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1 Introduction

Over the last few years, it has been realized that combining the power of dispersion relations
and crossing symmetry leads to powerful constraints on the low energy expansion of 2-2
scattering [1, 2]. At the same time, to understand scattering of massless particles in four
spacetime dimensions, the program bearing the name of “Celestial amplitudes” [3, 4] has
been an active area of research.

Celestial amplitudes represent S-matrix elements in a basis where the external particles
are in boost eigenstates. In this basis, 4-d scattering amplitudes manifestly transform as
2-d conformal correlation functions [5–7]. Due to this feature, celestial amplitudes have
emerged as a central object of interest in the context of flat space holography, where
recent developments on the connection between soft theorems and asymptotic symmetries
suggest that the holographic dual of quantum gravity in asymptotically flat spacetimes
is a 2-d celestial conformal field theory (CCFT) defined on the celestial sphere at null
infinity [8–10].

The celestial formalism has led to several fascinating recent insights, particularly for
scattering of massless particles (see [3, 4, 11, 12] for recent reviews). For example, soft theo-
rems in gravity and gauge theories in 4-dimensions have been shown to imply the existence
of infinite dimensional current algebra symmetries acting on the 2-d celestial sphere [16–19].
These symmetries impose powerful constraints on the operator product expansion (OPE)
in CCFT, which in turn is related to collinear limits of scattering amplitudes [13–15]. Quite
remarkably, these infinite-dimensional celestial symmetries can be used to completely de-
termine tree-level MHV amplitudes in Yang-Mills theory and Einstein gravity [16, 17]. In
this paper, we wish to understand what insights one can obtain about the S-matrix boot-
strap program using ideas from celestial amplitudes. In a companion paper [32], we will
present what can be learnt about CCFT from the corresponding bulk effective field theory
(EFT) using insights gained from the S-matrix bootstrap.

A main recent development is the derivation of two-sided bounds on ratios of Wilson
coefficients1 [1, 2]. The primary tool in this area of research has been the fixed-t dispersion
relation. Since 2-2 scattering is a function of the two Mandelstam invariants s, t, historically
much attention has focused on a dispersion relation where one of these variables (typically t)
is held fixed. In the case of scattering of identical particles, a penalty that one has to pay
is the loss of crossing symmetry which has to be imposed as a constraint. Such constraints
have been dubbed as “null constraints” in [20, 21]. Using these constraints, and linear
programming, one numerically finds two-sided bounds on Wilson coefficients of weakly
coupled EFT’s. In [22] a geometric picture was put forward where it was argued that as
a consequence of the constraints arising from locality and unitarity the space of Wilson
coefficients was forced to lie inside a geometric region called the EFThedron.

In the early 1970s, Auberson and Khuri had looked at a dispersion relation with mani-
fest crossing symmetry (CSDR). This line of research lay dormant for many years. Recently
this dispersion relation was resurrected in [23, 24]. Since there is inbuilt crossing symmetry

1Taylor expansion coefficients arising in the low energy expansion of 2-2 scattering amplitudes, which in
turn are related to contact vertices in the effective action.
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at the onset, the penalty one pays to have a dispersion relation is the loss of manifest lo-
cality. Namely one finds spurious poles in the partial waves. Cancellation of these spurious
poles is needed to have a local low energy expansion. This can only happen after summing
over spins. The role of “null constraints” is played by these “locality constraints” in this
program. In [23, 24], the equivalence of the two sets of constraints was shown. The par-
tial waves in the CSDR with spurious singularities were termed as “Dyson blocks” in [23].
There is another version of partial waves, which look closer in spirit to Feynman diagrams,
which are singularity free and resemble exchange Feynman diagrams with specific contact
diagrams. These were called “Feynman blocks” in [23]. As we will see, these Feynman
blocks in the Celestial variables have remarkable properties.

One of the main advantages of working with the CSDR is that it leads to a fascinating
connection with an area of mathematics called Geometric Function Theory (GFT) [25–28].
The origin of two sided bounds on Wilson coefficients gets related to the famous Bieberbach
conjecture (de Branges’ theorem). The main property of the amplitude that enables this
connection is what is called “typically real”-ness or “Herglotz”. A function f(z) is typically
real if it satisfies Im f(z) Im z > 0 whenever Im z 6= 0. If the function is regular inside the
unit disk then the Taylor expansion coefficients of the function satisfy two-sided bounds
called Bieberbach-Rogosinski bounds [26]. The function is also allowed to have simple
poles on the real axis. When this happens, the two-sided bounds get modified to the so-
called Goodman bounds where the gap between the origin and the nearest pole controls
the two-sided bounds. These mathematical facts are reviewed in [26].

A feature of the crossing symmetric dispersive representation of the amplitude is that it
involves a kernel (to be reviewed in section 3.1) which bears resemblance with tree-level φ3

theory. 4-point celestial amplitudes and their conformal block decomposition for tree-level
φ3 theory involving massive scalar exchange have recently been studied in [29–31]. It is
therefore naturally tempting to build on these works using the CSDR. The above mentioned
kernel in CSDR is also dressed with the Legendre (Gegenbauer) polynomials, which carry
information about spins in the partial wave expansion of the amplitude. For spin-0, the
results of [29–31] for the celestial amplitude can be readily imported. With some more
effort, we will be able to calculate the 4-point celestial amplitude for any spin involved in
the partial wave decomposition of the momentum space amplitude using the CSDR.

In this paper, one of our main objective is to explain what insights can be obtained for
EFTs using CCFT techniques. For this purpose, we will consider 2-2 scattering of massless
particles and write the Mandelstam variables in terms of the celestial variable, z, as follows

s = ω2, t = −ω2z, u = −ω2(1− z) . (1.1)

For fixed z, this choice of variables enables one to study fixed-angle scattering. As
reviewed in section 3.2, the celestial amplitude is obtained as a Mellin transform of the
four dimensional scattering amplitude. The Mellin variable is β. We will show how to
repackage the information about the null/locality constraints systematically in the celestial
basis. Next we will examine the properties of the Feynman blocks in the celestial variable.
Specifically, we will be interested in the residues of the celestial amplitude at β = −2n,
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i.e., negative even integers, since these contain information about the low-energy expansion
coefficients in the momentum space amplitude [33, 34]. For each n, we can write an explicit
expression for the amplitude in terms of a sum over Feynman blocks. Quite remarkably, we
will find that beyond a certain critical spin J = JT , all the Feynman blocks are typically
real polynomials! This enables us to put two-sided bounds on the truncated partial wave
sum J < JT using polynomial analogues of the Bieberbach-Rogosinski bounds for typically
real functions which we call Suffridge bounds (5.12). Furthermore, this leads to novel two
sided bounds on the Wilson coefficients themselves in terms of the J < JT partial wave
moments.

Let us now give a brief overview of the key results. We have been able to:

• Show that there is a new kind of positivity exhibited by 2-2 scattering amplitudes in
a large class of theories in terms of a variable ρ which is related to celestial variable
z as ρ = −1− 2z(z − 1) due to the dominance of Spin-0 partial waves.

• Obtain a representation for the 4-point celestial amplitude of massless scalars us-
ing the crossing symmetric dispersive representation of momentum space ampli-
tude (3.12) for generic β and by specializing to β = −2n, n ∈ Z+ relevant for
low-energy physics (4.6), systematically analyze the implications of locality con-
straints (4.12).

• Obtain bounds on partial wave moments as a direct consequence of the above men-
tioned locality constraints (4.12), using which we quantify the phenomenon of low spin
dominance (LSD) and argue that the ρ-positivity is tied to spin-0 dominance (4.30).

• Show that as a function of ρ the Feynman blocks for large enough spins are typically-
real polynomials. Using this we have been able to put non-projective bounds on the
low energy Wilson coefficients (5.21), (5.27) in terms a few low spin partial wave
moments.

• Obtain bounds for the case with graviton exchange in the amplitude by using Good-
man bounds for typically real functions in the variable ρ̃ = ρ+ 1.

A question worth asking at this point is if one could have obtained these results without
appealing to CCFTs. The key player in our story is the Celestial variable ρ and GFT
methods relying on typically-realness in this variable. It is unclear why one would be
interested in analysing such properties in this variable without having the motivation to
understand CCFTs, which is why we feel that the CCFT formalism has been the key player
leading to the S-matrix insights obtained in this paper.

The paper is organized as follows. In section 2, we begin by introducing the celes-
tial inspired ρ-variable, in which known amplitudes curiously seem to exhibit a hitherto
unknown kind of positivity. In section 3, by starting with the CSDR we obtain a represen-
tation of the celestial amplitude for generic β. In section 4, by specializing to β = −2n, we
analyze the locality constraints which imply certain bounds on partial wave moments, LSD
and a connection between ρ-positivity and spin-0 dominance. In section 5, we show that
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Figure 1. The ρ-variable. We have marked the range of interest. Green indicates physical region
while red indicates unphysical region.

there is a connection between the Feynman blocks and typically-real polynomials in the
unit disk |ρ| < 1 and use techniques from GFT to obtain two sided bounds on low energy
Wilson coefficientsWpq in terms of lower spin partial waves. We conclude in section 6 with
a discussion on the possible future directions of interest. The appendices supplement the
material in the main text with proofs, closed form expressions and tables of data.

2 Celestial insight 1: a curious observation

In this section, we wish to point out an interesting feature of the low energy expansion of
2-2 scattering in many theories. We will start with string theory. Consider the following
two fully crossing symmetric amplitudes [35].

MCB(s, t) = Γ(−s− 1)Γ(−t− 1)Γ(−u− 1)
Γ(2 + s)Γ(2 + t)Γ(2 + u) , s+ t+ u = −4 (2.1)

MII(s, t) = −x2MII(s, t) ≡ x2 Γ(−s)Γ(−t)Γ(−u)
Γ(1 + s)Γ(1 + t)Γ(1 + u) , s+ t+ u = 0 (2.2)

Here we have defined x = −(st + tu + su). The first amplitude is the 2-2 tree level
scattering of tachyons in closed bosonic string theory while the second one is the 2-2 tree
level scattering of dilatons in type-II string theory. For type-II, we can also consider the
2-2 graviton scattering amplitude R4MII(s, t).

We wish to expand both amplitudes in a manifestly crossing symmetric manner. To
this effect we will introduce

s1 = s+ 4
3 , s2 = t+ 4

3 , s3 = u+ 4
3 , for MCB (2.3)

s1 = s , s2 = t , s3 = u , for MII . (2.4)

In both cases s1 + s2 + s3 = 0. Now we introduce the celestial variables

s1 = ω2 , s2 = −ω2z , s3 = −ω2(1− z) . (2.5)

Further for later convenience, we introduce

ρ = −1− 2z2 + 2z . (2.6)

The relation between the ρ variable and the z variable is indicated in figure 1.
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In passing, we also note the following useful relations (s1 + s2 + s3 = 0):

x ≡ −(s1s2 + s1s3 + s2s3) = ω4

2 (1− ρ) , (2.7)

y ≡ −s1s2s3 = −ω
6

2 (1 + ρ) . (2.8)

Then expanding the amplitudes around ω2 = 0 (i.e., the crossing symmetric point),
we find2

MCB ≈ 7.74 + 27.22ω4(1− ρ) + 121ω6(1 + ρ) + 121.56ω8(1− ρ)2

+ 911.18ω10(1− ρ2) + 546.77ω12
[
(1− ρ)3 + 3(1 + ρ)2

]
+O(ω14) ,

MII −
2

ω6(1 + ρ) ≈ 2.40 + 1.04ω4(1− ρ) + 1.44ω6(1 + ρ) + 0.50ω8(1− ρ)2

+ 1.25ω10(1− ρ2) + 0.25ω12
[
(1− ρ)3 + 2.98(1 + ρ)2

]
+O(ω14) .

(2.9)

For type II, we have put the graviton pole on the left.
Now consider two more cases. First, the run-of-the-mill φ2ψ theory at tree level where

we are scattering massless φ which exchanges a massive ψ at tree level. The amplitude for
this is:

Mφ2ψ = g2
( 1
m2 − s

+ 1
m2 − t

+ 1
m2 − u

)
= 3g2

m2 + g2ω4

m6 (1− ρ) + 3g2ω6

2m8 (1 + ρ) + g2ω8

2m10 (1− ρ)2 + 5g2ω10

4m12 (1− ρ2)

+g2ω12

4m14

[
(1− ρ)3 + 3(1 + ρ)2

]
+O(ω14) . (2.10)

Finally consider the theory at one-loop which is given in terms of the Appell F3 [36]

Mφ2ψ = π2

6m4

(
F3

(
1, 1, 1, 1

5
2

; s

4m2 ,
t

4m2

)
+ (s→ t, t→ u) + (s→ u, t→ s)

)

= π2

6m4

 ∞∑
p,q=0

p! q!(
5
2

)
p+q

(4 m2)p+q
(sptq + tpuq + upsq)


≈ π2

6m4

(
3 + ω4

40m4 (1− ρ) + ω6

168m6 (1 + ρ) + ω8

2520m8 (1− ρ)2 + ω10

5280m10 (1− ρ2)

+ ω12

128128m12

[
(1− ρ)3 + 2.91(1 + ρ)2

] )
+O(ω14) (2.11)

Now all of these expansions have the following startling feature in common.

2One cross-check about the overall sign is that if we write the expansion as
∑
Wpqx

pyq, then using
unitarity, one can show that Wn,0 ≥ 0. In other words, the coefficients of ω4n(1− ρ)n are guaranteed to be
positive.
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All these expansions up to any fixed order in ω are positive polynomials in ρ in the
interval ρ ∈ (−1, 1). In order to be concise, we will refer to this positivity as Pρ.

A positive polynomial p(x) on an interval (a, b) is one that is p(x) ≥ 0 ∀ x ∈ (a, b). A
nice characterization of such polynomials [37] on (−1, 1) is that they can be expanded in
terms of the so called Bernstein basis p(x) = ∑m

i=0 ci(1 + x)m−i(1− x)i such that ci,j ≥ 0
however we may need m ≥ d where d is the degree of the polynomial. The smallest m such
that for n ≥ m guarantees ci ≥ 0 is called the Bernstein degree of the polynomial [37].
The Bernstein degree requires knowledge of the maximum and minimum values of the
polynomial p(x). In appendix A, we will derive these positivity properties directly using
the known expressions for the amplitudes.

Now some of the positivity features can be explained quite straightforwardly using a
dispersion relation. For instance, the coefficient of the ω4(1− ρ) term can be shown to be
positive using partial wave unitarity. The full positivity in the ρ ∈ (−1, 1) interval however
is harder to explain. One of the main purposes of this paper is to find analytic conditions
under which such positivity can hold. Our main tool will be to use the crossing symmetric
dispersion relation (CSDR) [23, 38] which we will review next.

3 Essential technicalities: dispersion relations

As mentioned in the introduction, our focus in this paper will be the use of the crossing
symmetric dispersion relation (CSDR). Many of the analytic properties will be transparent
using the CSDR.3 We begin with a lightning review of the CSDR. For further details, we
refer the reader to [23, 38].

3.1 CSDR: a quick review

Consider M(s, t) to be the 2-2 scattering amplitude of identical massless scalars in four
spacetime dimensions. M(s, t) admits a crossing symmetric dispersive representation given
by [23, 38]

M(s, t) = c0 + 1
π

∫ ∞
δ0

ds′

s′
A(s′, a)H(s′; s, t, u) (3.1)

where

a = stu

st+ tu+ us
≡ y

x
. (3.2)

Here δ0 is the location of the cut (or in the case of string theory, the first massive pole)
and c0 = M(0, 0), which arises as we have assumed two subtractions while writing down
the dispersion relation [23, 38]. We assume that M(s, t) does not involve propagation of
massless particles in loops since in such a scenario the branch cuts would join up and
writing down a dispersion relation becomes subtle, this also translates to having a cutoff

3It should be possible to use the fixed-t dispersion relations to find numerical evidence for these properties
but we will leave this as an open problem.
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δ0 > 0. A(s, a) is the s-channel discontinuity of the amplitude and H(s′; s, t, u) denotes
the following crossing symmetric kernel

H(s′; s, t, u) = s

s′ − s
+ t

s′ − t
+ u

s′ − u
. (3.3)

The discontinuity A(s, a) can be expanded in terms of Legendre polynomials as

A(s′, a) = 32π
∞∑
J=0

(2J + 1) αJ(s′) PJ

√s′ + 3a
s′ − a

 . (3.4)

where αJ(s′) are the partial wave coefficients.4 In the sum over spins in (3.4), only even
spins contribute since we are considering here the amplitude for identical scalars. The
conventions are chosen so that unitarity leads to 0 ≤ αJ(s) ≤ 1.

Now the nontrivial form of the argument of the Legendre polynomial is to be noted.
When the theory is gapped, it is known [38], that the partial wave expansion converges
over a range of the parameter a, which allows for Taylor expanding around a ∼ 0. Since a
involves inverse powers of x, this would lead to negative powers of x in a particular partial
wave. In a local theory, these inverse powers of x should be absent. This means that
when we sum over the spins, such inverse powers should cancel. This leads to what we
call “locality” constraints. In [23], it was shown that these are equivalent to the so-called
“null constraints” which arise on imposing crossing symmetry on the fixed-t dispersion
relation [21, 39].

3.2 Dispersion relation in celestial basis

In this section we consider the 4-point celestial amplitude for identical massless scalars in
four spacetime dimensions and evaluate it using the crossing symmetric dispersive represen-
tation of the momentum space amplitude given in section 3.1. In order to write down the
celestial amplitude, the null four-momenta of the external particles can be parametrized as

pµk = εkωk(1 + zkz̄k, zk + z̄k,−i(zk − z̄k), 1− zkz̄k), k = 1, 2, 3, 4 (3.5)

where εk = ±1 for an outgoing (incoming) particle. ωk is the energy of the k-th particle.
(zk, z̄k) specify the directions of null-momenta of the asymptotic states in the S-matrix and
hence can be regarded as stereographic coordinates on the 2-d celestial sphere. Throughout
the rest of this paper, we take ε1 = ε2 = −1 and ε3 = ε4 = 1 corresponding to particles
(1, 2) incoming and (3, 4) outgoing.

The 4-point celestial amplitude is then given by

M(∆i, zi, z̄i) =
∫ ∞

0

4∏
i=1

dωi ω
∆i−1
i M(ωi, zi, z̄i) δ(4)

( 4∑
i=1

pµi (ωi, zi, z̄i)
)

(3.6)

4We abuse notation here and actually mean the imaginary part of the partial waves i.e., if M(s, t) =
32π

∑∞
J=0(2J + 1)fJ(s)PJ(1 + 2t

s
) then αJ(s) = =fJ(s). We shall continue calling αJ(s) as partial waves

throughout the text.
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where M(ωi, zi, z̄i) is the momentum space amplitude with the external momenta
parametrized as in (3.5). Under the action of the Lorentz group which acts as SL(2,C) on
the (zi, z̄i) variables, the celestial amplitude M(∆i, zi, z̄i) transforms as a 4-point correla-
tion function of quasi-primary operators with scaling dimension ∆i in a 2-d CFT which in
this context is referred to as Celestial CFT (CCFT).

NowM(∆i, zi, z̄i) can be further expressed as [33]5

M (∆i, zi, z̄i) =
4∏
i<j

(zij z̄ij)
1
2(∆

3 −∆i−∆j) 2−β−2 |z(1− z)|
(β+4)

6 δ(z − z̄) M̃(β, z) (3.7)

where

∆ =
4∑
i=1

∆i; β = ∆− 4 (3.8)

z, z̄ denote the cross ratios

z = z13z24
z12z34

; z̄ = z̄13z̄24
z̄12z̄34

(3.9)

and

M̃(β, z) =
∫ ∞

0
dω ωβ−1 M(ω2,−zω2) (3.10)

M̃(β, z) is the Mellin transform of the of 2-2 momentum space amplitude M(s, t) where
the Mandelstam invariants have been parametrized as

s = ω2; t = −zω2; u = (z − 1)ω2 (3.11)

Here z = −t/s is related to the scattering angle θ in the s-channel via z = 1
2(1−cos θ).

For physical s-channel kinematics we thus have z ∈ [0, 1]. In this paper one of the central
objects of interest is M̃(β, z). Since the kinematic prefactors in (3.7) will be irrelevant for
our purposes here, we will refer to M̃(β, z) simply as the celestial or Mellin amplitude in
the rest of this paper.

Let us now determine the Mellin amplitude using the representation of M(s, t) given
by the crossing symmetric dispersion relation (3.1). For this, we use the partial wave
expansion (3.4) and also apply the celestial parametrization (3.11). The Mellin integral
over ω can then be performed and we obtain

M̃(β, z)

= 2πc0δ(β) + π

2 sin
(
πβ
2

) ∞∑
J=0

(2J + 1) α̃J(β, δ0)
[
e−iπβ/2PJ (1− 2z) + z−β/2PJ

(
z − 2
z

)

+ (1− z)−β/2PJ
(
z + 1
z − 1

)
+ (z(1− z))−β/2−J(z2 − z + 1)β/2+3QJ(β, z)

]
(3.12)

5See appendix B for a review of the derivation of (3.7).
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Figure 2. The analytic structure for each spin-J partial wave. The blue circles are potential
singularities at z = 0, 1 while the red crosses are potential singularities at z2 − z + 1 = 0.

where α̃J(β, δ0) is given by

α̃J(β, δ0) = 32
∫ ∞
δ0

ds′ s′β/2−1 αJ(s′) , (3.13)

and are partial-wave moments for β = −2n. QJ(β, z) is a polynomial in β, z and is given by

QJ(β, z) = (z(1− z))J(z2 − z + 1)−3
3∑
i=1
RJ(β, xi) (3.14)

where

RJ(β, xi) = e−iπβ/2(
J
2 − 1

)
!
dJ/2−1

dxJ/2−1

[
xβ/2(1 + x)J/2

(x− xi)
PJ

(√
1− 3x
1 + x

)]∣∣∣∣
x=−1

(3.15)

with x1 = −z(z − 1)(z2 − z + 1)−1, x2 = (z − 1)(z2 − z + 1)−1, x3 = −z(z2 − z + 1)−1.

We refer the reader to the appendix, section C where a closed form expression for
QJ(β, z) is given. For illustrative purposes, we note below some explicit examples of
QJ(β, z) for spin J = 0, 2, 4, 6.

Q2(β, z) = 0, Q2(β, z) = −6,

Q4(β, z) = 35
4 (1 + ρ)3 + 1

4(35β + 190)(1 + ρ)2 − 70,

Q6(β, z) =− 21
16(11β + 57)(ρ+ 1)5 − 21

32
(
11β2 + 136β + 424

)
(ρ+ 1)4

− 21
16(132β + 508)(ρ+ 1)3 − 21

8 (44β + 564)(ρ+ 1)2

− 231
16 (ρ+ 1)6 + 2772(ρ+ 1) + 924

(3.16)

where ρ = −1 − 2z(z − 1). The analytic structure in the complex-z plane is indicated in
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the above figure for β ∈ −2Z. The z = 0, 1 poles6 in each channel are cancelled for each J
when the crossing symmetric combination is used. The z2−z+1 = 0 or ρ = 1 singularities
are what will lead to locality constraints discussed below.

The expression for M̃(β, z) given by (3.12) provides a representation of the 4-point
celestial amplitude for massless scalars in terms of the partial wave expansion of the mo-
mentum space amplitude. In the following sections we will primarily focus on the residues
at the poles of M̃(β, z) with respect to the parameter β for negative integer values of β.
In (3.12), these poles arise from the sin(πβ/2) factor. The residues at these poles encode the
Wilson coefficients in the low energy expansion of the amplitude in momentum space [33].

4 Celestial insight 2: moment bounds

In section 4.1 below, we use Ramanujan’s master theorem to relate the Wilson coefficients
in the low energy expansion of 2-2 scalar amplitudes to the residues of the corresponding
Mellin amplitude M̃(β, z) at negative integer values of β. We then discuss locality con-
straints in the context of CSDR in section 4.2 and use it to obtain bounds on partial wave
moments in section 4.3. In section 4.4 we derive sufficient conditions for the positivity
properties mentioned in section 2 to hold.

4.1 Applying Ramanujan’s master theorem

We now consider the low energy expansion of the amplitude M(s, t). If we do not include
loop-level contribution of exchange of massless particles, then M(s, t) can be expanded
around low energies as

M(s, t) =
∞∑

p,q=0
Wp,q x

pyq (4.1)

where x = −(st+ tu+su), y = −stu with s+ t+u = 0 andWp,q denote Wilson coefficients.
Let us now employ the change of variables s = ω2, t = −zω2, u = (z − 1)ω2. Then (4.1)
becomes

M(ω2,−ω2z) =
∞∑
n=0
W̃(n, z) ω2n (4.2)

where we have defined

W̃(n, z) =
∑
p,q

2p+3q=n

Wp,q z
q(z − 1)q(z2 − z + 1)p

(4.3)

Now let us evaluate the Mellin amplitude M̃(β, z) using the representation of the am-
plitude M(ω2,−ω2z) given by (4.2). This can be done using Ramanujan’s master theorem
(RMT) for obtaining the Mellin transform of a function given its Taylor series expansion
coefficients. See section D for further details of this theorem.

6For generic β singularity structure is more complicated since from the expression (3.12) it is manifest
that there are branch cuts.
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Then according to RMT, the Mellin transform of (4.2) is given by

M̃(β, z) =
∫ ∞

0
dω ωβ−1 M(ω2,−ω2z) = πe−iπβ/2

2 sin
(
πβ
2

) W̃(−β/2, z) (4.4)

In writing the above expression, we have assumed that W̃(n, z) can be analytically
continued away from integer values of n. Now note that the (1/ sin(πβ/2)) factor in (4.4)
has poles when β = −2n, n ∈ Z≥0.7 The residue at these poles is

Resβ=−2n
[
M̃(β, z)

]
= W̃(n, z) =

∑
p,q

2p+3q=n

Wp,qz
q(z − 1)q(z2 − z + 1)p (4.5)

Thus the residues of the Mellin amplitude at β = −2n encode the Wilson coefficients
appearing in the low energy expansion of the momentum space amplitude [33].

Now we can also write (4.5) in terms of the “crossing-symmetric” variable8 ρ = −1−
2z2 + 2z, introduced in section 2. Then (4.5) takes the form

Resβ=−2n
[
M̃(β, ρ)

]
= W̃(n, ρ) =

∑
p,q

2p+3q=n

(−1)q
2p+q Wp,q(1 + ρ)q(1− ρ)p

≡
[n2 ]∑
m=0

d(n)
m (1 + ρ)m(1− ρ)[n2 ]−m

(4.6)

Physical interpretation of the ρ variable. Noting that z2− z = −tu/s2, and cos θ =
1 + 2t/s, where θ is the scattering angle, we can express ρ

ρ = −1− 2z2 + 2z = −1 + cos2 θ

2 . (4.7)

Therefore, ρ = −1 corresponds to either z = 0 or z = 1, i.e., θ = 0 or θ = π, while
ρ = 1 corresponds to the roots of z2 − z + 1 = 0 which are z = (−1)1/3,−(−1)2/3. Then
clearly ρ = 1 maps to unphysical (analytically continued) values of θ.

4.2 Locality constraints

In a local EFT, the low energy expansion of the amplitude (4.1) only contains positive pow-
ers of x. This implies that in (4.3) W̃(n, z) should be non-singular at z = (−1)1/3,−(−1)2/3,
which are the roots of z2 − z + 1 = 0. In terms of the ρ variable these points corresponds
to ρ = 1 as mentioned in the previous subsection. Consequently such singularities are not
allowed in the residues of the celestial amplitude at β = −2n, n ∈ Z+ for a local theory.9
However the absence of these singularities is not manifest when the celestial amplitude is

7M̃(β, z) also has poles at β = 2n, n ∈ Z≥0. In [33] it was pointed out that the residues at these poles
encode the coefficients in the high-energy expansion of the amplitude. However in this paper we will not
consider this, since we are mainly interested in the low-energy expansion of the amplitude.

8We refer to this as “crossing-symmetric” since it is invariant under z → 1− z.
9The singularities at z = (−1)1/3,−(−1)2/3 lie outside the domain of physical kinematics where z ∈ (0, 1).
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evaluated using the crossing symmetric dispersive representation of the momentum space
amplitude. This is essentially the fact that the crossing symmetric dispersion relation
makes crossing symmetry manifest at the expense of locality. Let us now see this a bit
more explicitly as follows.

Taking the residue at β = −2n, n ∈ Z+ on the R.H.S. of (3.12) we get

Resβ=−2n
[
M̃(β, z)

]
= W̃(n, z)

= (−1)n
∞∑
J=0

(2J + 1) α̃J(n, δ0)
[
(−1)nPJ (|1− 2z|) + znPJ

(∣∣∣∣z − 2
z

∣∣∣∣)

+ (1− z)nPJ
(∣∣∣∣z + 1
z − 1

∣∣∣∣)+ (z(1− z))n−J(z2 − z + 1)3−nQJ(−2n, z)
]

(4.8)

where

α̃J(n, δ0) = 32
∫ ∞
δ0

ds

sn+1 αJ(s) (4.9)

The (z2−z+1)3−n factor in the second line of (4.8) is singular at z = (−1)1/3,−(−1)2/3

for n ≥ 4. It is also worth noting that there are also apparent divergences at z = 0, 1
in (4.8). But it can be easily checked that the z = 0, 1 singularities cancel for any fixed J .

Thus for a local theory we need to impose on (4.8) the constraint that the z =
(−1)1/3,−(−1)2/3 singularities cancel upon performing the sum over spins J in the partial
wave expansion. In order to study the implications of these constraints, which will hence-
forth be referred to as the locality or null constraints, it again turns out to be convenient
to use the ρ variable. Then it can be shown that (4.8) takes the following form

Resβ=−2n
[
M̃(β, ρ)

]
=
∞∑
J=0

(2J + 1)α̃J(n, δ0)
[
n−3∑
k=1

ck(n, J)
(ρ− 1)k + FB(n, J, ρ)

]
(4.10)

where

ck(n, J) = − 2J−3

(n− 3− k)! lim
ρ→1

dn−3−k

dρn−3−k

[
(1 + ρ)n−JQJ(−2n, ρ)

]
(4.11)

and FB(n, J, ρ) is a polynomial in ρ of degree [n/2]. We will refer to this as the Feynman
block. See the appendix, section C for their closed form expressions. In section 5.1 where
we analyse the properties of Feynman blocks we will present some explicit examples of
these blocks for few values of n.

Now demanding that the singularities at ρ = 1 cancel for a local theory, we get

∞∑
J=2

(2J + 1) ck(n, J) α̃J(n, δ0) = 0 ∀k = 1, · · · , n− 3 (4.12)

where the sum above runs only over even spins J . Also note that this sum starts from J = 2,
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since ck(n, J = 0) = 0. In section 4.3 we will use the above locality constraint equations to
derive analytic bounds on partial wave moments. In section 4.4, equation (4.12) will also
play a crucial role in analysing the novel positivity properties of low-energy expansion of the
amplitude mentioned before. For this it is useful to relate the coefficients d(n)

m , which are
in turn related to the Wilson coefficients via (4.6), to the partial wave moments α̃J(n, δ0).
In order to obtain this relation, we impose the locality constraints in (4.10) and compare
with (4.6). This yields,

d(n)
m =

∞∑
J=0

(2J + 1) χ(n)
m (J) α̃J(n, δ0), m = 0, 1, · · · ,

[
n

2

]
(4.13)

Explicit expressions for the coefficients χ(n)
m (J) can be obtained using the results given

in appendix C.

4.3 Bounds on partial wave moments

In this section we show that the locality constraint equations (4.12) can be used to derive
lower bounds on the moments of partial wave coefficients. We first consider the case n = 4
in (4.12) which yields

∞∑
J=2

(2J + 1) c1(4, J) α̃J(4, δ0) = 0 (4.14)

Using (4.11) it can be shown that c1(4, J) is given by

c1(4, J) = J(J + 1)(J2 + J − 8) (4.15)

From (4.15) it is clear that c1(4, 2) < 0 and c1(4, J) > 0, ∀J ≥ 4. Then let us
write (4.14) as

60 α̃2(4, δ0) =
∞∑
J=4

J(J + 1)(2J + 1)(J2 + J − 8) α̃J(4, δ0) (4.16)

Now in a unitary theory, the partial waves are non-negative and this implies α̃J(n, δ0) ≥
0. Therefore each term in the sum on the R.H.S. of (4.16) is a positive quantity. As a
result we get for any J ≥ 4

α̃2(4, δ0)
α̃J(4, δ0) >

1
60 J(J + 1)(2J + 1)(J2 + J − 8), J ≥ 4 (4.17)

For example considering J = 4, 6, 8, the above inequality implies

α̃2(4, δ0)
α̃4(4, δ0) > 36, α̃2(4, δ0)

α̃6(4, δ0) > 309.4, α̃2(4, δ0)
α̃8(4, δ0) > 1305.6 (4.18)

As a comparison, we quote the values obtained from the dilaton amplitude in type II
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string theory:10

α̃2(4, δ0)
α̃4(4, δ0) ≈ 62, α̃2(4, δ0)

α̃6(4, δ0) ≈ 1258, α̃2(4, δ0)
α̃8(4, δ0) ≈ 13708. (4.19)

Evidently the type II dilaton amplitude satisfies the bounds obtained in (4.18). Sim-
ilarly we can also obtain analytic bounds for partial wave moments with n > 4 using the
locality constraints. We present below a sampling of the results for n = 5, 6, 7.

n = 5:

α̃2(5, δ0)
α̃4(5, δ0) > 15, α̃2(5, δ0)

α̃6(5, δ0) > 946.4, α̃2(5, δ0)
α̃8(5, δ0) > 8411.6 (4.20)

n = 6:

α̃2(6, δ0)
α̃6(6, δ0) + 6 α̃4(6, δ0)

α̃6(6, δ0) > 1183, α̃2(6, δ0)
α̃8(6, δ0) + 6 α̃4(6, δ0)

α̃8(6, δ0) > 26214 (4.21)

Note that in the n = 6 case, from (4.12) we can only obtain bounds on the sum
of ratios of partial wave coefficients as given in (4.21). This is because there happens
to be only one independent locality constraint equation for n = 6 and the coefficients
c1(6, J = 2), c1(6, J = 4) are both positive, while for J ≥ 4 we have c1(6, J) < 0.

n = 7:

α̃2(7, δ0)
α̃6(7, δ0) > 200.2, α̃2(7, δ0)

α̃8(7, δ0) > 38283.5, α̃4(7, δ0)
α̃6(7, δ0) > 30.33, α̃4(7, δ0)

α̃8(7, δ0) > 338.38 (4.22)

The inequalities in (4.22) can be derived by noting that for n = 7, we get two
independent null constraint equations from (4.12). For both these equations, we have
ck(7, 2), ck(7, 4) < 0 and ck(7, J) > 0 for J ≥ 6. We have also checked that all the inequal-
ities quoted above are satisfied by the type II string dilaton amplitude.

The inequalities in eqs. (4.18)–(4.22) demonstrate the phenomenon of low spin domi-
nance (LSD) and we will say more about this in section 4.5.

4.4 Investigating Pρ

In this section we further explore the Pρ positivity property of the low energy expansion
of 2-2 amplitude of massless scalars in four spacetime dimensions, by considering the rela-
tion (4.13) between the coefficients d(n)

m and the partial wave moments obtained using the
crossing symmetric dispersion relation.

The above mentioned positivity property implies that we should have d(n)
m ≥ 0. For

n = 2k, k ∈ Z and m = 0, this can be shown to follow from the fact that in a unitary
theory the partial waves are positive. However in general, unitarity alone does not imply
d

(n)
m ≥ 0 for any n. Here we argue that if the spin J = 0 contribution to the partial wave
10In obtaining (4.19) we have performed the partial wave expansion in terms of Legendre polynomials as

in the case of the massless scalar amplitude in four spacetime dimensions in (3.4).
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decomposition of the amplitude dominates over the contribution from higher spins, then
the positivity feature holds. We shall illustrate this below for n = 5 and derive the sufficient
condition for d(5)

m ≥ 0 to hold. Further examples for other values of n are considered in the
appendix, section E.

We begin by considering (4.13) for n = 5 which is given by

d(5)
m =

∞∑
J=0

(2J + 1) χ(5)
m (J) α̃J(5, δ0), m = 0, 1, 2 (4.23)

For m = 0 and m = 2, it can be easily checked that the R.H.S. of (4.13) is identical
to the locality constraint equations for n = 5. This immediately gives d(5)

0 = d
(5)
2 = 0. The

only non-trivial case here is then n = 5,m = 1. In terms of the Wilson coefficients Wp,q’s
we have d(5)

1 = −W1,1/4.
Now for m = 1, it can be shown that χ(5)

m (J) is given by

χ
(5)
1 (J) =

(5
4 −

1
2J(J + 1)

)
− 5

24J(J + 1)(J(J + 1)(2J(J + 1)− 43) + 150) (4.24)

Let us note that for n = 5 the locality constraint equation takes the form

∞∑
J=2

(2J + 1) J(J + 1)(J(J + 1)(2J(J + 1)− 43) + 150) α̃J(5, δ0) = 0 (4.25)

Then substituting (4.24) in (4.23) with m = 1 and using (4.25) we get

d
(5)
1 = 1

4

[
5 α̃0(5, δ0)−

∞∑
J=2

(2J + 1) (2J(J + 1)− 5) α̃J(5, δ0)
]

(4.26)

This readily implies that unless spin-0 is present, positivity in ρ ∈ (−1, 1) cannot hold.

Now we can derive a sufficient condition for d(5)
1 ≥ 0 to hold as follows. We use (4.25)

to eliminate α̃4(5, δ0) from (4.26). This yields

d
(5)
1 = 1

4

[
5 α̃0(5, δ0)− 56 α̃2(5, δ0) (4.27)

+ 1
360

∞∑
J=6

(2J + 1)(J − 4)(J + 5)
(
14J4 + 28J3 − 7J2 − 21J − 90

)
α̃J(5, δ0)

]

Since all terms in the second line of (4.27) are positive, we see that for d(5)
1 ≥ 0 to

hold, it suffices to have

α̃0(5, δ0) ≥ 11.2 α̃2(5, δ0) (4.28)

We can obtain similar inequalities for higher values of n as well. For example, for
n = 6, 7, 8 we find

α̃0(6, δ0) ≥ 25 α̃2(6, δ0), α̃0(7, δ0) ≥ 10.72 α̃2(7, δ0) , α̃0(8, δ0) ≥ 13.75 α̃2(8, δ0) . (4.29)
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How common is this positivity?

In presence of spin 0. Using the locality constraints we had already obtained conditions
that suggested spin-2 dominance, for instance via equations (4.18) and (4.20). In the
positivity analysis above, we saw that if there is spin-0 dominance, then there is a novel
positivity which was alluded to in section 1. These considerations enable us to make
the following observations. The type II string tree level suggests that α̃2(n, δ0 = 1) .
0.04 exp(−n/

√
2). Consider for instance the n = 6 case. This would give α̃0(6, 1) ' 0.01.

Now if α̃0(6, 1) takes on values between 0 − 1 (the string answer is approximately 1.001),
then we conclude that for random values of α̃0(6, 1) in this range, there is a 99% possibility
for us to find that d(6)

n ≥ 0. Thus the question becomes, what range of α̃0(6, δ0) is typical?
The discussion above suggests that whenever there is spin-0 dominance of the form

α̃0(n, δ0)
α̃2(n, δ0) & O(10) , (4.30)

we will obtain positivity for these class of theories.

In absence of spin-0. A counterexample to the Pρ positivity is the following toy am-
plitude:

M(s, t, u) = m4

(m2 − s)(m2 − t)(m2 − u) −
4
3 tanh−1

(1
3

)( 1
m2 − s

+ 1
m2 − t

+ 1
m2 − u

)
(4.31)

where the second term has been chosen to make the spin-0 partial wave contribution vanish.
One can easily check that all the higher spin partial waves and all their moments are positive
in this case. However, we know of no local Lagrangian description which could give rise
to this amplitude. Further, this amplitude seems to necessarily indicate the existence of
an infinite tower of massive higher spin particles all of which have the same mass m2.
Theories with an accumulation point in the spectrum such as the one above seem to play
a role in S-matrix bootstrap,11 though it is not clear if they can be ruled out by other
considerations [21, 40]. In [21] it was shown that a convex hull of the above amplitude
along with the one in (2.10) spans almost the entire region that is allowed for certain
Wilson coefficients (see also [26] for a GFT explanation of this fact).

We can then look at the low energy expansion of the amplitude (setting m = 1 for
brevity)

M(s, t, u) = −0.386294 + 0.0758038 x+ 0.0758038 x2 + 0.0758038 x3 + 0.0758038 x4

+0.0758038 x5 + 0.0758038 x6 + 0.386294 y + 0.310491 x y
+0.234687 x2 y + 0.158883 x3 y + 0.0830793 x4 y + 7 x5 y (4.32)

and notice that W1,1,W3,1,W5,1 ≥ 0. When the spin-0 partial is absent, it can be shown

11An analogous example in the case of Polyakov bootstrap is the 2-d Ising Mellin amplitude which also
exhibits similar behaviour due to the presence of twist-0.
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generally using results of our previous section that

d
(2k+1)
1 ≤ 0, (4.33)

which in terms of Wpq reads:

W2k+1,1 ≥ 0 , ∀k = (0, 1, 2 · · · ). (4.34)

4.5 Comments about LSD

The inequalities on the ratio of partial wave moments that we find in (4.17) and other
such inequalities in eqs. (4.18)–(4.22) demonstrate the phenomenon of low spin dominance
(LSD) previously considered in the context of gravitational EFT’s [27, 41, 42] for spins
J ≥ 2.

α̃2(n, δ0)
α̃J(n, δ0) ≥ λ (4.35)

Since spin-0 does not directly enter the locality constraints (4.12), we cannot quantify
α̃0(n,δ0)
α̃J (n,δ0) directly using locality. However as we have argued in the previous section if there

is spin-0 dominance of the form given in (4.30) namely α̃0(n,δ0)
α̃2(n,δ0) ' 10 then we can readily

translate this to obtain:
α̃0(n, δ0)
α̃J(n, δ0) ≥ 10λ (4.36)

Since these follow directly from the locality constraints (4.12) we can conclude that

Low spin dominance (LSD) for J ≥ 2 in scalar low energy EFT’s is a consequence of
locality.

Furthermore, we can also quantify the parameter λ, which has been referred to as the degree
of LSD12 in the literature [41–43]. Our analysis indicates that λ in (4.36) is a function of
n. For example, we find λ ≡ λ(n), we have λ(4) = 62, λ(5) = 15, λ(7) = 6.6. We leave a
more complete analysis of the properties of λ(n) for future work.

5 Celestial insight 3: typically realness

5.1 Feynman blocks in ρ

We shall now discuss the positivity properties of the Feynman block FB(n, J, ρ) with respect
to ρ for fixed value of β = −2 n with n being a positive integer. The Feynman block is a
polynomial in ρ of degree bn2 c:

FB(n, J, ρ) =
bn2 c∑
i=0

cn(J)ρi (5.1)

12This parameter is usually been denoted by α in the literature but to avoid confusion with the partial
wave moments we denote it by λ in this work.

– 18 –



J
H
E
P
0
8
(
2
0
2
2
)
2
1
6

Figure 3. The above grid plots shows the signs of the Feynman block for −1 ≤ ρ ≤ 1 for 0 ≤ J ≤ 16
and 1 ≤ n ≤ 20. The red and blue indicate J < Jc(n) and J ≥ Jc(n) corresponding to negative
and positive signs respectively.

A closed form expression for the Feynman block FB(n, J, ρ) is given by (C.3) in appendix C.
For the first few values of n these are as follows:

FB(1, J, ρ) = 0
FB(2, J, ρ) = 1− ρ

FB(3, J, ρ) = −1
2 (2J2 + 2J − 3)(1 + ρ)

FB(4, J, ρ) = 1
4((−3J4 − 6J3 + 21J2 + 24J + 2) +

(
−J4 − 2J3 + 7J2 + 8J − 4

)
ρ+ 2ρ2)

FB(5, J, ρ) = 1
72
(
(90− 786J − 571J2 + 420J3 + 185J4 − 30J5 − 10J6)

+ (−J(1 + J)(150− 43J − 41J2 + 4J3 + 2J4))ρ+ 18(−5 + 2J + 2J2)ρ2
)

(5.2)

One can verify that the tree-level type-II string amplitude answer can be expanded in
these blocks and the convergence in spin is fast. Further, it can be readily checked that
for sufficiently large values of J and for any value n ≥ 3 the Feynman block FB(n, J, ρ) is
positive for real ρ in the interval −1 ≤ ρ ≤ 1. In particular for any value of n ≥ 3 there
exists a critical value J = Jc(n) such that for J ≤ Jc(n) we have FB(n, J, ρ) < 0 and for
J > Jc(n) we have FB(n, J, ρ) > 0. This can be seen from the grid plot above in figure 3.

5.2 GFT techniques

We shall now discuss the connection of amplitude in the ρ variable with typically realness.
In [26], it was shown that the amplitude for appropriate range of the parameter13 a was a
typically real function of ζ in the unit disk |ζ| < 1 and this connection proved quite fruitful
for getting bounds on the Wilson coefficients.

13The parameter is given by a = stu
st+tu+us where Mandelstam variables were parametrized via

s = a

(
1− (ζ − 1)3

ζ3 − 1

)
, t = a

(
1− (ζ − e2πi/3)3

ζ3 − 1

)
,

Here e2πi/3 is one of the cube-roots of unity. The a works out to be a = ω′2

9 (ζ3 − 1)(1 − 1
ζ
)3 which can

curiously be related to the z = −t/s variable using an SL(2,C) transformation.

– 19 –



J
H
E
P
0
8
(
2
0
2
2
)
2
1
6

We shall briefly introduce the necessary background about typically real functions that
we will need now and refer the interested reader to [26, 44] and references therein for further
details. A typically real function f(z) on a domain Ω ∈ C which contains part of the real
line R is defined as:

=f(z)=z > 0 for all z such that =z 6= 0 . (5.3)

where =f(z) means the imaginary part of the function f(z). It follows directly from
the above definition that a typically real function f(z) satisfies the following (see [45–47]
and [26] for a recent review):

1. All poles of f(z) lie on the real axis.

2. All poles of f(z) are simple.

3. Residues at any pole of f(z) is negative.

4. Linear combinations of typically real functions with positive coefficients are typically
real.

Let us look at three physical examples of amplitudes that are typically real:

• Consider the φ2ψ tree level amplitude of massless scalars φ with massive exchange
ψ,14 of mass m:

Mφ2ψ(ω2, ρ̃) =
( 1
s−m2 + 1

t−m2 + 1
u−m2

)
,

= 1
m2

( 1
(λ− 1) −

2(2 + λ)
2 + 2λ+ λ2(1 + ρ)

)
, (5.4)

where, λ = ω2

m2 . We see that the above is just a simple pole at ρ = −1− 2
λ

(
1 + 1

λ

)
with

negative residue λ > 0. We can manually check its typically real as with ρ = reiθ:

=Mφ2ψ(ω2, ρ̃) =ρ = 2rλ2(λ+ 2) sin2(θ)
r2λ4 sin2(θ) + (rλ2(1 + r cos(θ)) + 2λ+ 2)2 > 0 , (5.5)

for λ > 0 and ω2,m2 > 0. Thus by the properties described above this is a typically
real function for any value of ω2 except ω2 = m2 in an arbitrarily large disk around
the origin in the ρ variable.

• Consider next the type-II string amplitude eq. (2.2) and in terms of the ρ variable
we can rewrite it using the infinte product representation of the gamma function as:

MII = λ1(ω2)
∏∞
i=1 (1 + αi ρ)∏∞
i=1 (1− βiρ) (5.6)

14The α,β,γ and λ used on this page are stand alone symbols not to be confused with symbols in other
sections.
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where, αn(ω2) = − ω4(n−ω2)
(n+ω2)(2n2−2nω2+ω4) , βn(ω2) = − ω4(n+ω2−1)

(−n+ω2+1)(2n2+2nω2−4n+ω4−2ω2+2)
and λ1(ω2) > 0. In fact, one can check numerically on Mathematica that for ω2 < 2
the amplitude is typically real directly by using (5.3) for |ρ| < 1!

• The closed bosonic string amplitude eq. (2.1) can also be similarly written in terms
of the ρ variable as:

MCB = λ2(ω2)
∏∞
i=1 (1 + γi ρ)∏∞
i=1 (1− δiρ) (5.7)

where,

γn(ω2) = 9ω4 (−3n+ 3ω2 + 1
)

(3n+ 3ω2 − 1) (18n2 − 18nω2 − 12n+ 9ω4 + 6ω2 + 2) ,

δn(ω2) = − 9ω4 (3n+ 3ω2 − 2
)

(−3n+ 3ω2 + 2) (18n2 + 18nω2 − 24n+ 9ω4 − 12ω2 + 8)

and λ2(ω2) > 0. In this case as well one can check numerically on Mathematica that
for large ranges of ω2 the amplitude is typically real directly by using (5.3) for |ρ| < 1!

The above motivates one to investigate positivity and typical realness in ρ more carefully.
To see the power of typical-realness let us look at a generic crossing symmetric monomial
xpyq = (−1)q

2p+q ω
4p+6q(1 − ρ)p(1 + ρ)q that could appear in the low energy expansion of the

amplitude. We could ask when such a term is typically real in the disk |ρ| < r?
The possible terms fall into one of 4 categories xpyq with either p, q ≥ 0, or p ≥ 0, q ≤ 0

or q ≥ 0, p ≤ 0 or p, q ≤ 0. The latter two cases correspond to having poles at z =
(−1)1/3,−(−1)2/3 and can be ruled out if we assume locality as we explained in section 4.2.
Analyzing the first two cases which we shall call (R)egular and (S)ingular respectively more
carefully now by applying the definition (5.3) we get the following possibilities listed in the
table below:

Radius Allowed R S

−(1− ρ)n,−(ρ+ 1)n, for − (1−ρ)n
(1+ρ)m , for

r = 1 " 1 ≤ n ≤ 2 0 ≤ n ≤ 2, 1 ≤ m ≤ 2

$ ±(1− ρ)n,±(1 + ρ)n, ∀n ≥ 3 −(1− ρ)n,−(ρ+ 1)n, ∀n ≥ 3

−(1− ρ)n,−(ρ+ 1)n, for − (1−ρ)n
(1+ρ)m , for

r = 2 " 1 ≤ n ≤ 2 0 ≤ n ≤ 1,m = 1

$ ±(1− ρ)n,±(1 + ρ)n, ∀n ≥ 3 −(1− ρ)n,−(ρ+ 1)n, ∀m ≥ 2

We can also shift to the ρ̃ = ρ + 1 variable as ρ̃ = 0 corresponds to either t = 0 or
u = 0 which is a low energy limit. Thus in the new variable we can ask if the monomials
are typically real in the disk |ρ̃| < r and the possibilities are as below
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Radius Allowed R S

ρ̃, − (2− ρ̃)n, for − (2−ρ̃)n
ρ̃ , for

r = 1 " 1 ≤ n ≤ 6 0 ≤ n ≤ 3

$ ρ̃n−4, − (2− ρ̃)n+1, ∀n ≥ 6 − (2−ρ̃)n
ρ̃m , ∀m ≥ 2

ρ̃, − (2− ρ̃)n, for − (2−ρ̃)n
ρ̃ , for

r = 2 " 1 ≤ n ≤ 2 0 ≤ n ≤ 2

$ ρ̃n, − (2− ρ̃)n+1, ∀n ≥ 2 − (2−ρ̃)n
ρ̃m , ∀m ≥ 2

Thus in disk |ρ̃| < 2 there are precisely 6 possibilities that are allowed. Of these 3 of
them are regular and correspond15 to y, x, x2. The three singular cases are xn

y for 0 ≤ n ≤ 2.
The singular n = 0 case is related to massless version of the tree level amplitude considered
in (4.31) and singular cases corresponding to n = 1, 2 are respectively the exchange of
massless scalar and spin-2 particles. Since the above cases are all typically real any sum of
these with positive coefficients is typically real too.

5.3 Typically realness and M̃(−2n, ρ)

We shall now discuss the connection between typically realness and M̃(β, ρ) at β = −2n.
As discussed in (4.6), (4.10).

Resβ=−2n
[
M̃(β, ρ)

]
=
∞∑
J=0

(2J + 1) α̃J(n, δ0) FB(n, J, ρ)

=
∑
p,q

2p+3q=n

(−1)q
2p+q Wp,q(1 + ρ)q(1− ρ)p (5.8)

The Feynman blocks FB(n, J, ρ) are polynomials of degree
[
n
2
]
in ρ. By looking at

−FB(2, J, ρ) = ρ− 1 and −FB(3, J, ρ) = 1
2(2J2 + 2J − 3)(1 + ρ) from the discussion in the

previous section it is immediately obvious that these are typically real for any J and J ≥ 2
respectively. Thus, it is a natural question to ask if FB(n, J, ρ) (possibly upto an overall
sign) are typically real for any other values of n, J inside the disk |ρ| < 1? Since we have
closed form expressions of the Feynman block FB(n, J, ρ) in eq. (5.1) namely (C.3) for any
n, J this can be readily checked to sufficiently high values of n, J . Rather remarkably we
find that the answer to the above question is in the affirmative and the result is as follows:

The Feynman block FB(n, J, ρ) (with appropriate sign) is a typically real polynomial of
degree bn2 c in ρ inside the unit disk |ρ| < 1 for any value of J ≥ JT with JT = n+2+ 1−(−1)n

2
for n ≥ 10.

15The elements of class R usually come from the dispersive representation of the amplitude and are not
expected to be individually typically real only the sum as a whole, so the above analysis does not rule out
other regular terms.
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For lower n, JT (n) can be read off from the table below:

n 4 5 6 7 8 9 10 11 12 13 14 15 19 20 21 99 100
JT (n) 4 4 6 8 8 10 12 14 14 16 16 18 22 22 24 102 102

In fact a well known family of typically real polynomials are called Suffridge polynomi-
als [48–51] SN,j(ρ) and in all cases we have checked, (−1)nFB(n, J, ρ) for n > 3, J > JT is
a positive linear combination of these. The Suffridge polynomials are defined as:

SN,j(ρ) =
N∑
k=1

Ak(N, j)ρk, with Ak(N, j) = N − k + 1
N

sin
(
kjπ
N+1

)
sin
(

jπ
N+1

) (5.9)

A few examples are as follows:

S2,4 = ρ− ρ2

2

S3,1 = ρ3

3 + 2
√

2ρ2

3 + ρ

S5,2 = −ρ
5

5 −
2ρ4

5 + 4ρ2

5 + ρ

S7,3 = ρ7

7 + 3
7ρ

5 cot
(
π

8

)
+ 5

7ρ
3 cot

(
π

8

)
− 1

7
√

2ρ6 csc
(
π

8

)
−4

7ρ
4 csc

(
π

8

)
− 3

7
√

2ρ2 csc
(
π

8

)
+ ρ

Some examples of Feynman blocks for J ≥ JT as linear combinations of Suffridge polyno-
mials with positive coefficients:

FB(3, 10, ρ) = 217
2 S1,1 + 217

2 S2,2

FB(4, 6, ρ) = 359
2 S2,1 + 357

2 S2,2 (5.10)

We quote the following results about typically real polynomials that will be useful for our
purposes. The reader may refer to [48–52] for details. Let f(z) = z + ∑N

i=2 aiz
i be a

typically-real polynomial of degree N in the disk |z| < 1 which we denote as f(z) ∈ TN

and if R(cos θ) = =f(eiθ)
sin θ . Then the following are true:

1. f(z) ∈ TN if and only if R(cos θ) = 1 +∑N
j=2 bj

sin jθ
sin θ ≥ 0.

2. Let, bj ∈ R with bN−1 = 1 and if ∑N−1
i=0 bju

j has a fixed sign for all −1 ≤ u ≤ 1 then
∃ unique aj with 1 ≤ j ≤ N and a1 = 1 such that

R(u = cos θ) = 2N−1aN

N−1∑
j=0

bju
j

and f(z) = z +∑N
i=2 aiz

i ∈ TN .
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3. If f(z) ∈ TN with aN 6= 0 and for 1 ≤ k ≤ N , ak can assumes an extreme (max/min)
value then all the zeros of R(u) with u = cos θ are real and

R(u) = 2N−1aN



N−1
2∏
j=1

(u− γj)2 if N is odd, aN > 0 ,

(u2 − 1)
N−3

2∏
j=1

(u− γj)2 if N is odd, aN < 0 ,

(u+ 1)
N−2

2∏
j=1

(u− γj)2 if N is even, aN > 0 ,

(u− 1)
N−2

2∏
j=1

(u− γj)2 if N is even, aN < 0 ,

(5.11a)

where, −1 ≤ γj ≤ 1.

In other words the coefficient body {(a2, · · · , aN ) : z+a2z
2 +· · ·+aNzN} has extreme

points that live on a manifold of dimension N−1
2 , N−2

2 for odd, even N when aN > 0
and manifold of dimension N−3

2 , N−2
2 for odd, even N when aN < 0 respectively.

Once one has the extreme points then the allowed coefficient region is a convex hull
of these extreme points since the set of typically real polynomials is a convex set
and Krein-Milman theorem [26] applies. We work out the first couple of cases for
illustrative purposes:

N = 2. From eq. (5.11) assuming a2>0, a2<0 we get 2a2+2a2u = 1+2a2u,−2a2+
2a2u = 1 + 2a2u respectively, which can be solved to get the extreme points a2 = ±1

2
and convex hull of the extreme points yields the line |a2| ≤ 1

2 .

N = 3. From eq. (5.11) assuming a3 > 0, a3 < 0 we get 1 − a3 + 2a2u + 4a3u
2 =

4a3γ
2
1 − 8a3uγ1 + 4a3γ

2
1 , 1− a3 + 2a2u+ 4a3u

2 = −4a3 + 4a3γ
2
1 respectively for |γ1| ≤

1, which can be solved to obtain (a2, a3) =
(
−4γ1

1+4γ2
1
, 1

1+4γ2
1

)
and (a2, a3) = (0,−1

3)
respectively. Thus for a3 > 0 we get part of the ellipse (2a3 − 1)2 + a2

2 = 1 with
a3 ≥ 1

5 and for a3 < 0 we get a point
(
0,−1

3

)
. The convex hull of which yields the

2-d region below.

The regions are shown in the figure below along with some physical theories being
marked as points. In the figure below green, blue,black points denote tree level φ2ψ

amplitude, 1-loop box φ2ψ amplitude and type-II string amplitude respectively. In
left figure the grey point also denotes type-II string amplitude. since for both n = 4, 5
we get N = 2 as the Feynman block is a degree bn2 c polynomial we have denoted
both in figure 4.

The red curve and the green points in the right side figure are the extremal manifolds
and the brown lines have been added as the region is a convex hull of these extremal
manifolds. In particular, the red curve gives us a one parameter family of extremal
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Figure 4. (left) The coefficient region for N = 2 in the a2 space.(Right)The coefficient region for
N = 3 in (a2, a3) space.

Figure 5. Some plots of Feynman blocks for different n, J and Suffridge polynomials for different
N, j.

theories though none of the examples we are aware of seems to live on the red curve, it
will interesting to find a theory that lives on the red curve. We leave this investigation
for future work. However, tree level φ2ψ is an extremal theory that lives on the left
most boundary and cusp of the N = 2, 3 cases respectively and this consistent with
the observation that cubic tree level vertices are extremal in [26].

As is obvious this procedure will always give us a finite region which has implications
for theWp,q bounds we get, namely allWp,q’s will be two sided bounded as was shown
using different methods in [26].

4. For any z inside the disk [53] we have

|f(z)| ≤ 1
4 csc2 π

2(N + 2) . (5.12)

Some plots of both Suffridge polynomials and the Feynman blocks are shown in figure 5.
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The above discussion motivates us to consider the following:

Resβ=−2n
[
M̃(β, z)

]
=

JT−2∑
J=0

(2J + 1) α̃J(n, δ0) FB(n, J, ρ)

+
∞∑

J=JT
(2J + 1) α̃J(n, δ0) FB(n, J, ρ)

︸ ︷︷ ︸
RT (n,ρ)

The RT (n, ρ) above being a positive sum of typically real functions is typically real. Thus
we have

RT (n, ρ) = Resβ=−2n
[
M̃(β, z)

]
−
JT−2∑
J=0

(2J + 1) α̃J(n, δ0) FB(n, J, ρ) (5.13)

An important observation is the following. Since the Feynman block FB(n, J, ρ) for a
particular n is always a polynomial of the same degree bn2 c for all J so both the l.h.s.
and r.h.s. of the equation (5.13) are polynomials of the same degree in ρ. This combined
with the fact that RT (n, ρ) is a typically real polynomial allows one to get three kinds of
constraints:

1. Sign patterns S(n): These follow since the Feynman blocks have a fixed sign pattern as
we had discussed earlier in section 5.1. The signs of the coefficient of ρk in FB(n, J, ρ)
is the same for all J ≥ JT (n) and the sign of each term in RT (n, ρ) (being a positive
sum of FB(n, J, ρ) for J ≥ JT (n)) is the same as that of FB(n, JT , ρ). Comparing
this with r.h.s. of (5.13) we get constraints on the coefficients. We shall denote these
constraints by S(n).

2. Suffridge bounds TR(n): These follow as R̃T (n, ρ) = RT (n,ρ)−RT (n,0)
∂ρRT (n,ρ)|ρ=0

is typically real
polynomial and thus obeys the coefficient bounds arising from (5.11). These depend
on n and can be worked out case by case for each n as we had done for n = 2, 3
above. We list the first few cases in the table below:

2 3 4 5 N odd N even

|a2| ≤ 1, |a2| ≤ 1+
√

7
3 , |a2| ≤

√
2, |a2| ≤ 2 cos 2π

N+3 |a2| ≤ 2 cosα

|a2| ≤ 1
2 −1/3 ≤ a3 ≤1 −1/3 ≤ a3 ≤1 −

√
5−1
2 ≤ a3 ≤ 1−

√
5

2

...
...

|a4| ≤ 2/3 |a4| ≤ 1 |aN−1| ≤ 1 −N−2
N+2 ≤ aN−1 ≤ 1

− 1
2 ≤ a5 ≤ 1 −N−1

N+3 ≤ |aN | ≤1 − N
N+2 ≤ |aN | ≤

N
N+2

where, α ∈
(

2π
N+4 ,

2π
N+2

)
satisfies (N+4) sin N+2

2 α+(N+2) sin N+4
2 α with N = bn/2c.

3. Distortion constraints D(n): These also follow from (5.12).

|R̃T (n, ρ)| ≤ 1
4 csc2 π

2(N + 2) , with N = bn/2c (5.14)
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The S(n), TR(n), D(n) are respectively the analogues of polynomial analogues of the
PBc, TRU and distortion constraints used in [26] for typically-real functions.

Let us consider the case n = 4 which has JT = 4 in this case we get:

RT (4, ρ) = W2,0(1− ρ)2

4 −
2∑
0

(2J + 1)α̃J(4)FB(4, J, ρ)

= −1
4(2α̃0(4) + 190α̃2(4)−W2,0) + 1

2 (2α̃0(4)− 20α̃2(4)−W2,0) ρ

−1
4 (2α̃0(4) + 10α̃2(4)−W2,0) ρ2 , (5.15)

R̃T (4, ρ) = ρ− (2α̃0(4) + 10α̃2(4)−W2,0)
2 (2α̃0(4)− 20α̃2(4)−W2,0)ρ

2 (5.16)

We get the following:

S(4) : 2α̃0(4) + 10α̃2(4) ≤ W2,0 ≤ 2α̃0(4) + 190α̃2(4) (5.17)

TR(4) : W2,0 ≥ 2α̃0(4)− 5α̃2(4) (5.18)

D(4) : |R̃T (4, ρ)| ≤ 1 + 1√
2
≈ 1.707 (5.19)

W2,0 ≥ 2α̃0(4)− 20α̃2(4) (5.20)

Combining all of the above we get:

2α̃0(4) + 10α̃2(4) ≤ W2,0 ≤ 2α̃0(4) + 190α̃2(4) (5.21)

For the string case from appendix (F) this means 2.0164 ≤ W2,0 ≤ 2.214 and the string
value is W2,0 = 2.016 which is very close to the lower limit. Using α̃J(4) ≤ 1

4M8 and
assuming α̃0(4)

α̃2(4) > 10 we get the non-projective bound:

1.5
M8 ≤ W2,0 ≤

10.5
M8 (5.22)

A novel feature of the above is the existence of a lower bound > 0.
Let us now consider the n = 5 case with JT = 4 and

RT (5) = −W1,1
(1− ρ2)

4 −
2∑

J=0
(2J + 1)α̃J(5)FB(5, J, ρ)

= −1
4 (5α̃0(5) + 265α̃2(5) +W1,1)− 15α̃2(5)ρ+ 1

4 (5α̃0(5)− 35α̃2(5) +W1,1) ρ2 ,

R̃T (5, ρ) = ρ− W1,1 + 5α̃0(5)− 35α̃2(5)
60α̃2(5) ρ2 . (5.23)
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We find

S(5) : W1,1 ≥ −5α̃0(5) + 35α̃2(5) (5.24)

TR(5) : −5α̃0(5) + 5α̃2(5) ≤ W1,1 ≤ −5α̃0(5) + 65α̃2(5) (5.25)

D(5) : |R̃T (5, ρ)| ≤ 1 + 1√
2
≈ 1.707 (5.26)

Combining all of the above we get

− 5α̃0(5) + 35α̃2(5) ≤ W1,1 ≤ −5α̃0(5) + 65α̃2(5) . (5.27)

Using locality constraints which leads to (4.27), we get the following, slightly stronger,
upper bound

W1,1 ≤ −5α̃0(5) + 56α̃2(5) . (5.28)

The type II-string values for this case are

α̃0(5) = 1.0013, α̃2(5) = 0.000538,W1,1 = −4.9857

In comparison our bound (5.27), (5.28) gives

− 4.9878 ≤ W1,1 ≤ −4.9765 (5.29)

which is very narrow range and respected! Notice that this is a bound on the Wil-
son coefficient itself and not on a ratio. Using the fact that αJ(s) ≤ 1 and using
32
∫∞

2M2
ds
s6αJ(s) ≤ 1

5M10 , we have the non-projective bound

− 1
M10 ≤ W1,1 ≤

56
5M10 . (5.30)

Note that the type-II tree level αJ(s)’s are to be thought of as distributions (since they have
delta function support only) which leads to the different constraint given above. Similarly,
the n = 6 case with JT = 6 and

RT (6) = W3,0
(1− ρ)3

8 +W0,2
(1 + ρ)2

4 −
4∑

J=0
(2J + 1)α̃J(6)FB(6, J, ρ)

= 1
8 (2W0,2 +W3,0 − 8α̃0(6)− 700α̃2(6)− 6552α̃4(6))

+1
8 (4W0,2 − 3W3,0 − 6α̃0(6) + 210α̃2(6)− 3654α̃4(6)) ρ

+1
8 (2W0,2 + 3W3,0 − 12α̃0(6) + 120α̃2(6)− 1548α̃4(6)) ρ2

+1
8 (−W3,0 + 2α̃0(6) + 10α̃2(6) + 18α̃4(6)) ρ3 , (5.31)
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gives

S(6) : 3α̃0(6)− 75α̃2(6) + 747α̃4(6) ≤ W0,2 ≤ 3α̃0(6)− 45α̃2(6) + 927α̃4(6),
(2α̃0(6)+10α̃2(6)+18α̃4(6)) ≤ W3,0 ≤ (−2W0,2+ 8α̃0(6)+ 700α̃2(6)+ 6552α̃4(6))

TR(6) : 3α̃0(6)− 75α̃2(6) + 747α̃4(6) ≤ W0,2 ≤ 3α̃0(6)− 55α̃2(6) + 867α̃4(6),

W3,0 ≥
1
3 (2W0,2 + 120α̃2(6)− 1800α̃4(6))

D(6) : |R̃T (6, ρ)| ≤ 1
4
(
1 +
√

5
)2
≈ 2.618 (5.32)

All of which are obeyed by the string case. Thus, we can get non-projective
bounds [42, 43] such as the ones described above for any Wp,q with 2p + 3q ≥ 2. We
shall briefly address the two cases namely W1,0,W0,1 where the bounds do not follow from
typically realness since the R̃T (ρ) = ρ in these cases. From (5.8) it follows that:

W1,0 = 2
∞∑
J=0

(2J + 1)α̃J(2) ≥ 2α̃0(2) + 10α̃2(2) ≥ 0

W0,1 =
∞∑
J=0

(2J + 1)α̃J(3)(2J2 + 2J − 3) ≥ −3α̃0(3) (5.33)

one could get the upper bounds by using the facts α̃J(n) ≥ α̃J(n+ 1) and α̃0(4) > λα̃J(4)
where16 λ = 10. This gives 2α̃0(2)+10α̃2(2) ≤ W1,0 ≤ α̃0(1)∑∞J=0(2J+1)(0.1)−J/2 ≤ 25.67

M2

and −3α̃0(3) ≤ W0,1 ≤ α̃0(2)∑∞J=0(2J + 1)(2J2 + 2J − 3)(0.1)−J/2 ≤ 24.71
M4 . Thus we have

0 ≤ W1,0 ≤
25.67
M4 ,− 4

M6 ≤ W0,1 ≤
24.71
M6

One can also readily get projective bounds by comparing partial wave moments at different
orders since α̃J(n) > α̃J(n + 1) identically to the way we obtained upper bounds for
W1,0,W1,1 above. The interested reader may look at eq. (E.21) in app (E) for an example.

We could also estimate the error when we truncate the partial wave expansion to
J < Jmax and we bound this quantity and this is most easily done at the level of (5.13).
We demonstrate this for n = 4, 5 cases below:

n = 4 :
∣∣∣∣∣RT (4, ρ) + 1

4(2α̃0(4) + 190α̃2(4)−W2,0)
1
2 (2α̃0(4)− 20α̃2(4)−W2,0)

∣∣∣∣∣ ≤ 1.707

=⇒
∣∣∣∣ ∞∑
J=JT

(2J + 1)α̃JFB(4, J, ρ)
∣∣∣∣ ≤ f1(α̃0(4), α̃2(4),W2,0) (5.34)

n = 5 :
∣∣∣∣∣RT (5, ρ) + 1

4(5α̃0(5) + 265α̃2(5) +W1,1)
1
4 (5α̃0(5)− 35α̃2(5) +W1,1)

∣∣∣∣∣ ≤ 1.707

=⇒
∣∣∣∣ ∞∑
J=JT

(2J + 1)α̃JFB(n, J, ρ)
∣∣∣∣ ≤ f2(α̃0(5), α̃2(5),W1,1) (5.35)

16This follows from (4.30) for J = 0 and (4.17) for J ≥ 2.
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where,

f1(α̃0(4), α̃2(4),W2,0) = Max (1.207α̃0(4)− 64.57α̃2(4) + 1.103W20,

2.207α̃0(4) + 30.43α̃2(4) + 0.6035W20) , (5.36)
f2(α̃0(5), α̃2(5),W1,1) = Max (0.883α̃0(5)− 81.1863α̃2(4) + 0.176W20,

3.384α̃0(4) + 51.314α̃2(4) + 0.676W20) . (5.37)

For the string case the above values are f1 = 3.46351, f2 = 0.0457.

5.4 Massless poles

We now consider amplitudes with massless poles. We could address these cases by consid-
ering the class of meromorphic typically real polynomials of degree N called TMN which
are the polynomial analogues of the Goodman class [46] TM∗ considered in [26] and are of
the form f(z) = 1

z +∑N
i=0 aiz

i. However this is beyond the scope of the current paper and
for now we take the simplified approach of looking at the coefficient bounds one obtains
by assuming the rest of the low energy expansion is typically real.

5.4.1 The scalar pole

We consider an amplitude M(ρ̃) with a massless scalar17 exchange −
(

1
s + 1

t + 1
u

)
= −x

y :

M(ρ̃) = −λx
y

+W0 x+W1 y · · ·

= λ

ω2
(2− ρ̃)
ρ̃

+W0 ω
4 (2− ρ̃)

2 −W1 ω
6 ρ̃

2 + · · · (5.38)

We re-scale the amplitude and introduce a change of variables ρ̃ = z α with |z| < 1, α > 0.
The parameter α is the largest disk around the origin for which the amplitude is a typically
real meromorphic function in ρ̃. We map this on to the unit disk in z since most of the
results in [26, 46] are valid for this domain.

−α ω
2

2 λ M(z) = −1
z

+ α

(
−Ŵ0 ω

6

2 + 1
)

+ α2ω6

4 (Ŵ1 ω
2 + Ŵ0)z + · · · (5.39)

where, Ŵi = Wi
λ . Having done this we can apply the inequalities of Goodman for the

function in TM∗ to get:

α

(
−Ŵ0ω

6

2 + 1
)
≥ −1 ,

=⇒ Ŵ0 ≤
(1 + α)
α ω6 (5.40)

Furthermore as explained in [26, 46], f(z) ∈ TM∗ iff − 1
f(z) ∈ TM . By assuming the

smallest non-zero pole is at |z| = p > 0 (this corresponds to the lightest massive particle
17This was a case that could not be directly addressed in [26] as x

y
= 1

a
which is constant and thus

independent of the Auberson-Khuri z variable.
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in the theory) and applying the Goodman bounds we get:

2 λ
α ω2 M(z) = z + α2

(
1− Ŵ0ω

6
)
z2 + · · ·

=⇒ −
(
p+ 1

p

)
≤ α2

(
1− Ŵ0ω

6
)
≤
(
p+ 1

p

)
− 1
ω6

( 1
α2

(
p+ 1

p

)
− 1

)
≤ Ŵ0 ≤

1
ω6

( 1
α2

(
p+ 1

p

)
+ 1

)
(5.41)

Thus we have

− p2 − pα2 + 1
p α2 ω6 ≤ Ŵ0 ≤Min

{(1 + α)
α ω6 ,

p2 + pα2 + 1
p α2 ω6

}
. (5.42)

For the terms till ω6 we have α = 2 and p = 1 which gives 1
2ω6 ≤ Ŵ0 ≤ 3

2ω6 .
For α = 1 and p = 1 we have − 1

ω6 ≤ Ŵ0 ≤ 2
ω6 . Since 0 < p ≤ 1 and α > 0 this suggests

that Ŵ0 ≥ 0 for α ≥
√
p+ 1/p. For the case where there are no non-trivial poles i.e p = 1

this suggests that we will have α ≥
√

2 ≈ 1.414 since Ŵ0 ≥ 0 is implied by unitarity.

5.4.2 The graviton pole

We consider the 1
stu SUGRA pole in 10D along with the R4 term.

M(ρ̃) = −8πGN
x2

y
+ g0x

2 + · · ·

= 4πGNω2 (2− ρ̃)2

ρ̃
+ g0ω

8 (2− ρ̃)2

4 (5.43)

We analyze the coefficient bounds one obtains for g0 by assuming the rest of the low
energy expansion is typically real. To do this as before we first re-scale the amplitude and
change variables to ρ̃ = z α as done in the scalar case we get

−M(z)
16πGNω2 = −1

z
+
(
α− 1

2α ĝ0 ω
6
)

+
(

1
2α

2 ĝ0 ω
6 − α2

4

)
z − 1

8α
3 ĝ0 ω

6z3 + · · · (5.44)

where, ĝ0 = g0
8πGN . The change of variables to z is needed since the Goodman bounds hold

for a disc of unit radius. As noted earlier, M(ρ̃) to O(ω8) is TR in a disc with α = 2.
Strictly speaking, this is a weak-coupling result since we have ignored terms proportional
to log(s) in the expansion. However, now let us assume that the full amplitude, even at
strong-coupling, M(ρ̃) is TR inside |z| < 1 and examine the consequences. M(ρ̃) above is
an element of Goodman class TM∗ as discussed in [26] and hence satisfies:(

1
2α

2 ĝ0 ω
6 − α2

4

)
≥ −1

=⇒ ĝ0 ≥
(α2 − 4)
2 ω6 α2 (5.45)
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Furthermore as discussed in [26] we can convert this to an element of the Goodman
class TM and by assuming that there are no poles inside the disk |z| < p we get the
following coefficient bound:

ĝ0 ≤
2
ω6α

(
p+ 1

p
+ α

)
(5.46)

Thus we have
(α2 − 4)
2 ω6 α2 ≤ ĝ0 ≤

2
ω6α

(
p+ 1

p
+ α

)
. (5.47)

This is a two-sided bound on ĝ0 and does not explicitly depend on the spacetime
dimensions. Notice that the upper bound depends on both p, α while the lower bound only
depends on α. So far in the literature [26, 54], the lower bound in weakly coupled theories
is 0. Unitarity tells us that ĝ0 ≥ 0 [55] which tells us that α ≥ 2.

The derivation we have presented above only assumes TR-ness of the full amplitude up
to a certain value ω2. The values p = 1 and α = 2 would give us the bound obtained in [26]
namely 0 ≤ ĝ0 ≤ 4. The values p = 1 and α = 2.32 gives us the bound 0.13 . ĝ0 . 3.7,
where the lower bound coincides with the strong string coupling result obtained in [55].
This suggests that the size of the disc α where TR-ness holds is sensitive to the string
coupling and α(gs = 0) = 2 while18 α(gs =∞) ≈ 2.32.

6 Discussion

We will now conclude with a brief discussion of promising future directions of research.

• Celestial OPE : It is natural to ask what one can learn about celestial conformal field
theories (CCFT’s) from the 4d S-matrix. In the context of the results obtained in this
paper, one would wonder if there is a relation between the partial wave coefficients
of the momentum space amplitude and OPE coefficients in the 2-d conformal block
decomposition of the corresponding celestial amplitude. It turns out that this is
indeed the case and will be the topic of our upcoming work [32].

• External gravitons/spinning particles: One would also like to extend the analysis of
this paper to cases with external spinning particles. In particular, for the case with
external gravitons is of particular interest in the context of CCFT’s. It will be also be
interesting to see the implications of null constraints for LSD in this case and compare
with existing literature [41].This is ongoing work using techniques developed in [27]
and we hope report progress on this front soon.

• External massive: It is also of great interest to see if the techniques of this paper can
be extended to external massive particles both from the CCFT perspective and also
from the perspective of the 4d S-matrix since it would be fascinating to see if the
analogues of the partial wave moment bounds we obtained in this work could help
address the presence/absence of LSD in this context (see [27] for a related discussion).
We leave this for future work.

18The location of the nearest pole to the origin p in the above formula presumably goes to zero as the
string coupling increases — this removes the upper bound at strong string coupling [54].
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• Analytic structure for general β: It is also interesting to consider the analytic struc-
ture of the celestial amplitude for general β since we have focused mainly on the low
energy regime i.e., β = −2n in this work. It would be interesting to see if the high
energy regime β = 2n can be addressed similarly [33]. We can ask if the positivity
properties we have considered persist for general values of β and if these lead to any
non-trivial consequences for the CCFT. This merits further study.

• Positivity: Finally it is also a fascinating mathematical question to better explore con-
nection between the notions of positivity introduced in this work and those studied
in the maths literature such as Toeplitz positivity. The Feynman blocks introduced
in this work were a family of typically-real polynomials and it would be interest-
ing to better understand the connection between the Suffridge polynomials and the
Feynman blocks.
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A Some proofs

In this section we prove the ρ-positvity Pρ of the amplitudes listed in section 2. We
begin with the type II amplitude which we write in terms of an exponential involving zeta
functions.

−MII = −1
stu

Γ(1− s) Γ(1− t) Γ(1− u)
Γ(1 + s) Γ(1 + t) Γ(1 + u)

= 2
ω6(1 + ρ)e

−8γ exp
( ∞∑
k=2

ζ(k)ω2k

k

(
1− (−1)k

) (
sk + tk + uk

))

= 2
ω6(1 + ρ)e

−8γ exp

 ∞∑
k=3
k odd

2ζ(k)
k

f(k, ρ, ω)

 . (A.1)

where f(k, ρ, ω) = ωk(1+(−z)k+(z−1)k), and z = 1
2 (1−

√
−1− 2ρ). The f(k, ρ, ω)’s are

manifestly positive for any k as they satisfy the following 3-term recursion relation with
positive coefficients as can be readily checked.

f(k, ρ, ω) = 1
2ω

6 (1 + ρ)f(k − 3, ρ, ω) + 1
2ω

4 (1− ρ)f(k − 2, ρ, ω) for k ≥ 3 (A.2)

with f(0, ρ, ω) = 3, f(1, ρ, ω) = 0 and f(2, ρ, ω) = 16 +ω4(1− ρ). Positivity is now obvious
to see since the functions 1±ρ are both positive in ρ ∈ (−1, 1) and then we can recursively
construct any f(k, ρ, ω) for k ≥ 3 using the above relation which makes positivity manifest.

– 33 –



J
H
E
P
0
8
(
2
0
2
2
)
2
1
6

Now let us consider the closed bosonic string amplitude. This can also be written in
an exponential form as follows:

−MCB =
Γ
(
1−

(
2
3 + s1

))
Γ
(
1−

(
2
3 + s2

))
Γ
(
1−

(
2
3 + s3

))
Γ
(
1−

(
1
3 − s1

))
Γ
(
1−

(
1
3 − s2

))
Γ
(
1−

(
1
3 − s3

))
= exp

(
γ +

∞∑
k=2

ζ(k)
k

3∑
i=1

((
si + 2

3

)i
−
(
−si + 1

3

)i))

= eγ exp
( ∞∑
k=2

ζ(k)
k

k−1∑
n=0

λ(n, k)f(k, ρ, ω)
)

(A.3)

where λ(n, k) = 2−n3n−k(2n(n(1−k)n−1−(1−k)n)+2k(k−n+1)n)
n! and f(k, ω, ρ) = sk1 + sk2 + sk3 is

the same function defined in the type II case. Positivity in ρ ∈ (−1, 1) readily follows as
f(k, ω, ρ) were argued above to be positive and λ(n, k) are manifestly positive.

One can show that this positivity is also enjoyed by tree-level and 1-loop box diagram
for 2-2 scattering in φ2ψ theory, with φ being a light scalar and ψ a heavy one. These
amplitudes are respectively given by,

−Mφ3 = g

( 1
m2 − s

+ 1
m2 − t

+ 1
m2 − u

)

= g
∞∑
k=0

f(k, ρ, ω)
m2k (A.4)

−Mφ2ψ = π2

6m4

(
F3

(
1, 1, 1, 1

5
2

; s

4m2 ,
t

4m2

)
+ (s→ t, t→ u) + (s→ u, t→ s)

)

= π2

6m4

 ∞∑
p,q=0

p! q!(
5
2

)
p+q

(4 m2)p+q
(f(p, ρ, ω)f(q, ρ, ω)− f(p+ q, ρ, ω))

2


= π2

6m4

 ∞∑
n=0

n∑
p=0

p! (n− p)!(
5
2

)
n

(4 m2)n
(f(p, ρ, ω)f(n− p, ρ, ω)− f(n, ρ, ω))

2

 (A.5)

The positivity follows as g(n) = ∑n
p=0 p! (n−p)! (f(p, ρ, ω)f(n− p, ρ, ω)− f(n, ρ, ω)) ≥

0 for n ≤ 2 as g(0) = 6, g(1) = 0, g(2) = 7f(2, ρ, ω) can be easily seen and proved induc-
tively for n ≥ 3 by using (A.2).

Thus, we see that positivity of the low energy coefficients for ρ ∈ (−1, 1) follows purely
from the positivity of f(k, ρ, ω).

B 4-point celestial amplitude of massless particles

In this appendix we review the construction of 4-point celestial amplitudes for massless
particles in d=4 spacetime dimensions.
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The null four-momenta of the external particles in the S-matrix can be parametrized as

pµk = εkωk(1 + zkz̄k, zk + z̄k,−i(zk − z̄k), 1− zkz̄k) (B.1)

where εk = ±1 for an outgoing (incoming) particle. ωk is the energy of the k-th particle.
(zk, z̄k) specify the direction of the null momenta pµk and thereby can be identified with
stereographic coordinates on the 2-d celestial sphere at null infinity.

Now the 4-point scattering amplitude in momentum space can be expressed as

A(p1, p2, p3, p4) =
4∏
i<j

(
zij
z̄ij

) 1
2(J3−Ji−Jj)

M(s, t); J =
4∑
i=1

Ji (B.2)

where Ji denotes the helicity of the i-th particle. The (zi, z̄i) dependent prefactor in (B.2)
accounts for the Lorentz transformation properties of the amplitude. M(s, t) is a Lorentz-
invariant function of the Mandelstam invariants s = −(p1 + p2)2 and t = −(p1 + p3)2.

The celestial amplitude corresponding to (B.2) is then defined as

M(∆i, Ji, zi, z̄i) =
∫ ∞

0

4∏
i=1

dωi ω
∆i−1
i A(p1, p2, p3, p4) δ(4)

( 4∑
i=1

pµi

)
(B.3)

Now note that under 4-d Lorentz transformations, the (ωi, zi, z̄i) variables transform
as follows

ωi → |czi + d|2ωi; (zi, z̄i)→
(
azi + b

czi + d
,
āz̄i + b̄

c̄z̄i + d̄

)
; ad− bc = ād̄− b̄c̄ = 1 (B.4)

Using this it can be shown that under the action of the 4-d Lorentz group which is
isomorphic to SL(2,C), the celestial amplitude (B.3) transforms as

M(∆i, Ji, zi, z̄i)→
∏
i

(czi + d)−∆i−Ji(c̄z̄i + d̄)−∆i+JiM
(

∆i, Ji,
azi + b

czi + d
,
āz̄i + b̄

c̄z̄i + d̄

)
(B.5)

ThusM(∆i, Ji, zi, z̄i) transforms in the same fashion under SL(2,C) as a 4-point cor-
relation function of quasi-primary operators with scaling dimensions ∆i and spins Ji in 2-d
CFT, referred to as the Celestial CFT (CCFT).

Now (B.3) can be further simplified as follows. Using the momentum-conservation
delta function we can perform the integrals over any 3 of the ωi variables. For this it is
convenient to write the delta function as

δ(4)
( 4∑
i=1

pµi

)
= 1

4ω2
4

δ(z − z̄)
|z12z̄12z34z̄34|

3∏
i=1

δ(ωi − εiε4ω4σi)
3∏
j=1

Θ(εjε4σj) (B.6)

where (z, z̄) are the cross-ratios

z = z13z24
z12z34

; z̄ = z̄13z̄24
z̄12z̄34

(B.7)
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and

σ1 = −z z34z̄34
z13z̄13

; σ2 = (z − 1) z34z̄34
z23z̄23

; σ3 = − z

z − 1
z14z̄14
z13z̄13

(B.8)

The theta functions in (B.6) ensure that the delta functions have support only for
ωi > 0. Consequently the cross ratio z lies in the following ranges depending on the
scattering channel19 under consideration.

12↔ 34 channel : ε1 = ε2 = −ε3 = −ε4 = −1; z ∈ (0, 1)

13↔ 24 channel : ε1 = ε3 = −ε2 = −ε4 = −1; z ∈ (1,∞)

14↔ 23 channel : ε1 = ε4 = −ε2 = −ε3 = −1; z ∈ (−∞, 0)

(B.9)

In terms of the (ωi, zi, z̄i) variables, the Mandelstam invariants s, t become

s = −(p1 + p2)2 = −4ω2
4

z

z − 1
z14z̄14z34z̄34
z13z̄13

, t = −(p1 + p3)2 = 4ω2
4

z2

z − 1
z14z̄14z34z̄34
z13z̄13

(B.10)

where we have evaluated (B.10) on the support of the δ(z − z̄) factor. Then (B.3) takes
the form

M(hi, h̄i, zi, z̄i) = δ(z − z̄)
4|z12z̄12z34z̄34|

3∏
i=1

(εiε4σi)∆i−1
3∏
j=1

Θ(εjε4σj)
4∏
k<l

(
zkl
z̄kl

) 1
2(J3−Jk−Jl)

×
∫ ∞

0
dω4 ω

β−1
4 M(s, t) (B.11)

Next we perform the change of variables ω = √εss where εs = ε1ε2. Note that εs = 1 in
12↔ 34 channel and εs = −1 in 13↔ 24 and 14↔ 23 channels respectively. Then (B.11)
can be shown to take the following form

M(hi, h̄i, zi, z̄i) = Khi,h̄i
(zi, z̄i) X(β, z)

∫ ∞
0

dω ωβ−1 M(εsω2,−εsω2z) (B.12)

where

Khi,h̄i
(zi, z̄i) =

4∏
i<j

z
h
3−hi−hj
ij z̄

h̄
3−h̄i−h̄j
ij , h =

4∑
i=1

hi, h̄ =
4∑
i=1

h̄i

X(β, z) = 2−β−2 |z(1− z)|
(β+4)

6 δ(z − z̄)
3∏
j=1

Θ(εjε4σj), β =
4∑
i=1

(∆i − 1)
(B.13)

19A scattering channel here refers to a particular configuration of in/out states.
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C Some explicit formulas

In this appendix we give closed form expressions for some quantities used in the main text
in sections (4) and (5). We can simplify eq. (3.15) for RJ(β, xi(z)) to obtain the following:

RJ(β, xi) =
J/2−1∑
k=0
S(k, β, xi)T (J, J/2− k − 1) , (C.1)

where,

S(k, β, xi) =− e
iπβ
2 (xi + 1)−k−1

(
(−1)k(xi + 1)k+1

(
β
2

k + 1

)

× 2F1

(
1, k − β

2 + 1; k + 2;xi + 1
)

+ (−xi)β/2
)
,

T (J, n) =
3n22J−2nΓ

(
1
2(2J + 1)

)
2F1

(
1
2 −

J
2 ,−n; 1

2 − J ;−1
3

)
Γ
(

1
2(2n− J)

)
√
πΓ
(
−J

2

)
Γ(J + 1)Γ(n+ 1)

.

(C.2)

We also have the following expression for the Feynman block FB(n, J, ρ) in eq. (5.1):

FB(n, J, ρ) = −U2(n, J, ρ)−H(n, J, ρ) , (C.3)

where,

H(J, n, ρ) = 2J
J∑
k=0

(
J

k

)(
J+k−1

2
J

)
(−1)n(−1− 2ρ)k/2

+2J
J∑
k=0

n∑
m=0

n−m∑
l=0

(−1)m22m−n
(
J

k

)(
J+k−1

2
J

)(
k

m

)(
n−m
l

)

×
(
1 + (−1)l

)
(−1− 2ρ)l/2 ,

U2(J, n, ρ) = U1(J, n, ρ) +
J/2−1∑
k=0

2(−1)n+1(1 + k) (k + 2)n−1
(2)n−1

T (J, J/2− 1− k) where,

U1(J, n, ρ) =
J/2−1∑
k=0
S1(k, n, ρ)T (J, J/2− 1− k) with

S1(k, n, ρ) = (−1)n
(

(−1)k+1
(
−n
k + 1

)
+ (1− ρ)k(ρ+ 1)n

+2−k−1(1− ρ)k
(
−2k+1(ρ+ 1)n + (ρ− 1)

))
.
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D Ramanujan’s master theorem

Consider a function f(x) which can be expanded as

f(x) =
∞∑
k=0

φ(k)
k! (−x)k (D.1)

Then according to Ramanujan’s master theorem, the Mellin transform of f(x) is given by

f̃(s) =
∫ ∞

0
dx xs−1 f(x) = Γ(s)φ(−s) (D.2)

In particular applying the theorem to g(x) = ∑∞
k=0 ψ(k)(−x)k = ∑∞

k=0
ψ(k)k!
k! (−x)k i.e., for

φ(k) = ψ(k) Γ(k + 1) and using the reflection identity we get:

g̃(s) =
∫ ∞

0
dx xs−1 g(x) = π

sin πsψ(−s) (D.3)

which is the version we use in (4.4). A few comments are in order:

• Behaviour around the origin: The theorem on first glance appears to suggest that the
Mellin transform is completely determined by the behaviour of a function f(x) around
the origin. However this is clearly not true since need a closed form of the Taylor
coefficient φ(k) i.e., know φ(k) f or all k to apply the theorem which is equivalent to
knowing the full function.

• Uniqueness: The above theorem says the Mellin transform is obtained by analytically
continuing the Taylor coefficient φ(n)’s to the Mellin parameter −s. One might
wonder if such an analytic continuation is unique. It seems like the answer is obviously
no since there are several analytic continuations that are possible for instance consider
φ(n) = n! then φ(s) could Γ(s) but it could also be any element of the following 1-
parameter family Γ(s) + a sin πn. However if we put a restriction on how fast φ(s)
can grow at large values of s then the result is unique by Carlson’s theorem [56, 57].

• Existence: One can readily check that the theorem holds for f(x) = e−x as φ(k) = 1
in this case and thus we get f̃(s) = Γ(s). However the theorem also fails for f(x) =
0 with φ(k) = (−1)k sin πk since the theorem says f̃(s) = −π 6= 0. The precise
conditions and when the theorem holds were worked out by G.H.Hardy [56].For the
theorem to be valid [56, 57] we need φ(u) for u = v + iw to be regular on some strip
H(δ) = {u|v ≥ −δ} and there exists parameters A < π,P ∈ R, C > 0 such that
|a(u)| < CePv+A|w|. A counter example is φ(k) = sin πk which has A = π which
explains why the theorem fails in this case.

• For physical amplitudes: For amplitudes that obey the Froissart bound then
M(ω2,−zω2) = o(ω4) then Mellin transform converges and is regular on strip around
Re(s) = −4. Since the theorem depends on the growth properties the Taylor coeffi-
cients at low energies namely W̃(n, z) defined in (4.3). Assuming |Wp,q| ≤ λ then for
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large n we have

|W̃(n, ρ)| < λe
n
2 log ρ (D.4)

For 0 < ρ < 1 we have P = log ρ
2 < 0, A = 0 < π and for −1 < ρ < 0 we have

P = log |ρ|
2 , A = −π

2 < π. Thus the conditions of the theorem are satisfied.

• Universal factor : The factor π
sinπs is universal also follows from the theorem directly.

In [33, 34] the poles at β = ±2n with n ≥ 0 were argued to capture the IR/UV
physics and since β = 2s this is consistent with their claim.

The several variable generalization of Ramanujan’s master theorem has also been useful
in computing multi-loop Feynman integrals [58–61].

E Positivity of d(n)
m : further examples

Here we consider the relation (4.13) and analyse the conditions under which d
(n)
m ≥ 0 for

n = 4, 6, 7. The case n = 5 has already been considered in section 4.4.

n = 4. For n = 4, we have

d(4)
m =

∞∑
J=0

(2J + 1) χ(4)
m (J) α̃J(4, δ0), m = 0, 1, 2 (E.1)

where

χ
(4)
0 (J) = 1

2 −
1
8J(J + 1)(J2 + J − 8), χ

(4)
1 (J) = 3

2χ
(4)
2 (J) = −3

8J(J + 1)(J2 + J − 8)
(E.2)

Now for n = 4 we also have the null constraint
∞∑
J=2

(2J + 1) J(J + 1)(J2 + J − 8) α̃J(4, δ0) = 0 (E.3)

From (E.2), we see that both χ
(4)
1 (J), χ(4)

2 (J) are proportional to the coefficient ap-
pearing in (E.3). This implies d(4)

1 = d
(4)
2 = 0. Now from the definition of d(4)

m in terms of
Wilson coefficients, given by (4.6), we already know that d(4)

m = 0, for m = 1, 2. So this is
a consistency check. Then let us take m = 0 in (E.1). Using (E.2) and (E.3) we get

d
(4)
0 = 1

2

[
α̃0(4, δ0) +

∞∑
J=2

(2J + 1) α̃J(4, δ0)
]

(E.4)

Since α̃J(4, δ0) ≥ 0 due to unitarity, (E.4) implies

d
(4)
0 ≥ 0 (E.5)
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The fact that d(4)
0 ≥ 0 has to hold is expected due to unitarity. In terms of the Wilson

coefficients, W20x
2 = ω8d

(4)
0 (1 − ρ)2 ≥ 0. It is known that unitarity implies W20 ≥ 0.

However, it is interesting to note that in our analysis the condition d
(4)
0 ≥ 0 becomes

manifest only after using the locality constraints as shown above.

n = 6. In this case we have

d(6)
m =

∞∑
J=0

(2J + 1) α̃J(6, δ0) χ(6)
m (J), m = 0, 1, 2, 3 (E.6)

where

χ
(6)
0 (J) = 1

4 + c1(6, J)
32 , χ

(6)
1 (J) = 5

48 c1(6, J),

χ
(6)
2 (J) = 11

96 c1(6, J) + 1
16 (6 + J(J − 3)(J + 1)(4 + J)) ,

χ
(6)
3 (J) = 1

24 c1(6, J) + 1
16 (6 + J(J − 3)(J + 1)(4 + J))

(E.7)

and

c1(6, J) = − 1
24(J − 3)J(J + 1)(J + 4)

(
J(J + 1)

(
J2 + J − 32

)
+ 204

)
. (E.8)

Now c1(6, J) given above is precisely the coefficients that appears in the locality con-
straint equation for n = 6. This leads to d(6)

1 = 0. We can also easily check that d(6)
2 = d

(6)
3 .

This is a simple consequence of using (E.7) and noting that in (E.6), the terms proportional
to c1(6, J) drop out due to the null constraint. Thus we only need to analyse the cases
m = 0 and m = 2. For m = 0, applying the locality constraint we can express d(6)

0 as

d
(6)
0 = 1

4

[
α̃0(6, δ0) +

∞∑
J=2

(2J + 1) α̃J(6, δ0)
]

(E.9)

Clearly d(6)
0 ≥ 0 since α̃J(6, δ0) ≥ 0. Similarly for m = 2 we obtain

d
(6)
2 = 1

8

[
3α̃0(6, δ0)− 75α̃2(6, δ0) + 1

2

∞∑
J=4

(2J + 1) (6 + J(J − 3)(J + 1)(4 + J)) α̃J(6, δ0)
]

(E.10)

Therefore, for d(6)
2 ≥ 0 to hold, the sufficient condition is

α̃0(6, δ0) ≥ 25 α̃2(6, δ0) (E.11)

n = 7. Finally let us consider the case n = 7,

d(7)
m =

∞∑
J=0

(2J + 1) α̃J(7, δ0) χ(7)
m (J), m = 0, 1, 2, 3 (E.12)
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where

χ
(7)
0 (J) = − 1

160 (10c1(7, J)− 3c2(7, J))

χ
(7)
1 (J) = − 13

320c2(7, J) + 7
8 + 1

72J(J + 1)[276 + J(J + 1)(2J(J + 1)− 61)]

χ
(7)
2 (J) = −3

8c1(7, J) + 23
160c2(7, J), χ

(7)
3 (J) = − 3

16c1(7, J) + 5
64c2(7, J)

(E.13)

and

c1(7, J) = 1
720J(J + 1)

× [J(J + 1)(J(J + 1)(J(J + 1)(2J(J + 1)− 155) + 4836)− 65468) + 235200]

c2(7, J) = 1
360J(J + 1)

× [J(J + 1)(J(J + 1)(J(J + 1)(2J(J + 1)− 155) + 4916)− 67908) + 246960]
(E.14)

The coefficients c1(7, J), c2(7, J) are identical to the ones that enter in the two independent
locality constraint equations for n=7. Thus we straightforwardly get d(7)

0 =d
(7)
2 =d

(7)
3 =0.

Now for m = 1, applying the locality constraints, it can be easily shown that d(7)
1

becomes

d
(7)
1 = 4

[
7 α̃0(7, δ0)− 75 α̃2(7, δ0) + 1

60480

∞∑
J=8

(2J + 1)(J − 6)(J − 4)(J + 5)(J + 7)

×
[
J(J + 1)(7J(J + 1)(2J(J + 1)− 31) + 414) + 504

]
α̃J(7, δ0)

]
(E.15)

This implies that for d(7)
1 to be non-negative it is sufficient to have

α̃0(7, δ0) ≥ 75
7 α̃2(7, δ0) (E.16)

In a similar manner one also can show that a sufficient condition for d(8)
m ≥ 0 is

α̃0(8, δ0) ≥ 13.75 α̃2(8, δ0) (E.17)

For convenience we repeat the sufficient conditions for d(i)
m ≥ 0, for i = 5, 6, 7, 8 below:

α̃0(5, δ0) ≥ 11.2 α̃2(5, δ0) , α̃0(6, δ0) ≥ 25α̃2(6, δ0) , (E.18)
α̃0(7, δ0) ≥ 10.72 α̃2(7, δ0) , α̃0(8, δ0) ≥ 13.75 α̃2(8, δ0) . (E.19)

Let us also note a simple consequence of the properties of partial wave moments,
without assuming d(n)

m positivity. Using (E.4) and (4.27), we find(
d

(4)
0 −

2
5d

(5)
1

)
= α̃0(4, δ0)− α̃0(5, δ0) + (positive terms) ≥ 0 =⇒ d

(4)
0 ≥ 2

5d
(5)
1 . (E.20)

– 41 –



J
H
E
P
0
8
(
2
0
2
2
)
2
1
6

Here we have used the fact that for moments α̃0(4, δ0) ≥ α̃0(5, δ0). In terms of the
Wp,q’s this translates to

W20 ≥ −
2
5W11 . (E.21)

In type-II string theory, lhs ≈ 2.017 > rhs ≈ 1.994.

F String theory example: details

Here we spell out the type-II string theory details which can be used to cross-check many
of the inequalities proved in the main draft. Note that although the amplitude is in 10
spacetime dimensions, the α̃J -moments are positive using Legendre polynomials. This is
all that we will need for all our checks. Let us focus on the Gamma function dependence
on the amplitude (the full amplitude is multiplied by x2 which one can factor out for
convenience as well as better convergence). The amplitude is given by

M(s, t) = − Γ(−s)Γ(−t)Γ(−u)
Γ(1 + s)Γ(1 + t)Γ(1 + u) , s+ t+ u = 0 . (F.1)

Using the Celestial variables and expanding around ω2 = 0 gives eq. (2.9). The partial
wave coefficients αJ(s) are given by

αJ(s) = δ(s− n)
32

∫ 1

−1
dx (−1)n+1 Γ(n+ n

2 (x− 1))Γ(−n
2 (x− 1))

2(n!)2Γ(1− n− n
2 (x− 1))Γ(1 + n

2 (x− 1))PJ(x) . (F.2)

Plugging this into eq. (5.8) and truncating to Jmax = 20, nmax = 10 leads to ≈ 0.3%
agreement with the r.h.s. of eq. (2.9). The agreement improves with increasing Jmax, nmax
as expected.

For convenience and ready reference, we tabulate some of the partial wave moments,
α̃J(n, 1) as defined in eq. (4.9), obtained using nmax = 50:

n\J 0 2 4 6 8
1 1.0237 0.01066 0.00067 0.000095 0.000021
2 1.0113 0.00472 0.00019 0.000019 3.021×10−6

3 1.0055 0.00226 0.00006 3.95 ×10−6 4.78 ×10−7

4 1.0027 0.00110 0.00002 8.72 ×10−7 8.00×10−8

5 1.0013 0.00054 5.62 ×10−6 1.99 ×10−7 1.39 ×10−8

6 1.0007 0.00026 1.81 ×10−6 4.63 ×10−8 2.50 ×10−9

We also list the low energy Wilson coeffcients Wp,q of the II-string amplitude in the table
below:

Wp,q q = 0 q = 1 q = 2 q = 3
p = 0 2.40411 -2.88988 2.98387 -2.99786
p = 1 2.07386 -4.98578 7.99419 -10.9987
p = 2 2.0167 -6.99881 14.9984 -25.9995
p = 3 2.00402 -9.00023 23.9996 -49.9998
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