs the
collective modes around the disordered mean-field solutions
[5,27,28] of the Bogoliubov–de Gennes (BdG) theory has
shown the presence of spectral weight of two-particle excita-
tions at finite frequencies below the continuum threshold (see
Fig. 1).

An important feature of the theoretical results is that the
subgap weight of two-particle excitations exists even at the
weakest disorder, showing that this is not a feature which can
only be associated with the quantum phase transition, and
that there is a nonperturbative (in disorder) redistribution of
the spectral weight in the long-wavelength limit. The details
of the subgap spectral weight, however, crucially depend on
the approximations used in the theoretical calculations: In
Refs. [23,26], the authors only considered the fluctuations of
the pairing field and obtained a subgap feature which had a
narrow spectral range and was dominated by the amplitude or
Higgs component. In contrast, in Ref. [24], the authors also
considered the fluctuations of the density field, but focused
only on the q = [0, 0] spectral function, where they obtained
broad spectral weights dominated by the phase mode.

In this paper, we understand the systematic trends of
the subgap two-particle spectral weight in the weakly disor-
dered s-wave superconductor using the disordered attractive
Hubbard model on a square lattice as a prototype. To get
analytic insights, we consider the mean-field saddle point of
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FIG. 1. The disorder-averaged amplitude spectral function
P11(q, ω) for a system with (a) V/t = 0 corresponding to the clean
case and (b) V/t = 0.1 corresponding to weak disorder. The spec-
tral functions are calculated by expanding the action around the
inhomogeneous BdG saddle point. In (b), a subgap mode is clearly
seen at ω/t ∼ 1 around the � point (q = [0, 0]). This is calculated
for a 24 × 24 lattice with U/t = 3 and n = 0.875 (data taken from
Ref. [23]). The single-particle gap of the clean superconductor is
�0/t = 0.83. The continuum of the spectral weight for P11(q, ω)
starts at ω = 2�0/t .

the translation-invariant system (with no disorder) and expand
the theory both in terms of static fluctuations created by the
disorder and dynamic quantum fluctuations of the pairing
and density fields. We thus obtain a description in terms
of translation-invariant collective modes being scattered by
an effective disorder. Using a simple Born approximation to
account for the disorder scattering, we show that we can repro-
duce the subgap feature seen in earlier works. We also find that
the static fluctuations are peaked around the commensurate
vector of Q = [π, π ], a reflection of the charge density wave
(CDW) instability of the square lattice Hubbard model at half
filling. Although the theoretical calculations are done away
from half filling, the proximity effect causes this peak once
the translation symmetry is broken by disorder. This motivates
us to consider a simplified mode coupling theory, where the
collective modes at q are coupled to those at q + Q.

Using this mode coupling theory, we show that the two-
particle spectral weight at finite subgap frequencies at q =
[0, 0] originates from the scattering of the Q = [π, π ] mode
by the effective disorder. Hence, at weak disorder, this weight
appears around the energy of the [π, π ] mode in the clean
system. We find that the particle-hole symmetry at half filling
ensures that the Goldstone mode at q = [0, 0] couples only
to the amplitude component of the [π, π ] mode, and hence
the weight shows up only in the amplitude or Higgs channel
close to half filling. As one moves away from half filling, the
phase contribution to this subgap mode increases, as seen in
the numerical calculations. The inclusion of dynamic den-
sity fluctuations [24] lowers the collective mode frequency
at [π, π ]. As a result, the subgap weight is shifted to lower
frequencies, and the spectral separation between this mode
and the tail of the low-energy weight from the Goldstone
mode is lost. Furthermore, this lowering of the energy also
implies that the subgap weight has a larger mixing of the
pure phase Goldstone mode; thus the contribution of the phase
component dominates in this case.

We note that if a disordered superconductor is close to a
charge density wave transition, as in NbSe2 [29], the strong
static fluctuations at the commensurate wave vector will dom-
inate the disorder scatterings. The presence of subgap spectral
weight in the two-particle spectral function will also be a
generic feature in that case. We note that unlike the work of
Pekker and Varma [10] and Littlewood and Varma [20], where
the system has additional CDW order, here the system is close
to but not in the CDW phase. Hence, in a clean system, there
will be no subgap weight at q = [0, 0]. However, the presence
of disorder, which breaks translational symmetry and allows
for scattering of collective modes, leads to the formation of
strong subgap spectral features in these systems.

To summarize, we have developed an analytical model of
collective modes in weakly disordered superconductors which
explains the following phenomena seen in earlier studies with
detailed models [23,24,26]: (1) In a weakly disordered super-
conductor the collective mode spectrum consists of a subgap
mode at q = 0. Our model shows that the energy of this
subgap mode is approximately the collective mode frequency
of the clean superconductor at Q = [π, π ]. The strong static
fluctuations at Q due to proximity to the CDW state leads
to this subgap mode in the presence of disorder. (2) Near
half filling, the mode is primarily in the amplitude channel,
with the phase contribution increasing away from half filling.
Our model shows that this is due to a particle-hole symmetry
at half filling which leads to the vanishing of the relevant
matrix elements. (3) Including density fluctuations pulls down
the energy of the subgap mode at q = 0. The softening of
the collective mode at Q in the clean superconductor due to
proximal CDW instability directly leads to the lowering of the
subgap mode energy. This also increases the mixing between
the Higgs component at Q and the phase-only Goldstone
mode leading to a larger phase contribution to the subgap
mode.

The rest of the paper is organized as follows: In Sec. II,
we provide a summary of results on the two-particle spectral
function of a weakly disordered attractive Hubbard model
on a square lattice, obtained from numerical calculations us-
ing BdG theory and expansions around this inhomogeneous
saddle point. In Sec. III, we expand the theory around the
translation-invariant saddle point in both the disorder-induced
static spatial fluctuations and the dynamic quantum fluctua-
tions. This leads to a model of translation-invariant collective
modes scattered by an effective disorder. We show that a
simple Born approximation can reproduce the subgap spectral
weight. In Sec. IV, we derive an approximate mode coupling
theory by focusing on the fact that the nearby CDW instability
leads to a peak in the static correlators at the corresponding
commensurate wave vector (here, [π, π ]). We then use this
mode coupling theory to understand the systematic trends in
the numerical calculations around the inhomogeneous mean-
field solutions. We finally conclude by summarizing in Sec. V.

II. COLLECTIVE MODES IN DISORDERED
SUPERCONDUCTORS: RESULTS FROM

FERMIONIC THEORY

In this section we will review the results on collective
modes of disordered s-wave superconductors obtained from a
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theory of fermions with attractive interactions in the presence
of a random disorder potential. This will give us the key
phenomenology which we want to explain; at the same time,
it will help in setting up the basic theoretical framework that
we will use in the rest of the paper. Some of these results have
been previously reported in Refs. [23–26].

We work with the attractive Hubbard model on a square
lattice, with random potential disorder at zero temperature,
given by the Hamiltonian

H = − t
∑
〈rr′〉σ

(c†
rσ cr′σ + H.c.) − U

∑
r

nr↑nr↓

+
∑

r

(vr − μ)nr, (1)

where c†
rσ (crσ ) is the creation (annihilation) operator for an

electron with spin σ on site r, and μ is the chemical potential.
Here, t is the nearest-neighbor hopping parameter, and U is
the local attractive interaction between the electrons. vr is an
independent random variable for each site that is uniformly
sampled from [−V/2,V/2]; thus V characterizes the scale of
the disorder. We note that our model neglects the long-range
Coulomb interactions and works only with the strong short-
range attraction. While the effect of long-range Coulomb
interaction on collective modes [30–33] is interesting in its
own right, our main goal here is to provide insights into the
phenomena seen in Refs. [23,24], both of which use only
short-range interactions to describe the disordered supercon-
ductor.

The first step is to construct a mean-field theory in terms
of the pairing field �0(r) = U 〈c†

r↑c†
r↓〉 and the Hartree shift

ξ0(r) = U 〈c†
rσ crσ 〉. This leads to the mean-field Bogoliubov–

de Gennes Hamiltonian(
H0(rr′) �0(r)δrr′

�0(r)δrr′ −H0(rr′)

)(
um(r′)

vm(r′)

)
= Em

(
um(r)

vm(r)

)
, (2)

where H0(rr′) = −trr′ − [μ − veff (r)]δrr′ if r and r′ are either
nearest neighbors or the same site, and 0 otherwise. Here,
trr′ = t if r and r′ are nearest neighbors, and 0 otherwise.
The microscopic disorder potential vr is renormalized by
the Hartree shift to the effective disorder potential veff (r) =
vr − ξ0(r). We note that while vr is an independent random
variable for each site, �0(r) and veff (r) for different sites have
finite correlations between them. The self-consistent mean-
field equations at zero temperature are then given by

�0(r) = U
∑

m:Em>0

um(r)vm(r),

ξ0(r) = U
∑

m:Em>0

v2
m(r). (3)

Additionally, we fix the average density of each disorder
configuration to n by solving the number equation n =
2
Ns

∑
r

∑
m:Em>0 v2

m(r). It is well known from earlier works
[5,34,35] that the distributions of �0(r) and veff (r) change
from a narrow distribution around the mean value at low
disorders to bimodal distributions indicating the formation
of superconducting and nonsuperconducting patches in the
system at strong disorder.

The collective modes in disordered superconductors arise
from the spatiotemporal fluctuations of the pairing field about
the inhomogeneous mean-field solution. In an imaginary time
(τ ) formalism, this is achieved by considering �(r, τ ) =
(�0(r) + η(r, τ ))eiθ (r,τ ), where η(r, τ ) is the amplitude and
θ (r, τ ) is the phase fluctuation. Expanding the action to
second order in these fluctuation fields, one obtains a nonin-
teracting theory (quadratic action) of the amplitude and phase
fluctuations,

S =
∑

rr′,ωn

(η(r, iωn), θ (r, iωn))D̂−1(r, r′, iωn)

(
η(r′,−iωn)

θ (r′,−iωn)

)
,

(4)
where the details of the 2 × 2 matrix inverse propagator D̂−1

are given in Ref. [23]. The experimentally measurable ampli-
tude spectral function is given by the analytic continuation to
real frequencies, P11(r, r′, ω) = − 1

π
ImD11(r, r′, iωn → ω +

i0+), while the corresponding phase spectral function is
given by P22(r, r′, ω) = − 1

π
�0(r)�0(r′)ImD22(r, r′, iωn →

ω + i0+). In a disordered system, the spectral functions,
calculated for a particular disorder configuration, do not have
translational invariance. However, translation invariance is re-
stored on disorder averaging, so that the disorder-averaged
spectral function can be Fourier transformed in spatial coordi-
nates. These disorder-averaged spectral functions, P11(q, ω)
and P22(q, ω), have been studied in detail previously as a
function of disorder at zero temperature [23,24] and at finite
temperatures [26]. In this paper, we will only present results
for zero temperature.

An intriguing result from Ref. [23] is the dramatic change
in the low-energy Higgs (amplitude) spectral function at weak
disorder. In the clean case, it is well known that the linearly
dispersing collective mode has a pure phase character as q →
[0, 0], i.e., the amplitude component goes to 0. At q = [0, 0],
the Higgs spectral weight resides at the two-particle contin-
uum threshold, and the mode is damped out. In contrast, even
at very weak disorder, there are sharply defined excitation
modes (peaks in spectral function) in the Higgs channel be-
low the two-particle continuum in the long-wavelength limit
(q = [0, 0]). In Fig. 1, we show color plots of the amplitude
spectral function P11(q, ω) in the q-ω plane (with q along the
principal axes in the Brillouin zone), calculated from such a
Gaussian expansion around the mean-field theory at U/t = 3
and n = 0.875. Figure 1(a) shows the clean case (V/t = 0),
where the Higgs weight at q = [0, 0] (� point) starts from
the two-particle continuum threshold. Figure 1(b) shows the
spectral function at a weak disorder of V/t = 0.1. In this case,
it is clear that at q = [0, 0], the amplitude spectral function
has finite weight at an energy ω0, which is below the two-
particle gap 2�0. Surprisingly, the weight at q = [0, 0] is
observed only over a narrow band of frequencies close to the
collective mode frequency at Q = [π, π ], which suggests that
the weight signifies an actual quasiparticle excitation. This is
unlikely to be caused just by the incoherent scatterings from
the disorder potential and suggests the existence of a more
fundamental mechanism. In addition, we also see a small
but finite low-energy weight near the M point, which was
absent in the clean case. We note that we will present data
for U/t = 3 in this paper unless otherwise mentioned.
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FIG. 2. The disorder-averaged energy distribution curves (EDCs) for amplitude and phase spectral functions (P11 and P22) for q = [0, 0]
for different densities: (a) and (d) n = 0.6, (b) and (e) n = 0.875, and (c) and (f) n = 1.3. (a)–(c) show the spectral functions without the
effects of dynamic density fluctuations [23], and (d)–(f) show the spectral functions after including the effects of dynamic density fluctuations
(Incl. density fluct.) [24]. The results from expansion around the inhomogeneous saddle point show the following: (i) The phase contribution
to the subgap mode increases as we move away from half filling on either side [(a)–(c)]. (ii) On including density fluctuations, the location
of the subgap mode shifts to a lower value of ω, and the phase contribution to the subgap mode increases substantially [(d)–(f)]. All the data
are for a 24 × 24 lattice with U/t = 3 and V/t = 0.1. The single-particle gaps of the corresponding clean superconductors are as follows:
�0/t = 0.65, 0.83, 0.74 for n = 0.6, 0.875, 1.3, respectively. The continuum of the spectral weight starting at ω = 2�0/t is also indicated in
the figure.

In order to understand the systematic changes in the long-
wavelength spectral functions, we plot the energy distribution
curves (EDCs) at q = [0, 0] for the amplitude and phase chan-
nel in Fig. 2. Figures 2(a), 2(b), and 2(c) show the results
at a weak disorder of V = 0.1t for three different densities,
n = 0.6, n = 0.875, and n = 1.3, respectively. In all the cases,
we see that the subgap spectral weight around ω0 is spectrally
well separated from the low-energy phase contribution of the
collective mode. The spectral weight around ω0 is exclusively
in the Higgs channel at n = 0.875, whereas the weight is more
evenly distributed between the amplitude and phase channels
as we move away from half filling (n = 0.6 and n = 1.3). This
seems to suggest that some approximate symmetry suppresses
the phase contribution in this case as one approaches half
filling.

Finally, in Ref. [24], the fluctuations of the Hartree (local
density) field ξ (r, τ ) were considered along with those of the
pairing field. Expanding up to quadratic order, one gets an
action similar to Eq. (4), now with a three-component field

(η, θ, ξ ) and a 3 × 3 matrix propagator. The density fluctua-
tions were then integrated out to obtain the effective collective
modes for the η and θ fluctuations in the system. It was found
that the subgap weight is shifted to much lower energy and
overlaps with the spectral weight from the Goldstone (phase)
mode. The systematic changes in the EDC on adding density
fluctuations are shown in Figs. 2(d), 2(e), and 2(f) for densities
n = 0.6, 0.875, and 1.3, respectively. Although the subgap
mode does survive, its location and composition change dras-
tically. Initially, the subgap mode was part of a flat band near
the top of the collective mode spectrum. However, including
the effects of density fluctuations causes the location of the
mode to shift towards ω = 0. Moreover, the composition of
the subgap mode is dominated by the phase contributions.

To summarize, the following effects are seen in these
calculations: (1) The presence of a weak disorder seems
to give rise to an excitation at a finite ω below the two-
particle continuum. (2) This mode is observed to be purely
in the amplitude channel for n ∼ 0.875, with the phase
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contribution increasing both as we move away from half fill-
ing and when we include density fluctuations. (3) The location
of this mode in ω space was initially part of a flat mode; how-
ever, it gets drastically pulled down when density fluctuations
are included. While these trends are clear, it is hard to obtain
additional insights from these calculations, since they can only
be accessed by large-scale numerics. In the next section, we
will formulate this problem in terms of the collective modes of
the translation-invariant system interacting with an effective
disorder to get additional insight into these trends.

III. COLLECTIVE BOSONS AND
THEIR EFFECTIVE DISORDER

In the fermionic theory, the disorder is modeled by a
random potential felt by the electrons at every site. The dis-
order strength (the width of the probability distribution of
the random potential) can be related to experimentally ob-
servable quantities such as sheet resistance [4,36–38], and
one can make a detailed comparison with realistic systems.
However, there is a price to pay for this exact treatment of

the microscopic disorder. The eigenstates of the mean-field
theory can only be determined numerically and vary from
one disorder configuration to another. Hence calculations of
collective modes are numerically expensive and are limited to
small system sizes. Furthermore, it is hard to get any insight
into the mechanisms behind the observed phenomena.

To circumvent these difficulties and obtain analytic insight
into the subgap spectral weight, we obtain a description where
the translation-invariant collective modes are scattered by an
effective disorder. To achieve this, we note that within the
mean-field BdG theory, the disorder gives rise to a local
pairing �0(r) and an effective local potential (microscopic
disorder potential, renormalized by Hartree shifts) veff (r). We
can treat these as new random variables, which determine the
properties of the mean-field solutions as well as the spectral
properties of the collective modes. We break them up into an
average (�0 and v0) and a static spatial fluctuation [δ�0(r) =
�0(r) − �0 and δv(r) = veff (r) − v0]. Note that by construc-
tion, δ�0(r) and δv(r) are correlated random variables with
zero mean. We first consider a translation-invariant saddle
point with �0 and v0, where the fermion Green’s function in
the Nambu basis in momentum space is given by

G(k, iωn) =
⎛
⎝ u2

k
iωn−Ek

+ v2
k

iωn+Ek
ukvk

[
1

iωn−Ek
− 1

iωn+Ek

]
ukvk

[
1

iωn−Ek
− 1

iωn+Ek

] v2
k

iωn−Ek
+ u2

k
iωn+Ek

⎞
⎠, (5)

where ωn = (2n + 1)πT with integer n is the fermionic Matsubara frequency at temperature T . Here, Ek =√
(εk − μ + v0)2 + �2

0 is the Bogoliubov quasiparticle dispersion, εk = −2t (cos kx + cos ky) is the bare band dispersion, and
the BCS coherence factors are given by u2

k = 1 − v2
k = (1/2)(1 + (εk − μ + v0)/Ek) and ukvk = �0/2Ek.

Our model of translation-invariant bosons coupled to effective disorder is obtained by considering �(r, τ ) = �0 + δ�(r) +
λ(r, τ ) and v(r, τ ) = v0 + δv(r) + ξ (r, τ ) and expanding the action both in the dynamic quantum fluctuations [λ(r, τ ), ξ (r, τ )]
and in the disorder-induced static fluctuations δ�(r) and δv(r). This leads to the fluctuation action

S f l = 1

2

∑
q,ωm

�†(q, iωm)M̂−1(q, iωm)�(q, iωm) +
∑

q,q1,ωm

�†(q + q1, iωm) ˆ̃F (q, q1, iωm)�(q, iωm), (6)

where ωm = 2mπT , with integer m, is the bosonic Matsubara frequency and the three-component field �†(q, iωm) =
[λ∗(q, iωm), λ(−q,−iωm), ξ (q, iωm)]. We note that when we analyze the theory without density fluctuations, we will set ξ = 0
and work with a two-component field.

Here, M̂−1 is the inverse propagator for the translation-invariant collective modes,

M−1
i j (q, iωm) = δi j (1 + δi3)

U
+

∑
k,ωn

Tr N G(k + q, iωn + iωm)σαi G(k, iωn)σβ j , (7)

where the trace is over Nambu indices, αi = +,−, 3 for i = 1, 2, 3, respectively, and β j = −,+, 3 for j = 1, 2, 3, respectively.
Here, σ i=1,2,3 denote the Pauli matrices, and σ± = σ 1 ± iσ 2. The detailed evaluation of M−1 is given in the Supplemental
Material (SM) [39] (see also Refs. [21,22,24] for earlier derivations of the propagator). The low-energy poles of M̂(q, ω + i0+)
determine the collective mode frequencies of the translation-invariant system, which disperse linearly at low momenta. The
second term in the action scatters a fluctuation at momentum q to a fluctuation at q + q1 (with the same frequency) and is
linearly dependent on the (Fourier transformed) static fluctuations δ�q1 and δvq1 . The scattering matrix ˆ̃F can be written as

ˆ̃Fi j (q, q1, iωm) = fi j (q, q1, iωm)δ�−q1 + gi j (q, q1, iωm)δv−q1 , (8)

where i, j run between 1 and 3. The coupling functions are given by

fi j (q, q1, iωm) =
∑
k,ωn

Tr N G(k + q + q1, iωn + iωm)σαi G(k, iωn)σ 1G(k + q1, iωn)σβ j ,

gi j (q, q1, iωm) =
∑
k,ωn

Tr N G(k + q + q1, iωn + iωm)σαi G(k, iωn)σ 3G(k + q1, iωn)σβ j . (9)
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FIG. 3. The static fluctuations of the Hartree fields δvq1 scatter
the collective modes at momentum q to modes at q + q1 with a
coupling fi j (q, q1, ωq ), where ωq is the dispersion of the collective
mode [see Eqs. (6) and (8)]. The color plots of f11 and f21 as a
function of q and q1 along the principal axes are shown in (a) and (b),
respectively. The corresponding couplings for static fluctuations of
pairing fields δ�q1 , g11 and g21, are shown in (c) and (d), respectively.
f11 and f21 are relatively independent of q and are peaked around
q1 = M. g11 and g21, on the other hand, are independent of q1 but
peaked around q = X .

Other than the matrix structure, these terms have the
general interpretation of an effective disorder scattering
the collective modes at low energy. The explicit evaluation of
the coupling functions fαβ and gαβ is shown in the SM [39].
For real frequencies below the two-particle continuum, these
coupling functions are real. Since we are interested in the
scattering of the collective modes due to disorder, the coupling
of interest to us is obtained by considering the analytic con-
tinuation iωm → ωq + i0+, where ωq is the collective mode
frequency at q. These couplings are the amplitude for scatter-
ing a collective mode at q by a momentum q1. In Fig. 3(a),
we plot f11(q, q1, ωq) as a color plot in the q-q1 plane (with
momenta taken along principal axes of the Brillouin zone). We
find that the coupling is peaked around the momentum transfer
of q1 = Q = [π, π ], while it is reasonably independent of
the starting wave vector q. In Figs. 3(b)–3(d), we plot the
coupling functions f21, g11, and g21, respectively. We find that
f11 and f21 have similar dependence on momenta. In contrast,
g11 and g21 are very sensitive to q, peaking around q = X =
[π, 0], and are relatively independent of q1, the momentum
transferred in the scattering. The scattering of the quantum
fluctuations around the translation-invariant saddle point by

the static disorder can be represented in terms of Feynman
diagrams, with fluctuation propagators and vertices coupling
the dynamic fluctuations to the static effective disorder, as
shown in Fig. 4. We note that this action is derived to leading
order in the static fluctuations and hence would fail to account
for higher-order scatterings at strong disorder. However, we
are only interested in the properties of the collective modes at
weak disorder; so this provides a sufficient starting point to
understand the phenomenology described in Sec. II.

After constructing the effective action for the collective
bosons and their scattering due to disorder, we need an ap-
proximate way to incorporate the effects of these scatterings
into the spectral function of the fluctuations. This is done by
dressing the inverse propagator M−1 by the self-energies due
to disorder scattering M−1 → M−1 − � and constructing the
imaginary part of the propagator obtained from this dressed
Green’s function for the fluctuations. For this, we use the sim-
plest Born approximation scheme (the self-energy diagrams
are shown in Fig. 4), where the self-energy matrix can be
written as

�̂(q, iωm) =
∑

q1

ˆ̃Fq+q1,−q1,iωm M̂q+q1,iωm
ˆ̃Fq,q1,iωm . (10)

We note that there is a self-energy term linear in ˆ̃F ,
which vanishes on averaging over disorder, leaving this as the
leading-order contribution. The Born approximation is valid at
weak disorder and will fail to capture nonperturbative effects
due to disorder scattering. To see the effectiveness of our
approximations in capturing the phenomena described in the
previous section, we consider the static correlators

〈|δ�(q)|2〉 = 1

Ns

∑
r,r′

eiq(r−r′ )〈δ�(r)δ�(r′)〉,

〈|δv(q)|2〉 = 1

Ns

∑
r,r′

eiq(r−r′ )〈δv(r)δv(r′)〉, (11)

〈δv(q)δ�(−q)〉 = 1

Ns

∑
r,r′

eiq(r−r′ )〈δv(r)δ�(r′)〉,

where Ns is the number of sites in the system and the cor-
relators are calculated in the inhomogeneous BdG solutions
of the disordered system. Here, the averaging is over disorder
realizations. These correlators then give the disorder-averaged
self-energy, which is used to construct the spectral functions
of the fluctuations.

We first consider a superconductor at a density n = 0.875
at a weak disorder V/t = 0.1 on a 24 × 24 lattice. We
suppress the quantum density fluctuations and work in the
two-component formalism. The spectral functions for the λ

fluctuations in this case are plotted in Fig. 5. For a system with
U/t = 3, Fig. 5(a) shows the spectral function corresponding
to 〈λqλ

∗
q〉, while Fig. 5(b) shows spectral weights in 〈λ∗

qλ
∗
−q〉.

Figures 5(c) and 5(d) show the corresponding plots for U/t =
4. We see that the U/t = 4 data clearly show the formation
of a flat mode leading to a narrow subgap weight at q =
[0, 0] at a finite frequency. The upper edge of the collective
modes at U/t = 3 are too close to the continuum to see this
clearly. Here, we would like to note that the dispersion of the
large-momentum, high-frequency collective mode depends on
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FIG. 4. The Feynman diagrams for the self-energy of the collective modes due to scattering by the static fluctuations. (a) The line
denoting the propagator of quantum fluctuations. (b) The Feynman vertices that couple the static fluctuations with the dynamic fluctuations.
(c) The self-energy diagrams in the leading-order Born approximation. The self-energy terms are proportional to 〈|δ�(q)|2〉, 〈|δv(q)|2〉, and
〈δv(q)δ�(−q)〉.

FIG. 5. The fluctuation spectral functions calculated within the
Born approximation with effective disorder obtained from mean-field
BdG solutions for (a) and (b) U/t = 3 and (c) and (d) U/t = 4.
Here, we use the Cartesian form of the fluctuations. (a) and (c) give
the diagonal part of the spectral function, and (b) and (d) give the
off-diagonal parts. There is a small pileup of weight at q = [0, 0]
signifying the formation of a subgap mode.

whether one uses a “Cartesian” representation of fluctuations
(as done here) or works with the amplitude-phase represen-
tation. In the amplitude-phase representation, the collective
mode frequencies are a bit lower than and better separated
from the two-particle continuum. There is also pileup of low-
energy weight observed near the M point. This shows that
this simple approximation is able to capture the occurrence
of subgap two-particle spectral weight at long wavelengths
in a weakly disordered superconductor. In the next section,
we will work in the amplitude-phase coordinates and further
simplify our model to obtain an analytic understanding of
the systematic trends in the two-particle spectral functions at
weak disorder.

IV. CDW FLUCTUATIONS AND EFFECTIVE
TWO-BAND MODEL

In the previous section, we have converted the problem of
attractive fermions in the presence of a disorder potential to
that of bosonic collective fluctuations of the superconducting
order parameter scattered by an effective disorder in pairing
amplitudes and local potentials. We have also seen that a
Born approximation calculation using the variance and co-
variance of the effective disorder fields obtained from BdG
solutions reproduces the basic phenomena of a narrow subgap
weight below the continuum threshold at q = [0, 0]. In order
to make further analytic progress, we need an analytic handle
on the static fluctuation correlators, 〈|δv(q)|2〉, 〈|δ�(q)|2〉,
and 〈δv(q)δ�(−q)〉.

In this section, we show that the static fluctuation correla-
tors are strongly peaked at q = [π, π ] near half filling and the
peak broadens as we move away from half filling. Moreover,
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FIG. 6. The disorder-averaged static fluctuations of (a)–(c) the Hartree field 〈|δv(q)|2〉, with V/t = 0.1 (a), 0.5 (b), and 1.0 (c); (d)–(f) the
pairing field 〈|δ�(q)|2〉, with V/t = 0.1 (d), 0.5 (e), and 1.0 (f); and (g)–(i) the cross correlator |〈δv(q)δ�(−q)〉|, with V/t = 0.1 (g), 0.5 (h),
and 1.0 (i) over the full two-dimensional (2D) Brillouin zone. This is calculated from BdG solutions on a 24 × 24 lattice in a system with
U/t = 3, n = 0.875 and averaged over 15 disorder realizations. The Hartree correlator is very strong at (π, π ) and then spreads out around this
point as the disorder strength is increased. The superconducting correlators follow a similar pattern; however, the corresponding magnitudes
are about a factor of 10 smaller than those of Hartree correlators.

the density correlator 〈|δv(q)|2〉 is found to be much larger
than 〈|δ�(q)|2〉 and 〈δv(q)δ�(−q)〉. Using this, we construct
an effective model considering only a scattering between
fluctuating superconducting modes at q and q + Q, mediated
only by the static density fluctuation. Within this simplified
two-band model, we can recover the trends in the distribution
of the spectral weight of the subgap mode between the ampli-
tude, phase, and density channels as we move away from half
filling. Moreover, we analytically show the dominance of the
phase mode near half filling due to approximate particle-hole
symmetry.

We consider a system with U/t = 3 and n = 0.875 and plot
the correlators 〈|δv(q)|2〉, 〈|δ�(q)|2〉, and 〈δv(q)δ�(−q)〉,
calculated from the spatially inhomogeneous mean-field so-
lutions. Figures 6(a), 6(b), and 6(c) show color plots of
the effective potential correlator 〈|δv(q)|2〉 as a function
of q for increasing disorder strengths V/t = 0.1, 0.5, and
1.0, respectively. Figures 6(d)–6(f) show the corresponding
plots for 〈|δ�(q)|2〉, and Figs. 6(g)–6(i) show the cross
correlator between the pairing amplitude and the effective
potential. Two interesting trends can be seen in these plots:
(a) 〈|δv(q)|2〉 
 〈|δ�(q)|2〉, 〈δv(q)δ�(−q)〉, so that it is

064512-8



SUBGAP TWO-PARTICLE SPECTRAL WEIGHT IN … PHYSICAL REVIEW B 106, 064512 (2022)

FIG. 7. Color plots of the disorder-averaged static fluctuations of the Hartree field 〈|δv(q)|2〉 over the 2D Brillouin zone for (a) n = 0.6,
(b) n = 0.95, and (c) n = 1.3. We see that the correlator is strongly peaked at q = [π, π ] near half filling (n = 1) due to proximity to the CDW
instability and becomes more diffuse as we deviate from half filling on either side. The correlators are calculated from the BdG solutions with
U/t = 3 and V/t = 0.1 and averaged over 15 disorder realizations.

reasonable to only consider the effects of effective static po-
tential fluctuations and neglect the other correlators. We have
specifically checked that keeping the other correlators finite
does not change the qualitative understanding we get from
this simplified assumption. (b) We immediately notice that the
correlations are peaked at Q = [π, π ] for weak disorder. As
we increase the disorder strength, the peak at Q broadens [see
Figs. 6(c) and 6(f)], while also increasing in strength. The
strong peak at Q = [π, π ] is due to proximity to the charge
density wave (CDW) instability [40] of this model at half fill-
ing at the commensurate wave vector. Although we are away
from half filling and hence do not have a static CDW order
(〈δv(Q)〉 = 0), the broken translation invariance due to disor-
der creates strong spatial fluctuations with wave vector Q.

We can tune the system away from the CDW instability
by changing the average density away from half filling. In
Figs. 7(a)–7(c), we plot 〈|δv(q)|2〉 for a system at a fixed
weak disorder (V/t = 0.1), but with different average den-
sities across half filling [n = 0.6 for Fig. 7(a), n = 0.95 for
Fig. 7(b), and n = 1.3 for Fig. 7(c)]. We clearly see that as

we approach half filling, the correlator peaks at Q, while the
weight is more diffusely spread over the Brillouin zone as we
move away from it. This reinforces the idea that the strong
peak at Q is a signature of the nearby CDW instability in the
system. The strong peak of the potential fluctuations around
Q motivates a simpler model where only δv(Q) is considered
and all other static fluctuations are neglected. In this case,
the mode at q is coupled to the mode at q + Q, and one can
work within a mode coupling theory in a “magnetic Brillouin
zone” corresponding to the commensurate wave vector with a
doubling of the degrees of freedom. Furthermore, in this case,
we will work with the amplitude-phase coordinates for the
quantum fluctuation of the superconducting order parameter,
i.e., expand �(r, τ ) = [�0 + δ�(r) + η(r, τ )]eiθ (r,τ ), where η

and θ are the amplitude and phase of the quantum fluctuations.
This allows us to consider the nature of the subgap mode and
the partitioning of the subgap weight into the amplitude and
phase degrees of freedom cleanly. Within this approximation,
the fluctuation action can now be written as

S f l = 1

2

∑
q,ωm

[�(q, iωm), �(q − Q, iωm)]

[
D̂−1(q, iωm) δv(Q)F̂ (q, iωm)

δv(Q)∗F̂ (q + Q, iωm) D̂−1(q + Q, iωm)

][
�(−q,−iωm)

�(−q + Q,−iωm)

]
, (12)

where �(q, iωm) = [η(q, iωm), θ (q, iωm), ξ (q, iωm)] is a three-component field containing the amplitude η, the phase θ , and
the Hartree potential ξ fluctuations. In some cases, we will suppress the density fluctuations and work with a two-component �

field. Here, D̂−1(q, iωm) is the inverse propagator of the quantum fluctuations in the translation-invariant system in the amplitude-
phase-potential coordinates,

D−1
11 (q, iωm) = 1

U
+ 1

2

∑
k,iωn

Tr N G(k + q, iωn + iωm)σ 1G(k, iωn)σ 1,

D−1
12 (q, iωm) = i

4
(iωm)

∑
k,iωn

Tr N G(k + q, iωn + iωm)σ 1G(k, iωn)σ 3 = −D−1
12 (q, iωm),

D−1
22 (q, iωm) = (iωm)2κ (q, iωm) +

∑
δ̂=±x̂,ŷ

(1 − cos(q · δ̂))�δ + χ (q, iωm),
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D−1
13 (q, iωm) = 1

2

∑
k,iωn

Tr N G(k + q, iωn + iωm)σ 3G(k, iωn)σ 1 = D−1
31 (q, iωm),

D−1
23 (q, iωm) = − i

4
(iωm)

∑
k,iωn

Tr N G(k + q, iωn + iωm)σ 3G(k, iωn)σ 3 = −D−1
32 (q, iωm),

D−1
33 (q, iωm) = 1

U
+ 1

2

∑
k,iωn

Tr N G(k + q, iωn + iωm)σ 3G(k, iωn)σ 3, (13)

where κ is the generalized compressibility, �δ is the kinetic energy, and χ is the current-current correlator in the system
given by

κ (q, iωm) = 1

8

∑
k,iωn

Tr N G(k + q, iωn + iωm)σ 3G(k, iωn)σ 3,

�δ = t

2

∑
Ek>0

v2
k cos(k · δ̂),

χ (q, iωm) = t2

8

∑
k

(εk+q − εk )2
∑
iωn

Tr N G(k + q, iωn + iωm)σ 0G(k, iωn)σ 0. (14)

The details of the D−1 matrix derivation are given in the SM [39]. The off-diagonal scattering matrix F̂ , which gives the amplitude
to scatter between q and q + Q modes, is given by

F11 = 1

2
�113, F21 = − i

4
(iωm)�313, F12 = i

4
(iωm)�133, F33 = 1

2
�333,

F13 = 1

2
�133, F23 = − i

4
(iωm)�333, F31 = −1

2
�313, F32 = − i

4
(iωm)�333,

F22 = (iωm)2

8
�333 + 1

8
f 0
22 −

[
(εk+q − εk )(εk − εk+q+Q)

8

]
�003 (15)

with

[ f (k, q)]�abc =
∑
k,iωn

f (k, q)Tr N G(k + q, iωn + iωm)σ aG(k, iωn)σ bG(k + q + Q, iωn + iωm)σ c,

f 0
22 =

∑
k,iωn

(εk+q − εk−q)Tr N G(k, iωn)σ zG(k + Q, iωn)σ z, (16)

where Tr N is the trace over Nambu indices and σ 0 is the
identity matrix. One can now invert the full 6 × 6 inverse
propagator matrix to obtain the Green’s functions and then
construct the spectral functions of the collective bosons. Note
that if we are interested in the spectral function of the fluctua-
tions at a fixed q (as opposed to the matrix element to scatter
from q to q + Q), the answers only involve |δv(Q)|2. We can
then replace |δv(Q)|2 by its disorder average 〈|δv(Q)|2〉 and
consider the problem as a function of this single parameter.
This simplified model, where the effects of disorder have been
reduced to a single parameter, contains all the physics behind
the systematic changes of the two-particle spectral functions
at weak disorder.

A. Collective modes with pairing fluctuations

We first apply our mode coupling model to investigate
the collective modes solely in the presence of dynamic pair-
ing fluctuations, i.e., we set the density fields, ξ (r, τ ) = 0.
In Figs. 8(a) and 8(b) we plot the amplitude spectral func-
tion obtained from the mode coupling theory for a system
at n = 0.875 and U/t = 3. Figure 8(a) corresponds to the

clean case, i.e., 〈|δv(Q)|2〉 = 0, while Fig. 8(b) corresponds
to 〈|δv(Q)|2〉 = 0.01t2. The value of 〈|δv(Q)|2〉 is chosen
to be in a realistic regime for systems with weak disorder.
In Fig. 8(a), we see the standard collective modes in the
homogeneous system, which disperses linearly at low q. The
amplitude weight in this mode goes to 0 as q → 0. In contrast,
Fig. 8(b) clearly shows the almost nondispersive weight at
finite subgap energy. In the long-wavelength limit, we have a
coupling between the zero-energy pure phase Goldstone mode
at q = [0, 0] and the collective mode at Q (with energy ωQ),
which has both amplitude and phase components. At weak
disorder, the off-diagonal coupling δvQF � ωQ, and hence
the finite-frequency spectral weight appears at ω0 ∼ ωQ −
(δvQF )2/2ωQ � ωQ. The strong [π, π ] scattering due to the
disorder thus creates the narrow subgap weight at q = [0, 0].
Note that as a consequence a mirror image of the mode near
[0,0] shows up around [π, π ], which is seen as a pileup in the
low-energy spectral weight around the M point. Figures 8(e)
and 8(f) show the phase spectral functions corresponding to
the amplitude spectral functions shown in Figs. 8(a) and 8(b),
respectively. We note that the subgap mode, in this case,
shows up both in the amplitude and phase spectral functions.
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FIG. 8. Results from the mode coupling theory. (a) and (b) show the amplitude spectral functions P11 for n = 0.875. (a) corresponds to
the clean case

√
〈|δv(Q)|2〉 = 0, while (b) corresponds to a weak disorder with

√
〈|δv(Q)|2〉 = 0.1t . (c) and (d) are similar to (a) and (b),

respectively, but for n = 0.98. The subgap mode is clearly visible for the disordered case for both n = 0.875 (b) and n = 0.98 (d). The phase
spectral functions P22 corresponding to the cases in (a)–(d) are plotted in (e)–(h), respectively. The subgap mode is clearly seen at n = 0.875
(f), while it is strongly suppressed at n = 0.98 (h). Moreover, the phase channel is suppressed close to half filling. The EDCs at q = [0, 0]
for the amplitude (blue) and phase (red) spectral functions for the cases corresponding to (a)–(d) are plotted in (i)–(l), respectively. All the
plots have a low-energy tail from the pure phase Goldstone mode. In the disordered cases shown in (j) and (l), the subgap mode is clearly
seen. At n = 0.98 close to half filling the subgap weight is dominated by the amplitude component, while at n = 0.875 away from half filling
the phase component dominates. The calculations are done on a 100 × 100 lattice. The single-particle gaps of the clean superconductors are
�0/t = 0.85, 0.83 for n = 0.98, 0.875, respectively.

Figures 8(i) and 8(j) show the energy distribution curves at
q = [0, 0] for the clean and the disordered cases, respectively.
In the clean case [Fig. 8(i)], one can clearly see that there is
no subgap Higgs weight, while the low-energy phase weight
gets a contribution from the Goldstone mode. In contrast, in
Fig. 8(j), the disorder scattering creates additional spectral
weight in the amplitude and phase channels at approximately
the energy of the homogeneous collective mode at Q. This
weight is narrowly distributed in energy and is well separated
from the low-energy collective mode weight. We note that in
a real disordered system, the disorder scattering happens with
all momentum transfers, with the scattering amplitude peak-
ing at Q. In this case, one would expect the spectral weight

to be smeared over a larger energy window. Furthermore, as
the scattering becomes diffuse with increasing disorder, one
would expect this mode to broaden, which is what is seen
in the numerics around the disordered inhomogeneous BdG
saddle point.

We now focus on the amplitude and phase components
of the spectral weight at q = [0, 0] at finite frequency. In
the numerical results, we have seen that as we move away
from half filling the phase component of the spectral weight
increases at the expense of the amplitude. To understand this
trend, we consider the scattering matrix F̂ (Q, iωm) at the
particle-hole-symmetric half-filling limit, where the chemical
potential μ − v0 = 0. Using the fact that εk+Q = −εk and
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G(k + Q) = σ 1G(k)σ 1, one can show that

F11(Q, iωm) =
∑

k

εk

Ek

1

(iωm)2 − 4E2
k

= 0,

F12(Q, iωm) = − i

2
(iωm)

∑
k

�

Ek

1

(iωm)2 − 4E2
k

,

F22(Q, iωm) = − (iωm)2

4

∑
k

εk

Ek

1

(iωm)2 − 4E2
k

= 0. (17)

Here, F21(Q, iωm) = −F12(Q, iωm). We note that the q =
[0, 0] mode is always a pure phase mode. Since particle-hole
symmetry prohibits a coupling between the phase component
at q = [0, 0] and the phase component at q = [π, π ] (F22 =
0) at half filling, the Goldstone mode primarily couples to
the amplitude component of the [π, π ] mode near half fill-
ing. Hence, in the weak-disorder limit, when the off-diagonal
coupling between the modes is much smaller than ωQ, the
finite-frequency weight is mostly in the amplitude channel.
To see this, we plot the two-particle spectral function for a
system with n = 0.98 close to half filling at a weak disor-
der of 〈|δv(Q)|2〉 = 0.01t2 in Fig. 8(d) (amplitude spectral
function) and Fig. 8(h) (phase spectral function), respectively.
The corresponding clean case spectral functions are shown in
Figs. 8(c) and 8(g), respectively. In this case we can clearly
see that at q = [0, 0], the finite-frequency subgap spectral
weight is seen mostly in the amplitude channel, while the
phase spectral weight is concentrated near ω = 0. This is
clearly illustrated in the energy distribution cuts (at q = [0, 0]
in Fig. 8(k) (clean case) and Fig. 8(l) (at weak disorder)). In
Fig. 8(l), we clearly see a finite subgap weight dominated by
the Higgs channel, which is spectrally separated from the low-
energy weight in the phase channel. As one moves away from
the half filling, F22 increases, and hence the phase component
of the finite-frequency spectral weight increases, as seen in the
more accurate numerical calculations shown in Sec. II.

We note that while our simplified toy model of mode
coupling correctly predicts the trends, it does not provide
quantitatively correct answers; for example, at n = 0.875,
the numerical calculations show a preponderance of amplitude
spectral weight, while we need to go much closer to half filling
(n = 0.98) to see this. Thus the mode coupling theory should
be used to understand systematic trends and should not be
used to directly compare quantitatively with the numerical
results. However, it still provides valuable insights into the
mechanisms behind the systematic trends, which are hard to
obtain from more sophisticated calculations.

B. Effects of density fluctuations

We have so far considered the quantum fluctuations in the
superconducting order parameter to determine the collective
mode spectrum, while the Hartree field was accounted for
only through its static fluctuations, i.e., the standard devia-
tion of its spatial variations in the inhomogeneous mean-field
solutions. We now consider the effects of dynamic density
fluctuations on the two-particle spectral weight by considering

ξ (r) → ξ0 + δv(r) + ξ (r, τ ),

FIG. 9. (a) The collective mode dispersion of a clean s-wave
superconductor with (solid lines) and without (dashed lines) den-
sity fluctuation at U/t = 3 and n = 0.875. The inclusion of density
fluctuations lowers the collective mode frequency near the M point
substantially. (b) The relative weight of the amplitude (brown), phase
(purple), and density (green) fluctuations in the collective modes is
shown. Near the M point there is a transfer of weight from the phase
to the density channel.

where ξ represent the temporally and spatially varying
particle-hole fluctuations. We note that this is a key difference
between the approximations made in Ref. [23] and those made
in Ref. [24]; those papers reach different conclusions on the
exact location of the subgap weight and its amplitude-phase
distribution. Compared with Refs. [23,24] finds broad subgap
weights at lower frequencies, with much larger phase spectral
weight. Before we consider the mode coupling theory due
to disorder scattering, we first consider how the collective
mode in the uniform system changes due to inclusion of these
density fluctuations, i.e., set 〈|δv(Q)|2〉 = 0.

In this case, � is a three-component vector, and the collec-
tive modes can be found from the zeros of the determinant of
the 3 × 3 matrix that forms the inverse propagator for the fluc-
tuations. In Fig. 9(a), we plot the dispersion of the collective
modes in a clean system (at U/t = 3, n = 0.875) calculated
with (solid line) and without (dashed line) considering the
density fluctuations. The main effect of including the density
fluctuations is to lower the collective mode frequency at large
q, especially around the M point. This is once again due to
the proximity of the CDW instability. At the CDW instability,
one expects the collective mode frequency to go to 0 at the
M point. We note that one can integrate out the density fluc-
tuations to obtain an effective amplitude-phase correlator, but
the collective mode dispersion remains essentially the same
whether one works with a 3 × 3 propagator or an effective
2 × 2 propagator. In Fig. 9(b), we plot the relative weights
of the amplitude, phase, and density sectors in the collective
modes (by considering the eigenvector which gives the collec-
tive mode). We see that the weight of the amplitude sector is
almost unaffected by inclusion of the density fluctuations. In
the long-wavelength limit, the weight of the density fluctua-
tions goes to zero. The main effect of the density fluctuations
can be seen near M = [π, π ], where the weight is transferred
from the phase to the density channel.

We now consider the effects of density fluctuations on the
spectral functions in the disordered system through the mode
coupling theory. In Figs. 10(a) and 10(b) we plot the ampli-
tude spectral function of a system at U/t = 3 and n = 0.875
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FIG. 10. (a) and (b) The amplitude spectral fluctuations and
(c) and (d) the phase spectral functions calculated using the mode
coupling theory including the effects of density fluctuations. (a) and
(c) correspond to the clean case, while (b) and (d) correspond to the
weak disorder with

√
〈|δv(Q)|2〉 = 0.1t . (e) and (f) show the EDC

at q = [0, 0] both (e) without and (f) with density fluctuations at a
weak disorder of

√
〈|δv(Q)|2〉 = 0.1t . Including density fluctuations

causes the subgap mode at q = [0, 0] to shift to a lower frequency
and increases the relative contribution of the phase mode. The cal-
culations were done within mode coupling theory at U/t = 3 and
n = 0.875 on a 100 × 100 lattice. The single-particle gap of the
corresponding clean superconductor is �0/t = 0.83.

for the clean case (〈|δv(q)|2〉 = 0) and for a weak disorder
(〈|δv(q)|2〉 = 0.1), respectively. Figures 10(c) and 10(d) show
the corresponding phase spectral functions. While the ampli-
tude spectral function is almost unchanged, we clearly see
two split bands in the phase spectral function. Figure 10(e)
shows the spectral function at q = [0, 0] as a function of
energy for the disordered system in the absence of dynamic
density fluctuations, while Fig. 10(f) shows the same quantity
when these fluctuations are included. Two trends are clearly
seen: (i) The additional feature at finite frequencies is pushed

down when density fluctuations are included. Within the mode
coupling theory, as the collective mode frequency at Q comes
down, it pushes the additional feature at q = [0, 0] down-
wards. Note that a sharp additional feature can be seen in
this case with identifiable amplitude and phase contributions,
although it is no longer spectrally separated from the tail of
the spectral weight from the zero-energy Goldstone mode. In
a theory where scattering at all momenta is kept, this feature
will be broadened further. (ii) The additional feature has a
much larger phase component compared with the case without
density fluctuations. We note that since the energy of the mode
at Q is smaller in this case, there is a larger mixing between
the q = [0, 0] Goldstone mode (which is a pure phase mode)
and the mode at [π, π ], leading to a larger phase component in
the subgap weight. Thus our two-mode model is able to accu-
rately capture this trend and can also resolve the discrepancies
between Refs. [23,24].

V. CONCLUSION

In this paper we have shown that the collective modes
and two-particle spectral weight of a weakly disordered
superconductor can be obtained from a model where the
translation-invariant collective modes are scattered by an
effective disorder. Starting with a microscopic theory of at-
tractive fermions in the presence of random potential disorder,
we construct this effective theory by expanding the action
around a translation-invariant saddle point in both the static
spatial fluctuations induced by disorder and the dynamic
quantum fluctuations. We can thus construct the parameters of
this effective model starting from a fermionic theory. We show
that a simple Born approximation for the disorder scattering
of the collective modes reproduces the long-wavelength (q =
[0, 0]) subgap spectral weight at finite frequencies, which
have been seen earlier in numerical calculations around the
inhomogeneous BdG mean-field solution.

In the attractive Hubbard model on a square lattice, the
system undergoes a CDW instability with Q = [π, π ] at half
filling. In the presence of disorder, there are strong static
fluctuations of density and pairing fields at this commensurate
wave vector, even when the system is away from half filling.
Such strong fluctuations will be a generic feature of systems
near a CDW instability. The effective disorder seen by the
collective modes thus shows a strong peak at this wave vector.
This leads to a simple mode coupling theory (coupled by
random static fluctuations), which provides analytic insight
into the subgap weight in the two-particle spectral functions
at q = [0, 0] and captures the trends seen in the numerical
calculations. The subgap weight is formed by disorder scat-
tering of the [π, π ] mode and appears around the energy
of this collective mode. The particle-hole symmetry at half
filling ensures that this mode consists primarily of amplitude
fluctuations near half filling. As we move away in density, the
phase contribution to this mode increases. Including dynamic
density fluctuations lowers the frequency of the [π, π ] mode
substantially, and hence the spectral separation between the
tail of the Goldstone weight and this mode is lost. The lower
frequency also implies a larger mixing of the q = [0, 0] Gold-
stone mode (which is a pure phase mode), and hence the phase
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contribution to the subgap weight increases substantially in
this case.

We have thus obtained a generic framework to obtain
the two-particle spectral weight of weakly disordered su-
perconductors. Therefore, close to a CDW transition, we
obtain a simpler mode coupling theory. The trends explain
the discrepancies between Refs. [23,24]. The extension of this
framework to stronger disorder strengths by going beyond the
simple Born approximation is left for future work.
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