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ABSTRACT
We provide an ab initio scaling analysis for liquid film thickness and Nusselt number of a steady laminar jet impinging a rotating heated plate.
We have probed the limiting scaling regimes by incorporating the evaporative effects at the liquid–vapor interface. The dependence of liquid
film thickness and Nusselt number on Reynolds, Rossby, and Prandtl numbers has been unearthed using scaling analysis of the integral and
differential form of the continuity, Navier–Stokes, and energy equation in a cylindrical coordinate system. Boundary layer analysis has been
used to discover a critical length that plays a significant role in understanding the effect of evaporation on hydrodynamic, thermal boundary
layer thicknesses, and subsequently Nusselt number. The evaporative effects on liquid film thickness become increasingly important after
a certain critical radius. The scaling laws derived are compared with existing experimental data available in the literature, and the trends
predicted were consistent.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0105060

I. INTRODUCTION

Many scientists and engineers have pursued the hydrodynam-
ics and heat transfer of liquid jet impinging a rotating heated plate
in the past.1–4 Liquid jets find much interest among the community
due to their applications in various heat transfer devices such as radi-
ators and evaporators in aerospace applications where efficiency is
of utmost importance. Jets are considered effective in transferring
heat and mass due to thin hydrodynamic and thermal boundary
layer effects.5,6 Cooling of electronic devices using high-speed jets
is a highly effective technique used in the electronic and comput-
ing industries.7–10 A lot of literature available considers a variety of
conditions such as the effect of rotation, wall temperature, surface
tension, to name a few11 on heat transfer dynamics. Researchers have
also analyzed liquid film thickness, Nusselt number, and hydraulic
jump using experimental, numerical, semi-analytical, and analyti-
cal techniques.12 Turbulent flow computations using the k–ε model
in thin liquid fluid layers involving a hydraulic jump were accom-
plished by a group led by Rahman.13 Rahman et al. worked out
the numerical solutions of the momentum equations using finite

difference techniques incorporating a boundary-fitted coordinate
technique. Rahman and Faghri also carried out detailed works on
rotating plates using a three-dimensional boundary-fitted coordi-
nate system.14 They concluded the dominance of inertia at the jet’s
entrance and rotation at the outer edge of the plate. Micro-gravity
experiments and numerical simulations using potential flow the-
ory were performed for free circular jets impinging on flat plates
by scientists at NASA.15 Avedisan and Zhao also studied circular
hydraulic jumps in low gravity environments.16 Heat transfer char-
acteristics were calculated using integral analysis techniques by Liu
and Lienhard.17 They performed the computations for a uniform
heated surface without rotations and discussed the effect of the
Prandtl number on the Nusselt number. Rao and Arakeri studied
free liquid jets using semi-analytical techniques such as the work
of Liu and Lienhard.18 Rao et al. used an integral analysis for the
boundary layer equations using third-order polynomial approxima-
tions for the velocity profiles. Basu and Cetegen19 studied the heat
transfer analysis for jets impacting on rotating plates. They used
integral analysis techniques to calculate the liquid film thickness
and Nusselt number. Later work by the same group also focused on
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hydraulic jumps.20 Azuma and Hoshino studied the transition from
laminar to turbulent, performed stability analysis, calculated liquid
film thickness, and wall pressure fluctuations for the stationary hor-
izontal plate.21 The heat transfer characteristics, including Nusselt
number calculations, were first studied by Chaudhury and group.22

They developed closed-form solutions in the region where similarity
solution exists. The heat transfer at the boundary between the liquid
film and solid plate was solved separately, and then, the solutions
were matched at the boundary by Wang and his colleagues.23 The
convective heat transfer from a jet of cooling oil to an approximately
isothermal rotating plate was calculated by Carper and Deffen-
baugh.24 A later study by the same group incorporated the Prandtl
number in the heat transfer characteristics. They provided many
correlations from experimental data fitting. The numerous corre-
lations developed in the literature25 lacked fundamental physical
and mathematical insights from first principles. Recently, differ-
ent configurations of the fundamental jet impingement problem
and the associated hydraulic jump dynamics have also been investi-
gated experimentally, theoretically, and numerically.26–28 Sen et al.29

considered orthogonal liquid jet impingement on patterned sur-
faces of differential wettability (a surface having a combination of
hydrophilic and hydrophobic patches). They found that the thin
liquid film expands and breaks into droplets after a certain mini-
mum liquid film thickness on a superhydrophobic surface. Benilov
studied free surface flows down an inclined surface with slight incli-
nations theoretically.30 A general set of asymptotic equations were
derived to investigate hydraulic jumps and included lubrication and
shallow water approximations as a limiting case. Wang et al. investi-
gated the hydrodynamics and heat transfer of an axisymmetric liquid
jet impinging a stationary circular plate heated from below.31,32 They
studied the effect of inertia, shear stress, wall heat flux, and wall tem-
perature on the hydrodynamic and thermal boundary layer. Some
new results relating to the hydraulic jump in normal impinging jets
were reported by Bhagat et al.33 They proved experimentally that
circular hydraulic jumps during impingement of a normal jet on
an infinite plane are independent of the orientation of the surface,
i.e., it was discovered that gravity does not play a role in the ori-
gin/formation of the jumps contrary to previous theoretical analysis.
The debate regarding the role of surface tension in hydraulic jumps
is unresolved. Duchesne et al.34 showed that the energy equation
used by Bhagat et al. was flawed and provided a revised version
of the equation. Previously, Duchesne and co-workers worked on
the implications of constant Froude number on hydraulic jumps.35

Later Bhagat et al. also studied the origin of the jump theoretically
and showed that interfacial surface energy is not conserved due to
a curved interface.36 However, scientific literature that includes the
evaporative effects on liquid film thickness and Nusselt numbers in
the case of a laminar free jet impinging on a rotating heated plate is
relatively sparse.

We study liquid film thickness and Nusselt numbers for a
laminar axisymmetric free jet, impinging a rotating heated plate,
including the evaporative effects. The analysis for various hydro-
dynamic to thermal boundary layer thickness ratios (greater than,
equal to, and less than unity) in the high Froude number limit or
equivalently in near zero-gravity conditions is performed. Scaling
analysis from first principles has been used to decipher various lim-
iting scales. The dependence of film thickness, the hydrodynamic
and thermal boundary layers, the Nusselt number on the geometric

parameters, and various non-dimensional parameters such as
Prandtl, Reynolds, and the Rossby numbers is unearthed. First, the
complexity of the physics results from the evaporative effects exist-
ing at the liquid–vapor interface compared with standard hydro-
dynamical interactions within a single liquid phase that are taken
care of by terms in the Navier–Stokes equation. Second, coupling of
the evaporative effects with the associated thermal energy equation
exists, making the physics significantly more intricate. We tackle the
first complexity and incorporate evaporative effects using an integral
mass conservation equation coupled with the standard differential
form of mass and linear momentum equations.37–39 The complexity
of coupling the evaporative effects and the thermal energy equation
is solved by incorporating the energy equation’s thermal boundary
layer analysis40 and the integral energy balance equation. Scalings of
the fundamental equations were analyzed assuming constant evapo-
rative flux. However, the results derived are general enough and can
be extended to incorporate more complicated evaporative flux fields,
which are not part of this study.

II. MATHEMATICAL MODELLING
A. Geometry and coordinate system

Figure 1 shows the schematic representation of a steady laminar
jet impinging on a rotating heated plate. We have used a cylin-
drical axisymmetric coordinate system about the vertical z axis to
formulate the conservation equations (mass, linear momentum, and
thermal energy). CS denotes the control surface (shown in dotted
red) bounding the control volume CV. The growing hydrodynamic
boundary layer is denoted by BL, shown by the blue dotted line.
The jet cross-section lies parallel to the r and z plane with the
plate at z = 0. The jet impinges along the negative z direction (axial
direction). The radial coordinate r has a length scale r0, and the

FIG. 1. Schematic representation of the axisymmetric laminar jet. Qin, h(r), and
δ(r) represent the volume inflow rate, liquid film thickness, and boundary layer
thickness, respectively. rv denotes the radial location that the growing boundary
layer meets the film thickness due to the jet. The plate is heated after ∣r ∣ > r0,
and ω0 denotes the rotational velocity of the disk. V r(r) denotes the average
radial velocity of the liquid jet averaged over the liquid film thickness h(r). T i
represents the temperature of the jet entering the control volume. T0 is the bottom
plate surface temperature, and T lv is the liquid–vapor surface temperature. The
evaporative flux is denoted by j.

AIP Advances 12, 085311 (2022); doi: 10.1063/5.0105060 12, 085311-2

© Author(s) 2022

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

axial coordinate has a length scale h0. A circular rotating plate of
an enormous radius R compared with r0 lies in the horizontal plane
(R≫ r0). The plate rotates at a constant angular velocity of Ω0.
The inflow volume flow rate of the laminar jet is Qin. The liquid
film thickness profile is denoted by h(r). δ(r) is the hydrodynamic
boundary layer thickness, which grows with the radial coordinate r.
The radial distance from the origin where δ(r) reaches a maximum
is defined as rv. The bottom plate is heated from ∣r∣ ≥ r0.

Conservation of mass, momentum, and energy in the cylin-
drical coordinate system has been used to develop various limiting
scaling laws. The evaporation from the liquid film is incorpo-
rated in the analysis through a non-dimensional evaporation flux
parameter.

B. Integral mass conservation
The jet, upon impinging the circular plate, rotating at an angu-

lar velocity ofΩ0 has an initial transient period. On reaching a steady
state, the liquid film thickness profile h(r) does not change anymore
with time. Applying integral mass conservation inside the control
volume (refer to Fig. 1) at a steady state, we have37–40

Qin = Vr(r)2πrh(r) + 1
ρ∫

r

r0

2πr

¿
ÁÁÀ1 + (∂h

∂r
)

2

J ⋅ ndr, (1)

where Vr(r) denotes the radial velocity averaged over the liquid film
thickness. The first term on the left-hand side of Eq. (1) is the vol-
ume flow rate of the impacting jet entering the control volume. The
second term on the right-hand side represents the volume of liq-
uid flowing out of the control volume radially, and the third term
on the right-hand side represents the mass loss from the control
volume due to evaporative effects from the liquid film and air inter-
face. Approximating the above equation by a scaling equivalent form
by neglecting second order curvature effects and using J ⋅ n ∼ const,
J ⋅ n ∼ j = ∣D∇c∣, where c is the concentration field at the water air
interface. Equation (1) reduces to

Qin ∼ Vr(r)2πrh(r) + jπ
ρ
(r2 − r2

0). (2)

Rearranging and making average radial velocity the subject, Vr(r)
scales as

Vr(r) ∼
1

2πrh(r)[Qin −
jπ
ρ
(r2 − r2

0)]. (3)

C. Differential form of the continuity equation
The differential form of the continuity equation in an axisym-

metric cylindrical coordinate system is38,39

1
r
∂(rVr)
∂r

+ ∂Vz

∂z
= 0. (4)

The radial coordinate r scales as r0 and, hence, Eq. (4) scales as

Vr

r0
∼ Vz

z
. (5)

Using the stream function formulation in cylindrical coordinates
ψ(r, z) for the radial and axial velocity field, we assured that the

conservation of mass is valid at every point inside the control
volume,

Vr = −
1
r
∂ψ
∂z

(6)

and

Vz =
1
r
∂ψ
∂r

, (7)

where Vr and Vz denote the radial and axial velocity components of
the liquid film, respectively.

D. Differential stream function formulation of radial
momentum equation

The stream function formulation38,39 for the radial component
of the Navier–Stokes equation under the thin film limit is given by

1
r
∂

∂r
[1

r
(∂ψ
∂z
)

2
] − ∂

∂z
[ 1

r2
∂ψ
∂z

∂ψ
∂r
] = Ω2

0r − ν ∂2

∂z2 [
1
r
∂ψ
∂z
]. (8)

The circumferential velocity scale of fluid is approximately
equal to tangential linear velocity due to rotation at the bottom
of the plate due to no-slip boundary condition. The 2D approx-
imation holds for relatively low to moderate angular speeds, low
jet velocity and thus, at higher Rossby number and relatively small
Reynolds number. At very higher rotation rates, the hydrodynam-
ics becomes completely 3D and 2D analysis cannot be used.3,25,41

The assumptions of the circumferential velocity have been used
in the previous literature20 to estimate heat transfer characteristics
from a semi-analytical framework. Introducing the scales of various
terms in Eq. (8). The average radial velocity scales as Vr ∼ V∗ , the
stream function scales as ψ ∼ rV∗z, and the axial velocity scales as
Vz ∼ 1

r V∗z. Therefore, Eq. (8) can be rewritten in a scaling form as

V2
∗

r
∼ Ω2

0r,
νV∗
z2 . (9)

Note that Eq. (9) does not depict a dominant balance of the various
physical scales represented by the terms of the equation. It repre-
sents the scales of the various terms (the left-hand side [LHS] and
right-hand side [RHS]) of Eq. (8). The comma in Eq. (8) is used as
a delimiter to indicate the distinct scales in the R.H.S. of Eq. (8).
We can observe three dominant physical scales that can exist. The
scale in the LHS of Eq. (9) represents the advection of radial momen-
tum (inertial term); the first term on the RHS represents the radial
momentum transfer due to rotation while the second term on the
RHS represents momentum diffusion.

E. Differential form of the energy equation
The differential form of the thermal energy equation40 for the

temperature field T(r, z) is

1
r
∂

∂r
(rVrT) + ∂

∂z
(VzT) = α(∂

2T
∂z2 +

1
r
∂

∂r
(r

∂T
∂r
)). (10)
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Using the scales r ∼ r0, z ∼ δT , the scaling form of Eq. (10) in
the thermal boundary layer limit becomes

VrΔT
r0

,
VzΔT
δT

∼ αΔT
δ2

T
. (11)

Equation (11) represents all the dominant scales of the thermal
energy equation inside the thermal boundary layer. Note that the
comma is used a delimiter to separate the various scales possible in
a given equation. The first and second terms on the left-hand side of
Eq. (11) represent the radial and axial convective terms, respectively.
The third term on the right-hand side represents the axial thermal
diffusive term. The fundamental relations in this section such as
Eqs. (3), (5), (9), and (11) have been used to derive the scalings for
liquid film thickness and Nusselt number as presented in the results
and discussion section.

III. RESULTS AND DISCUSSIONS
The analysis required to calculate the scales of liquid film

thickness and Nusselt number depends on various limiting condi-
tions discussed below in separate subsections. The scale of liquid
film thickness height profile h(r) and Nusselt number Nu(r) is
an intricate function that depends on the interaction between the
inertial, rotation, viscous, and evaporative effects. We will start by
evaluating the liquid film thickness scale under various limiting con-
ditions/cases. Subsections III A 1 and III A 2 deals with certain
mathematical limiting cases, and we present these sections to intro-
duce the scaling methodology, that is, being used throughout the
article. Subsection III A 1 deals with a special inviscid case and is
a direct corollary of Eq. (9). This case deals with the balance between
the first term on the LHS and the first term on the RHS of Eq. (9).
Note that Subsection III A 1 is a very special mathematical case
and does not imply a general condition. Subsection III A 2 deals
with another special inviscid case with zero rotation. Section III A 3
describes a third limiting case that can exist as a balance between
the rotation and viscous scales of Eq. (9). The viscous rotation scale
developed in Sec. III A 3 deals with flows having large angular
velocities or thicker jets at relatively small flow rates.

A. Liquid film thickness
1. Inertial inviscid rotation scaling with the variable
scale for radial velocity

The radial velocity scale V∗ averaged over the film thickness
from Eq. (3) equated with the variable rotational velocity scale (Ω0r)
results in a scaling relation for the liquid film thickness. This scaling
physically signifies a rigid body type of motion for the entire liquid
film.37–39 Note that this comparison is only made for the velocity
scale, which has a linear dependence on radial coordinate, which
is similar to a rigid body velocity distribution. It has no physical
implications on the actual flow state, which itself is a special case,

V∗ ∼ Ω0r ∼ 1
2πrh(r)[Qin −

jπ
ρ
(r2 − r2

0)]. (12)

The liquid film thickness scale becomes

h(r) ∼ 1
2πΩ0r2 [Qin −

jπ
ρ
(r2 − r2

0)]. (13)

Substituting Qin = 2πr0h0V0 (refer to Fig. 1), we have

h(r) ∼ Qin

2πΩ0r2 [1 −
jπ
ρQin
(r2 − r2

0)]. (14)

Let E(r) denote the evaporation factor given by

E(r) = [1 − jπr2
0

ρQin
( r2

r2
0
− 1)]. (15)

Introducing a nondimensional group to form a change of variables,
we have

β = jπr2
0

ρQin
, (16)

E(r) = [1 − β( r2

r2
0
− 1)]. (17)

Equation (15) is plotted in Fig. 2. The non-dimensional fac-
tor β is the ratio of the evaporative mass loss through an area of
πr2

0 to the mass flow rate inside the control volume CV. β = 0 rep-
resents zero evaporative flux through the liquid–air interface that
is physically equivalent to a saturated environment (hundred per-
cent relative humidity). The second term in the definition of E(r) is
β(r2/r2

0 − 1), which represents the ratio of the evaporative mass loss
through the liquid–vapor interface to the mass flow rate inside the
control volume CV. The effect of β and the radial coordinate on the
evaporation factor E(r) can be inferred from Fig. 2. E(r) decreases
as the radial coordinate and the non-dimensional factor β increases.
Using the above change of variables and representing the liquid film
thickness as a fraction of a vertical length scale h0 [mostly the vertical
entrance scale in experiments reported in literature4 Eq. (14)] can be
rewritten as

h(r)
h0
∼ ( r0

r
)

2√
RoE(r), (18)

FIG. 2. Evaporation factor E(r) plotted as a function of normalized radial dis-
tance r/r0 with β as a parameter. Five different values of β ∼ jπr2

0 /ρQin are
shown, representing different amounts of evaporation from the free liquid surface
of the jet.
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Ro = V2
0

Ω2
0r2

0
, (19)

where Ro is the Rossby number. We use a non-standard naming con-
vention for the Rossby number. The logic behind using the Rossby
number to characterize the centrifugal term is due to the mathemat-
ical form of the term that appears in the radial momentum equation.
Refer to Basu and Cetegen for the details.20 Since dominant physical
parameter is rotation, the velocities are normalized with the linear
velocity associated with the angular velocity at a radial distance rO.
Note that this term appears in the radial momentum equation and
is physically related to the centrifugal force rather than the Coriolis
force, which acts in the tangential direction. Equation (18) signifies
the physical scaling of liquid film thickness under the effect of a rigid
body rotation of the liquid film and inertia. Figure 3(a) compares the
liquid film thickness for different Rossby numbers and zero evap-
orative flux. The film thickness scaling was plotted using Eq. (18).
On increasing the Rossby number (i.e., decreasing rotational angular
velocity Ω0), the liquid film thickness increases. The effect of evapo-
ration on the liquid film thickness can be understood from Fig. 3(b).
Figure 3(b) represents the liquid film thickness for a fixed Rossby
number Ro ∼ 1 and a variable evaporative flux. The effect of evapora-
tive flux becomes important as the radial coordinate increases. Note
that the numerical value of β = 0.08 used is the maximum upper
limit possible and it corresponds to the maximum evaporation flux
that the flow can sustain before forming hot spots along the plate
where the film thickness asymptotically tends to zero.

FIG. 3. The liquid film thickness profile plotted as a function of the radial coordinate
for the inertia-rotation limit. (a) Dependence of the liquid profile with the Rossby
number as a parameter. (b) Dependence of the liquid profile with β used as a
parameter.

2. Inertial inviscid scaling with a constant scale
for radial velocity (Ω0 = 0)

A different scaling limit exists for liquid film thickness by using
a constant radial velocity scale (V∗ ∼ V0), which physically resem-
bles the situation of zero rotation of the plate. Using Eq. (3) to assure
integral mass conservation, the radial velocity scales as

V∗ ∼ V0 ∼
1

2πrh(r)[Qin −
jπ
ρ
(r2 − r2

0)]. (20)

Simplifying further and using Qin = 2πr0h0V0, we have

h(r)
h0
∼ r0

r
[1 − jπr2

0

ρQin
( r2

r2
0
− 1)]. (21)

Rewriting Eq. (21) using the evaporation factor E(r) from Eq. (17),
we have

h(r)
h0
∼ r0

r
E(r). (22)

Comparing Eqs. (18) and (22), we observe that the dependence on
the evaporation factor is the same (linear on E(r)). Increased evap-
oration flux corresponds to larger β and smaller E(r) and, hence,
smaller liquid film thickness. However, the liquid film thickness falls
off faster (1/r2) in the case of rotation scaling compared with zero
rotation (1/r).

3. Viscous rotation scaling
In practical applications involving liquid jet impingement on

high speed rotating plates, viscous effects in addition to rotational
effects are important due to high gradients of the velocity in a very
thin region near the plate. In this section, the effects of rotation are
now included to counteract the viscous effects. Equating the viscous
and rotation scaling from Eq. (9), we have

νV∗
z2 ∼ Ω

2
0r. (23)

The inertial term in Eq. (9) scales as V2
∗/r (inversely pro-

portional to radius) and, therefore, dominates for small values of
r (r ∼ r0). For small values of r, i.e., near the entry point of
the impinging jet, V∗ ∼ V0. The rotation term on the other
hand increases linearly with radial coordinate r. The viscous term
increases with the radial coordinate as the film thickness decreases
with an increase in the radial coordinate and, hence, cannot
be neglected. Comparing the scales for the inertial and rotation
term near the inlet gives V0 ∼ Ω0r0. The critical radius, therefore,
becomes rc ∼ V0/Ω0. Therefore, the condition for the applicability of
viscous-rotation scaling is rc < r0, which simplifies to V0 < Ω0r0. The
balance described can be achieved physically at a comparable radius
to r0 for sufficiently large angular velocities or thicker jets with small
flow rates. For evaluating the scale of liquid film thickness h(r), we
can scale z ∼ h(r),

νV∗
h2 ∼ Ω

2
0r. (24)
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Using Eq. (3) in Eq. (24), we can establish a scale for the liq-
uid film thickness incorporating the effects of viscosity, rotation, and
evaporation. Therefore, the scales of Eq. (24) can be rewritten as

V∗ ∼
Ω2

0rh2(r)
ν

∼ 1
2πrh(r)[Qin −

j
ρ
(r2 − r2

0)]. (25)

Simplifying and non-dimensionalizing h(r), we have

h(r)
h0
∼ (Ro

Re
)

1/3
( r0

h0
)

2/3
( r0

r
)

2/3
[1 − jπr2

0

ρQin
( r2

r2
0
− 1)]

1/3
, (26)

where Ro is the Rossby number and

Re = V0r0

ν
. (27)

Using the definition of E(r), Eq. (26) can be rewritten as

h(r)
h0
∼ (Ro

Re
)

1/3
( r0

h0
)

2/3
( r0

r
)

2/3
[E(r)]1/3. (28)

Equation (28) shows the dependence of the normalized liquid film
thickness on the Rossby number, Reynolds number, and the evap-
oration factor, respectively (Ro, Re, and E(r)). The liquid film
thickness for viscous-rotation limit scales as 1/r2/3, which is dif-
ferent from the previous scalings derived before [refer to Eqs. (18)
and (22)]. Figures 4(a) and 4(b) show the dependence of the liquid
film thickness profile on the Reynolds number and Rossby num-
ber. Increasing the Rossby number (decreasing angular velocity Ω0)

FIG. 4. The liquid film thickness profile plotted as a function of the radial coor-
dinate for the viscous-rotation limit. (a) Dependence of the liquid profile with the
Reynolds number as a parameter. (b) Dependence of the liquid profile with the
Rossby number as a parameter.

increases the liquid film thickness (h(r)/h0 ∼ Ro1/3) provided all
the parameters are unchanged. The liquid film thickness is inversely
proportional to the Reynolds number (h(r)/h0 ∼ Re−1/3) as shown
in Fig. 4(b). The dependence on the evaporation factor is non-linear
(h(r)/h0 ∼ [E(r)]1/3). This scaling law is different from Eqs. (18)
and (22) where the dependence on the evaporation factor is linear.
Note that the evaporation factor is always less than one (refer to
Fig. 2, E(r) < 1). Equation (28) has the same form as the closed-
form solutions derived by Basu and Cetegen for negligible inertia.19

The height profile given by Eq. (28) (viscous-rotation scale) con-
forms with the scale derived by (Wang and Khayat 2018)31 [refer to
Eq. (4.13) of Wang et al. 2018 and Eq. (28) here]. The dependence
on various parameters such as Reynolds number, angular speed, and
radial coordinate is exactly the same. Note that the correlations were
derived from pure scaling logic, without any velocity profile assump-
tion previously used in the literature. Figure 5 compares the liquid
film thickness scaling against some previous numerical and exper-
imental data from the literature.4,11 The graph shows the variation
of liquid film thickness profile at a fixed Reynolds number with
angular velocity (Rossby Number) as a parameter. The numerical
coefficients used to compare the scaling results with experimental
values were evaluated using the geometric form factor of the system.
For a particular experimental condition corresponding to specific
values of Reynolds (Re) and Rossby number (Ro), we equate the
experimental film thickness to the thickness predicted from the scal-
ings law at a fixed radial coordinate r. The numerical coefficient
used for the comparison is the ratio of experimental film thickness
to the theoretical scaling obtained at a fixed radial coordinate. We
use a similar methodology to compare the experimental and the-
oretical scales for the Nusselt number presented later in the text.
Increasing the angular velocity decreases the liquid film thickness.
The scalings predicted [refer to Fig. 4(b)] were in agreement with
the experimental data reported in the literature.

B. The average radial velocity field scaling
In this section, we derive the average radial velocity scales for

the viscous rotation limit. From Eq. (25), the average radial velocity
scales as

FIG. 5. The viscous-rotation scaling limit of liquid film thickness compared with
experimental and numerical data from the literature. The dashed line depicts the
scales predicted using scaling theory.
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V∗ ∼
Ω2

0rh2(r)
ν

. (29)

Defining V† = Ω0r0 and using Eq. (24) in Eq. (28), we have

V∗
V†
∼ Ro2/3Re1/3( r0

h0
)

4/3
( r0

r
)

1/3
E(r)2/3. (30)

Equation (30) deciphers the scales of the radial velocity on Ro, Re, r,
and E(r). The dependence on the radial coordinate is ∼r−1/3. This
shows the radial velocity decreases with radius. The physical condi-
tion is equivalent to the velocity field inside hydrodynamic boundary
layers.

C. Hydrodynamic boundary layer thickness
The heat transfer characteristics such as the Nusselt number

and the average temperature distribution of the liquid film can be
understood in terms of boundary layer analysis. This section looks
into the hydrodynamic boundary layer scalings, which will further
lead to thermal boundary layer analysis in the later sections. The
radial flow velocity in the liquid rises very sharply from zero to the
free surface jet velocity in a very thin boundary layer region. Viscous
forces balance inertial effects inside the boundary layer. From the
viscous scaling inside the boundary layer [using Eq. (9) and z ∼ δ],
the boundary layer thickness scale for r < rv (rv defined below) is

V2
∗

r
∼ νV∗

δ2 . (31)

The analysis is carried out in a rotating frame attached to the rotating
hot plate. Hence, the role of rotation can be thought of as a centrifu-
gal body force term that effects the radial velocity scale V∗. However,
the centrifugal force is not constant changes with radial coordinate
becoming stronger as the radius increases. The effect of the centrifu-
gal term was incorporated inside the boundary layer through V∗ that
was evaluated through the viscous rotation scaling of V∗ in Eq. (30).
Using the scale of (V∗) from Eq. (30) in Eq. (31), the boundary layer
thickness scales as

δ
r0
∼ Re−2/3Ro−1/12( r0

h0
)
−2/3
( r

r0
)

2/3
[E(r)]−1/3. (32)

The radial location at which the boundary layer profile peak is
represented by rv [see Fig. 6(a)]. Equation (32) shows the depen-
dence of the boundary layer thickness on the radial coordinate,
Rossby number, Reynolds number, and evaporation factor for r < rv
For r > rv, the boundary layer thickness scales as the liquid film
thickness for the viscous rotation scaling given by

δ
r0
∼ h(r)

r0
∼ (Ro

Re
)

1/3
(h0

r0
)

1/3
( r0

r
)

2/3
E(r)1/3. (33)

Equations (32) and (33) define the boundary layer thickness
scales in a piecewise manner. This piecewise function δ is plotted
as a function of the radial coordinate for Ro ∼ Re ∼ 1 and β = 0 in
Fig. 6(b). Comparing Eq. (32) with (33) depicts that the effects of

FIG. 6. (a) Schematic representation
(not to scale) of the liquid film profile
(shown by 1) and boundary layer profile
(shown by 2). The intersection of pro-
files 1 and 2 defines the radial location rv

where the boundary layer profile reaches
a maximum. (b) The combined piece-
wise boundary layer profile plotted for
Ro ∼ Re ∼ 1 and β = 0. (c) The effect
of β on the combined boundary layer
profile. (d) A surface plot showing the
dependence of rv/r0 on the Rossby
number and Reynolds number for β = 0.
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Rossby number and evaporation factor on liquid film thickness are
reversed before and after the critical radius rv.

D. Scaling of the radial location rv

The radial location rv is the distance where the viscous bound-
ary layer from the plate meets the outer liquid film thickness profile
in the viscous rotation scaling [refer to Figs. 6(a) and 6(b)]. The exis-
tence of rv is only valid for cases where the thermal boundary is
much smaller than 1, i.e., δ/δT ≫ 1. Equating the scales of Eqs. (32)
and (33) and solving for rv in case of E(r) = 1 (i.e., no evaporation),
we have

rv

r0
∼ ( r0

h0
)

1/4
Ro5/16Re1/4. (34)

The effect of evaporation on the radial coordinate rv can be
inferred from Fig. 6(c). Increased evaporation flux rate reduces rv.
It can be observed by the shift in the intersection position [shown
as a red solid square in Fig. 6(c)] of the initial increasing boundary
layer profile and the decreasing liquid film thickness profile. Equa-
tion (35) shows the dependence of rv on Ro and Re for β = 0. The
dependence is visualized as a surface map shown in Fig. 6(d).

For 0 < E(r) < 1, the scale of rv/r0 can be solved explic-
itly by keeping the terms of E(r) after equating the scales of
Eqs. (32) and (33),

Re−2/3Ro−1/12( r0

h0
)
−2/3
( rv

r0
)

2/3
[E(rv)]−1/3

∼ Ro1/3Re−1/3( r0

h0
)
−1/3
( rv

r0
)
−2/3
[E(rv)]1/3. (35)

Equation (35) can be simplified and solved explicitly for rv/r0 in this
case (note algebraically that this is not always possible),

rv

r0
∼
√

1 + β
β + F(Ro, Re, r0, h0)

, (36)

where

F(Ro, Re, r0, h0) = Ro−5/8Re−1/2( r0

h0
)
−1/2

. (37)

Equation (36) is plotted in Figs. 7(a) and 7(b). Figure 7(a) depicts the
dependence of the critical radius rv on β with the Rossby number as
the parameter. Similarly, Fig. 7(b) depicts the dependence of the crit-
ical radius rv on β with the Reynolds number as the parameter. Both
Figs. 7(a) and 7(b) show that the critical length scale rv decreases
with increasing β, i.e., increased evaporation rate.

E. Thermal boundary layer thickness and Nusselt
number for δ/δT ∼ 1

In this and the following two sections, we discuss the thermal
characteristics for various limiting cases. We calculate the Nusselt
number scaling for δ/δT ∼ 1, δ/δT > 1, and δ/δT < 1. As discussed
in Sec. III C, the hydrodynamic boundary layer thickness scalings
can be defined in a piecewise manner using two limiting conditions.
Following a similar line of reasoning for the thermal boundary layer
and Nusselt number, we have two regimes r < rv and r > rv. For
r < rv, the thermal boundary layer height scales as the hydrodynamic

FIG. 7. (a) The variation of rv/r0 with respect to β with the Rossby number as the
parameter for Re ∼ 1. (b) The variation of rv/r0 with respect to β with the Reynolds
number as the parameter for Ro ∼ 1.

boundary layer (δ ∼ δT). The thermal boundary layer thickness
from Eq. (32) can be written, therefore, as

δT

r0
∼ δ

r0
∼ Re−2/3Ro−1/12( r0

h0
)
−2/3
( r

r0
)

2/3
[E(r)]−1/3. (38)

Simplifying further, the thermal boundary layer thickness written in
terms of non-dimensional parameters such as Rossby number (Ro)
and Reynolds number (Re) is

δT

r0
∼ Re−1/2Ro1/4( r

r0
)

1/2
(V∗

V†
)
−1/2

. (39)

Using Eq. (30) in Eq. (39) for V∗/V†,

δT

r0
∼ Re−2/3Ro−1/12( r0

h0
)
−2/3
( r

r0
)

2/3
[E(r)]−1/3. (40)

The Nusselt number scale is the reciprocal of the nondimen-
sional thermal boundary layer thickness scale,

Nu ∼ r0

δT
∼ Re2/3Ro1/12( r0

h0
)

2/3
( r

r0
)
−2/3
[E(r)]1/3. (41)

For r > rv, the boundary layer length scales as the liquid film
thickness [refer to Eq. (33)],

δ
r0
= δT

r0
∼ (h0

r0
)

1/3
(Ro

Re
)

1/3
( r0

r
)

2/3
[E(r)]1/3. (42)
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The Nusselt number scaling can be rewritten as

Nu ∼ r0

δT
∼ (h0

r0
)
−1/3
(Ro

Re
)
−1/3
( r0

r
)
−2/3
[E(r)]−1/3. (43)

Figure 8(a) shows the variation of the Nusselt number limiting
scales with a radial coordinate for Ro ∼ 1, Re ∼ 1, Pr ∼ 7, and β as
the parameter. For 0 < r/r0 < rv/r0, the Nusselt number decreases
with the radial coordinate due to an increasing thermal boundary
layer thickness scale. The Nusselt number scales increase with radial
coordinate r/r0 > rv/r0 due to subsequent reduction of liquid film
thickness. Equations (41) and (43) together show the dependence
on the Rossby number, Reynolds number, and the evaporation fac-
tor in a piecewise manner for r < rv and r > rv, respectively. The
dependence of the Nusselt number Nu on evaporation factor E(r) is
reversed before and after the critical length scale rv. It can be inferred
from Fig. 8(a) that the increased evaporation flux (higher value of β)
causes an increase in the Nusselt number.

F. Thermal boundary layer thickness and Nusselt
number for δ/δT ≫ 1

This section develops the thermal characteristics scales for con-
ditions where the hydrodynamic boundary layer thickness is very
much greater than the thermal boundary layer thickness. From
Eq. (22), we have the scaling form of the thermal energy equation
inside the thin thermal boundary layer region,

VrΔT
r0

,
VzΔT
δT

∼ αΔT
δ2

T
. (44)

Since the thermal boundary layer is wholly immersed inside the
hydrodynamic boundary layer, there exists a gradient of radial veloc-
ity in the z-direction inside the thermal boundary layer. The radial
velocity scale inside the thermal boundary layer is, therefore, given
by

Vr ∼
V∗δT

δ
. (45)

From the scaling form of Eq. (4), the relationship between the radial
velocity Vr and the axial velocity Vz is

Vr

r0
∼ Vz

δT
. (46)

Using Eq. (45) in Eq. (46), the axial velocity scales as

Vz ∼
δTVr

r0
∼ V∗δ2

T

r0δ
. (47)

Using the scales of Vr and Vz from Eqs. (45) and (47), respec-
tively, in Eq. (44), the scaling form of the thermal energy equation
becomes

V∗δT

r0δ
,

V∗δ2
T

r0δδT
∼ α
δ2

T
. (48)

The first and second term scales in Eq. (48) are equivalent and,
therefore, Eq. (48) can be rewritten as

V∗
r0

δT

δ
∼ α
δ2

T
, (49)

FIG. 8. (a) Nusselt number scales plot-
ted as a function of the radial coordi-
nate for δ ∼ δT for Ro ∼ Re ∼ 1, Pr = 7,
and β as the parameter. (b) Nusselt
number scales plotted as a function of
the radial coordinate for δ ≫ δT for
Ro ∼ Re ∼ 1, Pr ∼ 7, and β as the para-
meter. (c) Nusselt number scales com-
parison with experimental and numerical
data available from the literature. The
dashed lines represent the scales pre-
dicted for the Nusselt number. (d) Nus-
selt number scales plotted as a function
of the radial coordinate for δ ≪ δT for
Re ∼ 10 000, Pr = 0.1, and β as the
parameter.
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(δT

r0
)

3

∼ α
V∗r0

δ
r0

. (50)

Equation (50) can be simplified using non-dimensional numbers
and rewritten as

(δT

r0
)

3

∼ Pe−1Ro1/2(V†

V∗
)( δ

r0
), (51)

where Pe = RePr = V0r0/α is the Peclet number. The boundary layer
thickness for r < rT (rT is the radial coordinate at which the thermal
boundary layer meets the liquid film thickness) is given by Eq. (32).
Substituting the value of δ/r0 in Eq. (51) and solving for δT/r0,

δT

r0
∼ Pr−1/3Re−2/3Ro−1/12( r0

h0
)
−2/3
( r

r0
)

1/3
[E(r)]−1/3. (52)

Hence, the scale for the Nusselt number can be calculated using
the above equation,

Nu ∼ r0

δT
∼ Pr1/3Re2/3Ro1/12( r0

h0
)

2/3
( r

r0
)
−1/3
[E(r)]1/3. (53)

For r > rT , substituting the scale of the hydrodynamic boundary
layer thickness from Eq. (33) into Eq. (51) the thermal boundary
layer scales as

(δT

r0
) ∼ Pr−1/3Ro1/18Re−5/9( r0

h0
)

23/45
( r0

r
)

1/9
[E(r)]−1/9. (54)

Hence, the Nusselt number scales as

Nu ∼ Pr1/3Ro−1/18Re5/9( r0

h0
)
−23/45

( r0

r
)
−1/9
[E(r)]1/9. (55)

Equation (53) along with (55) defines Nusselt number scales in a
piecewise manner. Figure 8(b) depicts the scales of the Nusselt num-
ber in a graphical way for water (having Pr ∼ 7, Ro ∼ Re ∼ 1, and
β as the parameter). The effect of evaporation (β) on the Nusselt
number in this case is negligible as can be inferred from Fig. 8(b),
which is different from the case when δT ∼ δ [refer to Fig. 8(a)].
The Nusselt number decreases with radial coordinate continuously.
This can be attributed to the fact that the thermal boundary layer
is very small compared with the liquid film thickness and just keeps
growing reducing the Nusselt number. Figure 8(c) shows the Nusselt
number comparison with some previous references available from
the literature.3 The scales predicted from analysis are consistent with
the experimental data.

G. Scaling of rT for δ/δT ≫ 1
The radial coordinate rT is the distance from the axis of rotation

where the thermal boundary layer intersects the liquid film thickness
profile. The scale for rT can be deduced by equating the scales from
Eqs. (52) and (33). However, unlike the case for δT ∼ δ, the scale for
rT cannot evaluated algebraically. The equation relating the scales of
rT with other parameters is

( rT

r0
)
−3/2
[E(rT)] ∼ G(Ro, Re, Pr, r0, h0), (56)

where

G(Ro, Re, Pr, r0, h0) = Ro−5/8Re−1/2Pr−1/2( r0

h0
)
−1/2

. (57)

We have solved Eq. (56) for rT/r0 graphically using three different
values of β = 0, 0.01, 0.02. Figure 9(a) shows the graphical solution
for rT . It can be inferred from Fig. 9(a) that the critical length scale
rT decreases with an increase in evaporation flux represented by β.
The vertical axis H(rT/r0) in Fig. 9(a) is a function of rT/r0 with β
as a parameter,

H(rT/r0) =
1 − β

(rT/r0)3/2 − β(rT/r0)1/2. (58)

From Fig. 9(a), the values of rT/r0 can be evaluated. rT/r0 calculated
are 8.9 for β = 0, 6.3 for β = 0.01 and 5.1 for β = 0.02.

H. Thermal boundary layer thickness and Nusselt
number for δ/δT ≪ 1

This section deals with the regime where the thermal bound-
ary layer is much larger than the hydrodynamic boundary layer
thickness. Practically liquid metals fall in this category. The radial
velocity Vr scales as V∗ . From the scaling of the differential form of
continuity Eq. (5), the velocity scale in the axial direction is

Vz ∼
δT

r0
V∗. (59)

FIG. 9. (a) Graphical solution of rT/r0 for δ/δT ≫ 1 with β as the parameter.
(b) Graphical solution of rT/r0 for δ/δT ≪ 1 with β as the parameter for
Re ∼ 1000.
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Using the scales of Vr and Vz in Eq. (11), the scaling equivalent of
the thermal energy equation becomes

V∗
r0

,
V∗δT

r0δT
∼ α
δ2

T
. (60)

Simplifying Eq. (60) and solving for the thermal boundary layer
thickness, we have

δT

r0
∼ Pe−1/2Ro1/4(V†

V∗
)

1/2
. (61)

Using the scale of V∗ ∼ V0 and using V†/V0 ∼ Ro−1/2, Eq. (61)
can be rewritten for r < rT ,

δT

r0
∼ Pe−1/2 ∼ Pr−1/2Re−1/2. (62)

The Nusselt number scale for r < rT is, therefore, the reciprocal
of Eq. (62),

Nu ∼ Pr1/2Re1/2. (63)

For r > rT , the thermal boundary layer scales as the liquid film thick-
ness as shown before in Eq. (22). The radial coordinate rT is the
distance from the central axis, where the thermal boundary layer
meets the liquid film thickness profile. For r > rT the Nusselt number
scales as

Nu ∼ ( r
r0
)( r0

h0
)[E(r)]−1. (64)

Figure 8(d) depicts the Nusselt number as described by Eqs. (63)
and (64) for Re ∼ 10 000, Pr = 0.1 and β as the parameter. The Nus-
selt number remains constant upto a critical radius rT , beyond
which the Nusselt number increases with radial coordinate. The
evaporation is important at larger radial coordinate r/r0 > 2. It can
be further inferred from Fig. 8(d) that increased evaporation flux
(means higher β) increases the Nusselt number. Note due to a very
thin hydrodynamic boundary layer, the Nusselt number does not
dependent on the Rossby number.

I. Scaling of rT for δ/δT ≪ 1
The scaling for rT in this regime can be developed by equating

the scales of thermal boundary layer height profile with liquid film
thickness profile. Equating scales of Eq. (62) with Eq. (33), we have

rT

r0

1
E(rT)

∼ Pr1/2Re1/2(h0

r0
). (65)

As before, we have solved Eq. (65) graphically for rT/r0. The solution
is represented in Fig. 9(b). S(rT/r0) represents a function of rT/r0
and β,

S(rT/r0) =
rT/r0

1 − β((rT/r0)2 − 1) . (66)

Figure 9(b) represents an interesting feature that critical radius rT
in this regime is independent of evaporation flux. The critical value
of rT/r0 is 0.9 for Re ∼ 1000 and Pr ∼ 0.1. The scaling laws for the
thermal boundary layer are used to derive the average liquid jet

temperature scale. The two different kinds of boundary conditions,
isothermal plate and constant heat flux case, are discussed in the
following sections.

J. Thin film average temperature
for the isothermal plate

The liquid thin film average temperature can be evalu-
ated by using the scales of thermal boundary layer thickness.
Applying integral conservation of thermal energy across the CV
(refer to Fig. 1),

ρQincpTi +
k(T0 − T(r))

δT(r)
∼ ρVr(r)2πrh(r)cpT(r)

+ jπ(r2 − r2
0)h f g , (67)

where cp is the specific heat capacity of the liquid, ρ is the density
of the liquid, Ti is the temperature of the jet at the inlet entering
the control volume, k is the thermal conductivity of the liquid, T0
is the temperature of the rotating isothermal plate, T(r) is the tem-
perature of the liquid film averaged over the thermal boundary layer
thickness, and h fg is the latent heat of vaporization. From integral
continuity Eq. (3), we have

rVr(r)h(r) =
1

2π
[Qin −

jπ(r2 − r2
0)

ρ
]. (68)

Substituting Eq. (68) in Eq. (67), the thermal energy balance
equation scales as

ρQincpTi +
k(T0 − T(r))

δT(r)
∼ ρcp[Qin −

jπ(r2 − r2
0)

ρ
]T(r)

+ jπ(r2 − r2
0)h f g , (69)

where A = ρQincpTi, f (r) = ρcp[Qin − jπ(r2−r2
0)

ρ ], and g(r) = jπ
(r2 − r2

0)h f g ,

A + k(T0 − T(r))
δT(r)

∼ f (r)T(r) + g(r). (70)

The first term on the left-hand side A signifies the internal energy
entering the control volume. The second term denotes the average
heat flux entering the control volume from the heated rotating plate,
while f (r) and g(r) are related to the effects of evaporative flux on
the average liquid film temperature,

T(r)[ f (r) + k
δT(r)

] ∼ A + kT0

δT(r)
− g(r), (71)

T(r) ∼
A + kT0

δT(r) − g(r)
f (r) + k

δT(r)
. (72)

Most importantly, the average liquid film temperature scale depends
on the temperature of the liquid jet entering the control volume and
the thermal boundary layer thickness scale. Figure 10(a) shows the
average temperature variation with a radial coordinate for different β
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FIG. 10. (a) Average liquid film temperature as a function of the radial coordi-
nate with β as the parameter for an isothermal plate. The plate temperature is at
T0 = 313 K, and the liquid inlet temperature entering the control volume is
T i = 298 K. (b) Average liquid film temperature as a function of the radial
coordinate with β as the parameter for the constant heat flux case. The inlet
temperature of the jet is T i = 298 K, and the constant heat flux at the plate is
q′′ = 2 × 105 W/m2.

as described by Eq. (72). Increasing beta (evaporation flux) increases
the average temperature field. The maximum temperature peak also
shifts toward the left. Figure 9(a) is plotted for water with an inlet
temperature of Ti = 298 K and a constant plate temperature of
T0 = 313 K.

K. Thin film average temperature for the constant
heat flux case

Following a similar line of reasoning as for constant tem-
perature conditions, the average liquid film temperature scale for
constant heat flux is derived in this section. Applying integral
conservation of thermal energy (refer to Fig. 1),

ρQincpTi + q′′π(r2 − r2
0) ∼ ρVr(r)2πrh(r)cpT(r) + jπ(r2 − r2

0)h f g ,

(73)

where q′′ is the constant heat flux at the surface of the rotating heated
plate. Using integral continuity equation (3),

ρQincpTi + q′′π(r2 − r2
0) ∼ ρcp[Qin −

jπ(r2 − r2
0)

ρ
]T(r)

+ jπ(r2 − r2
0)h f g. (74)

The average liquid film temperature scales as

T(r) ∼ ρQincpTi + q′′π(r2 − r2
0) − jπ(r2 − r2

0)h f g

ρcp(Qin − jπ(r2−r2
0)

ρ )
. (75)

Comparing Eq. (72) with Eq. (75) shows the dependence of the
average temperature field on the thermal boundary layer thickness
scale for constant temperature boundary conditions. Furthermore,
the average radial temperature field is directly proportional to the
inlet temperature Ti, and the heat flux q′′ as can be inferred from
Eq. (75). The average liquid film temperature scale is plotted using
Eq. (75) in Fig. 10(b). The effect of evaporation is understood by
visualizing the dependence of the average temperature on β. The
average temperature of the liquid film increases with the radial
coordinate and increases with increasing evaporation flux. This is
in accordance with the constant heat flux boundary conditions,
where the average temperature increases monotonically with radial
coordinate.

IV. CONCLUSION
We provided an integrodifferential scaling analysis to analyze

the steady laminar free jet impacting a rotating hot plate. Integral
mass conservation scaling in conjunction with the differential form
of mass continuity, linear radial momentum, and boundary layer
equations was used to capture the scales of the liquid film thickness
and the hydrodynamic/thermal boundary layer thickness. Liquid
film thickness, Nusselt number, and average thin-film temperature
scalings and correlations were also derived. The analysis was carried
out using pure scaling arguments without assuming any velocity or
temperature distributions. The evaporative effects found were weak
primarily as can be observed from equations having proper frac-
tional indices for E(r) (primarily, the indices for E(r) were 1/3
and 1/9 in most cases). However, successive necessary corrections
have to be considered for larger radial coordinates where evapora-
tive effects are significant. The average liquid film temperature scale
was then calculated using the thermal boundary layer profile and
the integral form of the thermal energy equation. We compared the
deduced scales with experimental data available in the literature. The
experimental trends of liquid film thickness and Nusselt number
on different non-dimensional numbers were in harmony with the
scaling laws discovered.
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