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Quantum Information Theory in Infinite Dimensions 
with Application to Optical Channels

1 Introduction
Information theory is a field of applied probabil-
ity that deals with the quantification of uncer-
tainty. Initiated by a landmark paper by Claude 
 Shannon1, it was originally intended to be used 
for data compression and to determine the funda-
mental limits of communication. Today, however, 
it finds a variety of applications including port-
folio  optimization2 and evolutionary  biology3. 
Recently, there has also been work in characteriz-
ing quantum mechanical interactions as channels 
and viewing them from information theoretic 
perspective. This allows us to obtain channel 
capacity results for those interactions similar 
to classical case. Moreover, there are some new 
notions of capacity (e.g., Quantum Capacity) 
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Abstract | Information theory deals with the efficient representation of 
information sources as well as providing fundamental limits to the amount 
of information communicated reliably over channels. These sources and 
channels are generally classical, i.e., represented by standard proba-
bility distributions. Quantum information theory takes it to the next level 
where we allow for the sources as well as channels to be quantum. 
From the representation of quantum states to the communication over 
quantum channels, the theory not only essentially encapsulates classi-
cal information theoretic methods but also accounts for quantum effects 
such as superposition, entanglement, interference, etc. In this article, we 
will review and focus on the information theoretic analysis of quantum 
channels with infinite dimensions. Infinite dimensionality is needed to 
model quantum optical channels which are ubiquitous in today’s prac-
tical networks, distributed quantum communication and quantum inter-
net. The infinite dimensionality introduces some unique problems when 
compared with finite-dimensional channels and has not been deeply 
explored in literature from the quantum information theoretic perspective. 
For these channels, we provide the essential concepts and state-of-the-
art channel capacity results. To make this paper self-contained, we also 
recall the finite dimensional results.
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which are specific to quantum communication. 
While there do exist extensive  surveys4 on finite 
dimensional quantum information theory, there 
are very few for infinite-dimensional cases. Inter-
esting channels such as Gaussian Bosonic chan-
nels, used in optical channels, fall in this purview.

When considering classical channel coding 
problems, the channel is modelled as a condi-
tional probability mass function (pmf) where 
given a certain input, an output is generated 
with respect to the pmf. In quantum chan-
nel coding problems, the channel is modeled 
as a completely positive trace preserving (CPTP) 
 map5–7. These recover the classical channel 
results as special cases. What makes quantum 
channels special is in the usage of entangled 
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states and superpositions of  states8, which do 
not have classical equivalents that aid in boost-
ing channel capacity. An elementary example is 
that of superdense coding9, where in the presence 
of entanglement, 2 bits of information may be 
sent using one entangled qubit. Thus the study 
of quantum information theory promises sig-
nificant gains in telecommunications provided 
we can get around the intricacies involved. For 
example, quantum modeling of optical fibers 
can provide higher transmission rate of classical 
information than possible via classical modeling 
 (see10); in fact, even for semi-classical modeling 
with direct, homodyne or heterodyne detection.

While there are several potential benefits in 
switching to quantum communications, it must 
be noted that there are some restrictions that pre-
vent us from abusing the technology. This is char-
acterized by the so-called no-go theorems. For 
instance, the no cloning  theorem11–13 states that 
there is no unitary operation that can clone an 
arbitrary unknown state. This is unlike classical 
communication where bits may be copied. Then 
there is the no communication  theorem14 which 
states that the very act of measuring an entan-
gled state does not communicate information. 
This is important as measuring a state in quan-
tum systems is very unlike in classical systems and 
it does not help in communication. Finally, the 
quantum teleportation  protocol15,16 may lead to 
the incorrect conclusion that, as the state transfer 
was instant, we communicated faster than speed 
of  light17. In fact, that protocol is constricted by 
an auxiliary classical channel which forces the 
information transfer to be limited by the speed of 
light. Without the classical channel outputs, the 
receiver cannot extract any useful information 
from its state. These are just some of the many 
examples that illustrate the limitations of quan-
tum technology.

When restricted to finite-dimensional Hilbert 
spaces, most results and techniques nearly mimic 
that of classical information  theory5,7. For exam-
ple, achievability of classical discrete memory-
less channel capacity is derived using a method 
called typical sets2. The quantum analog of this is 
typical subspaces which uses a similar proof tech-
nique to derive the achievability bound. There 
are quantum analogs of several classical informa-
tion theory concepts, e.g., quantum entropy (also 
known as von Neumann Entropy), quantum KL 
Divergence, quantum mutual information to name 
a few  (see5–7). For the concepts that have no clas-
sical analog, e.g., coherent information, quantum 
capacity, finite-dimensional quantum informa-
tion theory is still tractable for several classes of 

channels. To aid in the understanding of infi-
nite-dimensional results, we will recall the finite 
dimensional results wherever applicable.

Other interesting applications of quantum 
information theory (QIT) include quantum error 
correction (QECC)8,18,19, quantum source cod-
ing (QSC)20,21, quantum key distribution (QKD), 
private capacity and quantum internet, to name 
a few. We do not cover these in our survey but 
briefly comment in the following.

Classical error correction deals with the 
design of coding techniques to safeguard mes-
sages from a specified number of errors. This is 
done by adding redundant symbols to the mes-
sage which serve to recover the message when an 
error occurs. When the messages are binary, the 
errors are merely bit flips. In QECC, the error 
could be a qubit flip (X Gate), phase flip (Z Gate), 
Y-Gate errors or any superposition of these. Thus 
there are more types of errors and so, the coding 
techniques are more sophisticated. The first type 
of Quantum ECC was the Shor 9-Qubit code22 
which required 8 additional qubits to protect a 
single qubit from any type of Pauli gate (X, Z or Y 
gate) errors. The idea that the uncountable num-
ber of errors can be efficiently corrected started 
 with22,refined in Calderbank-Shor-Steane (CSS) 
 codes23, culminating into stabilizer  codes8. We 
require far more qubits (five) to protect a qubit 
than the bits needed in classical ECC. Moreo-
ver, unlike bits, qubits have a tendency to deco-
here and, therefore, lose their information unless 
extreme conditions (near zero Kelvin tempera-
ture, superconductivity, etc.) are maintained. 
This led to the field of fault-tolerant quantum 
 computing24 which also takes into account the 
failure rate of the qubits. However, it is still a far 
cry to build a sustainable fault-tolerant quan-
tum system. The above references are on QECC 
for discrete (qubit) variables. But there has been 
extensive work on extension of these to continu-
ous variables as well  (see24,25). An interesting 
no-go theorem here is that error correction of 
Gaussian noise imposed on Gaussian states using 
only Gaussian operations is  impossible26.

Classical information theory gives a lower 
bound on the number of bits required to describe 
a source, known as the source coding theorem1,2. 
In QIT, a quantum source, that output’s quan-
tum states instead are considered. The states 
need not be orthonormal and are output with a 
corresponding pmf. The quantum source cod-
ing result by  Schumacher5,20 is analogous to the 
classical one, in that the von Neumann entropy 
of the averaged state of the source is the mini-
mum number of qubits required to represent 
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the source. For more recent results on it,  see27. 
Shannon’s rate distortion  theory2 has also been 
extended.  See28 for previous references and fur-
ther extensions.

Transmitting secret messages over a pub-
lic channel can be achieved by private key or by 
a public key protocol. Private key protocol was 
invented by  Shannon1. It is provably secure. 
However, it requires a secrete key between the 
transmitter and the receiver which is as long as 
the message to be transmitted and can be used 
only once. Thus public key cryptography is 
commonly used. However, the secrecy in this is 
ensured only due to difficulty in computing some 
functions, e.g., in RSA29, the difficulty in factor-
ing large integers is exploited. But with Shor’s 
 algorithm30,this can be accomplished efficiently 
if quantum computers are available. The QKD 
algorithm BB84 (Bennett and  Brassard31) helps 
in distributing a secret key between the transmit-
ter and the receiver unconditionally. This can be 
used in private key protocol. In this protocol, due 
to no cloning theorem, the eavesdropper can-
not copy the message from the channel without 
being noticed. An improvement to the protocol, 
SARG04  in32 was proposed in 2004. Of all the 
quantum protocols mentioned so far, it is QKD 
that is closest to being implemented in  practice33. 
 See34 for different variations of QKD. For contin-
uous (Gaussian) variables,  see35–37. Scarani et al.36 
has extensive comparison of discrete and contin-
uous variable QKD.

Private classical capacity refers to the classi-
cal capacity of communication which is prov-
ably secret via a suitable secrecy metric. A good 
reference is the book El Gamal and  Kim38. In 
the quantum setting, major strides were made 
by  Devetak39 which extended the HSW capac-
ity results to private capacity and by Ke Li et al.40 
which showed that private classical capacity 
was non-additive. Private classical capacity is 
the maximum rate at which a secret key can be 
established between two users in QKD. For finite 
dimensions, it is lower bounded by the quantum 
 capacity5,6. For degradable channels, it equals the 
quantum capacity. For infinite dimensions, recent 
contributions  are41  and42, where for some Gauss-
ian channels, private classical capacity is shown to 
be equal to the quantum capacity.

A widespread use of quantum computing and 
communication requires a quantum internet43–45. 
In quantum internet, all communications 
between multiple parties is carried out using 
quantum protocols and secrecy is ensured using 
QKD. Thus, a major issue in quantum internet 
is to establish an entangled state between two or 

more distributed nodes. This is needed for QKD, 
to transmit quantum information, say through 
teleportation, and distributed quantum compu-
tation. We will also see in this review that entan-
glement between the transmitter and the receiver 
can increase the classical and quantum capacity 
of the quantum channel. However, entanglement 
between two nodes cannot be generated via a 
classical communication link; a quantum channel 
is required also. Thus in the design of a quantum 
network efficiently, one needs to compute the 
entanglement generation capacity of point-to-
point and general networks. For finite-dimen-
sional point-to-point quantum channels, it equals 
the quantum  capacity7 studied in this review. For 
some infinite-dimensional channels, this equal-
ity has been shown  in42. Another important con-
sideration in quantum internet is the two-way 
capacities of networks of channels. In our review, 
we do not consider these capacities although they 
are intimately connected to one-way communica-
tion between point-to-point channels studied in 
this review.  See45,46 and the references therein for 
more details on these issues.

The useful concepts of zero-error chan-
nel capacity and network coding have also been 
extended to quantum  domain4.

The trouble starts when we venture into 
infinite-dimensional Hilbert spaces. Without 
a suitable framework, most, if not all, of the 
machinery developed for finite-dimensional Hil-
bert spaces are inapplicable. This is because the 
proof techniques revolve around the finiteness 
of the dimensionality of the underlying Hilbert 
space. Moreover, without additional constraints 
on the states of the Hilbert space, the channels 
under study may be absurd and have a trivial 
infinite classical capacity. Unfortunately, as men-
tioned earlier, a very important class of chan-
nels, namely the Gaussian Bosonic channels are 
constrained channels in infinite dimensions. 
These model optical channels, which are encoun-
tered in fiber optic as well as free space optical 
 communications47,48.

There are two ways to circumvent these issues 
as follows: One is to find an alternate finite-
dimensional or parameter representation of the 
states and work with that. Fortunately, Bosonic 
Gaussian channels in constrained space are ame-
nable to it. The other is to use suitable limit theo-
rems that allow us to obtain the results we desire 
via a simple limit. As we are not providing proofs, 
we may not see it but we will recall those results.

Major milestones in the development of QIT 
are the following: Quantum entropy was defined 
by von Neumann in 1927.  Holevo49 proved the 
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first theorem of QIT and provided an upper 
bound on the mutual information between trans-
mitter and receiver. The quantum source coding 
theorem, corresponding to the Shannon’s1 source 
coding theorem was proved by  Schumacher20. 
Two early communication protocols, namely 
quantum  teleportation15 and quantum dense 
 coding9, have turned out fundamental in QIT. 
 Holevo50 and Schumacher,  Westmoreland51 inde-
pendently proved the HSW theorem provid-
ing the classical capacity result for a quantum 
channel.

Entanglement-assisted classical capacity was 
obtained by Bennett, Shor, Smolin and Thapliyal 
 in52.

Quantum information transmission via a 
quantum channel was initiated in Schumacher 
and  Nielsen53, Adami and  Cerf54 along with oth-
ers. The quantum capacity for finite-dimensional 
channels was proved in  Devetak39. Shor47 proved 
that non-additivity of Holevo capacity is a result 
of non-additivity of minimum output entropy. 
An early survey providing far more references is 
found  in55.

The quantum teleportation and dense cod-
ing algorithms have been extended to continu-
ous variables  in56  and57. For infinite-dimensional 
channels, the classical capacity for energy-con-
strained quantum channel is obtained  in58. The 
results for entanglement-assisted classical capac-
ity are provided  in55. The energy-constrained 
quantum capacity is studied  in42. A major break-
through was  in59 and  Holevo60 for linear bosonic 
Gaussian gauge covariant or contravariant chan-
nels where additivity of the minimum output 
entropy was shown and hence a single-letter char-
acterization of classical capacity was obtained.

The  surveys4,6,55, 61,62 provide a lot more infor-
mation on the topics mentioned above. The 
 book63 addresses the application of these issues in 
practical communication systems.

The paper is organized as follows: In Sect. 2, 
we provide the notation and basic definitions 
and results in QIT. We also particularize these for 
Gaussian states. Section 3 introduces C–Q chan-
nels, which are the most basic form of a quantum 
channel and we provide classical capacity results 
for the finite as well as the available results for 
the Gaussian C–Q channels. In Sect. 4, we pro-
vide the classical capacity results for quantum 
channels and then juxtapose them with the sin-
gle mode Gaussian channel results. We also dis-
cuss the various types of Gaussian channels and 
discuss quantum channels with entanglement 
assistance. Section 5 discusses quantum capacities 
of the channels we studied so far. In Sect. 6, we 

discuss an elementary model for free space opti-
cal channels and in Sect. 6.1, we match the model 
obtained earlier with the Gaussian channels 
we studied and obtain corresponding capacity 
results. Section 7 discusses the multiuser versions 
of the quantum channels. In Sect. 8, we discuss 
recent developments and some open questions in 
this field. Finally, we conclude the survey.

Our focus, therefore, will be on quantum 
communication problems in infinite dimen-
sions with special attention to Gaussian channels. 
We will provide the classical as well as quantum 
capacity expressions, for the cases where they are 
known.

2 �Preliminaries
A good introduction to the following topics is 
 in6,64: Let H be a separable Hilbert space, which 
may be infinite dimensional. Let B (H) be the 
Banach Algebra of linear bounded operators on 
H.

For A ∈ B (H) , let

where A∗ is the adjoint of A and {ei} is an ortho-
normal basis (o.n.b) in H and 〈.

∣∣.〉 denotes the 
inner product of H . ‖A‖1 is called the trace norm 
of A. It is independent of the chosen basis. The set

is a Banach space (with norm ‖.‖1 ) of operators. 
Its elements are called the trace class operators.

The operator norm (or simply norm unless 
otherwise specified) of A ∈ B (H)

satisfies �A� ≤ �A�1 and the dual 
Ŵ(H)∗ = B (H).

We will use the following definitions:

Definition 1 Density Operator. An opera-
tor A ∈ Ŵ(H) is called a density operator if it is 
positive semidefinite (denoted by A ≥ 0 ) and 
Tr(A) = 1.

A density operator A defines the state of a 
quantum system with the underlying space H . Let 
S (H) be the space of all density operators on H . 
It is a closed convex subset of Ŵ(H) . It is also a 
complete separable metric space with metric

(1)
|A| �

√
A∗A, Tr(A) =

∑

i

�ei
∣∣Aei�,

�A�1 � Tr(|A|),

Ŵ(H) = {A ∈ B (H) : �A�1 < ∞}

(2)�A� � sup
�x�≤1

�Ax�
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for any S1, S2 ∈ S (H).
For separable Hilbert spaces H1 and H2 , 

H1 ⊗H2 denotes the tensor product space. A 
density operator on H1 ⊗H2 is separable if it is 
in the closure of the convex hull of product states 
S1 ⊗ S2 ∈ Ŵ(H1 ⊗H2) . Otherwise, it is called an 
entangled state.

Definition 2 Partial Trace operators Opera-
tors TrA and TrB are linear operators on 
Ŵ(H1 ⊗H2) defined via TrA(A⊗ B) = BTr(A) 
and TrB(A⊗ B) = ATr(B) . If ρAB is a state of a 
system in HA ⊗HB , then TrA(ρAB) and TrB(ρAB) 
are the corresponding states of the subsystems on 
HA and HB , respectively.

Definition 3 Weak Convergence. A sequence 
of operators An converges weakly to operator A, 
denoted by An

w−→A , if for all 
∣∣ψ

〉
,
∣∣φ
〉
∈ H,

One can  show6 that Sn
w−→S weakly in S (H) if 

and only if �Sn − S�1 → 0.
Let ei be an o.n.b in H and fi , a real valued 

lower bounded sequence. Let F ∈ B (H) be 
defined as

It is self-adjoint with eigenvalues {fj} with cor-
responding eigenvectors {

∣∣ej
〉
} . These will be 

referred to as operators of type F .
If S is a density operator, then

is the expectation of S with respect to F. The 
mapping S  → Tr(SF) is affine, lower semicon-
tinuous on S (H) . For E < ∞,

is a compact set.

Definition 4 von Neumann Entropy.5–7 For a 
density operator S with spectral decomposition 
S =

∑
i si|ei��ei| , the von Neumann entropy is 

defined as

Also for density operators S and T, the relative 
entropy of S w.r.t T is

(3)ρ(S1, S2) = �S1 − S2�1,

(4)�ψ
∣∣Anφ� → �ψ

∣∣Aφ�.

(5)
F
∣∣ψ

〉
=

∑

j

fj
∣∣ej

〉
�ej

∣∣ψ�.

(6)
Tr(SF) =

∑

j

fj�ej
∣∣Sej� ≤ ∞

(7)SE = {S : Tr(SF) ≤ E}

(8)H(S) = −
∑

i

si log si = −Tr(S log S).

For H finite dimensional, H(S) < ∞ and H(S) 
and H(S; T) are continuous in ‖.‖1  topology5,42. 
But when H is infinite dimensional, H(S) may be 
infinite and S  → H(S) and (S,T )  → H(S;T ) are 
only lower  semicontinuous6. However, the fol-
lowing important result holds: Let

for all θ > 0.

Lemma 1 6 If Tr(exp(−θF) < ∞ , then H(S) is 
bounded and continuous on SE.

2.1  Gaussian States
Gaussian states are ubiquitous in quantum sys-
tems. Any physical quantum system, in small 
oscillation limit can be represented by a ground 
state or a thermal equilibrium state. These are 
Gaussian states. In the following, we will first 
define general single mode Bosonic states and 
then the subclass of Gaussian states.  See6,62,65 for 
details.

Consider Hilbert space H = L2(R) , where 
L2(R) is the space of square integrable real-val-
ued functions on R . For 

∣∣ψ
〉
∈ H , define position 

operator q and momentum operator p, as

where � is the normalized Planck’s constant. 
Operators p, q, called canonical variables, are 
unbounded, self-adjoint with dense domains. For 
ω ∈ R

+ , define

In electromagnetics, a, a† represent a mode of 
the EM field corresponding to frequency ω at a 
particular polarization. Also define the number 
operator

Also define

(9)H(S;T ) = Tr(S log S)− Tr(S log T ).

(10)

exp(−θF)
∣∣ψ

〉
=

∑

j

exp(−θ fj)
∣∣ej

〉
�ej

∣∣ψ�

(11)

(q(ψ))(x) = xψ(x), (p(ψ))(x) = −i�
d

dx
ψ(x),

(12)

a =
1

√
2�ω

(ωq + ip), a† =
1

√
2�ω

(ωq − ip).

(13)N = a†a = aa† − I .

(14)
∣∣n
〉
�

(a†)n
√
n!

∣∣0
〉
, for n = 0, 1, 2, . . .



6

V. Sharma, K. G. Shenoy

1 3 J. Indian Inst. Sci.| VOL xxx:x | xxx–xxx 2022 | journal.iisc.ernet.in

where 
∣∣0
〉
 is the eigenstate of a corresponding to 

eigenvalue 0. The set {
∣∣n
〉
, n = 0, 1, 2 . . .} forms a 

countable o.n.b for the space H , called Fock space. 
Thus H is a separable Hilbert space. State 

∣∣n
〉
 has 

n photons with frequency ω\o.
We have a

∣∣n
〉
=

√
n
∣∣n− 1

〉
 , for n ≥ 1 and 

a†
∣∣n
〉
=

√
n+ 1

∣∣n+ 1
〉
 for n ≥ 0 . Thus a† is 

called the creation operator and a, the annihila-
tion operator and ω their frequency. Each z ∈ C 
is an eigenvalue of a with eigenvector z. Opera-
tor N  has spectral decomposition

The variance of p(ψ) =
∥∥(p− y)

∣∣ψ
〉∥∥2 and of 

q(ψ) =
∥∥(q − x)

∣∣ψ
〉∥∥2 , where y = �ψ

∣∣pψ� and 

x = �ψ
∣∣qψ� , satisfy the following uncertainty 

principle:

For a probability density p on C , the set of com-
plex numbers, we can define a density operator

 This is called a single-mode Bosonic state. A Bos-
onic state that maximizes entropy for a fixed 
energy is called a Thermal state.

As a special case, a single mode Gaussian 
state with mean µ and variance N is defined as

where µ ∈ C . Then we can show that for µ = 0,

where

and g(0) = 0 . Sµ is pure or coherent iff N = 0 and 
then Sµ = |µ��µ| . A thermal state is a Gaussian 
state with µ = 0v.

The characteristic function of Sµ is defined as

(15)N =
∞∑

n=0

n
∣∣n
〉
.

(16)Var(p(ψ))Var(q(ψ)) ≥
�
2

4
.

(17)S =
∫

z∈C
|z��z|p(z)d2z.

(18)

Sµ =
1

πN

∫

z∈C
|z��z| exp

(
−
|z − µ|2

N

)
d2z,

(19)

S0 =
1

N + 1

∞∑

n=0

(
N

N + 1

)n

|n��n| and

(20)

H(S0) =
1

N + 1

∞∑

n=0

(
N

N + 1

)n

[(n+ 1) log(N + 1)− n logN ] = g(N ),

(21)g(n) = (n+ 1) log(n+ 1)− n log n

where D(z)ψ(ξ) = exp
(
iy
�

(
ξ − x

2

)
ψ(ξ − x)

)
 for 

z = ωx+iy√
2�ω

 and I(z) is the imaginary part of z.

Even though Gaussian states have infinite-
dimensional support, they can be completely 
described by first and second moments. Thus 
these are much more theoretically tractable, 
especially after using symplectic formulation 
provided below.

3 �C–Q�Channels
Let X  be a completely separable metric space 
with a σ-algebra of Borel sets.

Definition 5 A weakly continuous mapping 
� : x �→ Sx , from X  to S (H) is called a C–Q 
(classical-quantum) channel.

At the output Sx of the channel, we take 
measurements via non-negative measure-
ment operators M = My, y ∈ Y for some 
output alphabet Y . These operators satisfy ∑

y∈Y My = I  . With these measurements, if 
input is x, then the probability of measuring y, 
post measurement, is given by

The above probabilty effectively defines a classical 
channel between alphabets X  and Y.

We consider n independent uses of this chan-
nel with the transition probability given by (23). 
If we input the codeword x = (x1, x2, . . . , xn) , 
where xj ∈ X  , to this channel then the probabil-
ity of output y = (y1, y2, . . . , yn) is given by

Thus, this is a memoryless channel. Let Pe(W ,M) 
be the maximum probability of error for code-
books W of codeword length n, with measure-
ments M, with codewords chosen uniformly from 
W. Then for n channel uses and Nn codewords, 
the maximum probability of error for the channel 
is given by

where minimum is taken over all codebooks W 
and measurements M.

(22)

Tr(SµD(z)) = exp(2iI(µz)−
(
N +

1

2

)
|z|2),

(23)p(y|x) = Tr(SxMy)

(24)P(y|x) =
n∏

i=1

Tr(SxiMyi).

(25)Pe(n,Nn) = min
W ,M

Pe(W ,M),
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3.1  Classical Capacity of a C–Q channel

Definition 6 The classical capacity C of a C–Q 
channel is defined as the supremum of the rates 
R = lim

n→∞
logNn

n  where n,Nn are such that 

lim
n→∞

Pe(n,Nn) = 0.

C is the maximum rate per channel use of clas-
sical information that can be transmitted with 
arbitrarily low probability of error. This is an 
asymptotic quantity. To achieve this rate, one may 
have to use the channel an infinite number of 
times. If dim(H) < ∞ (we can then take X  finite 
dimensional), then we have the following:

Theorem 1 (Holevo, Schumacher, Westmore-
land)5–7 The classical capacity of a C–Q channel is 
given by

where the max is over all probability distributions 
π on X  . The quantity χ(π) is known as Holevo’s 
information. �

If dim(H) = ∞ , the capacity in (26) could be 
infinite and the input energy used also  infinite6,65. 
This happens in classical information theory also. 
Thus, for channels of interest, an input energy 
constraint is imposed. In practice, also one needs 
to impose such constraints. Let f : X → R

+ be a 
Borel measurable function. Define

for 0 < E < ∞ . Denote Sπ =
∫
Sxπ(dx) . Assume 

H(Sπ ) < ∞ and define

Then we have

Theorem 2 6Let F be a self adjoint opera-
tor of type F  satisfying Tr(exp(−θF) < ∞ for 
all θ > 0 , and f (x) ≥ Tr(SxF) for all x ∈ X  . 
Then supπ∈PE

H(Sπ ) < ∞ and classical 

(26)

C = max
π

[
H

(
∑

x

π(x)Sx

)
−

∑

x

π(x)H(Sx)

]

� max
π

χ(π),

PE =
{
Probability measures π on X :
∫

f (x)π(dx) ≤ E

}
,

(27)χ(π) = H(Sπ )−
∫

H(Sx)π(dx).

capacity of C–Q channel x  → Sx with constraint ∫
f (x)π(dx) ≤ E is given by

This capacity is achievable if f is lower semicontinu-
ous (l.s.c) and {x : f (x) ≤ K } is compact for any K 
with 0 < K < ∞ . �

In practice, one picks F so that it provides a 
meaningful energy constraint at the input. If f is 
l.s.c, then finitely supported probability distribu-
tions are dense in PE . This helps in proving The-
orem 2 from Theorem 1.

3.2  Gaussian C–Q Channel
We can define for each µ ∈ C , mapping µ  → Sµ , 
where Sµ is a Gaussian state as defined in (18). 
This C–Q channel is called a Gaussian C–Q 
channel. For transmission, we can use codeword 
w = (µ1,µ2, . . . ,µn) with energy constraint

Then the conditions of Theorem 2 are satisfied 
with F = a†a = N  . Therefore the classical capac-
ity of this channel  is6,62,

where PE = {π dist. :
∫
|µ|2π(d2µ) ≤ E}.

We have H(Sµ) = H(S0) = g(N ) (from (20)). 
The maximum in (30) is attained by the Gaussian 
density operator and6

This formula behaves as log
(
1+ E

N+1

)
 for large 

N, and hence is a quantum generalization of 
Shannon’s formula.

4 �Quantum�Channel
To define a quantum channel, we first define the 
following terms:

(28)
Cχ = sup

π∈PE

χ(π) < ∞.

(29)

n∑

i=1

|µi|2 ≤ nE.

(30)

C = max
π∈PE

[
H(Sπ )−

∫
H(Sµ)π(d

2µ)

]
.

(31)

C = Cχ =g(N + E)− g(N )

= log

(
1+

E

N + 1

)

+ (N + E) log

(
1+

1

N + E

)

− N log

(
1+

1

N

)
.
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Definition 7 Trace preserving mapping. For 
separable Hilbert spaces HA and HB , a mapping 
� : Ŵ(HA) → Ŵ(HB) is called trace preserving if 
for all trace class operators T, Tr(�(T )) = Tr(T ).

Definition 8 Completely positive map. A map-
ping � : Ŵ(HA) → Ŵ(HB) is completely positive 
if �⊗ In maps positive semidefinite operators 
to positive semidefinite operators for all n ≥ 1 , 
where In is the identity operator in Cn . This defi-
nition holds for infinite dimensional spaces HA 
and HB.

With these two definitions, we define a chan-
nel5–7 as a linear bounded map from Ŵ(HA) to 
Ŵ(HB) that is both trace preserving and com-
pletely positive. The C–Q channels are special 
cases.

Definition 9 Complementary chan-
nel and Entropy exchange. For a channel 
� : Ŵ(HA) → Ŵ(HB) , there exists a Hilbert space 
HE and an isometry V : HA → HB ⊗HE , such 
that

where TrE is the partial trace wrt space HE . (32) 
is known as the Stinespring representation of the 
channel � . Similarly we have the channel

called the complementary channel of � . The 
entropy exchange of state S wrt � , is

We provide some examples of channels that 
would be useful later.

Definition 10 For finite dim(HA) , the channel 
�(S) = (1− p)S + p� , where 0 < p < 1 and � is 
the maximally mixed state, is called a depolarizing 
channel.

Definition 11 Degradable and Anti-Degrada-
ble Channels.5,7. Channel � is degradable if there 
exists a channel � such that �̃ = � ◦� , where �̃ 
is the complementary channel of � . Similarly, � is 
antidegradable if �̃ is degradable.

Definition 12 Entanglement Breaking Chan-
nels.5,7 A channel � is entanglement breaking if for 
any input state SAB , (�⊗ Id)SAB is separable.

All entanglement breaking channels are 
anti-degradable.

(32)�(S) = TrE(VSV
∗),

(33)�(S) = TrB(VSV
∗),

(34)H(S;�) = H(�(S)).

Definition 13 A channel � is (irreducible) gauge 
covariant if there exists a continuous, projective, 
unitary (irreducible) representation g  → Vg of a 
symmetric group G in H such that

where Ug is a unitary operator. Similarly, � is 
gauge contravariant if �(VgρV

∗
g ) = U∗

g �(ρ)Ug.

4.1  Classical Capacity
Block code �n for n channel uses of this channel is 
a C–Q channel that maps message i to state S(n)i  of 
H⊗n

A  and measurement M(n) on Hilbert space H⊗n
B  

decoding output state �⊗n(S
(n)
i ) to classical mes-

sage j. The probability of decoding j given message i 

is Tr
(
�⊗n(S

(n)
i )M

(n)
j

)
� P(�n,M(n), (i, j)).

The maximum probability of error for this code 
is

Define Pe(n, 2nR) = min
�n,M(n)

Pe(�
n,M(n)).

Definition 14 The classical capacity C(�) of the 
quantum channel � is the supremum of rates R, 
such that limn→∞ Pe(n, 2

nR) = 0.

For a fixed probability �(n) on the input alpha-
bet and observations M(n) , the classical capac-
ity can be obtained via Shannon’s Theorem. Let 
In(�

(n),M(n)) be the classical mutual informa-
tion between input and output for n channel uses. 
Then, the classical capacity of the channel is

From classical information  theory2,C(�) is the 
maximum number of bits that can be transmitted 
on this channel with arbitrarily low probability of 
error.

In contrast to C–Q channels, there is no fixed 
input alphabet X  , so we need to optimize over 
states {S(n)i } also. Let us define

�(VgρV
∗
g ) = Ug�(ρ)U∗

g ,

Pe(�
n,M(n)) = max

i
(1− P(�n,M(n), (i, i))).

(35)

C(�) = lim
n→∞

1

n
sup

�(n),M(n)

In(�
(n),M(n)).

(36)

Cχ (�) = sup
�

{
H

(
∑

i

�i�(Si)

)

−
∑

i

�iH(�(Si))

}

(37)≤ sup
S

H(�(S)−min
S

H(�(S))),
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where Cχ (�) is known as the Holevo Capacity of 
channel � and minS H(�(S)) the minimal output 
entropy of �.

Theorem 3 Holevo Schumacher Westmoreland 
(HSW)  Theorem50,51. For finite-dimensional Hil-
bert spaces, we get

�

In general Cχ (�1 ⊗�2) ≥ Cχ (�1)+ Cχ (�2) . 
Strict inequality may hold because an entangled 
input to �1 ⊗�2 may increase the mutual infor-
mation with output compared to any product 
input states. If the Holevo capacity is additive for 
channel � , i.e., Cχ (�⊗�) = Cχ (�)+ Cχ (�) 
for any channel � , then Cχ (�

⊗n) = nCχ (�) for 
every n ≥ 1 and hence C(�) = Cχ (�) . This, for 
instance, holds for all C–Q, entanglement breaking 
and depolarizing channels. From this, we obtain 
Theorem 1.

By subadditivity of entropy, 
maxS(n) H(�⊗n(S(n))) = nmaxS H(�(S)) . Thus 
from (37), Cχ (�

⊗n) = nCχ (�) if we have equality 
in (37) and the minimal output entropy is additive. 
Equality in (37) holds for irreducibly covariant and 
contravariant channels.

Once again, for infinite-dimensional Hilbert 
spaces, we impose a finite input energy constraint 
as for the C–Q channel. Let F be an operator of 
type F  on HA . Consider the input states S(n) of 
channel �⊗n that satisfy

for some finite E > 0 , where

Theorem 4 6,66Let � satisfy

where F is an operator of type F  satisfying con-
ditions of Lemma 1. Then the classical capacity 
C(�, F ,E) of � is finite and

where

(38)C(�) = lim
n→∞

1

n
Cχ (�

⊗n).

(39)Tr(S(n)F (n)) ≤ nE,

(40)
F
(n) =F ⊗ I

⊗n−1 + I ⊗ F ⊗ I
⊗n−2

+ · · · + I
⊗n−1 ⊗ F .

(41)
sup

S:Tr(SF)≤E

H(�(S)) < ∞,

(42)

C(�, F ,E) = lim
n→∞

1

n
Cχ (�

⊗n, F (n), nE)

and S� =
∫
�(dx)Sx.�

For entanglement breaking channels, 
C(�, F ,E) = Cχ (�, F ,E).

In the following, we will describe Gauss-
ian Bosonic channels in detail. However, first we 
consider an important Bosonic non-Gaussian 
channel which models decoherence in fiber optic 
channels and some quantum circuits. Decoher-
ence in fiber optic channels can occur due to Kerr 
non-linearities and imprecision in path length. 
An m-mode Bosonic dephasing channel maps a 
state ρ to a state

where φ = (φ1, · · · ,φm) and p is a probability 
density on [−π ,π ]m . This is a degradable chan-
nel. For the m = 1 case and energy constraint E41,

In67,another infinite-dimensional general non-
Gaussian Bosonic channel is considered. Even 
though Cχ is non-additive in this case, tight 
upper and lower bounds on classical capacity are 
obtained.

4.2  Gaussian Channel
In this section, we specialize quantum channels 
to Gaussian quantum channels. The optical chan-
nels (fiber optic as well as free space channels) 
used in practice are Gaussian quantum channels. 
Gaussian channels also model natural physical 
phenomena such as linear photon amplification 
/ loss and adding thermal noise. Often, nonlinear 
operations can also be accurately approximated 
by Gaussian channels.

First, we generalize the concepts of single 
mode Bosonic and Gaussian  states6,62,65. We con-
sider H = L2(Rd) , where Rd is the coordinate 
space of the underlying classical system. For each 
co-ordinate j, we define qj and pj , position and 
momentum operators resp., as before and spec-
ify frequency ωj\o. Define for x = (x1, . . . , xd) , 
y = (y1, · · · , yd),

(43)

Cχ (�, F ,E) = sup

�:Tr(S�F)≤E{
H(�(S�))−

∑

i

�iH(�(Si))

}

(44)

∫ π

−π

dm(φ)p(φ) exp(−i

m∑

j=1

a†j ajφj)ρ exp(i

m∑

j=1

a†j ajφj),

(45)C(�, F ,E) = Cχ (�, F ,E) = g(E).
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where W(z) is called the Weyl operator and 
z = (x1, y1, x2, y2, . . . xd , yd) . For z, z′ , define

The space Z = R
2d with non-degenerate skew 

symmetric �(z, z′) is called a symplectic vector 
space of the classical system corresponding to the 
quantum system. W(z) is a multimodal generali-
zation of displacement operator D(z) .

A quantum state on Z will be called a gen-
eral Bosonic state with d modes. Its characteristic 
function is

This is called the non-commutative Fourier trans-
form. The state S can be uniquely obtained from 
φS(z) using the following inversion formula:

The state S is a general d mode Gaussian state if its 
characteristic function is of the following form:

where α(z, z) = zTαz . If m = 0 , we call the state 
centered, denoted by S0 . For φ(z) to be a Gaussian 
state, it is necessary and sufficient that α ≥ ± i�

2  . 
The corresponding Gaussian state is then given 
by

A general Gaussian Sm can be decomposed into 
elementary one-mode Gaussian states as

State S is pure iff each of S(j) is pure. The entropy 
of S is given by

(46)

Vx = exp


i

d�

j=1

xjqj


,

Uy = exp


i

d�

j=1

yjpj


,

W (z) = exp

�
i

2
yTx

�
VxUy,

(47)
�(z, z′) =

∑

j

(xjy
′
j − x′jyj).

(48)φS(z) � Tr(SW (z)), z ∈ R
2d .

(49)S =
1

(2π)d

∫
φS(z)W (−z)d2dz.

(50)φ(z) = exp

(
imz −

1

2
α(z, z),

)

(51)Sm = W (−�−1mT )S0W (−�−1mT )∗.

(52)S =
d⊗

j=1

S(j).

A Gaussian state has maximum entropy of all 
states with mean m and covariance α.

A multimode Bosonic  channel6,65,68 can be 
best described via its Stinespring dilation. The 
channel � from HA to HB will be described by 
associating with its environment HD (at the 
input) and HE at the output. Let the correspond-
ing symplectic spaces be ZA,ZB,ZD and ZE . Also 
note that HA ⊗HD = HB ⊗HE U. It evolves 
according to symplectic transformation

with K : ZB → ZA , L : ZE → ZA , KD : ZB → ZD 
and LD : ZE → ZD . The characteristic function 
φB(zB) of the output state is related to the charac-
teristic function φA(zA) of the input state by

If additionally,

where l(zB) = mD(KDzB) and 
α(zB, z

′
B) = αD(KDzB,KDz

′
B) , the channel is called 

a Gaussian channel with parameters (K , l,α) pro-
vided α ≥ ± i

2 (�B − KT�AK ) . Here αD is the 
covariance of the Gaussian input environment 
noise.

Gaussian channels transform Gaussian states 
to Gaussian states via relations

where mA and αA are mean and variance of the 
input state and mB and αB of the output state. 
Without loss of generality, we can take l = 0 . A 
concatenation of Gaussian channels is a Gaussian 
channel.

A general Bosonic Gaussian channel is irre-
ducibly gauge covariant / contravariant if it sat-
isfies the conditions of Definition 13 under the 
z → W (z) group. Gaussian channel (K , 0,α) is 
gauge covariant if there exists an operator J in 
(Z,�) with J2 = −I such that [K , J ] = 0 and 
[�−1α, J ] = 0.

A Gaussian channel (K , 0,α) is entanglement 
breaking if and only if α admits a decomposi-
tion α = αA + αB , where αA ≥ i

2K
T�AK  and 

(53)H(S) =
d∑

j=1

H(S(j)).

(54)T =
[
K L
KD LD

]
,

(55)φB(zB) =φA(KzB)f (zB),

(56)f (zB) =φD(KDzB).

(57)f (zB) = exp(il(zB)−
1

2
α(zB, zB)),

(58)mB = mAK + l, αB = KTαAK + α,
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αB ≥ i
2�B

6. Thus if KT�AK = 0 , then the chan-
nel is entanglement breaking.

For Gaussian channels taking F = RǫRT , 
where ǫ is a positive definite matrix and 
R = (q1, p1, · · · qd , pd)T , satisfies the conditions 
of Theorem 4. However, for a general Gauss-
ian channel, computing the classical capacity 
from (43) explicitly is possible only if additivity 
of Holevo capacity holds. Due to this, the clas-
sical capacity of general Gaussian channels is 
unknown. More recently, it was  shown59 that 
for a Gaussian gauge-covariant or contravariant 
channel, with finite second moment, the mini-
mal output entropy of the channel is additive 
and attained at a Gaussian state. Thus, for such 
channels, the Holevo capacity is  additive6 and 
hence C(�, F ,E) = Cχ (�, F ,E) . It is also true 
for entanglement breaking channels. Gaussian 
gauge contravariant channels are entanglement 
breaking.

However, it is challenging to even compute 
Cχ (�, F ,E) except for C–Q channels and Gauge 
symmetric  channels6.

4.2.1  Single Mode Gaussian Channels
As mentioned earlier, a Gaussian channel can 
be characterized by (K , l,α) . If we take l = 0 the 
characteristic function of the output state simpli-
fies to

For single mode, the Gaussian channels can be 
classified as follows. Let Ik denote the identity 
matrix in k dimensions.

Theorem 5 6,62 Let N0 be the mean number of 
photons in the environment. Then all single mode 
Gaussian channels can be classified into one of the 
following classes:

•   (A1) K = 0, α = (N0 + 1
2 )I2, N0 ≥ 0.

•   (A2) K =
[
1 0
0 0

]
 , α = (N0 + 1

2 )I2, N0 ≥ 0.

•   (B1) K = I2,α = 1
2 (N0 + 1

2 )I2.
•   (B2) K = I2, α = NcI2, Nc ≥ 0.

•   (C) K = kI2, k > 0, k �= 1, α =
(
N0 + |k2−1|

2

)
I2.

•   (D) K = k

[
1 0

0 − 1

]
, k > 0, k �= 1, α =

(
N0 +

k
2
+1

2

)
I2

 . �

(59)φB(z) = φA(Kz) exp

(
−
1

2
zTαz

)
.

The above channels can be related to the envi-
ronment as follows. If the input state is described 
by canonical variables q and p, the environment 
as Gaussian states described by qE and pE , the 
output states by q′ and p′ , and environment states 
at the output by q′E and p′E , then the above chan-
nels can be specified by the following maps:

•   (A1) Completely depolarizing: q′ = qE , 
p′ = pE.

•   (A2) A degenerate classical signal q with 
additive quantum Gaussian noise qE : 
q′ = q + qE , p′ = pE.

•   (B1) Quantum signal plus degenerate clas-
sical Gaussian noise: q′E = q , p′E = p− pE . 
pE has variance 12 and (qE , pE) is in vacuum 
state.It is the complementary channel of 
(A2).

•   (B2) Non-degenerate additive classical 
Gaussian noise. q′ = q + ζ , p′ = p+ η , 
where ζ , η are i.i.d. Gaussian with mean 0 
and variance Nc.

•   (C) Attenuation (if k < 1 ), with quantum 
noise: 

•  

Amplification (if k > 1 ), with quantum noise: 

•   (D) Attenuation / amplification with phase 
conjugation: q′ = q, p′ = −p.

For these channels we take F = a†a and then 
the energy constraint Tr(SF) ≤ E is the mean 
number of photons in the input state ≤ E . Then 
the conditions of Theorem 4 are satisfied. Chan-
nels (A1), (B2) and (C) are gauge covariant and 
channel (D) is gauge contravariant. Thus, 
C(�, F ,E) = Cχ (�, F ,E) . Also (A1), (A2), (D) 

and (C) with k ≤ 1√
2
 are anti-degradable.

Channels (B1), (B2), (C) are also called phase 
insensitive Bosonic Gaussian channels. In par-
ticular, channel (C) is called quantum thermal 
channel. For applications, (C) and (B2) are most 
interesting. Channel (C) with k < 1 represents a 
fiber optic channel and for k > 1 , a linear opti-
cal amplifier. Maximization in Cχ (�, F ,E) is a 
finite-dimensional optimization problem which 
is the quantum analog of waterfilling in classical 
information theory.

For channels (B2) and (C)6,more explicitly,

(60)
q′ = kq +

√
1− k2qE , p

′ = kp+
√
1− k2pE .

(61)
q′ = kq +

√
k2 − 1qE , p

′ = kp+
√
k2 − 1pE .
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where NC = |k2 − 1|N0 and g(.) is as defined in 
(21). When NC = 0 and k < 1 , we have a pure 
loss channel and then C(�, F ,E) = g(k2E) . A 

pure loss channel with k ≥ 1√
2
 is degradable.

For channel (B2), k = 1 and (62) simplifies to 
C(�, F ,E) = g(E + NC)− g(NC).

4.3  Entanglement‑Assisted Classical 
Capacity

One can increase the classical capacity of a quan-
tun channel by apriori preparing an entangled 
state between the transmitter and the receiver. Of 
course preparing an initial entangled state has a 
cost which is not considered in the following:

Let � : Ŵ(HA) → Ŵ(HB) be a quantum 
channel. Let SAB be an entangled pure state on 
HA ⊗HB . Classical message i arriving with prob-
ability �i is encoded into εiA on HA and this acts 
as operation

The input part of this state is sent on � and 
measurements are made at the receiver to get the 
classical information. The maximum rate trans-
missible via this protocol is called the entangle-
ment assisted classical capacity Cea(�).

Theorem 6 5,7,52For a finite dimensional HA,

where

�

One can show that

(62)

C(�, F ,E) =g(k2E + NC +max(0, k2 − 1))

− g(NC +max(0, k2 − 1)),

(63)(εiA ⊗ IB)(SAB) � SiAB.

(64)

Cea(�) = lim
n→∞

1

n
C ′
ea(�

⊗n) = I(SA;�),

(65)
C ′
ea(�) = sup

�i ,ε
i
A,S

i
AB

χ(�, (�⊗ IB)S
i
AB),

(66)

χ(�,�(S)) =H(
∑

i

�i�(Si))

−
∑

i

�iH(�(Si)) and

(67)
I(SA;�) =H(SA)+H(�(SA))−H(SA;�).

(68)Cχ (�) ≤ Cea(�) ≤ log d + Cχ (�),

where d = dim(HA) . Also, C(�) ≤ Cea(�).
For dim(HA) = ∞ , the entanglement-assisted 

classical capacity for the constrained input chan-
nel is given by the following theorem:

Theorem 7 6,69Let F be an operator satisfy-
ing Tr(exp(−θF) < ∞ for all θ > 0 . Let F ′ 
be a self adjoint operator of type F  satisfy-
ing Tr(exp(−θF ′) < ∞ for all θ > 0 and 
Tr(�(S)F ′) ≤ Tr(SF) , for all S ∈ S (HA) . Then

where I(S;�) = H(S)+H(�(S))−H(S;�) 
and H(S;�) is the entropy exchange.

Moreover, if supS∈S (HA)
I(S;�) = ∞ , then 

the sup is achieved on a density operator S with 
Tr(SF) = E . �

For the Gaussian channel, if the input is 
restricted to the set of states with mean m and 
covariance α , then from Theorem 7, the entangle-
ment-assisted classical capacity is

and the max is attained on a Gaussian state.
For channels (B2) and (C), taking F = a†a , 

we obtain for Tr(SF) ≤ E , from the following 
Theorem 7:

where E′ = k2E +max(0, k2 − 1)+ NC and 
D = ((E + E′ + 1)2 − 4k2E(E + 1))/2 . The 
energy constraint implies that E is the mean 
number of photons of the signal. From (62) and 
(71), for channel (C),

as E → 0 when max(0, k2 − 1)+ NC > 0 . Thus 
entanglement can significantly increase the 
capacity when signal energy is low. For NC = 0 , 
k < 1 , the pure loss  channel70,

and Cea(�,F ,E)
C(�,F ,E) → 2 as E → 0.

(69)Cea(�, F ,E) = max
S:Tr(SF)≤E

I(S;�),

(70)
sup

S∈�(m,α)

I(S;�)

(71)

Cea(�) =g(E)+ g(E′)+ g

(
D + E

′ − E − 1

2

)

+ g

(
D − E

′ + E − 1

2

)
,

(72)1 ≤
Cea(�)

C(�)
→ ∞

(73)
Cea(�, F ,E) = g(E)+ g(k2E)− g((1− k2)E),
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5 �Quantum�Capacity
The above capacity results are the fundamental 
limits on transmitting classical information on 
quantum channels. Limits on transmission of 
quantum information are also considered. Cor-
respondingly, there are quantum capacity and 
entanglement assisted quantum capacity.

Consider Hilbert spaces M and N  . Consider 
an isometric map V : M → N  . A quantum code 
is a map, ε : S �→ VSV ∗ . Repetition codes cannot 
be used due to no-cloning theorem.

Definition 15 Quantum Capacity. Consider a 
quantum channel � : Ŵ(HA) → Ŵ(HB) . A rate 
R is achievable if there exist Hilbert spaces H(n) 
such that

and a sequence of encodings

and decodings

such that

where Fs is the subspace fidelity, a measure of 
closeness of two spaces and is defined as

The supremum of all achievable rates here is the 
quantum capacity Q(�) of the channel �.

Q(�) is the maximum number of qubits per 
channel use that can be transmitted on the chan-
nel � reliably.

Define the coherent information as

Theorem 8 5,7,71,72For finite-dimensional HA , we 
have

�

Since IC(S;�) ≤ Cχ (�; S) , Q(�) ≤ C(�).
If � is degradable, then IC(S;�) ≥ 0 . 

Also then IC(S;�⊗n) = nIC(S;�) and 
Q(�) = maxS IC(S;�)72. If � is antidegradable, 
then IC(S;�) ≤ 0 and hence it has a Quantum 

lim sup
n→∞

1

n
log dim(H(n)) = R

E
(n) : Ŵ(H(n)) → Ŵ(H⊗n

A )

D
(n) : Ŵ(H⊗n

B ) → Ŵ(H(n))

lim
n→∞

Fs(H
(n),D (n) ◦�⊗n

E
(n)) = 1,

(74)

Fs(H,�) = min
ψ∈H,�ψ�=1

�ψ
∣∣�(|ψ��ψ |)ψ�.

(75)IC(S;�) = H(�(S))−H(S;�).

(76)Q(�) = lim
n→∞

1

n
max
S

IC(S;�⊗n).

Capacity of 0. Note that while coherent informa-
tion could be negative, quantum capacity cannot 
be.

A unique aspect of quantum capacity is 
superactivation. We can have two channels �1 
and �2 such that Q(�1) = Q(�2) = 0 but 
Q(�1 ⊗�2) > 07. This is not possible in classical 
information theory.

For dim(HA) = ∞ , Q(�) defined by (76) is 
still finite even without any energy constraint. 
Q(�) with input energy constraint Tr(SF) ≤ E 
can be shown to be

under the conditions of Theo-
rem 442. For degradable channels, 
Q(�, F ,E) = supTr(SF)≤E IC(S;�).

Since m-mode Bosonic dephasing channel is 
degradable, its quantum capacity without energy 
constraint  is41 m log2(2π)− h(p) , where h(p) 
is the classical differential entropy of p. Under 
energy constraint E, Q(�, F ,E) is unavailable but 
is upper bounded by m log2(2π)− h(p).

The maximal achievable rate with the assis-
tance of entanglement between the transmitter 
and the receiver states (as is for Cea ) is called the 
entanglement-assisted quantum capacity Qea(�) . 
Using quantum teleportation and dense cod-
ing, we can show that Qea(�) = 1

2Cea(�)5,7. Also 
Q(�) ≤ Qea(�) . This holds for infinite-dimen-
sional channels as well.

5.1  Gaussian Channels
If � is a degradable Gaussian channel, 
Q(�) = supS IC(S;�) is achievable by tak-
ing the supremum over all Gaussian states with 
mean m and covariance α , where m and α satisfy 
the energy constraints. Its explicit expression for 
phase insensitive channels is provided  in42.

Regarding single-mode Gaussian channels 
provided in Theorem 5, the channels (A1), (A2) 
and (D) are antidegradable and hence have zero 
quantum capacity. Moreover, it is known that 
for Gaussian channels � of type (C) without any 
energy  constraints46

(77)

Q(�, F ,E) = lim
n→∞

1

n
sup

S:Tr(SF)≤E

IC(S;�⊗n),

(78)

Q(�) = 0, if k ≤
1
√
2
or, k ≥

1
√
2

and NC ≥
1

2
(k2 − |k2 − 1|).
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Under above conditions, channel (C) is degra-
dable. For 1 ≥ k2 ≥ N0+1

N0+2 ,  from73,channel 
(C) is not degradable but we have 
Q(�) ≤ − log 2((1− k2)kN0)− g(N0) . There are 
other upper bounds for channel (C)  in73.

For NC = 0 , k2 ∈
[
1
2 , 1

]
 , with mean number 

of photons in input state ≤ E , we get the quan-
tum capacity from (77) as g(k2E)− g((1− k2)E) . 
This can be taken as an upper bound for the 
channel with NC > 0 and energy constraint E. 
For NC = 0 , taking E → ∞ , we get log k2

1−k2
 . Fur-

thermore,  from42,we can generalize it to an m 
mode parallel pure loss channel with energy con-
straint E. Then

where Nj(β) = 1

e
βωj+1

 and β is such that 

∑m
j=1Nj(β) = E . Here ωj is the frequency of the 

jth mode of the channel. The result extends to the 
case when kj , for mode j, are different, each satisfy 

k2j ∈
[
1
2 , 1

]
.

An example of superactivation in Gaussian 
channels is provided  in74.

6 �Modeling�Optical�Light�and Channels
Consider electromagnetic wave (EM wave) 
in free space, transmitted by a transmitter in 
z = 0 plane, in pupil A0 , and measured by a 
receiver in z = L plane, in pupil AL during time 
0 ≤ t ≤ T  .  Then48,62,65,75 the electric field at 
input, in normal mode decomposition, can be 
written as

and at the receiver as

where 0 ≤ kn ≤ 1, {θm(t)} are a completely 
orthonormal set of functions, �n and �n are the 
input and output eigenfunctions respectively 

(79)

Q(�) =
m∑

j=1

g(k2Nj(β))− g((1− k2)Nj(β)),

(80)
E0(ρ, t) =

∑

n,m

cn,m�n(ρ)θm(t),

ρ ∈ A0, 0 ≤ t ≤ T ,

(81)

EL(ρ, t) =
∑

m,n

kncn,m�n(ρ)θm

(
t −

L

c

)
,

ρ ∈ AL, 0 ≤ t −
L

c
≤ T ,

(independent of the input field applied) and c is 
the speed of light. The corresponding quantized 
electric fields are

at z = 0 and

for z = L , where 0 ≤ kn ≤ 1; an,m are the anni-
hilator operators at the input corresponding to 
coefficients cm,n and en,m are annihilator opera-
tors from the environment. Thus the state of the 
input field can be described by the joint density 
operator an,m and that of the output field by 

bn,m = knan,m +
√

1− k2nen,m . The mapping 
from {an,m} to {bn,m} defines the channel for this 
optical system.

If Ê0(ρ, t) has only one term then it is a sin-
gle-mode Bosonic channel, a beam-splitter dis-
cussed in more detail in next subsection. If e11 is 
in a vacuum state then it is a Gaussian (C) class 
pure loss channel (because now Nc = 0 ). If e11 
is in a thermal state then it is called a thermal 
noise channel. The C(�, F ,E) of the channels is 
provided in (62) and Cea(�, F ,E) in (71). For 
pure loss channel, results are given more explic-
itly. For k ≥ 1√

2
 , the pure loss channel is degra-

dable and hence its quantum capacity has 
single-letter characterization and is provided in 
the discussion preceding (79). For k < 1√

2
 , it is 

antidegradable and hence has quantum capacity 
0.

When there is more than one term in (83), 
and each mode is a pure loss mode with corre-

sponding k2mn ∈
[
1
2 , 1

]
 , then the quantum capac-

ity can be obtained from (79), modified for 
different kmn.

For classical capacity with energy constraints, 
if the general m-mode channel is with en,m in vac-
uum states, we obtain Bosonic Gaussian covariant 
channel and hence from the results of Section 4, 
C(�, F ,E) = Cχ (�, F ,E) and is attained via 
Gaussian input. Thus we can compute it numeri-
cally. For single mode, it equals g(k2E) . For 

(82)Ê0(ρ, t) =
∑

n,m

an,m�n(ρ)θm(t),

(83)

ÊL(ρ, t) =
∑

m,n

(knan,m

+
√
1− k2nen,m)�n(ρ)θm

(
t −

L

c

)
,
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multimode case, we need to optimize the energy 
used in different modes. Similarly, one can obtain 
Cea(�, F ,E) from Sect. 4.3.

6.1  Optical Systems as Gaussian 
Quantum Systems

Coherent state 
∣∣α
〉
 , α ∈ C is eigenstate of a with 

eigenvalue α . It is a special case of a Gaussian state 
(when var = 0 ), models a state of an ideal laser 
light beam. The simplest state 

∣∣0
〉
 is the vacuum 

state. The coherent states are min uncertainty 
states of p and q. For α ∈ C , the coherent state 

∣∣α
〉
 

can be expanded in basis {
∣∣n
〉
} as

It has average number of photons

also called its intensity.
A coherent state can also be characterized by 

its intensity µ and phase θ by

The phase θ of light pulse from an ordinary 
laser device is random, uniformly distributed on 
[0, 2π ] . Then a coherent state with intensity µ is 
a classical mixture with Poisson distribution of 
photons

If µ is small and the state is not 
∣∣0
〉
 , then we can 

approximate it with the first two terms with n = 0 
and 1 in (88). This is light with a single photon. 
Coherent states have same variance in p and q 
coordinates.  (see6,62,65 for more details).

Thermal states have a representation as 
described in (19), where N is the mean number of 
photons in them.

Squeezed states are generalizations of coherent 
states. In these states, one quadrature may have 
less uncertainty than the other, resulting in higher 
uncertainty in the other, due to the uncertainty 
principle. Then the covariance matrix has one 
eigenvalue larger than the other.

A single mode squeezed state is

(84)
∣∣α
〉
= exp

(
−
|α|2

2

) ∞∑

n=0

αn

√
n!
∣∣n
〉

(85)= exp(αa† − α∗a)
∣∣0
〉
.

(86)µ = �α
∣∣a†a|α� = |α|2,

(87)
∣∣µ, θ

〉
= exp(

√
µeiθa† − µ/2)

∣∣0
〉
.

(88)

ρµ =
1

2π

∫ 2π

0
|µ, θ��µ, θ |dθ = e−µ

∞∑

n=0

µn

n!
|n��n|.

where S(ζ ) = exp
(
− ζ

2 (a
†)2 + ζ ∗

2 a
2
)
 . If ζ = reiφ , 

then the covariance matrix is

The variance of position is e−2r and of momen-
tum is e2r.

The coherent states and thermal states are 
like classical sinusoidal states with well-defined 
amplitude and phase. But Fock states 

∣∣n
〉
 and 

squeezed states do not have a classical equivalent.
Two-mode squeezed states are very useful and 

can be used as entangled states. These are gener-
ated by the squeezing operator

A beam splitter is a widely used optical device 
(can be taken as an example of a quantum chan-
nel). It has a two-mode input beam and a two-
mode output beam. One input mode can be taken 
in vacuum state and the other in single photon. 
Thus the input state is 

∣∣1
〉
⊗

∣∣0
〉
 . The output state 

is denoted by

where UB is the operator specified by the beam 
splitter. A 50 : 50 beam-splitter gives

i.e., a maximally entangled state. If the input is 
a coherent state, then the output is a separable 
state. We can also obtain a two-mode squeezed 
state at the output given one-mode squeezed state 
at input. Thus a beam splitter is a very versatile 
laser device and is used often in quantum infor-
mation processing.

7 �Capacity�of Multiuser�Channels
The results provided so far are for point-to-point 
quantum channels. However, just as for classical 
information  theory38,several of these results have 
been extended to multiuser channel situation. 
The focus, as in classical case, has been on multi-
ple access channels, broadcast channels, interfer-
ence channels and general multihop networks of 
quantum channels. In the following, we only pro-
vide the references for the aforementioned chan-
nels with brief comments.

(89)
∣∣ζ , 0

〉
= S(ζ )

∣∣0
〉
,

(90)

[
e−2r 0

0 e2r

]
.

(91)S = exp(−ζ ∗a1a2 + ζa†1a
†
2).

(92)
∣∣ψ

〉
out

= UB

∣∣10
〉
,

(93)
∣∣ψ

〉
out

=
1
√
2
(
∣∣10

〉
+

∣∣01
〉
),
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We first consider multiple access channels 
(MAC). In a MAC, multiple users transmit to one 
receiver.  Winter76,provided the capacity region 
for classical information on the C–Q MACs. The 
capacity region obtained is similar to that of clas-
sical  MAC77 extended this result to a MAC with 
C–Q channels as well as quantum-quantum 
(q–q) channels and obtained the capacity results 
for both classical as well as quantum informa-
tion. As for point-to-point quantum channels, 
there are no single-letter characterizations of the 
capacity region for the general channels. How-
ever, for the degradable channel, single-letter 
characterizations were obtained.  In78,capacity 
of entanglement-assisted case has been studied 
for quantum–quantum MACs with two users79 
studies a MAC with classical inputs and quantum 
outputs with discrete or continuous  variables80 
studies finite-dimensional and Bosonic thermal 
noise channels with more than two users.

The broadcast channel consists of one trans-
mitter and multiple receivers. 81studied this chan-
nel when classical information is transmitted to 
multiple users over quantum channels. Inner and 
outer bounds on the capacity region are provided. 
Next, they consider the case when information 
transmitted to some of the users is classical while 
for others quantum.

In82, an interference channel is considered 
where there are two transmitters and two receiv-
ers. Each transmitter transmits to one of the 
receivers (no common receiver) and acts as an 
interference to the other. For such channels, even 
in classical information theory, the capacity of 
the information to individual users is known 
only in special  cases82 generalizes this chan-
nel to the quantum setting. The case when the 
classical inputs are provided and quantum out-
puts received (C–Q channel) is studied in detail. 
Capacity of the channel is obtained for the very 
strong and strong interference case, as in the 
classical setting. Han–Kobayashi  (see2,38) type of 
results are also obtained.

Savov’s PhD  Thesis83 considers several net-
works of C–Q channels. In these networks, 
classical inputs are provided and the network 
outputs quantum signals. Thus classical encod-
ing with quantum decoding is used. Multiple 
access, broadcast, interference and relay channels 
are considered in the finite-dimensional setting. 
These results can be extended to quantum input 
and quantum output channels. Savov’s thesis also 
considers Bosonic quantum interference chan-
nels with classical inputs and continuous variable 
quantum state outputs.

8 �Recent�Developments�and Future�
Directions

Capacity in classical and quantum information 
theory is an asymptotic concept. It provides the 
supremum on the achievable rates per channel 
use as the number of channel uses goes to infin-
ity. In practice, we use only a finite number of 
channel uses. Then the probability of error in 
transmission will be non-zero for any positive 
achievable rate and the capacity is not achievable 
with arbitrarily low probability of error for most 
channels of interest.

More recently, in classical information theory, 
for a given probability of error ε , upper and lower 
bounds on the achievable rate for a given number 
of channel uses have been  obtained84,85. Exten-
sions of these results to quantum systems for 
finite-dimensional channels have been summa-
rized  in86–89. A systematic book-length treatment 
is provided  in90 and the upper and lower bounds 
obtained are used in providing the channel capac-
ity and rates of convergence of the achievable rate 
to the channel capacity.

The finite-length achievable rates, rates of 
convergence to the capacity and continuity of 
capacity for infinite-dimensional channels have 
been studied  in58,70,91. We provide the results  of70 
in more detail. These concern the achievable rates 
for the classical capacity of C–Q channels for 
finite block length case.

Consider a C–Q channel �(x) = Sx , where 
x ∈ X  can be a continuous set and Sx is a state 
on an infinite dimensional, separable Hilbert 
space. Let M∗(�⊗n, ε) be the maximum size of 
the codebook that can be transmitted in n chan-
nel uses of � with probability of error ≤ ε , where 
0 < ε < 1 . Then

where ρ the state and V (ρ) are obtained as fol-
lows: Let P be a probability density on X  ; then

Also Q(.) is the complementary cdf of a Gaussian 
distribution with zero mean and unit variance. 
This lower bound is similar to the second-order 
expansions of achievable rates in classical infor-
mation theory.

We apply the inequality (94) to a pure loss 
bosonic channel with Heisenberg evolution

(94)
logM∗(�⊗n, ε) ≥ nH(ρ)

−
√

nV (ρ)Q−1(ε)+ O(log n),

(95)ρ �Ex∼P[|Sx��Sx|],

(96)V (ρ) =Var(− log P(x)).
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where η ∈ [0, 1] , subject to an input photon num-
ber constraint Tr(a†aρ) ≤ NS , NS > 0 . Now for 
pure state 

∣∣α
〉
 , the output is 

∣∣ηα
〉
 . We take η = 1 

for convenience and distribution P as isotropic 
complex Gaussian with variance NS,

Then, for the average state ρ,

where g(.) is defined in (20).
For general η ∈ [0, 1] , the bound is obtained 

by replacing NS with ηNS.
For more general Bosonic channels, this type 

of results are unavailable but would be of inter-
est. Notice also that (94) is a lower bound but 
a non-trivial upper bound is elusive. If we were 
to apply the upper bound results provided  in87 
 and88,we would run into issues, such as finite 
condition numbering, which automatically 
force the dimensions of the Hilbert spaces to be 
finite. A suitable upper bound, therefore, would 
be desirable and the result is likely to resemble 
(94), as it does in classical information theory 
for additive white Gaussian noise (AWGN) 
 channels85. It would also be worthwhile to study 
the finite blocklength effects on the second-
order terms in the presence of entanglement 
assistance.

As far as quantum capacity is concerned, 
there are no results of the finite blocklength 
type available, except for finite dimensions. In 
fact, as seen in Sect. 5, we do not even have a 
proper characterization of Q(�) except for a 
very specific class of channels. These are most 
sought after in applications such as QKD and 
quantum internet.

9 �Conclusion
In this survey, we have introduced and dis-
cussed QIT for various quantum channels with 
a focus on Gaussian channels with single mode. 
We have discussed and compared capacity, both 
classical and quantum, with and without entan-
glement assistance for these channels. We have 
also discussed the multiuser variants of these 
channels. While the infinite-dimensional space 

(97)b̂ = √
ηâ+

√
1− ηê,

(98)PNS (α) =
1

πNS
exp

(
−
|α|2

NS

)
.

(99)H(ρ) =g(NS),

(100)
V (ρ) =NS(NS + 1)

(
log(NS + 1)− logNS

)2
,

is useful, as that is where the useful channels lie, 
it is also significantly more complex than finite-
dimensional analysis. As a result, a large number 
of open issues still remain and for these reasons, 
this field will be vibrant for many years to come.
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