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1 Introduction

The novel coronavirus disease-2019 pandemic is the biggest public health

epidemic faced by mankind. The virus has spread to every habited continent

since its arrival in Asia in late 2019. Across all developed and developing

nations, the cases are rising daily. The Exponential spread of the infection

has led to a severe shortage of accurate testing kits as they can’t be manufac-

tured fast enough, creating panic amongst the citizens of several countries.

This has resulted in the selling of bogus COVID-19 test kits and other

fake vaccines to the public. The limited availability of accurate diagnostic

test kits has resulted in an urgent need to focus on other methods for diag-

nosis. As COVID-19 attacks the epithelial cells which line our respiratory

tract, we can use X-rays to examine the health of the lungs of a patient. Fur-

thermore, provided that all major hospitals have access to X-ray imaging

equipment, without the special test sets, X-rays could be used to monitor

for COVID-19.

Currently, the only complication lies with the fact that the chest X-rays

of COVID-19 patients have similar abnormalities with a Pneumonia

Infected patient. Exploration is in progress to completely understand how

COVID-19 pneumonia contrasts with different sorts of pneumonia. Data

from these investigations can conceivably help find and facilitate our com-

prehension of how SARS-CoV-2 influences the lungs. So far, scientists have

found that individuals with COVID-19 pneumonia were bound to have:

(1) pneumonia that influences the two lungs rather than only one (2) lungs

that had a trademark “ground-glass” appearance by means of CT check

(3) abnormalities in some research tests, especially those evaluating liver
1
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capacity. This clearly indicates that there is considerable room for the use of

AI in diagnosing COVID-19 and differentiating it from viral pneumonia.

The Computer Vision groups across the globe have made huge efforts

over the last decade and made many State of the Art models open to the

public. These State-of-the-art models are conditioned on various data types

and can be fine-tuned for certain typical tasks and purposes. For this analysis

want to harness the capabilities and predictive power of pre-trained models

to classify between COVID-19, non-COVID Pneumonia, and Normal.
2 Related work

Rousan, Elobeid, Karrar, et al. (2020) studied that chest CT scans and chest

X-rays show characteristic radiographic findings in patients with COVID-

19 pneumonia. The study aims at describing the chest X-ray findings and

temporal radiographic changes in COVID-19 patients. The authors studied

the X-rays of 88 COVID-19 confirmed patients. A total of 190 chest X-rays

were obtained for the 88 patients. Thirty-one percent of the X-rays showed

visible abnormalities. The most common finding on chest X-rays was

peripheral ground glass opacities affecting the lower lobes. In the course

of illness, the opacities progressed into consolidations peaking around

6–11days. Thus they conclude that Chest X-ray can be used in the diagnosis

and follow Yee and Raymond (2020) developed a pneumonia predictor

using feature extraction from Transfer Learning. InceptionV3 was used as

the feature extractor. K-Nearest Neighbor, Neural Network, and Support

Vector Machines were used to classify the extracted features. The Neural

Network model achieved the highest sensitivity of 84.1%, followed by Sup-

port vector machines and K-Nearest Neighbor Algorithm. Among all the

classification models, the support vector machines model achieved the high-

est AUC of 93.1% for patients with COVID-19 pneumonia. Barstugan,

Ozkaya, and Ozturk (2020b) used machine learning algorithms to classify

between COVID-19 and non-COVID-19 images. The authors considered

feature extraction techniques like gray-level size zone matrix and discrete

wavelet transform. The extracted features were classified using a support

vector machine and 2-, 5-, and 10-fold cross-validation. The authors

achieved 99.68% of accuracy for the SVM trained using the GLSZM feature

extraction method. Wang, Zha, Li, et al. (2020) proposed the use of

deep learning to distinguish COVID-19 and other pneumonia types. The

authors segmented and eliminated irrelevant areas. DenseNet121-FPN

was implemented for lung segmentation, and COVID19-Net that had a
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DenseNet-like structure, was proposed for classification purposes. The

authors reported 0.87 ROC and 0.88 AUC scores for the validation sets.

Kassani, Kassasni, Wesolowski, Schneider, and Deters (2020) introduced

a feature extractor-based multi-method ensemble approach for computer-

aided analysis of COVID-19 pneumonia. Six Machine learning algorithms

were trained on the features extracted by CNNs to find the best combina-

tion of features and learners. Considering the high visual complexity of

image data, proper deep feature extraction is considered a critical step in

developing deep CNN models. The experimental results on the chest

X-ray datasets showed that the features extracted by Dense-Net-121 and

finally trained using the Bagging tree classifier generate the best predictions

with 99.00% classification accuracy. Wang and Wong (2020) introduced

COVID-Net, to detect COVID-19 from X-ray images of the chest. The

COVID-Net architecture was designed from a mixture of 1�1 convolu-

tions, depth-wise convolution, and residual modules to allow for deeper sys-

tem design and prevent the issue of gradient disappearing. The dataset given

was a mix of the COVID chest X-ray dataset provided by Cohen, Morrison,

and Dao (2020b), and Kaggle chest X-ray images dataset (Kaggle, 2020) for

multi-class classification of multi-class classification of normal vs bacterial vs

COVID-19 infection dataset. The obtained accuracy of this study was

83.5%. Khan, Shah, and Bhat (2020) proposed CoroNet, to automatically

detect COVID-19 from chest X-ray images. Coronet was built using the

Xception architecture with ImageNet weights. CoroNet achieved an over-

all accuracy of 89%, precision of 93% and recall of 98.2% for 4-class cases

being COVID-19, Viral and bacterial Pneumonia and Healthy. The same

model achieved 95% accuracy for 3-class classification i.e., COVID-19,

Pneumonia and Healthy. Chouhan et al. (2020) proposed a deep learning

approach to classify pneumonia from chest X-rays using State of the art

pre-trained models. They tested the performances of State of the art pre-

trained models like AlexNet, DenseNet, and Inception V3 etc. to extract

features. The extracted features were passed through individual classifiers

and the predictions of individual architectures were obtained. An overall

ensemble of all five pretrained models was observed to outperform all other

models. Rajaraman et al. (2020) studied and found that performing Reiter-

ative pruning and selecting the best pruned model improved the prediction

accuracies and further helped minimize parameter numbers as redundant

parameters which do not help improve the prediction performance are elim-

inated. Further they were able to better the performance by use of ensembles

of pruned models. Awarding weights based on their predictions, the authors
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observed that the weighted averaging ensemble of the pruned models out-

performed the other ensemble methods. Overall it was identified that com-

binations of iterative pruning of models and ensembles of models helped

reduce prediction variance, model complexity. In this chapter, we evaluate

four different approaches/hybrids using State of the art pre trained models so

to achieve maximum Accuracy and have low False Negatives.
3 Modeling

3.1 PCA-feature ensembles
The baseline models are initialized with ImageNet weights and are used to

extract the image features. To act as a feature extractor, the final softmax

layer is removed. The features extracted for all the baseline models are com-

bined and reduced by using PCA. The number of PCA components is

selected so as to explain 90% of the total variance. These PCA features

are finally passed through a dense 256 layer and a softmax for final predic-

tions. The architecture of PCA-Feature Ensembles for the baseline model is

depicted in Fig. 1.
Fig. 1 Proposed feature ensemble for the baseline model.
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3.2 Optimally weighted majority voting
This is a naı̈ve but effective approach. The main Baseline models are indi-

vidually assessed on the dataset and the probabilities prediction for all the

classes are made. The prediction vector is a weighted average of the individ-

ual probabilities across all classes. The final prediction Y is the maximum

probable class.

Y ¼ argmax
Xm
1

Wj �Pij (1)

where Wj is the weight that can be assigned to the jth classifier.
The weights, Wj are calculated by a grid search so as to find best linear

combination for most accuracy. Fig. 2 depicts the Weighted Majority

Weighting ensemble.
3.3 Feature extraction
Feature extraction consists of using the representations learned by a previous

network to extract distinguishing features from new samples. These features

are then classified. The methodology involves (i) extracting the image fea-

tures from the images (ii) The extracted features are then trained using a

machine learning classification algorithm. The Feature extraction task is
Fig. 2 Proposed weighted max voting model.



Fig. 3 Layer modification of baseline model.
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performed using the various baseline models for comparison. For the process

of classifying the features, we shall utilize the following three classification:

(i) Support Vector Machine (Cristianini, Shawe-Taylor, et al., 2000),

(ii) Bagging Classifier (Barstugan, Ozkaya, & Ozturk, 2020a) and

(iii) ADABOOST (Rosebrock, 2020) as previous works prove them to be

constantly performing well for similar tasks.

3.4 Layer modification
The baseline networks are initialized with the weights from the ImageNet.

The convolutional and max-pooling layers are frozen so that we don’t mod-

ify their weights. The final softmax layer, mapping to 3 output classes, was

replaced with 2 dense layers, 50% dropout layer, and softmax layer mapping

to the X-ray labels. These layers were introduced to maximize baseline

model classification accuracy during the transfer learning process. Once this

is done, we would start retraining. In this way, we manage to take advantage

of the feature extraction stage of our network and only tune the new addi-

tional layers to work better with our dataset.

Transfer learning by retraining the layers at all is not always a good idea. If

the destination task is based on a small dataset that is very similar to the one

the network was trained on, leaving the weights frozen and putting aclassi-

fier on top of the output probabilities is likely to be more useful, yielding

largely similar results without risking overfitting. The architecture of layer

modification for the baseline model is depicted in Fig. 3.
4 Experimental setup

4.1 Baseline models
In this section, we explain in brief about the selected pre-trained models

which we will use as baseline models for our experiments.

4.1.1 VGG-16 (Simonyan & Zisserman, 2015)
VGG16 is a convolution neural net (CNN) network that was utilized to win

ImageNet competition in 2014.Most remarkable thing about VGG16 is that
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as opposed to having countless hyper-parameter they concentrated on hav-

ing convolution layers of 3�3 channel with a step 1 and consistently utilized

same padding space and maxpool layer of 2�2 channel of stride 2. At last it

has 2 fully associated layers with a softmax for final output. The 16 in

VGG16 refers to it has 16 layers that have the weights. This system is a truly

huge system and it has around 138 million parameters. VGG-16, although

based off of AlexNet (Krizhevsky, Sutskever, & Hinton, 2017), it has the

following key differences:

(a) It has replaced the large receptive fields of AlexNet’s (11�11 with a

stride of 4), with very small receptive fields (3�3 with a stride of 1).

This introduces three ReLU units instead of just one, making the deci-

sion function to be more discriminative. Further this reduces the

parameters (27 times the number of channels) instead of AlexNet’s

(49 times the number of channels).

(b) VGG-16 incorporates 1�1 convolutional layers to make the decision

function more non-linear without changing the receptive fields.

(c) The small-size convolution filters allows VGG-16 to have a large num-

ber of weight layers; of course, more layers leads to improved

performance.

4.1.2 ResNet 50 (He et al., 2016)
ResNet, short for Residual Networks is a classic neural network used as a

backbone for many computer vision tasks. This model was the winner of

ImageNet challenge in 2015. The key breakthrough with ResNet was it

allowed training extremely deep neural networks with 150+layers success-

fully. Prior to ResNet training very deep neural networks was difficult due

to the problem of vanishing gradients. There are numerous variations of

ResNet, for example same idea yet with a different number of layers. We

have ResNet-50, ResNet-101, ResNet-110, ResNet-152 and so forth.

The name ResNet followed by a two or more digit number basically sug-

gests the ResNet design with a specific number of neural layers. ResNet-50

is one of the most compact and vibrant networks. The architecture of

ResNet50 has 4 stages. The network can take the input image having height,

width as multiples of 32 and 3 as channel width. Every ResNet architecture

performs the initial convolution and max-pooling using 7�7 and 3�3 ker-

nel sizes, respectively. Afterward, Stage 1 of the network starts and it has 3

Residual blocks containing 3 layers each. The size of kernels used to perform

the convolution operation in all 3 layers of the block of stage 1 are 64, 64 and

128, respectively. The convolution operation in the Residual Block is per-

formedwith stride 2. Hence, the size of input will be reduced to half in terms
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of height and width but the channel width will be doubled. As we progress

from one stage to another, the channel width is doubled, and the input size is

reduced to half. For deeper networks like ResNet50, ResNet152, etc., bot-

tleneck design is used. For each residual function F, 3 layers are stacked one

over the other. The three layers are 1�1, 3�3, 1�1 convolutions. The

1�1 convolution layers are responsible for reducing and then restoring

the dimensions. The 3�3 layer is left as a bottleneck with smaller input/

output dimensions. Finally, the network has an Average Pooling layer

followed by a fully connected layer having 1000 neurons.
4.1.3 Inception V3 (Szegedy et al., 2015)
Inception V1 was the winner of the ImageNet Competition 2014. It created

the record lowest error rate at ImageNet dataset. The model is continuously

improved so as to enhance the accuracy and decrease the complexity of the

model. Inception V3 network stacks 11 inception modules where each

module consists of pooling layers and convolutional filters with rectified lin-

ear units as activation function. The input of the model is two-dimensional

images of 16 horizontal sections of the brain placed on 4 3 4 grids as pro-

duced by the preprocessing step. Three fully connected layers of size

1024, 512, and 3 are added to the final concatenation layer. A dropout with

rate of 0.6 is applied before the fully connected layers as means of regular-

ization. The model is pre-trained on ImageNet dataset and further fine-

tuned with a batch size of 8 and learning rate of 0.0001. Inception V3

has the following changes compared to its previous models:

(a) Uses RMSProp optimizer instead of SGD l.

(b) Added Batch Normalization to the dense layer of the Auxiliary

classifier.

(c) Uses of 7�7 factorized Convolution

(d) Label Smoothing Regularization: Regularizes the classifier by calculat-

ing the influence of label dropout during training. It penalizes and pre-

vents the classifier from predicting very high probabilities for any single

class. This improved the error rate by 0.2%.

We shortlisted these three architectures as our baseline as they have consis-

tently shown good performance in regular image classification tasks and

medical image classification tasks (Choi, 2015; Margeta, Criminisi, Lozoya,

Lee, & Ayache, 2016; Tajbakhsh et al., 2016). Table 1 highlights the con-

nection type, parameters and total floating-point operations in the three

baseline models.



Table 1 Key points of the baseline models.

Model Connection type Parameters Floating point operations

VGG-16 Fixed-kernel 138M 19.6 B

ResNet-50 Shortcut 23M 11 B

Inception V3 Wider-parallel 24M 2 B
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4.2 Dataset
The dataset used comprises of labeled chest X-ray images of (i) COVID-19

infected (ii) Pneumonia infected and (iii) healthy people obtained from the

following public sources;

(i) Kaggle Pneumonia dataset (1583 normal X-ray+4273 pneumonia

X-ray) (Shih et al., 2019).

(ii) Kaggle Covid-chest Dataset (150 COVID-19) (Kaggle, n.d.).

(iii) GitHub UCSD-AI4H/COVID-CT (288 COVID-19 X-ray)

(GitHub, 2020).

(iv) SIIM.org (60 COVID-19 X-ray) (SIIM.org, n.d.).

(v) University of Montreal (684 COVID-19 X-ray) (Cohen, Morrison, &

Dao, 2020a).

Fig. 4 shows the imbalance in the classes of X-ray images in the dataset.

Pneumonia Infected X-rays constitute 61%, Healthy (Non-Pneumonia

and Non-COVID-19) X-rays constitute 22% and the rest 17% are

COVID-19 X-rays. Many classification algorithms have low predictive

accuracy for the infrequent class. Thus we treat this imbalance by making

use of data augmentation strategy to partially rectify this skew in data.

Figs. 5–7 show random samples from the dataset for the 3 Classes. It can

be noticed that for an untrained eye it’s nearly impossible to predict and

point out the opacities in chest X-ray.
4.3 Data augmentation
It must be noted that X-ray images are usually of high resolution i.e. usually

1024 pixels�1024 pixels and are single-channel images and not RGB,

unlike normal images. The most common data augmentation technique

i.e., cropping of the images, will not be performed on X-ray images to

ensure abnormalities within the images is not cropped out. Therefore we

perform the following augmentation strategies:

(a) Flipping: We perform separate horizontal and vertical flips for each

image dataset.



Fig. 5 COVID-19 positive chest X-ray.

Fig. 4 Distribution of chest X-ray classes.



Fig. 6 Pneumonia (positive) chest X-ray.

Fig. 7 Healthy chest X-ray.
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(b) Rotation: Rotation of images is done using the following

transformation,

A¼ cosθ � sinθ
� �
sinθ cosθ

where θ is between 10 and 90degrees, is applied.
(c) Gaussian Noise: An array, A, is generated where each element in the

array is a sample from a Gaussian distribution with μ¼0 and with σ2 in
the range of [0.1, 0.9]. For each image X in the dataset, we obtain a

noisy image, X0 ¼X+A.

(d) Jitter: For each image in the dataset, we add a small amount of contrast

(�1–5 intensity values).

(e) Power: For each image in the dataset, we take it to power. The power,

p, is given by:

p¼ n� r +1

where n is a number taken from a Gaussian distribution with mean 0
and variance 1 while r is a number <1. Then, the augmented image,

Xa, is given by,
Xa¼ sign Xð Þ� Xj jpð Þ

The sign and power are each taken elementwise.
(f ) Gaussian Blur: A function defined by the variance between 0.1 and

0.9. (r¼3σ) is applied to blur the images

(g) Shearing: For each image in the dataset, the following transformation

is done,

A¼ 1 s
� �

0 1

S is the amount that image is to be sheared, and it is in the range of
[0.1, 0.35].
4.4 Other preprocessing
The images vary in quality and dimension, ranging from 1215�759 pixels

to 1024�1024 pixels due to multiple sources. To handle this issue we

brought all the images to the size of 778�778 pixels to obtain a constant

dimension for across all the input images.
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4.5 Evaluation metrics
The Evaluation metrics are derived from the confusion matrix. Confusion

Matrix is performance measure for most classification problems where out-

put can be two or more classes. It is a table with four different combinations

of predicted and actual values. (Confusion Matrix of N2 combination can

also be used to note the predictions v/s actual of allN classes). Table 2 shows

a standard Confusion Matrix for a 2 Class case.

4.5.1 Accuracy
Classification accuracy is a naı̈ve metric. It is the number of correct predic-

tions made divided by the total number of predictions made. Accuracy in

confusion metric terms is given by:

Accuracy¼ True positive +True negative

True positive +True negative + False positive + False negative

4.5.2 Precision
Precision can be thought of as a measure of a classifiers exactness. A low pre-

cision indicates a large number of False Positives. Precision in confusion

metric terms is given by:

Precision¼ True positive

True positive + False positive

4.5.3 Recall
Recall calculates how many of the Actual Positives our model capture

through labeling it as Positive (True Positive). Recall is the model metric

we use to select our best model when there is a high cost associated with

False Negative. Thus in Covid patient detection, If a Covid patient

(Actual Positive) goes through the test and predicted as not sick
Table 2 Confusion matrix.

Actual

Predicted

Negative Positive

Negative True negative False positive

Positive False negative True positive



14 Novel AI and data science advancements for sustainability in the era of COVID-19
(Predicted Negative). The cost associated with False Negative will be

extremely high if the sickness is contagious. The recall in confusion metric

terms is given by:

Recall¼ True positive

True positive + False negative

4.5.4 F-1 score
F1 Score is a good measure to use if we need to seek a balance between Pre-

cision and Recall and since there is an uneven class distribution of the

COVID samples.

F1-Score in confusion metric terms is given by:

F1�Score¼ 2�Recall�Precision

Recall + Precision

4.6 Experimental details
The primary goal of our experiment is to utilize the power of altered transfer

learning approaches to correctly diagnose COVID infection against Pneu-

monia infection and Normal-No infection using chest X-ray images. As dis-

cussed in Section 3, we have prepared 17 different models and studied them

separately. For training, we used RMSProp optimizer and the cross-entropy

loss function. The learning rate is started from the value of 0.001 and is

reduced by 1 after every 5 epochs. The early stopping function takes care

of the epoch number. The total images after augmentation processes and

duplication removal was 211142 and 10% of this was held for testing.
5 Results and discussion

The pre-trained models are taken in their bare form as suggested by their

respective papers for image classification without any alterations to get a

benchmark. We have conducted the experiments using the methodology

discussed in Section 3. Additional details to the methodology are as below:

(i) Hybrid 1: The feature ensemble model, the features are extracted

individually from VGG-16, ResNet-50, and Inception V3 and com-

bined to form a 4048 features. The new feature vector is reduced with

PCA for 90% variance explained and passed through a dense layer and

softmax.

(ii) Hybrid 2: The probability predictions of VGG-16, ResNet-50, and

Inception V3 is passed through a weighted voting system to determine
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the final predictions. The weights are determined using a solver to

ensure the three weights predict produce the best accuracy on the

validation set.

(iii) Hybrid 3:Modified Architecture of the threeModels are trained indi-

vidually. This architecture allows us to take advantage of the feature

extraction stage of our network and only tune the new additional layers

to work better with our dataset.

(iv) Hybrid 4: The features extracted from VGG-16, ResNet-50,

Inception V3 are passed separately through the three machine

learning classifiers. This results in 3�3 combinations. This helps to

identify which models produce the most distinguishable feature

representation

The Accuracy, Precision, Recall and F1 score for all the hybrid models are

reported in Table 3. It can be seen that VGG-16 although was the simplest of

the 3 baseline models still outperforms the other 2 considerably for the Chest

X-ray dataset. It achieves an F1-Score of 94.14. Fig. 8 shows the compar-

ative results of the 3 baseline models.

In Hybrid 1: 1000 VGG-16 features, 2048 ResNet-50 features and 1000

Inception V3 features are individually extracted. These 4048 features are fed

to a PCA to perform feature selection and develop a union feature set from

them. The new feature set comprises of 1257 features explaining 92.64% of

the total variance. The predictions after this enhanced feature set is passed

through the dense and softmax layer produces a F1 score of 95.74 which

outperforms all the 3 individual baseline models. This is mainly due to

the fact that combined features has more representational capacity than

the features from any single model. Additionally it can be noted the new

feature set is smaller than features extracted from Resnet-50.

In Hybrid 2: The final voting weights were 0.43, 0.18, and 0.39 to attain

the best F1 score. The Higher weight for VGG-16 can be explained from its

performance in the baseline study. The combined prediction power of mul-

tiple models clearly outperform the baseline models as they achieve a F1

score of 96.19. This can be expected from an ensemble model as it helps

utilize the power of individual model features. Fig. 9 shows the results of

Hybrid 1 and Hybrid 2. It can be seen both have better performance than

the Baseline models. This highlights the advantage and the power of model

ensembles.

In Hybrid 3: The modified architecture has significantly improved the

individual score of the models by an average of 9.8% as seen in Fig. 10. This

is because of the extended architecture could take advantage of the feature



Table 3 Summary of results.

Type Models
Accuracy
(%)

Precision
(%)

Recall
(%)

F1-
Score

Baseline VGG-16 90.19 94.12 94.16 94.14

ResNet-50 87.28 92.12 91.18 91.65

Inception V3 82.22 85.12 85.24 85.18

Hybrid

1

Feature Ensembles 91.76 95.88 95.60 95.74

Hybrid

2

Majority Voting 92.19 96.33 96.06 96.19

Hybrid

3

VGG-16

Modified

99.52 99.77 97.93 98.84

ResNet-50

Modified

97.75 95.80 94.83 95.31

Inception V3

Modified

92.09 95.33 95.47 95.40

Hybrid

4

VGG-16 SVM 91.19 94.12 93.15 93.63

VGG-16 Bagging 90.19 92.22 92.16 92.19

VGG-16

AdaBoost

90.19 89.16 90.10 89.63

ResNet-50 SVM 96.11 89.12 89.12 89.12

ResNet-50

Bagging

95.12 95.12 95.07 95.09

ResNet-50

AdaBoost

90.18 88.12 88.12 88.12

Inception V3

SVM

84.29 85.12 85.20 85.16

Inception V3

Bagging

99.36 99.36 99.12 99.24

Inception V3

AdaBoost

80.12 85.00 86.12 85.56

Bold stands for best model.
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extraction stage of our network and only tune the new additional layers to

work better with our dataset. Modified VGG-16 achieved an accuracy of

99.52% It also is observed that the F-1 score of the Inception V3model beats

the ResNet-50 despite the accuracies of ResNet-50 is higher. Fig.10 depict

the performance of Hybrid 3.

In Hybrid 4: The Bagging classifier performs best across all three models.

The Inception V3-Bagging variant performs outstandingly with 99.36%

accuracy (135/21114 misclassified). Fig.11 Compares the performance of

various feature extractor and classifier combinations.



Fig. 8 Results of baseline models.
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Fig. 9 Results of Hybrid 1(feature ensemble) and Hybrid 2 (max voting).
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Overall best performer is the Hybrid 3-VGG-16 with modified layers

with an accuracy of 99.52% and F1-score of 98.84. The confusion matrix

of the same is shown in Table 4. It can be seen that out of 21,114 images,

only 101 were misclassified. The achieved accuracy to 99.52% is far higher

than any testing kit available in the market. Another breakthrough is the fact
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Fig. 10 Hybrid 3 model.

Fig. 11 Hybrid 4 model.

Table 4 Confusion matrix modified VGG-16.

Predicted

True

COVID-19 Pneumonia Normal

COVID-19 3523 25 0

Pneumonia 76 12,765 0

Normal 0 0 4725
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that there were ZERO cases where the infection was recorded as normal

(False Negative Normal).
6 Conclusions

In this chapter, we propose a quick diagnostic tool using ensemble/hybrid

approaches to classify COVID-19 and pneumonia from chest X-ray images

using pre-trained models. We explored 4 possible hybrid methods incorpo-

rating pre-trained architectures like Inception V3, VGG-16, and ResNet18

trained on the ImageNet dataset. We used the 3 architectures for Feature

extraction and ensemble prediction. We found that the modified VGG-

16 and the Inception v3+Bagging achieved accuracies of 99.52% and

99.36%, respectively. For future study, we propose increasing the dataset size

and using hand-crafted features. Our findings support the notion that deep

learning—AI approaches can be used to improve and ease the diagnostic

process and improve disease management.
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