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We study spectral form factor in periodically kicked bosonic chains. We consider a family of models where a
Hamiltonian with the terms diagonal in the Fock space basis, including random chemical potentials and pairwise
interactions, is kicked periodically by another Hamiltonian with nearest-neighbor hopping and pairing terms.
We show that, for intermediate-range interactions, the random phase approximation can be used to rewrite the
spectral form factor in terms of a bistochastic many-body process generated by an effective bosonic Hamiltonian.
In the particle-number conserving case, i.e., when pairing terms are absent, the effective Hamiltonian has a non-
Abelian SU (1, 1) symmetry, resulting in universal quadratic scaling of the Thouless time with the system size,
irrespective of the particle number. This is a consequence of degenerate symmetry multiplets of the subleading
eigenvalue of the effective Hamiltonian and is broken by the pairing terms. In such a case, we numerically find
a nontrivial systematic system-size dependence of the Thouless time, in contrast to a related recent study for
kicked fermionic chains.
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I. INTRODUCTION

Understanding chaos in many-body quantum systems with
or without the classical limit has received significant renewed
interest in recent years [1–21]. The study of quantum chaos
and its connection to random matrix theory (RMT) [22,23] is
essential in the description of ergodicity and thermalization in
closed quantum systems [24–29]. While many new concepts,
such as out-of-time-ordered correlators [4–7], the growth of
entanglement entropy and operator spreading [30–34], have
been explored for the identification of chaotic quantum dy-
namics, the statistical description of energy or quasienergy
spectra of complex quantum systems remains one of the main
signatures of quantum chaos [22,35,36]. The spectral form
factor (SFF) K (t ), a measure of spectral fluctuations, has been
investigated analytically in a series of recent studies [8–12]
to formulate ideas of quantum chaos in strongly interacting,
nonintegrable systems where local degrees of freedom have
no classical limit. These studies have identified dynamical
mechanisms for the emergence of RMT description of the
spectral properties of many-body systems by going beyond
the semiclassical periodic-orbit approaches [35–40].

The models considered in these early papers [8,9,11,12] do
not have any conserved quantity due to the unitary symme-
try of the system, whose role in many-body quantum chaos
was later explored in Ref. [14] in a Floquet circuit model
with a large local Hilbert space and without time-reversal
invariance. The role of U (1) symmetry (particle-number
conservation) was further investigated by two of us in a one-
dimensional (1D) lattice of interacting spinless fermions with
a time-periodic kicking in the nearest-neighbor coupling (hop-
ping and/or pairing) [15]. The fermionic model has a finite

local Hilbert space and possesses a time-reversal symmetry.
In Ref. [15], we suggested a new dynamical chaos mecha-
nism that maps K (t ) to an average recurrence probability of
a classical Markov chain with transition probabilities given as
square moduli of hopping (and pairing) amplitudes. We show
here that such a mechanism is a general one for Floquet lattice
models with long- or intermediate-range pairwise interac-
tions and random diagonal terms allowing use of the random
phase approximation (RPA). To demonstrate that, we study a
bosonic version of the model explored in [15], which comple-
ments the existing studies of many-body quantum chaos with
spins and fermions.

The main difference of the bosonic model from the
fermionic one arises from the unrestricted number of spinless
bosons (constrained only by the total number of bosons in
the lattice) at any site. The infinite-dimensional local Hilbert
space of bosons poses a challenge to numerically explore K (t )
and the Thouless time in bosonic chains, especially in the
absence of U (1) symmetry. Further, one might expect differ-
ent scaling of Thouless time with system sizes for bosons in
contrast to fermions due to the differences in their statistics.
The Thouless timescale beyond which K (t ) has the universal
form of RMT scales asymptotically with the system size L
in the fermionic kicked lattice as O(L2) or O(L0) in the
presence or absence of particle-number conservation, respec-
tively. Surprisingly, we find the same scaling of Thouless time
with system sizes for the particle number conserving bosonic
model. We argue that this similarity between fermionic and
bosonic models is due to the universal non-Abelian symmetry
of the underlying Markov matrices whose subleading eigen-
values determine the scaling of Thouless time. We identify
the corresponding symmetry groups as compact SU (2) and
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noncompact SU (1, 1) for the fermionic and bosonic models.
In the presence of these symmetries, the subleading eigen-
values (mainly, the second largest eigenvalue) of Markov
matrices and their system-size dependence are independent of
the number of fermions or bosons in the entire chain as they
are descendants of the single-particle eigenvalues through the
degenerate symmetry multiplets. Since the Markov matrix is
identical for the single-particle fermionic or bosonic system,
we find the same L scaling of Thouless time for fermions
and bosons in the presence of U (1) symmetry. The scal-
ing of Thouless time in the bosonic model in the absence
of U (1) symmetry suggests a systematic system-size depen-
dence, which is different from the fermionic model.

II. MODEL AND SPECTRAL FORM FACTOR

Following the study on fermionic chains [15], we here
investigate a 1D lattice of interacting spinless bosons with a
time-periodic kicking in the nearest-neighbor coupling (hop-
ping). The full Hamiltonian reads as (we set h̄ = 1)

Ĥ (t ) = Ĥ0 + Ĥ1

∑
m∈Z

δ(t − m), (1)

Ĥ0 =
L∑

i=1

εin̂i +
∑
i< j

Ui j n̂in̂ j, (2)

Ĥ1 =
L∑

i=1

(−Jâ†
i âi+1 + �â†

i â†
i+1 + H.c.), (3)

where the time is measured in units of pulse period (cycle).
Here, n̂i = â†

i âi is the number operator, where â†
i is a cre-

ation operator of a boson at site i. We use periodic boundary
conditions (PBC) in real space, i.e., âi ≡ âi+L. The long-
range interaction between bosons at sites i and j is given
by Ui j = U0/d (i, j)α , d (i, j) = min(|i − j|, |i − j + L|, |i −
j − L|), with an exponent in the interval 1 < α < 2, and the
random onsite energies εi described as Gaussian i.i.d. (inde-
pendent and identically distributed) variables of zero mean
and standard deviation �ε. We consider the driving Hamilto-
nian Ĥ1 with or without a U (1) symmetry, which corresponds
respectively to conservation or violation of a total boson num-
ber N̂ = ∑L

i=1 n̂i. The strength of hopping and the amplitude
of pairing (creation or annihilation of a boson pair) are re-
spectively J and �. The absence or presence of pairing �

generates U (1) symmetric or symmetry-broken kicking. The
bosonic model (1) can be realized with photons in optical sys-
tems [41,42], where the pairing term can be mediated through
two-photon processes (e.g., parametric amplification or down-
conversion) in nonlinear optical medium with second-order
susceptibility [43].

We define the SFF as

K (t ) = 〈(trÛ t )(trÛ −t )〉 − N 2δt,0, (4)

where N is the dimension of the Hilbert space of the bosonic
chain, and 〈· · · 〉 denotes an average over the quench disorder
{εi}. The SFF K (t ) in Eq. (4) without the additional averag-
ing 〈· · · 〉 over disorder (an ensemble of similar systems) is
not a self-averaging quantity. In the absence of disorder in
the model, such disorder averaging can be replaced by an
appropriate additional averaging over local windows of time

(moving time average) to make K (t ) self-averaging [8]. The
one-cycle time-evolution operator Û can be expressed as

Û = V̂Ŵ , Ŵ = e−iĤ0 and V̂ = e−iĤ1 . (5)

To evaluate K (t ), we choose a basis of Fock states |n〉 ≡
|n1, n2, . . . , nL〉, where the occupation number of spinless
bosons at the lattice site j is given nj ∈ {0, 1, . . . , N}
with a constraint N ≡ 〈n|N̂ |n〉 = ∑L

j=1 n j . For � = 0, since

[Û , N̂] = 0, we consider N = (N+L−1)!
N!(L−1)! dimensional Hilbert

subspace with fixed total number N of bosons. On the other
hand, when � �= 0, the Hilbert space is formally infinite
dimensional for any L. In order to obtain meaningful ap-
proximate numerical results, we truncate the Hilbert space by
considering all even or odd N bases with varying N up to some
cutoff Nmax. The truncated Hilbert space dimension for even
bases with an even Nmax is then N = ∑Nmax

N=0,2,4,...
(N+L−1)!
N!(L−1)! ,

where (in)dependence of the results on Nmax needs to be
carefully investigated.

In either case of � = 0 or � �= 0, the Fock basis states |n〉
are eigenstates of Ĥ0 and Ŵ :

Ŵ |n〉 = e−iθn |n〉, θn =
L∑

i=1

εini +
∑
i< j

Ui jnin j, (6)

where the phases θn for different many-particle basis states
|n〉 (modulo 2π ) are approximated as independent uniformly
distributed random numbers. This allows us to use the RPA
to perform the disorder averaging over different realizations.
We further make the asymptotic approximation via dihedral
subgroup D2t of permutations between two replicas [8] to
achieve the following simple form of the SFF for bosons,
analogous to fermions [15]:

K (t ) = 2t trMt , (7)

where M is an N × N square matrix whose elements are

Mn,n′ = |〈n|V̂ |n′〉|2. (8)

The elements of M are non-negative real numbers, and∑
n′

Mn,n′ =
∑

n′
〈n|V̂ |n′〉〈n′|V̂ †|n〉 = 〈n|V̂ V̂ †|n〉 = 1,

where we use the unitarity of V̂ at the end. Thus, M is a
doubly stochastic (Markov) matrix as the sums of its non-
negative elements along any rows and columns are equal to 1.
It is known that the largest eigenvalue of a doubly stochastic
matrix is 1, while the rest of the eigenvalues are real, as M
is also real and symmetric. We write these eigenvalues of M
as 1, λ1, λ2, . . . with 1 � |λ j | � |λ j+1|. In Fig. 1, we show
typical eigenvalues λi in the presence (� = 0) and absence
(� �= 0) of U (1) symmetry, which depict a rapid fall of λi

from its maximum value of one with increasing i. We then
further approximate K (t ) at long times t , 1 � t � N , by
keeping up to the second largest eigenvalue λ1 of M.1 Thus,

1We provide justification of such approximation for the universal
RMT behavior of K (t ) in Appendix A.
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FIG. 1. Eigenvalues λi of the doubly stochastic matrix M for
different system sizes L and number of bosons N or Nmax in the
presence (� = 0) and absence (� �= 0) of U (1) symmetry in the
kicked interacting bosonic chain with J = 1.

we obtain for the SFF

K (t ) 	 2t (1 + λt
1)

	 2t{1 + [1 − 1/t∗(L)]t } 	 2t (1 + e−t/t∗(L) ), (9)

where we take the scaling of λ1 with system size L as 1 −
1/t∗(L) following Ref. [15]. Here, t∗ is the Thouless time
beyond which the SFF has a universal RMT-COE (circular
orthogonal ensemble) form as K (t ) 	 2t .

For the fermionic chain, the L-dependence of t∗ was found
to be O(L2) or O(L0) in the presence or absence of U (1)
symmetry, respectively [15]. These system-size scalings were
obtained by mapping the matrix M in the Trotter regime
at small J,� to a Hermitian “quantum” Hamiltonian of the
isotropic or anisotropic Heisenberg model with PBC in the
presence or absence of U (1) symmetry, respectively. The
eigenenergy spectrum of the isotropic Heisenberg model is
gapless, and its first “excited state” goes as 1 − c1/L2, where
c1 is a constant. This explains the quadratic L dependence of t∗
in the presence of U (1) symmetry in the fermionic chain when
� = 0. The anisotropic Heisenberg model has a finite and
system-size independent gap in the energy spectrum between
the ground and first excited states. Thus, we have a finite and
L independent Thouless time for � �= 0. The above analytical
predictions of L scaling of t∗ (and the corresponding λ1) in
the Trotter regime were also numerically verified from the L
dependence of the eigenvalues of the M matrix for arbitrary
J,� in [15].

Moreover, the quadratic L dependence of t∗ was observed
in Ref. [15] for all filling fractions N/L (including single
fermion case N = 1) when � = 0 in the fermionic chain. We
argue that this is due to the SU (2) symmetry of the isotropic
Heisenberg model in the Trotter regime, which results in the
same eigenvalue of first excited states (single magnon states)
of the model in different magnetization sectors. We further
find numerically that the matrix M has SU (2) symmetry

for arbitrary J when � = 0. For this, we numerically con-
struct the following operators satisfying SU (2) algebra: σα =∑

j σ
α
j with α ∈ {+,−, 0} in the fermionic Fock basis states

in which M is also formed. Here, σ 0
j = σ z

j /2, σ±
j = (σ x

j ±
iσ y

j )/2 and σ x,y,z are Pauli matrices at site j. We then explicitly
check commutation of all σα with M of the fermionic model
at arbitrary J when � = 0.

III. HAMILTONIAN FORM OF THE MARKOV MATRIX

The derivation of a Hamiltonian form for the Markov ma-
trix M in the Trotter regime is a bit challenging for bosons
compared to fermions, for which the Jordon-Wigner trans-
formation between spinless fermions and spin-1/2 is useful.
Here, we give a general method to find the Hamiltonian
form in the Trotter regime, and the method is applicable for
fermions, bosons, and spins. We can write M in Eqs. (7) and
(8) using an elementwise commutative product (also known as
the Hadamard product) of V̂ with V̂ ∗ in the basis |n〉. We here
denote such product by •: (A • B)m,n = Am,nBm,n. Further, we
expand V̂ in the Trotter regime of small parameters of the
Hamiltonian Ĥ1 to get a Hamiltonian form of M:

M = e−iĤ1 • eiĤ1

= (
1l − iĤ1 − 1

2 Ĥ2
1 + · · · ) • (

1l + iĤ1 − 1
2 Ĥ2

1 + · · · )
= 1l + Ĥ1 • Ĥ1 − Ĥ2

1 • 1l + O
(
Ĥ4

1

)
, (10)

where the term Ĥ1 • Ĥ1 is an elementwise square of Ĥ1 and
it has nonzero entries at the same positions as Ĥ1 but those
entries are squared. The other term Ĥ2

1 • 1l represents the di-
agonal entries of Ĥ2

1 . Below, we derive quantum Hamiltonian
that can generate the matrix M in the Trotter regime for the
kicked interacting bosonic lattice.

We divide the driving Hamiltonian in two parts as Ĥ1 =
ĤJ + Ĥ�, where

ĤJ =
L∑

i=1

(−Jâ†
i âi+1 + H.c.), Ĥ� =

L∑
i=1

(�â†
i â†

i+1 + H.c.).

Since, 〈n′|ĤJ |n〉 and 〈n′|Ĥ�|n〉 are not simultaneously nonzero
for any choice of |n〉, |n′〉, we have ĤJ • Ĥ� = Ĥ� • ĤJ = 0,
which can be applied to simplify

Ĥ1 • Ĥ1 = ĤJ • ĤJ + Ĥ� • Ĥ�. (11)

We next explain how we obtain these different terms to get the
mapping of M for the bosonic chain in the Trotter regime. The
nonzero matrix elements of 〈n′|â†

i âi+1|n〉 would be
√

n′
i
√

ni+1,
and the corresponding matrix elements in ĤJ • ĤJ are n′

ini+1,
which can be generated by the operator

√
n̂iâ

†
i âi+1

√
n̂i+1 in

M. Thus, we write

ĤJ • ĤJ = J2
L∑

i=1

(√
n̂iâ

†
i âi+1

√
n̂i+1 +

√
n̂i+1â†

i+1âi

√
n̂i

)
.

(12)
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Similarly, we can find the pairing term in Eq. (11):

Ĥ� • Ĥ� = �2
L∑

i=1

(
√

n̂i â†
i â†

i+1

√
n̂i+1 + 1

+
√

n̂i+1 + 1 âi+1âi

√
n̂i ). (13)

Next we calculate the Ĥ2
1 • 1l term in Eq. (10). Expanding

Ĥ2
1 • 1l = (Ĥ2

J + ĤJ Ĥ� + Ĥ�ĤJ + Ĥ2
�) • 1l, we notice that

ĤJ Ĥ� or Ĥ�ĤJ does not have diagonal elements since ĤJ Ĥ�,
Ĥ�ĤJ have either three creation operators and one annihila-
tion operator or one creation operator and three annihilation
operators. Therefore, the Hadamard product of ĤJ Ĥ� or
Ĥ�ĤJ with identity operator is zero. Thus,

Ĥ2
1 • 1l = Ĥ2

J • 1l + Ĥ2
� • 1l. (14)

The diagonal entries in Ĥ2
J • 1l appear from the reversal of

hopping terms, e.g., from combination of â†
i âi+1 and â†

i+1âi.
After some algebra one obtains

Ĥ2
J • 1l = 2NJ2 + 2J2

L∑
i=1

n̂in̂i+1, (15)

Ĥ2
� • 1l = 2N�2 + �2L + 2�2

L∑
i=1

n̂in̂i+1. (16)

We apply Eqs. (11)–(16) to Eq. (10), and perform some
algebraic simplification to get a compact form of the follow-
ing generating Hamiltonian in the continuous-time (Trotter)
regime, i.e., at small J,�:

M = (1l − �2L − 2NU ) +
L∑

i=1

[ − 2 U n̂in̂i+1

+ J2(
√

n̂i â†
i âi+1

√
n̂i+1 +

√
n̂i+1 â†

i+1âi

√
n̂i )

+ �2(
√

n̂i â†
i â†

i+1

√
n̂i+1 + 1

+
√

n̂i+1 + 1 âi+1âi

√
n̂i )

] + O(J4,�4), (17)

where U = J2 + �2. To best of our knowledge, (17) is not a
well known Hamiltonian in contrast to the spin-1/2 Heisen-
berg model for the fermionic chain. The spectral properties of
this Hamiltonian are also not known, and these are not easy to
derive analytically.

IV. SYSTEM-SIZE SCALING OF THOULESS TIME

To uncover non-Abelian symmetry of the Hamiltonian
(17), we define a set of local operators

K̂0
i = −(n̂i + 1/2), K̂+

i = âi

√
n̂i, K̂−

i =
√

n̂iâ
†
i , (18)

which satisfy the commutation relations of SU (1, 1) algebra
at the same site, and commute otherwise:

[K̂+
i , K̂−

j ] = −2K̂0
i δi j, [K̂0

i , K̂±
j ] = ±K̂±

i δi j . (19)

The generating Hamiltonian (17) can be expressed in terms
of the above operators when � = 0:

M = 1l +
L∑

i=1

(
J2(K̂−

i K̂+
i+1 + K̂−

i+1K̂+
i )

− 2J2

(
K̂0

i K̂0
i+1 − 1

4

))
+ O(J4). (20)

The above form of M can be used to show

[K̂α,M] = 0, (21)

where K̂α = ∑L
i=1 K̂α

i , α ∈ {+,−, 0} again satisfy SU (1, 1)
algebra (19). This fact indicates that the generating Hamilto-
nian of the Markov matrix M has a non-Abelian SU (1, 1)
symmetry in the particle-number conserving case of our
bosonic model [44,45]. We further observe by numerical
checks that, when � = 0, M has SU (1, 1) symmetry for ar-
bitrary values of J beyond the Trotter regime. Such checks are
again carried out by numerically constructing the operators
Kα in the Fock basis states and explicitly checking commuta-
tion of Kα with M for arbitrary J when � = 0.

The Lie group SU (1, 1) is noncompact and all its unitary
irreducible representations are infinite dimensional. Due to the
SU (1, 1) symmetry of the generating Hamiltonian, its lowest
excited states can be obtained as degenerate descendants of
the single-particle (N = 1) states, i.e., by applying the opera-
tor K̂−. Therefore, the L dependence of λ1 is independent of
N when � = 0 (see Appendix C for more information). Thus
we consider the case of a single boson (N = 1) for which (17)
becomes a free boson Hamiltonian:

M|N=1
�=0 = (1l − 2J2) +

L∑
i=1

J2(â†
i âi+1 + â†

i+1âi ) + O(J4).

(22)

The “ground state” of the generating Hamiltonian (22) is
a state with eigenvalue 1 and with zero momentum. The
eigenenergy spectrum of the Hamiltonian (22) is gapless, and
the first “excited state” (with momentum k = 2π/L) near-
est to the eigenvalue 1 goes as λ1 = 1 − c2/L2, where c2 =
4π2J2 is a constant. Thus, we find that the Thouless time
depends quadratically on the length of the bosonic lattice,
t∗ 	 L2/c2, for a single boson and, due to SU (1, 1) symmetry,
for any number of bosons in the particle-number conserv-
ing model. We have numerically computed L dependence of
the first excited state of the Hamiltonian (17) with N = 2,
corroborating the predicted system-size scaling. The generat-
ing Hamiltonian (17) lacks SU (1, 1) symmetry when � �= 0.
Consequently, the second largest eigenvalue λ1 changes with
N or Nmax for a fixed L.

We next numerically check the L dependence of λ1 of M
for arbitrary J and �. From Table I, we find the following
at J = 1,� = 0: λ1 ∼ 1 − 8.29/L1.94 (or λ1 ∼ e−11.4/L2.05

) for
N/L = 1/2 (using the largest three available system sizes
L = 10, 12, 14), and λ1 ∼ 1 − 9.0/L1.97 (or λ1 ∼ e−10.5/L2.02

)
for N/L = 1/4 (using the largest three system sizes L =
12, 16, 20). The above exponents for two different finite size
fittings of λ1 show a clear trend towards O(L2) scaling of t∗
in the bosonic chain when � = 0. Further, the system-size
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TABLE I. Three largest eigenvalues λ1, λ2, λ3 (excluding λ0 =
1) of M for various lengths L at two different filling fractions N/L
in the presence of U (1) symmetry in the kicked interacting bosonic
chain. The value of λ1 is independent of N/L for any particular L.

J = 1, � = 0, N/L = 1/2 J = 1, � = 0, N/L = 1/4
L λ1 λ2 λ3 L λ1 λ2 λ3

8 0.8526 0.7486 0.6680 8 0.8526 0.7486 0.4847
10 0.9042 0.8283 0.7658 12 0.9329 0.8764 0.8278
12 0.9329 0.8764 0.8278 16 0.9619 0.9278 0.8970
14 0.9504 0.9071 0.8688 20 0.9755 0.9529 0.9320

scaling is also independent of number of bosons in the chain
in the presence of U (1) symmetry for arbitrary J , as predicted
above, due to SU (1, 1) symmetry of M. The last observation
is clear from the fact that the value of λ1 in Table I is the
same for two different N/L at any particular L. We have also
the numerically computed raw SFF K (t ) using definition (4)
for different L, which confirms our analytical prediction based
on the RPA for the L dependence of t∗ when � = 0 (see
Appendix A for details).

On the other hand, it is very challenging to find the L
dependence of λ1 in the bosonic chain when � �= 0, as N is
formally infinite for any L. Nevertheless, we vary truncation
number Nmax and N for a fixed L to get an estimate of λ1

in the large Nmax limit. Using clear linear extrapolations in
1/Nmax towards 1/Nmax = 0, shown in Fig. 2, we find strong
evidence for a nontrivial L dependence of λ1, and t∗ = O(Lγ ),
γ = 0.7 ± 0.1, in the bosonic chain for J = 1,� = 0.7. The
last result markedly differs from the O(L0) scaling of t∗ in the
absence of U (1) symmetry in the fermionic chain. We further

FIG. 2. Second largest eigenvalue λ1 of M with the inverse of
maximum number of bosons (1/Nmax) for three lengths (L) in the
absence of U (1) symmetry in the kicked interacting bosonic chain.
The dashed lines indicate a linear extrapolation of the last few large
Nmax points. These linear extrapolations give λ1 ∼ 1 − 1.43/L0.58

or e−2.89/L0.79
at 1/Nmax → 0, which indicates a finite system-size

dependence of the Thouless time for the bosonic chain when � �= 0.

observe from our numerics with limited system sizes that the
L dependence of λ1 seems to be close to the above γ value
even when � is tuned a bit, which we show in Appendix B.

V. SUMMARY AND OUTLOOK

In summary, we reported on discovering universal non-
Abelian symmetries of the Markov matrices whose subleading
eigenvalues determine the system-size scaling of Thouless
time to reach universal RMT form for the SFF in correlated
bosonic and fermionic chains with periodic driving (kicking).
These symmetries lead to identical quantum chaotic features
in the studied bosonic and fermionic models in the presence of
particle-number conservation. Without particle-number con-
servation, the fermionic and bosonic models display different
system-size scaling of the Thouless time. The proposed
bosonic model is convenient for experimental realization with
photons in various engineered optical systems [41–43], which
can be applied to verify our predictions. Both for fermions
and bosons, our estimate for the system-size dependence of
the Thouless time using the second-largest eigenvalue of M
derived within the RPA shows a good agreement with that
from the directly simulated K (t ) using the definition in Eq. (4)
for different L and �. Such agreement is achieved since the
L dependence of the third-largest eigenvalue λ2 (along with
the successive few largest eigenvalues) is the same as the
second-largest eigenvalue λ1 for both fermions and bosons
when longer lengths and finite filling fractions are considered.
Thus, the qualitative features of the universal form of K (t ) and
t∗ are not affected due to the restriction of the analysis to the
second largest eigenvalue [see Appendix A for a discussion
on the nonuniversal part of K (t )].

Nevertheless, it is necessary and exciting to find second- or
higher-order contributions to the leading order RMT form of
K (t ) = 2t derived in this paper. A second-order of t/tH term
for the universal RMT form of the COE was calculated for
a periodically kicked transverse-field Ising model in [8] by
going beyond the identity permutation in writing Eq. (7). Such
a derivation would be more challenging for our generic model
of fermions or bosons studied in Ref. [15] and the current
paper. We hope to pursue such a calculation for the current
model in future studies.
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APPENDIX A: EXACT NUMERICAL COMPUTATIONS OF
K(t ) USING EQ. (4) FOR � = 0

In Eq. (9) and Sec. IV, we predicted the system-size scaling
of t∗ in the U (1) symmetric kicked bosonic chain using the
Hamiltonian form of M and the numerical finding of λ1
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FIG. 3. Spectral form factor K (t ) at half filling for different sys-
tem sizes L of the kicked spinless boson chain with particle-number
conservation. Here, J = 1,U0 = 15, α = 1.5, � = 0. We use the
open boundary conditions in real space, and take N/L = 1/2. An
averaging over 200 to 500 realizations of disorder is performed. In
(b), we show the data collapse in scaled time t/L2. A longer L has a
higher saturation value of K (t ).

of M for different L. To further validate this prediction by
applying the RPA and the identity permutation approximation,
we numerically calculate K (t ) directly using Eq. (4) for our
model in Eq. (1). We show the numerically computed K (t )
for � = 0 in Fig. 3 for half filling and in Fig. 4 for a fixed
number of bosons in the chain. The initial temporal growth
of K (t ) at t � tH in Figs. 3(a) and 4(a) depends strongly on
L, and K (t ) further grows linearly with time before saturating
around tH = N , which depends on the number of bosons, N ,
in the chain. We plot K (t )/L2 with t/L2 in Figs. 3(b) and
4(b) to find the L-dependence of the initial temporal growth
of the SFF. We obtain a good data collapse for various L
and N/L, which shows an agreement with the predicted L de-
pendence of K (t ) for the particle-number conserving bosonic
chain. Therefore, we confirm that the analytical predictions
using the RPA agree with the bosonic chain’s direct numerical
analysis in the presence of U (1) symmetry. For the numerics,
we choose a long-range form of the interaction (e.g., α =
1.5), which ensures the applicability of the RPA for approx-
imating the phases θn of different many-particle basis |n〉 as
independent and uniformly distributed random numbers. The

FIG. 4. Spectral form factor K (t ) at fixed number of bosons for
different system sizes L of the kicked spinless boson chain with
particle-number conservation. Here, J = 1,U0 = 15, α = 1.5, � =
0. We use the open boundary conditions in real space, and take N = 4
for all L. An averaging over 200 to 500 realizations of disorder is
performed. In (b), we show the data collapse in scaled time t/L2.

FIG. 5. Comparison of directly computed K (t ) (black line) with
that obtained employing the RPA and the identity permutation ap-
proximation. K (t ) within the RPA is shown by keeping up to
the second largest eigenvalue (red dots) and by keeping the 300
largest eigenvalues (blue dashes). While blue dashes capture both
the nonuniversal and universal parts of K (t ), the red dots only
match with the universal RMT form of K (t ) beyond the Thouless
time. The direct numerical computation of K (t ) is carried out with
U0 = 15, α = 1.5.

values of α for a nondegenerate spectrum of Ĥ0 and conse-
quently the validity of RPA have been carefully investigated
in Ref. [8] by numerically calculating K (t ) for different α′s.
In Fig. 5, we compare the directly computed K (t ) with that
obtained by employing the RPA and the identity permutation

FIG. 6. Second largest eigenvalue λ1 of M with increasing max-
imum number of bosons Nmax for three lengths L in the absence
of U (1) symmetry in the kicked interacting bosonic chain. The
dashed lines indicate an asymptotic behavior of the limited data for
longer L = 8, 10. These data points along with asymptotic lines show
λ1 ∼ 1 − 1.6/L0.68 or e−3.13/L0.89

at Nmax = 16, which predicts a finite
system-size dependence of the Thouless time for the bosonic chain
when � �= 0.
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FIG. 7. Second largest eigenvalue λ1 of M with the inverse of
maximum number of bosons, 1/Nmax, for three lengths L at J = � =
1 in the absence of U (1) symmetry in the kicked interacting bosonic
chain. The dashed lines denote algebraic extrapolation of the last few
large Nmax points. These extrapolations give λ1 ∼ 1 − 1.65/L0.56 or
e−4.09/L0.83

at 1/Nmax → 0.

approximation. We show K (t ) within the RPA by keeping up
to the second largest eigenvalue and by keeping the 300 largest
eigenvalues. The SFF calculated within the RPA can capture
both the nonuniversal part of K (t ) for a short time and the
universal part of K (t ) beyond t∗ when a significant fraction of
eigenvalues λi of M (e.g., the largest 300 out of total 1716 of
λi for parameters in Fig. 5) is included in Eq. (7). The form
K (t ) in Eq. (9) by keeping up to the second largest eigenvalue
λ1 matches with the universal RMT form of K (t ) beyond the
Thouless time as shown in Fig. 5.

APPENDIX B: SYSTEM-SIZE SCALING OF λ1

OF M FOR � �= 0

We here discuss the L dependence of the second largest
eigenvalue λ1 of M for various pairing strengths � in the
absence of U (1) symmetry in the bosonic model. In Fig. 2, we
have shown λ1 with 1/Nmax for L = 6, 8, 10 and J = 1,� =
0.7. We could calculate an estimate for the asymptotic feature
of λ1 at large Nmax (or small 1/Nmax) by linearly extrapolating
the last few points. Such an estimate gives finite system-size
scaling of λ1 and t∗ with L for large values of J and �. We
further display λ1 with increasing Nmax (instead of 1/Nmax in
Fig. 2) in Fig. 6 for the same parameters as in Fig. 2. The
dashed lines in Fig. 6 give an asymptotic behavior of the
limited data for longer L = 8, 10. We find λ1 ∼ 1 − 1.6/L0.68

or e−3.13/L0.89
at Nmax = 16, using these data points and asymp-

totic lines.

FIG. 8. Largest eigenvalues λi, i ∈ {0, 1, 2, . . . , 9} of M for dif-
ferent numbers N of bosons at J = 1, � = 0 of the kicked interacting
bosonic chain of length L = 20. The largest two eigenvalues are the
same for all nonzero N , and at least m largest eigenvalues are the
same for all N � (m − 1) due to SU (1, 1) symmetry of M.

In Fig. 7, we show the L dependence of λ1 for a larger
� (= 1), which gives λ1 ∼ 1 − 1.65/L0.56 or e−4.09/L0.83

at
1/Nmax → 0 by using the extrapolations for large Nmax. Thus,
we have γ = 0.7 ± 0.13 when J = � = 1. Therefore, the L
dependence of λ1 and t∗ mostly remains the same for different
values of finite �. This L dependence of λ1 in the bosonic
chain is clearly different from the L independence of λ1 in the
fermionic model in the absence of U (1) symmetry.

APPENDIX C: NON-ABELIAN SYMMETRIES
OF M FOR � = 0

When the total particle number is conserved (e.g., � = 0)
in our fermionic and bosonic model, we have found, respec-
tively, SU (2) and SU (1, 1) symmetry of the Markov matrix
M for arbitrary J and the Hamiltonian form of M at small
J . The presence of such symmetries for the Hamiltonian form
of M implies that the “lowest excited states” of the Hamil-
tonian are related for the different number of fermions or
bosons in the model, i.e., they represent degenerate symmetry
multiplets. In Fig. 8, we explicitly compare the ten largest
eigenvalues of M (which are related to “lowest excited states”
of the Hamiltonian form of M) with different N ′s, includ-
ing N = 1 for a fixed length of the bosonic chain. We find
from Fig. 8 that while the largest two eigenvalues (λ0, λ1)
are the same for all N including N = 1, at least m largest
eigenvalues (λi, i ∈ {0, 1, 2, . . . , m − 1}) are the same for all
N � (m − 1) due to SU (1, 1) symmetry of M.
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