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1 Introduction

Understanding the string dual to free N = 4 super Yang-Mills theory would give a new
vantage point from which one could set out to decipher the AdS/CFT correspondence; this
being the diametrically opposite regime from that described by supergravity on the dual
AdS5×S5 spacetime. Recently, in [1, 2], a proposal for a worldsheet description of the dual
tensionless string theory was made.1 This builds on the success of the description of the
corresponding tensionless limit for strings on AdS3 × S3 × T4 dual to the free symmetric
product orbifold CFT, SymN (T4) [7–13].2 Both tensionless string descriptions are in terms
of a set of free twistor variables, subject to a gauge constraint, with spectrally flowed

1A somewhat different topological string approach to free super Yang-Mills is proposed in [3–6].
2The tensionless limit for AdS3 i.e. with massless higher spin fields in the spectrum, occurs for k = 1

units of NS-NS flux — see [14–17] for some of the precursor works at this special point. For works exploring
the k < 1 region, the transition to the k > 1 region and their CFT duals, see [18–21].
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sectors in the Hilbert space. These spectrally flowed sectors are crucial in accounting for
the rich spectrum of single trace operators of the dual large N CFT. While a first principles
quantisation of the worldsheet theories is yet to be carried out in both cases, one can argue,
based on a few plausible assumptions on the physical state conditions, that the spectrum
nontrivially matches on both sides [1, 2, 7].

Additional support, in the free super Yang-Mills example, comes from the fact that
the proposal gives a covariant version of the BMN [22] organisation of the large N spec-
trum. Furthermore, this proposal is a closed string cousin of the ambitwistor open string
description [23, 24] of tree level N = 4 Yang-Mills gluon amplitudes [25]. The worldsheet
realisation of higher spin symmetries in this proposal has also been studied in [26].

In the AdS3/CFT2 case, one can, in fact, go beyond the agreement of the spectrum
and argue for the (manifest) equality of correlation functions on both sides, giving a de
facto derivation of the correspondence [8–10]. On the worldsheet this followed from the
localisation, on the string moduli space, of physical correlators onto those discrete points
which admit finite degree holomorphic covering maps from the worldsheet to the spacetime
(more accurately, its S2 boundary) with specified branching data. This localisation was
later seen to follow from a stringy incidence relation obeyed by the twistorial worldsheet
fields [10, 12]. This striking property on the worldsheet is precisely what is needed to match
the Lunin-Mathur computation [27] of correlators in the free symmetric orbifold CFT [8].
The latter computation is in terms of the same covering maps from an auxiliary Riemann
surface (now identified with the worldsheet, cf. [28]) to the boundary S2.

The tensionless AdS3/CFT2 example also gives a rather explicit realisation [11] of a
general mechanism for implementing open-closed string duality [29–31]. This mechanism
proceeds via a recasting of individual Feynman diagrams of the field theory into worldsheets
of the dual closed string theory using the Strebel parametrisation of moduli space [32]. The
upshot of [11] was that, at least for correlators with large twist, the localisation of the
previous paragraph, was precisely to the points on moduli space which admit an integer
Strebel differential — see figure 8 for a flowchart of the logic of this correspondence. Strebel
differentials are special meromorphic quadratic differentials φS(z)dz2 which are completely
characterised by real “lengths” lij (defined as

∫ aj
ai
dz
√
φS(z) between zeroes (ai, aj)); the

Strebel lengths give a real parametrisation of the string moduli space. For an integer Strebel
differential these lengths are proportional to (positive) integers.3

In the large twist limit of [11], this integer Strebel differential arises naturally as the
Schwarzian of the covering map. As a consequence, one can identify the integer Strebel
lengths directly with the number of “Wick contractions” between vertices of the Feynman
diagram that is associated to each covering map [28] contribution to the field theory
correlator. In other words, there is a one to one correspondence between the Feynman
diagrams of the field theory and the individual closed string worldsheets that the string
correlator localises onto. This gives a precise realisation of the proposal of [31], as refined
by [34], where the Strebel differential is the bridge between the Feynman diagrams of the

3These are very special points in the moduli space which correspond to arithmetic Riemann surfaces (see
for instance [33]) and also arise in the worldsheet dual to the Gaussian matrix model [34–36].
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Figure 1. Open-Closed String Duality and the Strebel Construction. (Left) A foliation of a closed
string Riemann Surface Σg,n by the horizontal trajectories of the associated Strebel differential.
The coloured lines are ‘critical’ horizontal trajectories with ak the zeroes of the differential. They
form the Strebel graph. The zi are double poles and z4 =∞ (not shown). (Middle) The Strebel
graph gives a canonical decomposition (‘gluing’) of Σg,n into (shaded) regions which are conformal
to infinite strips. The Strebel lengths are the widths of these strips. (Right) These strips are
viewed as open string diagrams (Feynman-’tHooft double lines) which give rise to the free field Wick
contractions. The width of the strips is identified with the number of contractions. Note that the
skeleton Feynman graph (from gluing together homotopic edges), denoted by the dashed line in the
middle and left, is the dual to the Strebel graph.

field theory and the worldsheets of the dual closed string. In fact, in this approach, the
Strebel construction of the closed string worldsheet by gluing up strips with fixed Strebel
lengths is the mathematical underpinning of open-closed string duality, with the strips being
identified with the open string Feynman diagrams. See figure 1. In the AdS3/CFT2 case, it
was moreover seen that the closed string weight associated to each Feynman diagram was
the natural Nambu-Goto area for the worldsheet metric in Strebel gauge.

In this paper, we will take steps towards generalising the above considerations and
building a geometric picture in terms of twistor maps. We begin with AdS3 and write down
the classical twistor configurations which correspond to the holomorphic covering maps
Γ(z) that are the (exact) saddle points of the (genus zero) worldsheet path integral. These
twistor covers are elegantly given in terms of the simple polynomials which enter into Γ(z)
(see eqs. (2.20), (2.19), (2.12)). This is consistent with the fact that only a finite number
of wedge modes (for each twist/spectral flow label w) of the twistor fields are physical
(section 5 of [2]) and therefore excited in the classical configuration.4 We also find that the
worldsheet stress tensor T (z) of the twistor theory (eq. (2.24)), evaluated on these twistor
configurations is exactly the Schwarzian (and thus the Strebel differential, for large w)
S[Γ](z). This rounds off the picture for AdS3 in giving the twistor versions of the classical
string configurations that the tensionless worldsheet path integral localises onto [8]. It will
be interesting to see how the localisation onto these configurations arises directly from a
worldsheet path integral for the twistor fields.

We next proceed to consider the analogues of these solutions for AdS5. As per the
proposal of [1, 2], the worldsheet theory dual to the tensionless AdS5 × S5 now consists of

4Recall that the wedge modes are those with mode number r (− w−1
2 ≤ r ≤ w−1

2 ). They behave as
generalised zero modes in the wth spectrally flowed sector.
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the ambitwistor fields

ZI =
(
λα, µα̇;ψa

)
YJ =

(
µ†β , λ

†
β̇
;ψ†a

) (1.1)

subject to the ambitwistor constraint YIZI = 0. We will drop, from now on, the fermionic
fields which parametrise the S5 and focus on the bosonic twistor variables (λα, µα̇) and
(µ†β , λ

†
β̇
). These fields can be viewed, on the one hand, as parametrising the ambitwistor

space of the conformal boundary of AdS5 or, on the other hand, the twistor space of AdS5.
We employ here the twistor description of (euclidean) AdS5 and its incidence relations
following [37] (for our notation and conventions, see appendix A and [38]). We are thereby
led to propose a set of stringy incidence relations that the twistor worldsheet configurations
should obey in the tensionless limit.

µ†α(z) +X β̇
α (z, z̄)λ†

β̇
(z) = λβ(z)εβα

µα̇(z)−X α̇
β(z, z̄)λβ(z) = 1

2R
2(z, z̄)εα̇β̇λ†

β̇
(z) .

(1.2)

Here, X α̇
β(z, z̄) are the stringy coordinates along the d = 4 boundary (in bispinor notation)

while R(z, z̄) is the radial profile. One may view these stringy incidence relations as a general
solution of the (bosonic) ambitwistor constraint (see eq. (3.17)) which must be imposed in
the worldsheet theory as a gauge constraint. While the relations can be thus motivated, we
expect them to be directly derived from the properties of worldsheet correlators as in [10].
This is currently under investigation [39].

Imposing reality conditions on the X α̇
β(z, z̄) appropriate to the euclidean signature

implies a natural set of reality conditions on the twistor fields. This is a direct indication that
the (physical) left and right moving modes on the worldsheet are not independent as already
suggested in [1, 2]. These reality conditions also enable us to invert the incidence relations
and express the spacetime string configurations in terms of the twistor configurations. We
will often restrict to configurations where the worldsheet is essentially at the boundary of the
AdS5, as was the case for AdS3. However, unlike for AdS3, the boundary spacetime string
configurations are in general, non-holomorphic. Nevertheless, there is a hidden holomorphy
inherited from that of the underlying twistor fields. Thus, we immediately observe from the
structure of eq. (1.2) that the matrix ∂̄X β̇

α (z, z̄) has one zero eigenvalue.
We then specialise to a special kinematic regime where the dual field theory operators

are inserted at points xi all of which lie in a two dimensional plane (note that this is not a
restriction for 2-, 3- and 4-point correlators; recall that for 4 points we can use the conformal
symmetry of N = 4 SYM). In this case, the holomorphic eigenvector picks out (together
with the radial direction) an AdS3 subspace. We can write down the twistor configuration
again in terms of polynomials, whose ratio gives a bona fide holomorphic covering map.
The polynomial nature of the configuration is again a reflection of the fact that only the
wedge modes of the twistor fields are physical, as proposed in [1, 2].

The simplest such polynomial corresponds to the two point function of a BPS highest
weight state in the SYM theory. In this case, from the explicit form of the covering map,
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we see that its Schwarzian, in the natural coordinates, is a constant which agrees with the
Strebel differential in this case. The Strebel length is proportional to the number of Wick
contractions. Further, we compute the Strebel area i.e. the area computed with the world-
sheet metric given by ds2 = |φS(z)||dz|2 — “Strebel gauge” [35]. This is formally infinite
but needs to be evaluated with a careful regularisation. When we do that we find that a
Nambu-Goto weight with the Strebel area precisely reproduces the free Feynman propagator
associated to the Feynman diagrams! This picture can be extended to a multipoint correlator
by gluing together the Strebel differentials in different patches, which we then identify with
the Schwarzian of the covering map. The additive nature of the Strebel areas for each strip
directly leads to the multiplicative form of the individual Feynman propagators.

We view this as evidence that, in parallel to the AdS3/CFT2 example, there exists a
closed string picture in terms of twistor covering maps underlying Feynman diagrams in the
free field limit. In particular, the fact that twistor covers of AdS5 reproduce the Feynman
propagator, through the Strebel construction, buttresses the twistor proposal [1, 2] for the
worldsheet description of free N = 4 super Yang-Mills theory. Admittedly, we are working
in a special kinematic regime, for the 4-point and higher correlator, but we expect to be
able to overcome this restriction in the future.

The plan of this paper is as follows: section 2 focusses on the AdS3 case, where we
exhibit the twistor configurations corresponding to a covering map. After a brief review
of the twistor geometry for AdS5 in section 3, we describe the euclidean reality conditions
that we impose and some of its consequences. Section 4 uses these ingredients to propose
stringy incidence relations for the worldsheet twistors. We then specialise to the classical
configurations that correspond to mapping worldsheets into an AdS3 subspace. We employ
the explicit form of these maps in section 5 to flesh out the connection to Feynman diagrams
in the gauge theory. We describe the resulting picture, which agrees with the Strebel
construction, moreover reproducing the free propagator from the regularised Strebel area.
Section 6 has brief concluding remarks. Appendix A sets out our twistor conventions and
the nature of the twistor correspondence, with or without the Euclidean reality conditions.
Appendix B gives a quick recap, following [11], of the Strebel construction for tensionless
AdS3/CFT2, as a ready reference to compare with the logic of section 5.

2 Twistor covering maps in AdS3

As we briefly recap in appendix B, correlators in the free symmetric product CFT2 are
given in terms of covering maps from an auxiliary covering space to the spacetime S2,
with specified branching data. In [8] it was shown that this is precisely mirrored in the
tensionless string theory on AdS3×S3×T4 (i.e. with k = 1 unit of NS-NS flux). Indeed, as
anticipated in [27, 28] the covering space is the worldsheet of the dual string theory. Thus
the corresponding correlators in the worldsheet theory have the remarkable property that
they are delta function supported on those points on the worldsheet moduli space which
admit covering maps consistent with the branching data. The fundamental origin of this
localisation was later seen to be a twistorial ward identity for correlators in the free field
realisation of the psu(1, 1|2)1 worldsheet theory [10, 12].

– 5 –
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In [8] it was also shown that when there is an admissible covering map, there is a
semiclassical solution for the string worldsheet which exhibits this covering of the boundary
S2 of the AdS3 part of the spacetime. As will be reviewed below, since the worldsheet is
embedded in AdS3 it also has a nontrivial radial profile even though it is essentially at the
boundary. This gives a geometric picture, even in this highly stringy regime, of the string
worldsheet exhibiting a nontrivial wrapping of the spacetime boundary. Since the underlying
worldsheet theory is free in this limit, as can be seen in terms of the original sigma model
(see eq. (2.4) and below of [8]) or from the free field realisation of the psu(1, 1|2)1 theory,
these solutions are semiclassically exact. In fact, one can show [8] that the semiclassical
action associated to these solutions gives precisely the Lunin-Mathur weight associated to
each covering map.

In this section, we will translate the solutions of [8], which were given in terms of the
AdS3 coordinates, into classical solutions for the twistor fields that describe the psu(1, 1|2)1
theory. We will see that the solutions have a nice form which is also consistent with the
behaviour of quantum correlators of these fields as found in [10]. We will also show that the
classical stress tensor evaluated on these solutions agrees with the Schwarzian derivative of
the covering map. Thus the stress tensor of the free field realisation is closely related to the
Strebel differential due to the connection between the latter and the Schwarzian (at least in
the limit of large twist). These solutions will give some guidance when we generalise to
the case of the twistor classical solutions for the worldsheet theory of tensionless strings in
AdS5 in the next section.

The conventional AdS3 sigma model action, in first order form, is given by

SAdS3 = k

4π

∫
d2z

(
4∂Φ∂̄Φ + β̄∂γ̄ + β∂̄γ − e−2Φββ̄ − k−1RΦ

)
. (2.1)

Here γ(z) (and its conjugate) represent holomorphic coordinates for the spacetime S2’s
with which we foliate euclidean AdS3. The radial coordinate Φ(z, z̄) is related to the usual
poincare coordinate as r = e−Φ, such that the boundary is at r = 0↔ Φ =∞. In terms
of these coordinates one finds classical solutions by considering the holomorphic sl(2,R)
currents, as given by the Wakimoto form and imposing the right boundary conditions at the
insertions together with the condition on the spacetime energies for the vertex operators
(the J3

0 eigenvalue near each insertion).

J+ = β

J3 = −∂Φ + kβγ

J− = −2γ∂Φ + βγγ − ∂γ .
(2.2)

Here we have put the level k = 1 in the usual (classical) Wakimoto representation. Thus
the classical solution for an n-point correlator of vertex operators for the ground states of
twisted sectors of the dual symmetric orbifold CFT, is [8]

γ(z) = Γ(z) , Φ(z, z̄) = − log ε− 1
2 ln |∂Γ|2 , β(z) = −(∂Φ)2

∂Γ . (2.3)

Γ(z) is the covering map, from the worldsheet to the spacetime, with branch points at the
points zi where the vertex operators (in spectrally flowed sectors wi) are inserted, with the

– 6 –
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behaviour as z → zi,

Γ(z) = xi + aΓ
i (z − zi)wi + . . . , (i = 1 . . . n) . (2.4)

The covering map is uniquely specified by the branching data (zi, wi) and specifying three
of the xi’s. Equivalently, if the n locations xi are specified, the covering map exists only
for discrete choices of (n− 3) of the zi i.e. on a discrete set of points on the moduli space
M0,n. The radial field Φ(z, z̄) has an infrared cutoff ε→ 0 which indicates that the string
is stuck at the boundary (Φ =∞). We also see that ∂Φ is independent of ε and exhibits a
nontrivial profile which will play an important role. Finally, the last relation in eq. (2.3) for
β(z) follows from the on-shell condition for the worldsheet stress tensor which implies (for
these ground state correlators) that

J+(z)J−(z) = (J3(z))2 . (2.5)

We now note that the sl(2,R) currents in eq. (2.2) are bilinears of the free twistor fields
of AdS3 (see eq. (2.2) of [10]). Thus in terms of the pairs of symplectic bosons ξ± and η±

of u(1, 1|2)1 we have

J3(z) = −(η+ξ−)(z) , J±(z) = (η±ξ±)(z) (2.6)

where we additionally have used the ambitwistor constraint which generates the quotient
psu(1, 1|2)1

ξ+η− = ξ−η+ . (2.7)

We notice that the on-shell constraint eq. (2.5) is automatically satisfied in terms of the
twistor variables.

We also note that this free field representation has the gauge freedom in which we
rescale

ξ±(z)→ λ(z)ξ±(z) , η±(z)→ λ(z)−1η±(z) . (2.8)

Together with the ambitwistor constraint eq. (2.7), this means one can choose a gauge in
which ξ±(z) = −η±(z).

We can then solve for ξ+ and η+ using the expression for J+(z) in eq. (2.2) and equating
it to that in eq. (2.6), together with the classical solution for β(z) given in eq. (2.3). Then
the expression for J3(z) allows us to solve for ξ−(z) and η−(z). We thus find the classical
twistor solutions (in our gauge) to be

ξ+ = −η+ = − ∂Φ√
∂Γ

= 1
2
∂2Γ

(∂Γ)
3
2
, ξ− = −η− = Γ∂Φ + ∂Γ√

∂Γ
= −Γ

2
∂2Γ

(∂Γ)
3
2

+
√
∂Γ . (2.9)

Note that the classical solutions obey stringy twistor “incidence relations” in terms of the
boundary variables.

ξ− + Γξ+ =
√
∂Γ = √ρ, η− + Γη+ = −

√
∂Γ = −√ρ . (2.10)

The right hand side is not zero but rather proportional to the radial profile. Thus we have
defined a holomorphic radial profile ρ(z), using eq. (2.3),

r2(z, z̄) = e−2Φ(z,z̄) ≡ ε2ρ(z)ρ̄(z̄) . (2.11)

– 7 –
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The r.h.s. of eq. (2.10) vanishes as (z− zi)
wi−1

2 as one approaches any of the inserted vertex
operators, where the string worldsheet is pinned to the boundary.

Given a covering map
Γ(z) = PN (z)

QN (z) (2.12)

where PN (z) and QN (z) are degree N polynomials, define the Wronskian

W = P ′N (z)QN (z)−Q′N (z)PN (z) = C
n∏
i=1

(z − zi)wi−1 . (2.13)

In the second equality we have used that ∂Γ(z) = W (z)
Q2

N (z) and vanishes as (z − zi)wi−1 near
each of the zi. Comparing the degrees of the polynomials in eq. (2.13), we see that this
determines the Wronskian upto the overall constant C.

Then the AdS3 twistors eq. (2.9) can be expressed nicely as

ξ+ = −η+ = 1
2W (z)

3
2

(W ′(z)QN (z)− 2W (z)Q′N (z))

ξ− = −η− = − 1
2W (z)

3
2

(W ′(z)PN (z)− 2W (z)P ′N (z))
(2.14)

We also see that

W ′(z) = W (z)
n∑
i=1

(wi − 1)
z − zi

= W (z) R̃n−1(z)∏n
i=1(z − zi)

(2.15)

where R̃n−1(z) =
∑n
i=1(wi − 1)

∏n
j 6=i(z − zj) is a polynomial of degree (n− 1) determined

solely by the covering map data (zi, wi). Using this, we can rewrite

W ′(z)QN (z)− 2W (z)Q′N (z) = W (z)R̃n−1(z)QN (z)− 2
∏n
i=1(z − zi)Q′N (z)∏n

i=1(z − zi)

= W (z)Q̃N+n−1(z)∏n
i=1(z − zi)

(2.16)

where Q̃N+n−1(z) is a polynomial of degree (N + n− 1) that is completely determined by
QN (z) and the covering map data (zi, wi). In fact, notice that

− 1
2

Q̃N+n−1(z)∏n
i=1(z − zi)

(wi+1)
2

= d

dz

 QN (z)∏n
i=1(z − zi)

(wi−1)
2

 . (2.17)

We can similarly define

P̃N+n−1(z) = R̃n−1(z)PN (z)− 2
n∏
i=1

(z − zi)P ′N (z) . (2.18)

Then we can express the twistor classical solutions in a nice symmetric form as

ξ+ = −η+ = Q̃N+n−1(z)

2
∏n
i=1(z − zi)

(wi+1)
2

= − d

dz

 QN (z)∏n
i=1(z − zi)

(wi−1)
2

 (2.19)
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and similarly,

ξ− = −η− = − P̃N+n−1(z)

2
∏n
i=1(z − zi)

(wi+1)
2

= d

dz

 PN (z)∏n
i=1(z − zi)

(wi−1)
2

 . (2.20)

The takeaway from the final form of the twistor solutions in eqs. (2.19), (2.20) is that
they are rational functions which are determined by the two polynomials QN , PN and the
covering data. This fits in with our expectation for the quantum theory that only the wedge
modes of the twistors are excited on-shell — see the discussion around eq. (2.26) of [2]. We
see that these twistors have a singularity as z → zi

ξ±, η± ∼ 1

(z − zi)
(wi+1)

2

. (2.21)

This is consistent with what we know about the OPE of these fields in the quantum
correlators. In particular, we know that at the origin (x = 0) the fields behave as in
eqs. (2.36)–(2.39) of [10]. However, at a generic point, the OPE of these fields with the
spectrally flowed vertex operators is given by eq. (2.42) of [10]. And in that notation
ξ±(x), η±(x) behave as (z − zi)−

(wi+1)
2 . See also eq. (4.12) of [10]. The combination which

appears in the incidence relation then has a regular OPE which is also reflected in the
vanishing of the right hand side of eq. (2.10) as z → zi.

For the generalisation and comparison to the higher dimensional case we define the
ambitwistor variables

ZI =
(
ξ+

ξ−

)
, YI =

(
−η−

η+

)
(2.22)

and the ambitwistor constraint eq. (2.7) reads as

YIZ
I = ξ−η+ − ξ+η− = 0 . (2.23)

We also note for later reference that the stress tensor of the worldsheet theory is given by

T (z) = 1
2εαβ

(
ξα∂ηβ + ηα∂ξβ

)
= −η−∂ξ+ + η+∂ξ− = YI∂Z

I
(2.24)

where we have used eq. (2.7) in the second line. Evaluating this in terms of the classical
solution eq. (2.9) leads to

T (z) = 1
2

∂ (∂2Γ
∂Γ

)
− 1

2

(
∂2Γ
∂Γ

)2


= 1
2S [Γ(z)]

(2.25)

In [11], it was shown that, in the large twist limit, the quadratic differential defined by
the Schwarzian of the covering map could be identified with the integer Strebel differential
which defines the corresponding closed string worldsheet. We therefore see that there is a
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close relation between the worldsheet stress tensor and the Strebel diffferential — a relation
which we think should be generic in open-closed string duality.5

3 The twistor space of AdS5

We want to generalise the twistor solutions of the previous section to the case of AdS5. As
a preliminary, in this section, we will describe the twistor space of AdS5 and its relation to
the ambitwistor space of its conformal boundary, following the discussion in [37]. We then
review the twistor incidence relations in AdS5 as well as the reality condition that can be
imposed in Euclidean signature. We will find that imposing these reality conditions enables
one to explicitly solve for the usual spacetime coordinates of AdS5 in terms of the twistors.

We begin with the complex projective space CP5 with homogeneous co-ordinates XIJ

represented as an antisymmetric 4× 4 matrix with the identification X ∼ λX with λ ∈ C∗.
We can then define a holomorphic metric on CP5 which has the property of being invariant
under local scalings XIJ → λ(X2)XIJ ,

ds2 = −dX
2

X2 +
(
X · dX
X2

)2
(3.1)

where the contraction of indices is performed w.r.t. εIJKL. This is the metric on complexified
AdS5.

The conformal boundary of this spacetime is at X2 = 0 i.e.

M =
{
X2 = 0 |X ∈ CP5

}
. (3.2)

Using the scaling freedom we can always parametrise the points in M as, [37]6

XIJ
b =

[
εαβ xαβ̇

−xα̇β 1
2x

2εα̇β̇

]
. (3.3)

This form ensures X2
b = 0 i.e det(Xb) = 0. It immediately gives

(Xb)IJ =
[1

2x
2εαβ −xαβ̇
xα̇β εα̇β̇

]
. (3.4)

Going away from the boundary, in terms of,

IIJ =
[
0 0
0 εα̇β̇

]
, (3.5)

we can parametrise a generic point as

XIJ = (Xb)IJ + r2

2 I
IJ =

[
εαβ xαβ̇

−xα̇β 1
2(x2 + r2)εα̇β̇

]
. (3.6)

5See remark 5.3 on p. 101 of [40] for a reason why the two might be related in a ‘heavy’ limit. We thank
Edward Mazenc for drawing our attention to this.

6For our conventions, especially with regard to spinor indices, we refer the reader to appendix A.
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We then have
XIJX

IJ = 2r2 . (3.7)

It is not difficult to verify that this parametrisation, when plugged into eq. (3.1), gives the
usual Poincare metric, with r2 being the radial coordinate. We refer the reader to [37] for
further details.

We now define the twistors

ZI =
(
λα, µα̇

)
=
(
λ1, λ2, µ1, µ2

)
YJ =

(
µ†β , λ

†
β̇

)
=
(
µ†1, µ

†
2, λ
†
1, λ
†
2

) (3.8)

These will play the role of ambitwistor variables for the conformal boundary of AdS5 but will
more generally be viewed as twistor variables for the bulk. We next describe the incidence
relations that they obey which define the twistor correspondence with spacetime on the
boundary as well as the bulk.

3.1 The incidence relation on the boundary

On the boundary the above twistor variables (ZI , YJ ) can be defined as being in the kernel of
(Xb)IJ and its dual XIJ

b , respectively [37]. Note that the kernel is non-empty precisely at the
boundary where, as we noted det(Xb) = 0. Then we see that the relation (Xb)IJZJb = 0 yields

xα̇βλ
β + εα̇β̇ µ

β̇ = 0
1
2x

2εαβλ
β − xαβ̇ µ

β̇ = 0 .
(3.9)

In fact, the second equation is a consequence of the first, using the first identity in (A.9).
The latter can also be expressed as

µα̇ = xα̇ βλ
β . (3.10)

The dual kernel relation XIJ
b Y b

J = 0 yields

εαβµ†β + xαβ̇λ†
β̇

= 0

−xα̇βµ†β + 1
2x

2εα̇β̇λ†
β̇

= 0 .
(3.11)

Again the second equation arises from the first and the latter can be neatly expressed as

µ†α = −x β̇
α λ†

β̇
. (3.12)

We also note that the incidence relation eq. (3.10) and its dual eq. (3.12) together imply
that the (ZIb , Y b

J ) obey the ambitwistor constraint

Cb ≡ ZIb Y b
I = 0 , (3.13)

justifying the terminology.
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Using the incidence relations (3.10) and (3.12), we can represent a point on the boundary
MC via any of the two bitwistors:

(Xb)IJ = −Z
[I
1 Z

J ]
2

〈λ1λ2〉
and (Xb)IJ = −

(Y1)[I(Y2)J ]

[λ†1λ
†
2]

(3.14)

This is the usual twistor correspondence which associates a line in PT (determined by two
points Z1 and Z2) to a point in complexified Minkowski space MC. The second relation
above is the analogous correspondence for the dual twistor space. We refer the reader
to figures 4 and 5 in appendix A which describes the twistor correspondence as a double
fibration, on both the boundary and in the bulk, in the complexified case as well as after
imposing the (euclidean) reality conditions of section 3.3.

3.2 The incidence relation in the bulk

The above incidence relations in the boundary arise from a careful limit of incidence relations
in the bulk. When r 6= 0, we no longer have a nontrivial kernel for XIJ . Instead we impose
the natural twistorial incidence relation [37]

ZI = XIJYJ

⇒
[
λα

µα̇

]
=
[
εαβ xαβ̇

−xα̇β 1
2(x2 + r2)εα̇β̇

]µ†β
λ†
β̇

 . (3.15)

This gives the following two independent equations:

µ†α + x β̇
α λ†

β̇
= λβεβα

µα̇ − xα̇ βλβ = 1
2r

2εα̇β̇λ†
β̇

(3.16)

where the second relation is obtained using the second identity in (A.9). We also note that
the bulk incidence relation in the form ZI = XIJYJ immediately implies the quadric (or
ambitwistor) relation

C = ZIYI = 0 (3.17)

since the XIJ is antisymmetric in its indices. Thus the incidence relations can be viewed as
disentangling the ambitwistor constraint.

To recover the boundary incidence relations in eqs. (3.10) and (3.12) as r → 0 we need
to take the limit where we scale YJ →

Y b
J
r whereas ZI → ZIb . In other words, (µ†β , λ

†
β̇
) scale

as 1
r as we approach the boundary, while (µα̇, λβ) scale as r0. Note that the overall scale is

immaterial for the ambitwistor variables on the boundary. Once we do this rescaling, we
see that we recover the boundary incidence relations as r → 0.

3.3 Reality conditions

Our considerations thus far apply to a complexified spacetime and the corresponding
twistors. When we specialise to the case of a real slice of the spacetime, we need to impose
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a corresponding set of reality conditions on the twistors. We will take the AdS5 spacetime
to be euclidean since we aim to focus on euclidean correlators in the dual CFT — there are
likely to be additional subtleties in lorentzian signature. One of the simplifications afforded
by euclidean signature is that, given a point in twistor space, the corresponding spacetime
point is determined, as we will see explicitly below. See figures 4 and 5 for the fibration
picture of this bijection. This is unlike lorentzian signature where a point in twistor space
corresponds to a null ray in spacetime. For a discussion of reality conditions for twistors in
different signatures, see for instance [38] or, in the AdS5 context, [37].

In the Euclidean signature, the spacetime coordinates of complexified Minkowski space
obey

x̂α̇ β = xα̇ β , (3.18)

where x̂α̇ β is defined through eq. (A.11) (with bars referring to ordinary complex conju-
gation). Taking the complex conjugate of the boundary incidence relation eq. (3.10) and
using eq. (3.18) gives

µα̇ = xα̇ βλ
β ⇒ µ̂α̇ = xα̇ βλ̂

β (3.19)

Similarly, we also find the complex conjugate relation to eq. (3.12)

µ̂†α = −x β̇
α λ̂†

β̇
(3.20)

Here we have defined the hatted twistor variables

ẐI ≡
(
λ̂α, µ̂α̇

)
≡
(
−λ̄2, λ̄1,−µ̄2, µ̄1

)
ŶJ ≡

(
µ̂†β , λ̂

†
β̇

)
≡
(
−µ̄†2, µ̄

†
1,−λ̄

†
2, λ̄
†
1

) (3.21)

In other words, the hatted twistors are essentially complex conjugates7 and also obey the
same incidence relations as the original twistors.

It is easy to verify that if we take the radial coordinate r to be real, then we are
extending the above reality conditions on the boundary into the bulk (euclidean AdS5). The
reality conditions on the twistors given above also ensure that the bulk incidence relations
eq. (3.16) are satisfied in terms of the hatted twistors. More succinctly,

ẐI = XIJ ŶJ . (3.22)

The reality constraints can be used to obtain the spacetime coordinate corresponding to
a point in twistor space. First we consider a point on the boundary. Since both ZIb , ẐIb obey
the incidence relation with the same xα̇β , we can use the general relation eq. (3.14) to write

(Xb)IJ = −Z
[I
b Ẑ

J ]
b

〈λλ̂〉
and (Xb)IJ = −

Y b
[I Ŷ

b
J ]

[λ†λ̂†]
(3.23)

Using these, the condition (Xb)2 = 0 imposes additional constraints on the boundary
ambitwistors:

(Xb)IJ(Xb)IJ = 0⇒ Zb · Ŷ b = Ẑb · Y b = 0 (3.24)
7Note, however, that the conjugation operation defined here is not the identity when applied twice. See

below eq. (1.17) in [38].
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where we have used the ambitwistor condition Zb · Y b = 0. From eq. (3.23), we can read
off the components

xαβ̇ = µ̂†αλ† β̇ − µ†αλ̂† β̇

[λ̂†λ†]
(3.25)

= λαµ̂β̇ − λ̂αµβ̇

〈λ̂λ〉
(3.26)

In the second relation above we have used xαβ̇ = xβ̇α We also find

x2 = 2 [µ̂µ]
〈λ̂λ〉

= 2〈µ̂
†µ†〉

[λ̂†λ†]
. (3.27)

We use a similar logic to determine the coordinates in AdS5 given the twistors (ZI , YJ )
and their complex conjugates. One can write a general ansatz for XIJ :

XIJ = α
Z [I ẐJ ]

〈λλ̂〉
+ βεIJKL

Y[K ŶL]

[λ†λ̂†]
(3.28)

Note that XIJ is real under the conjugation operation. The ansatz implies

XIJ = 1
2αεIJKL

Z [KẐL]

〈λλ̂〉
+ 2β

Y[I ŶJ ]

[λ†λ̂†]
(3.29)

where we have used the identity εIJKLεKLMN = 2δ[M
I δ

N ]
J . The bulk incidence relations

contain enough information to determine α and β:

ZI = XIJYJ = αZI
Ẑ · Y
〈λλ̂〉

⇒ α = 〈λλ̂〉
Ẑ · Y

(3.30)

YI = − 2
r2XIJZ

J = − 4
r2β YI

Z · Ŵ
[λ†λ̂†]

⇒ β = −r
2

4
[λ†λ̂†]
Z · Ŷ

(3.31)

where we have used XIJX
IJ = 2r2 eq. (3.7).

From the conjugate incidence relation, we also find the reality constraint on the quadric

ẐI = XIJ ŶJ = −αẐI Z · Ŷ
〈λλ̂〉

⇒ Ẑ · Y = −Z · Ŷ . (3.32)

We will denote this constraint as D,

D ≡ Ẑ · Y + Z · Ŷ = 0 . (3.33)

Note that this is a weaker constraint than the one that obeyed by the boundary twistors
eq. (3.24).

Using these results, we get a (many-to-one — see figure 5) correspondence between the
twistors and a point in the bulk AdS5 spacetime

XIJ = 1
Ẑ · Y

[
Z [I ẐJ ] + r2

4 ε
IJKLY[K ŶL]

]
. (3.34)
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To find r2 and xαβ̇ we look at the upper diagonal block of XIJ in eq. (3.6) and equate
that with r.h.s. of eq. (3.34), which immediately gives

r2 = −2 Ẑ · Y + 〈λλ̂〉
[λ†λ̂†]

. (3.35)

Similarly equating with any of the non-diagonal blocks in eq. (3.6) gives

xαβ̇ = 1
Ẑ · Y

[(
λαµ̂β̇ − λ̂αµβ̇

)
+ r2

2
(
µ̂†αλ† β̇ − µ†αλ̂† β̇

)]
, (3.36)

which can be rewritten, using the expression of r2, as

xαβ̇ = 〈λ̂λ〉
Ẑ · Y

[
λαµ̂β̇ − λ̂αµβ̇

〈λ̂λ〉
− µ̂†αλ† β̇ − µ†αλ̂† β̇

[λ̂†λ†]

]
+ µ̂†αλ† β̇ − µ†αλ̂† β̇

[λ̂†λ†]
. (3.37)

On the boundary, this is consistent with the expression for xαβ̇ which we obtained in
eq. (3.25) since the first term in square brackets above vanishes. As another consistency
check, we can reproduce (3.16) with these expressions of r2 and xαβ̇ . For example

xαβ̇λ†
β̇

= (λα − µ†α)− 1
Ẑ · Y

(
λ̂αµβ̇λ†

β̇
+ λαλ̂βµ†β + µ†α〈λλ̂〉

)
(3.38)

where we have used the expression of r2. Now using the ambi-twistor condition, third and
fourth terms of the above expression become

λ̂αµβ̇λ†
β̇

+ λαλ̂βµ†β =
(
−λ̂αλβ + λαλ̂β

)
µ†β = −εαβ〈λλ̂〉µ†β (3.39)

This cancels the last term in (3.38) and we get back the first equation in (3.16).

4 Twistor space covering maps in AdS5

We have described the twistor space geometry of AdS5 and the reality conditions which
fix a point in the bulk in terms of the twistor variables. We want to use this geometrical
picture to describe string configurations which capture the dual N = 4 super Yang-Mills
theory as recently proposed in [1, 2]. We will not give a complete picture here — this will
be described elsewhere — but instead focus on a special configuration which is a direct
generalisation of the AdS3 case as described in section 3.

The basic idea is that we will consider holomorphic worldsheet twistor fields Y I(z), ZI(z),
together with the corresponding right moving antiholomorphic twistor fields ẐI(z̄), ŶJ(z̄),
which are related to the holomorphic fields by the conjugation operation defined in eq. (3.21).
Here the conjugation is assumed to act on the worldsheet variables on which the fields now
depend, in the standard way z → z̄. Thus the right movers are not independent degrees of
freedom and determined in terms of the left movers by eq. (3.21). This is consistent with
the observation in [1, 2] that we only need one copy of the wedge modes (i.e. not both left
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and right movers) of the twistor fields to account for the correct spectrum of the free super
Yang-Mills theory.8

To connect with the Feynman diagrams for the dual gauge theory operators, we will
need to translate twistor string configurations into AdS spacetime configurations. We will
determine the latter by requiring that the twistors obey the AdS5 twistor incidence relations,
together with the reality conditions. In other words, we now require the stringy versions of
eq. (3.16).

µ†α(z) +X β̇
α (z, z̄)λ†

β̇
(z) = λβ(z)εβα

µα̇(z)−X α̇
β(z, z̄)λβ(z) = 1

2R
2(z, z̄)εα̇β̇λ†

β̇
(z) .

(4.1)

Here we have denoted the string configurations in AdS5 by X α̇
βλ

β(z, z̄) and the radial
R(z, z̄). As we will see shortly, unlike in AdS3, the longitudinal coordinates X α̇

β are now
no longer purely holomorphic in the worldsheet coordinates. Ultimately, these relations will
not need to be postulated; rather, we expect they will arise from an analysis of the ward
identities of the worldsheet CFT as in [10]. This is currently under investigation [39].

In fact, since the bulk incidence relations eq. (4.1) hold pointwise on the worldsheet, we
will have the same expressions for the bulk coordinates R(z, z̄), X α̇

β(z, z̄), in terms of the
twistor fields, as given in eqs. (3.35), (3.36). Since these depend on both the twistor fields
and their conjugates, we clearly see that they cannot be holomorphic (or anti-holomorphic).
Note that since the twistor fields obey the bulk incidence relation it also immediately follows
that they obey, pointwise, the ambitwistor constraint

λ†α̇(z)µα̇(z) + µ†α(z)λα(z) = 0 . (4.2)

One may alternately view the ambitwistor constraint as primary and then the requirement of
the bulk incidence relations in eq. (4.1) follows. The latter are a general way of satisfying the
ambitwistor constraints — see the discussion below eq. (3.16). The ambitwistor constraint
arose as a fundamental gauge constraint requirement in the worldsheet proposal of [1, 2].

We will further assume that as in AdS3, the worldsheet is localised near the boundary
i.e. that R(z, z̄) ∝ ε→ 0. This is also physically motivated by the fact that the dual free
theory is at the UV fixed point and hence essentially glued to the boundary of AdS5, using
the relation between scale and the radial direction. We expect, however, there to be a
nontrivial radial (Liouville) profile ∂lnR which we will not determine here.

As discussed in section 3.2, when the radial coordinate goes to zero, the bulk incidence
relations reduce to the boundary incidence relations. Thus for string configurations near
the boundary we must have the analogues of eqs. (3.10), (3.12), namely,

µα̇(z) = X α̇
β(z, z̄)λβ(z)

µ†α(z) = −X β̇
α (z, z̄)λ†

β̇
(z) .

(4.3)

8It may be that we only need to impose this reality condtion on the finite number of wedge modes of
the worldsheet twistor fields. Since these are the only ones excited in the classical solutions, we will not be
able to distinguish the two possibilities in the present discussion. The right prescription will presumably
arise from a complete worldsheet analysis. We thank Matthias Gaberdiel for discussions on this point and
ongoing collaborations [39].
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We will mostly work with these (stringy) incidence relations on the boundary given our
physical assumption of the worldsheet being localised there.

As mentioned at the beginning of the section, we are also imposing the reality conditions
pointwise in (z, z̄). Therefore we can use the above incidence relations and the corresponding
conjugate relations to obtain the stringy generalisation of eq. (3.25)

Xαβ̇(z, z̄) = λα(z)µ̂β̇(z̄)− λ̂α(z̄)µβ̇(z)
〈λ̂(z̄)λ(z)〉

= µ̂†α(z̄)λ† β̇(z)− µ†α(z)λ̂† β̇(z̄)
[λ̂†(z̄)λ†(z)]

(4.4)

One sees, somewhat reassuringly, that the spacetime configurations Xαβ̇(z, z̄) are not purely
holomorphic or anti-holomorphic even though the twistor fields are. Nevertheless, the
holomorphic twistor fields obey the incidence relations with Xαβ̇(z, z̄) in eq. (4.3), as can
be seen from the explicit form in eq. (4.4).

The mixed z dependence here is unlike the AdS3 case where there was a split of the
boundary spacetime coordinates into what we had denoted as Γ(z) and its conjugate.
Despite that, there is a sense in which there is a kind of local holomorphy in the boundary
spacetime. This is reflected in the fact that even though Xαβ̇(z, z̄) is not holomorphic, the
matrix ∂̄Xαβ̇(z, z̄) (as also ∂Xαβ̇(z, z̄)) has a zero eigenvector.

This follows directly by applying ∂̄ on both sides of the two equations in eq. (4.3). We
obtain

∂̄X α̇
β(z, z̄)λβ(z) = 0 ,

∂̄X β̇
α (z, z̄)λ†

β̇
(z) = 0 .

(4.5)

In other words, we see that λβ(z) is the zero eigenmode of ∂̄X α̇
β(z, z̄) while λ†

β̇
(z) is the

zero eigenvector of the transposed matrix ∂̄X β̇
α . One immediate consequence of this, as

can also be easily verified directly using the expressions in eq. (4.4), is that

∂̄Xαβ̇ ∂̄X
αβ̇ = 0 . (4.6)

For ∂Xαβ̇, we can similarly write down the zero eigenvectors in terms of the conjugate
twistor fields and the analogue of eq. (4.6). We interpret the presence of this zero eigenvector
of ∂̄X α̇

β(z, z̄) as indicating that, locally, on the worldsheet and hence in space time, we
can always view the string configuration X α̇

β(z, z̄) as a holomorphic embedding into the
boundary of an AdS3 subspace of the bulk spacetime. We will exploit this interpretation in
what follows.

We also note that if we consider the more general stringy incidence relations, we can
arrive at a similar conclusion. Namely, applying ∂̄ on the first equation of eq. (4.1) we find
that λ†

β̇
(z) continues to be the zero eigenvector of ∂̄X β̇

α (z, z̄). However, we see from the
non-holomorphic dependence of R2(z, z̄) in the r.h.s. of the second equation of eq. (4.1)
that λβ(z) is no longer the zero eigenmode of ∂̄X α̇

β(z, z̄).
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4.1 Maps to an AdS3 subspace

In this subsection, we will consider the subset of solutions where the string lies entirely
within an AdS3 subspace, or equivalently the boundary insertion points xi lie in a two
dimensional plane. Note that this can always be done for the case of two, three and four
point functions (using conformal symmetry of N = 4 SYM for the latter). For five point
functions and higher this is a special configuration. We will work in this special kinematic
setup as it will enable us to be very explicit. We will also be able to illustrate, in the next
section, how the corresponding covering maps reproduce the boundary free field Feynman
diagram answers.

Since ∂̄X α̇
β(z, z̄) has one zero eigenvalue, we will choose it to be in diagonal form

(which can always be done locally, but here we are doing so globally)

∂̄X α̇
β(z, z̄) =

[
0 0
0 −∂̄V̄ (z̄)

]
. (4.7)

Recall from the general form of X α̇
β (see eq. (A.13)) that this implies we have taken

∂̄U = ∂̄Ū = 0 i.e. U = 0 without loss of generality. We also have ∂̄V = 0 i.e. V = V (z) and
thus the purely antiholomorphic dependence in V̄ (z̄). In other words, we have the string
configuration

X α̇
β(z, z̄) =

[
−V (z) 0

0 −V̄ (z̄)

]
. (4.8)

As mentioned, the string configuration is entirely in the (x1, x2) plane.
The zero eigenvector λβ(z) of eq. (4.7) then has the form

λβ(z) =
[
λ1(z)

0

]
. (4.9)

Together with eq. (4.8) and eq. (4.3) we have

µα̇(z) = −
[
V (z)λ1(z)

0

]
. (4.10)

Thus µ1(z) = −V (z)λ1(z). Since V (z) is a (finite degree) covering map from the genus
zero worldsheet to the S2 boundary of the AdS3, it will be a ratio of polynomials. As in
the case of AdS3, we can achieve this if the twistor fields are given by rational functions. In
other words, we are only exciting finitely many modes around each worldsheet insertion of
the vertex operators. We will therefore consider fields of the form

λ1(z) = Rn−1(z)Q1
N (z)∏n

i=1(z − zi)
wi
2
, µ1(z) = Rn−1(z)P 1

N (z)∏n
i=1(z − zi)

wi
2
. (4.11)

This is a generalisation of the expressions eqs. (2.19), (2.20). We note that the order of the
poles in the denominator in the above is shifted. If w2d

i , w
4d
i denote the spectral flow param-

eters of the AdS3 and AdS5 theories, (or equivalently, the twisted sector and the number
of Yang-Mills bits in the dual CFT) respectively, then we have a shift (see eq. (5.11) of [2])

w4d
i = w2d

i + 1 . (4.12)
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At the risk of creating confusion we will drop the superscripts, with the context hopefully mak-
ing clear which label is being considered and eq. (4.12) being the dictionary between the two.

We see from eq. (4.11) that the twistor fields λ1(z), µ1(z) near z = zi have a singularity
of order 1

(z−zi)
w
2
. This is consistent with the fact that the twistors have spin half and only

have wedge modes with mode number r ≤ wi−1
2 excited. At the same time we expect

a branching behaviour of order (wi − 1) near each such vertex operator insertion since
r ≥ −wi−1

2 (cf. the shift of eq. (4.12)).9 In other words, from eq. (4.11), we can define the
covering map in position space

− V (z) = µ1(z)
λ1(z) = PN (z)

QN (z) . (4.13)

We expect that V (z) ∼ Vi + ai(z − zi)wi−1, where Vi = (x(i)1 + ix(i)2).
Note also that we have the condition N + n− 1 = 1

2
∑
iwi for the fields in eq. (4.11)

to be rational functions on the worldsheet with the prescribed poles. Therefore, 1
2
∑
iwi

must be an integer. Indeed this is consistent with the fact that the number of free field
wick contractions in a Feynman diagram for a correlator built of operators with {wi} fields,
〈
∏n
i=1O(wi)(xi)〉, is given precisely by 1

2
∑
iwi. Finally, since the branching behaviour for a

wi spectrally flowed operator is (wi − 1), the degree N of the polynomials, Q and P are
given by the Riemann-Hurwitz formula as in AdS3 with N being the nett degree of the
branched cover. The polynomial Rn−1(z) is a common overall factor in eq. (4.11) and does
not affect the branching behaviour.

Thus when the points xi are all in a plane, the twistor solutions are a generalisation
of the ones we saw in AdS3. The main difference is that for a string at the boundary, the
incidence relations for AdS5 eq. (4.1) reduce to eq. (4.3). Hence the analogue of the terms
on the r.h.s. of eq. (2.10) are absent here. As a result, in eq. (4.11) we do not have the
analogue of the second term on the r.h.s. of eq. (2.18).

We have not discussed the twistor fields λ†
β̇
(z) thus far. For the choice of ∂̄X α̇

β(z, z̄) in
eq. (4.7), λ†

β̇
(z) is also proportional to the vector in eq. (4.9), with a non-zero component

λ†1(z). This is because it is a zero eigenvector of the transpose of the matrix, ∂̄X α̇
β(z, z̄).

However, given the second incidence relation in eq. (4.3), we see that µ†1(z) = V (z)λ†1(z).
Since the branching behaviour at the insertions, which is determined by the spectral flow, is
the same for both sets of twistor fields (λ†

β̇
(z), λβ(z)), this implies that they are determined

by the same covering map. Thus the same polynomials PN (z) and QN (z) determine µ†1(z)
and λ†1(z) respectively. Therefore these are not independent degrees of freedom.

We expect the general solution to be determined by double the number of degrees of
freedom of the special kinematic setup. In other words, there will now be two λβ(z) and the
corresponding two µα̇(z). And we expect the λ†

β̇
(z) and µ†α(z) not to be independent of the

former. This will be studied elsewhere [39]. In the next section, we will use the restricted
covering maps of this section to show how it reproduces the Yang-Mills propagators in a
very natural way which parallels that in the AdS3/CFT2 case [11].

9This is true for a generic vertex operator. However, for the BPS highest weight state the branching is of
order wi due to additional mode annihilation. We thank M. Gaberdiel for bringing this to our attention.
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5 Relation to Feynman diagrams in gauge theories

Consider the correlation function of n gauge invariant operators O(wi)(xi) (made out of
wi ‘letters’ or singletons) in free SU(N) Yang-Mills theory, in the large N limit. For
concreteness, we will assume we are working with N = 4 SYM and the O(w) are built from
w scalar fields. Then

Gn({xi}) = 〈O(w1)(x1) · · · O(wn)(xn)〉planar =
∑
{nij}

C{nij}
∏
(i,j)

(
1
x2
ij

)nij

(5.1)

is simply given in terms of sums of products of the individual propagators
(

1
x2

ij

)nij

, where
nij = nji denote the number of (homotopic) Wick contractions between the pair of vertices
at positions (xi, xj). Here C{nij} are combinatorial factors counting various planar diagrams,
whose precise form is inessential for what we are about to describe. We also have the
constraints on the {nij} ∑

j

nij = wi , (5.2)

holding for each vertex (i). Each of the contributions in eq. (5.1) corresponds to a planar
Feynman graph with n vertices and nij homotopic edges between the pair (ij) of vertices.
Thus there are a total of 1

2
∑
i,j nij = 1

2
∑
iwi edges in the graph.

In AdS3, the correlator of twisted sector fields corresponding to eq. (5.1) was given
by a sum over contributions associated to different covering maps in the Lunin-Mathur
description [27]. These, in turn were associated [28] in a one to one way with a set of
Feynman diagrams which captured the covering map data, as briefly recalled in appendix B.
Here we want to do something parallel, but in the opposite direction, in a sense. Namely,
we would like to associate a covering map from the worldsheet for each familiar Feynman
diagram contribution. We will see that, at least for the restricted kinematic configurations
of the previous subsection, we will have an analogous picture.10 Each graph will therefore
correspond to a certain point in the moduli space of the closed string theory (which admits
this covering map with specified branching data). We will see, via a connection of the
Schwarzian of this covering map to the unique Strebel differential at that point in the
moduli space, that this association of Feynman graphs to closed string worldsheets is as per
the Strebel prescription of [31, 34]. This is also in parallel to the AdS3/CFT2 case as in [11]
— see appendix B and specifically figure 8. And very strikingly, the weight, associated to
each Feynman diagram, coming from the propagators in eq. (5.1) can be reproduced in
terms of the area of the worldsheet in the so-called Strebel gauge [35], again in parallel to
the AdS3 case [11]. Let us now describe how this comes about.

5.1 Two point function

We start with the simplest correlator, a two point function. Then we can always choose
the two points (xi, xj) to lie in a specified plane on the boundary of the AdS5. Since we

10As mentioned, placing all the n-points (xi) in a 2d plane is always possible for n = 2, 3, 4, so this is
really a special choice only for five and higher point functions.
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are considering scalar fields, we can take these to be the highest weight BPS state in the
SYM theory corresponding to the w-spectrally flowed vacuum sector |0〉w [1, 2] (together
with the conjugate field). We will view the corresponding states on the worldsheet to be
inserted at z = (0,∞), respectively, without loss of generality. For such a correlator, as
discussed in the previous section, the classical twistor field will have branching of order w
at z = (0,∞) (see footnote 9). The corresponding covering map in eq. (4.13) is then fixed
(after absorbing a constant into a rescaling of z) to take the form

V (z) = Vj z
w + Vi

zw + 1 , (5.3)

where Vi is the complex coordinate in the (1, 2) plane corresponding to xi (see below
eq. (4.13)). This corresponds to the polynomials in eq. (4.11) and eq. (4.13) taking the values

Pw(z) = Vj z
w + Vi ; Qw(z) = zw + 1 . (5.4)

From the point of the view of the twistor fields eq. (4.11), taking into account the weight
half of the spinor fields, we see that we are exciting only the wedge modes with r = ± (w−1)

2
as appropriate for the highest weight BPS state (and its conjugate).

As we will shortly see, it will be convenient to view the covering map in coordinates
z = e2πi uw which maps the vertical strip (0 < Reu ≤ w) onto the sphere such that z = (0,∞)
are images of u = ±i∞, respectively, on the strip. In terms of these coordinates the covering
map takes the form

Γ(u) ≡ V (z(u)) = Vi + Vj
2 + Vi − Vj

2i tan(πu) . (5.5)

In this form, we now observe that this is essentially the unique map for which the Schwarzian
is a constant:

S[Γ(u)] = Γ′′′

Γ′ −
3
2
(Γ′′

Γ′
)2

= 2π2 . (5.6)

At the same time, we know that the unique Strebel quadratic differential on the strip with
poles only at u = ±i∞ is also just du2. So we see that, as in [11] (cf. eq. (6.5) there), the
Strebel differential on the worldsheet is identified with the Schwarzian of the covering map.

φS(u)du2 = 1
2π2S[Γ(u)]du2 . (5.7)

Note that the Schwarzian also transforms as a quadratic differential and hence this is a
coordinate independent statement. Indeed, in terms of the coordinate z, we have the Strebel
differential

du2 = − w2

4π2
dz2

z2 , (5.8)

which has double poles, as expected at z = 0,∞ with “residues” ∝ w.
This identification enables us to interpret this worldsheet as that corresponding to

the Feynman diagram associated to this two point function. Then the strip of width w

is nothing other than the w double line edges glued together. This Strebel prescription
of [31, 34, 35] was seen to be also realised in the large wi limit in the case of AdS3/CFT2
in the tensionless regime.
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− iL

+ iL

zj

zi

w

Figure 2. A vertical strip of width w in the u-plane. Regulators at u = ±iL are shown.

We can go further and look at the Nambu-Goto area of the worldsheet in the metric
induced by the Strebel differential. This had also entered into the weight associated with
the correlator in AdS3 [11]. The area is simplest to compute in the u coordinates. It is
just the area of the strip. The width is proportional to w. However, the length is formally
infinite. This is a reflection of the UV divergence of the field theory. To exhibit this, we
put cutoffs −L ≤ Im u ≤ L with L� 1. We now denote

|Vi − Γ(u = iL)| = |Vj − Γ(u = −iL)| = ε (5.9)

where ε is a short distance cutoff in spacetime. Using the behaviour

i tan u = ∓
(
1− 2 e±2iu

)
, u→ ±i∞, (5.10)

we find for the covering map eq. (5.5) that

ε = |Vi − Γ(u = iLi)| = |Vi − Vj | exp(−2πL), L→∞ . (5.11)

In other words,

L = 1
4π ln

(
x2
ij

ε2

)
, (5.12)

where we have used |Vi − Vj |2 = (xij)2. We then see that the (regulated) area of the strip
in Strebel gauge is AS = 2Lw. Hence, the natural Nambu-Goto weight

e−2πAS = ε2w
(

1
x2
ij

)w
. (5.13)
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We reproduce the propagator of the free gauge theory simply via the area of the string
worldsheet in the special Strebel gauge we are working in. Note that the ε dependence in
the answer is just a multiplicative renormalisation that can be absorbed as usual.

5.2 Multi point correlator

We have seen that for the two point function, we can reproduce the correct propagator
eq. (5.13) from the Strebel area of the Strebel diffferential, given by the Schwarzian of the
covering map eq. (5.3) as in eq. (5.8). To generalise to a multi-point correlator, we will use
the results of [11], restricting to the special kinematic configuration where all the n-points
are in the same plane. In the regime of large wi, which we are considering, the covering
maps with specified branching data (xi, wi) were explicitly characterised in terms of a
spectral curve for a Penner-like matrix model. The spectral curve, and thus the covering
map, was determined in terms of a set of integers nij obeying the constraint eq. (5.2). Each
such covering map was associated with a Feynman diagram with n vertices with wi double
lines emanating from each of the vertices. The nij were the number of edges between the
pair of vertices (i, j).

Furthermore, it was argued in [11] that to leading order (i.e. for large wi), this spectral
curve, given by the Schwarzian of the covering map, was, rather remarkably, proportional
to the unique Strebel differential on the worldsheet with specified Strebel lengths nij . The
Feynman-’t Hooft diagram associated to the covering map was then simply the Strebel
construction of the closed string worldsheet, with n punctures, formed from gluing strips
together as in the general prescription of [31, 34, 35].

All these considerations go through in our present context of a restricted kinematic
configuration. We will therefore use the connection between the Strebel differential and
the Schwarzian of the covering map to locally describe the covering map. Thus, we will
consider the worldsheet, which admits a covering map, to be comprised of vertical strips of
width nij which connect the pair of worldsheet points (zi, zj). The Strebel differential has
no poles or zeroes on this strip, except at the boundaries and hence we can find a local
coordinate u(ij) on this strip in which it is just du2

(ij). The Schwarzian of the associated
covering map Γ(u(ij)) is a constant. Given that the covering map must interpolate (as
u(ij) → ±i∞) between the space time points with planar coordinates Vi and Vj , this fixes
the covering map in this coordinate chart to be as in eq. (5.5).

Γ(u(ij)) = Vi + Vj
2 + Vi − Vj

2i tan(πu(ij)) . (5.14)

Note that this is the covering map on a local patch of the Riemann surface. To obtain the
full covering map, one will have to glue together these maps in different patches. There
is a Strebel differential φS(z)dz2 (with given Strebel lengths nij) which takes the form(
du(ij)(z)

dz

)2
dz2 in each strip and

φS(z)dz2 ∼ − w2
i

4π2
dz2

(z − zi)2 (5.15)

in the vicinity of the insertions zi. The covering map is then obtained by gluing together
the different patches u(ij)(z). See figure 3.
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2πnij

wi

zi

zj

Figure 3. The local neighbourhood near a double pole of the Strebel differential — where strips
such as in figure 2 are glued together. Compare with the middle picture of figure 1.

However, for the purpose of obtaining the Strebel area, we will not really need the
global covering map or Strebel differential. We simply add up the areas of each of these
strips, appropriately regularised. Given that in each strip the covering map is given by
eq. (5.14), we just repeat the considerations of the previous subsection. We thus obtain a
regularised strip of width nij — the Strebel length — and vertical size

2Lij = 1
2π ln

(
x2
ij

ε2

)
, (5.16)

with ε again being a short distance spacetime regulator as in eq. (5.9). Thus the Strebel
area (Aij = 2Lijnij) of each such strip gives a Nambu-Goto weight

e−2πAij = ε2nij

(
1
x2
ij

)nij

. (5.17)

As before, we absorb the regulator dependence in a multiplicative renormalisation of the
corresponding YM operators.

We therefore conclude that the worldsheets weighted with the Nambu-Goto weight in
Strebel gauge give rise to the individual propagator contributions to the Feynman diagram
for the Yang-Mills correlator in eq. (5.1). The sum over the differrent terms in eq. (5.1) is
now interpreted as a sum over different points in the moduli space which admit covering
maps. These are specified by different numbers {nij} of wick contractions or equivalently,
from the closed string point of view, the integer Strebel lengths characterising these points
on moduli space.

6 Concluding remarks

In this work, we have begun the task of pushing the proposal of [1, 2] beyond that of the
agreement of the spectrum. Our goal here was to develop a geometric picture of the twistor
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description and see how far this can reproduce the correlators of free super Yang-Mills.
This needs to be taken further and in a more systematic way at the level of the quantum
correlators. Nevertheless, we already see many striking elements, through our analysis
of classical configurations, which we expect will hold exactly in the full description. In
developing this picture, we have also fleshed out the covering map description of AdS3/CFT2
in terms of the worldsheet twistor fields. The resulting classical twistor configurations are
seen to have only the wedge modes excited as expected from the fact that these are the
physical modes of the string theory after gauge fixing (as in section 5 of [2]).

We then saw that this geometric picture admits a natural generalisation to AdS5. We
described the natural set of incidence relations that the classical worldsheet ambitwistor
configurations should satisfy. Imposing euclidean reality conditions allowed us to solve for
the AdS5 spacetime string configurations in terms of the ambitwistor fields. Restricting
to boundary correlators which lie on a two plane, we could write down the solutions,
as in AdS3, in terms of holomorphic covering maps with the right branching behaviour.
The corresponding twistor fields are then essentially polynomials, again supporting the
identification of the physical modes with the finite number of wedge modes [1, 2]. We take
this as a robust indication that the wedge twistor modes are indeed the crucial physical
degrees of freedom in the tensionless limits of strings on both AdS3 and AdS5. It will, of
course, be important to corroborate this conclusion from a first principles worldsheet analysis.

Furthermore, for this kinematic configuration, we found that the explicit covering map
is associated with the special integer points on the moduli space (‘arithmetic curves’). This
is because the Schwarzian of the covering map turned out to be the Strebel differential
(as for AdS3/CFT2, see figure 8). The corresponding Strebel graph (or more precisely, its
dual) is associated to the Feynman diagram of the free Yang-Mills theory as per [31, 34].
This realises the picture of open-closed string duality of [29–31], associating individual
’tHooft-Feynman diagrams (open strings) with closed string worldsheets. One of the new
things we learnt is that the Nambu-Goto weight (the area in Strebel gauge) associated with
each such worldsheet is precisely the free Yang-Mills propagator (after proper regularisation).
This is, to us, compelling evidence that the Strebel construction paves the path between
perturbative field theories and closed string worldsheet theories in broad generality.

There are a number of questions which merit further investigation, which have mostly
been mentioned already. Perhaps the most important of them is to place the stringy AdS5
twistor incidence relations on a firm footing, from the standpoint of worldsheet correlators,
as in [10]. The exact nature of the spacetime covering maps when one goes away from our
special kinematic configuration is another important point to understand better. This will
begin to kick in at the level of 4-point functions. As mentioned, the maps Xαβ̇(z, z̄) are
now holomorphic in a subtle way, in there being locally a holomorphic eigenvector. Can we
still use the power of holomorphy and constrain these maps? The radial profile of these
configurations, which are infinitesimally near the boundary, would also be interesting to
understand and should correspond to some kind of effective Liouville mode on the worldsheet.
We note that the picture of the worldsheet configurations is somewhat like that described
in [6]. The connection to the Feynman diagrams for these more general configurations also
needs to be worked out. Can we, for instance, see the detailed spin dependent numerators of
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the Feynman weights, for a general correlator, from the Strebel construction for the twistor
worldsheet? It would be very nice to develop a general dictionary for the usual Feynman
rules, that we can expect to hold in any open-closed string duality in the perturbative field
theory limit.
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A Conventions

The spin group SO(4,C) of complexified Minkowski space (denoted as MC) is locally
isomorphic to SL(2,C) × SL(2,C). Given a four-vector Tµ = (T 0, T 1, T 2, T 3), we can
represent it in terms of Pauli matrices σµαα̇ as

Tαα̇ = 1√
2
Tµσαα̇µ =

[
T 0 + T 3 T 1 − iT 2

T 1 + iT 2 T 0 − T 3

]
(A.1)

where un-dotted and dotted spinor indices {α = 0, 1|α̇ = 0, 1} are in the (1
2 , 0) and (0, 1

2)
representations of SL(2,C) × SL(2,C), known as negative and positive chirality spinors
respectively. Here and below we will be largely following the conventions of [38].

For lowering and raising the spinor indices, we can use the SL(2,C)-invariant tensors,
i.e the usual Levi-Civita symbols

εαβ = εαβ = εα̇β̇ = εα̇β̇ =
[

0 1
−1 0

]
. (A.2)

With this convention for inverse marices εαβ and εα̇β̇ ,

εαβεγβ = δαγ and εαβεαβ = 2 (A.3)

and similarly for dotted indices. Our convention for lowering and raising of spinor indices
will follow the slogan, ‘lower to the right, raise to the left’:

uα = uβεβα and vα = εαβvβ , (A.4)

and similarly for dotted indices. The epsilon tensors define SL(2,C) invariant inner products
in the spaces of both positive and negative chirality spinors separately. We define them as

〈u v〉 := uα vα = uαvβεβα and [ũ ṽ] := ũα̇ṽα̇ = ũα̇vβ̇εβ̇α̇. (A.5)

– 26 –



J
H
E
P
0
5
(
2
0
2
2
)
1
5
0

We note that these inner products are skew-symmetric, i.e 〈u v〉 = −〈v u〉 (and similarly for
the dotted spinors).

The space-time vector xµ in MC has the form, as in eq. (A.1)

xαβ̇ = 1√
2

[
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

]
. (A.6)

Lowering and raising different indices, this becomes

x β̇
α = xγβ̇εγα = 1√

2

[
−(x1 + ix2) −(x0 − x3)
x0 + x3 x1 − ix2

]
; (A.7)

xα̇ β = xα̇γεγβ = 1√
2

[
−(x1 + ix2) x0 + x3

−(x0 − x3) x1 − ix2

]
. (A.8)

This leads to the following identities

xαγ̇x
γ̇
β = 1

2x
2εαβ and xα̇γx β̇

γ = −1
2x

2εα̇β̇ . (A.9)

So far our discussion applies to MC. Taking an euclidean slice of this complexified
space amounts to setting

xαβ̇ = x̂αβ̇ , (A.10)

where

x̂αβ̇ = 1√
2

[
x̄0 − x̄3 −x̄1 + ix̄2

−x̄1 − ix̄2 x̄0 + x̄3

]
. (A.11)

This is because eq. (A.10) implies x̄0 = x0, x̄i = −xi (i = 1, 2, 3) so that x0 = y0, xi = −iyi

(i = 1, 2, 3) with y0, yi ∈ R giving the euclidean metric ds2 = (dy0)2 +
∑3
i=1(dyi)2. Thus

xα̇ β in this Euclidean real slice becomes

xα̇ β = 1√
2

[
−y2 + iy1 y0 − iy3

−y0 − iy3 −y2 − iy1

]
. (A.12)

The stringy generalization of this expression is

X α̇
β(z, z̄) =

[
−V (z, z̄) U(z, z̄)
−Ū(z, z̄) −V̄ (z, z̄)

]
, (A.13)

where we have defined U(z, z̄) = (y0 − iy3)(z, z̄) and V (z, z̄) = (y2 − iy1)(z, z̄).
In figure 4 we have illustrated the double fibration that underlies the twistor corre-

spondence on the Minkowski boundary of AdS5. On the left hand side is the complexified
case while the r.h.s. is after imposing the euclidean reality condition. In the latter, case
the second fibration becomes a bijection between the twistor space and the spin bundle
over real Euclidean space. In figure 5, the analogous figures are shown for the complexified
AdS5 spacetime and after imposing euclidean reality conditions.
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{xα̇
β , λ

β}
(4+1)

{µα̇, λβ}
(3)

xα̇
β

(4)

π2

π1

{xα̇
β , λ

β}
(4+2)

{µα̇, λβ}
(3+3)

xα̇
β

(4)

π2

π1

Figure 4. (Left) Double fibration of the projective spinor bundle {xα̇ β , λβ} ∼= MC × CP1 over the
twistor space {µα̇, λβ} ∼= CP3 and the space-time on the boundary of AdS5, {xα̇ β} ∼= MC. Numbers
in red are the complex dimensions of the corresponding spaces. (Right) The same fibration after
imposing the euclidean reality conditions. Numbers in blue now show the real dimensions of the
corresponding spaces. Note that π2 is an isomorphism in this signature.

{XIJ , λα, λ†
β̇
}

(5+1+1)

{λα, µα̇, µ†β , λ
†
β̇
}{C=0}

(3+3−1)

{XIJ}
(5)

π2
π1

{XIJ , λα, λ†
β̇
}

(5+2+2)

{λα, µα̇, µ†β , λ
†
β̇
}{C=0,D=0}

(6+6−2−1)

{XIJ}
(5)

π2
π1

Figure 5. (Top) Double fibration of the projective spinor bundle {XIJ , λα, λ†
β̇
} ∼= CP5 × CP1 ×

CP1 over the Ambi-twistor space {λα, µα̇, µ†
β , λ

†
β̇
}{C=0} ∼= (CP3 × CP3){C=0} and the “space-time”

{XIJ} ∼= CP5 in the complexified AdS5 bulk. C = 0 refers to the ambitwistor constraint eq. (3.13).
Numbers in red are the complex dimensions of the corresponding spaces. (Bottom) The same
fibration after imposing the euclidean reality conditions which leads to the additional constraint
D = 0 — see eq. (3.33). Numbers in blue are the real dimensions of the corresponding spaces. Note
that π2 is an isomorphism in this signature.

B Feynman covering maps in the symmetric orbifold CFT2

Here we give a brief recap of the computation of the correlators in symmetric orbifold
theories from covering maps [27] and their associated “Feynman graphs”[28]. We then
summarise the results of [11] where it was shown that each such Feynman covering map
(at least, for large twists) can be associated to a point in the closed string moduli space
via the Strebel correspondence, thus realising the open-closed string dictionary of [31, 34].
In the present case, these points are precisely the ones which admit covering maps, and
to which the closed string correlator localises [8, 10]. A new geometric ingredient in the
correspondence, is that the Strebel differential, in the large twist limit, is nothing other
than the Schwarzian of the covering map.
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B.1 Symmetric orbifold CFT correlators and branched coverings

We consider the free symmetric orbifold CFT SymK(S) in the large K limit. The orbifold
theory consists of states from both twisted and untwisted sectors where single cycle twist
fields correspond to the single string states in the bulk AdS3. We will mainly be interested
in the correlators of the ground states of such single cycle twist operators {σwi}

〈σw1(x1) · · ·σwn(xn)〉. (B.1)

Here xi are coordinates on the space-time S2 and the subscripts label the cycle lengths.
A w-cycle twist field σw(x0) induces a w-fold cyclic permutation amongst some of the

K copies of the S theory. The action of this permutation can be geometrised by locally
lifting to a w-fold covering near any of the insertion points. Globally, these can be combined
into a finite degree covering surface Σ described by the covering map

Γ : Σ [z]→ S2 [x] . (B.2)

The covering map has the local branching behaviour in the vicinity of a pre-image zi of an
insertion point xi

Γ(z) ≈ xi + (z − zi)wi . (B.3)
Restricting to genus zero covering surfaces (which corresponds to the leading order in a
1/K expansion of the correlator) fixes the degree N , i.e total number of sheets in the lift of
the correlator, by the Riemann-Hurwitz formula

N = 1 + 1
2

n∑
j=1

(wj − 1) . (B.4)

The prescription put forward by [27] is to exploit this covering map to uplift the
calculation of the correlator to the covering surface. On the covering surface the ground
state twist fields σwi become identity operators, since their associated monodromy is
captured by the covering surface itself. Thus the correlator on the covering surface simply
becomes the vacuum path integral getting contributions only from the Liouville anomaly
term for the conformal factor ∂Γ(z), associated to the covering map.

〈σw1(x1) · · ·σwn(xn)〉 =
∑
Γ
WΓ e

−SL[ΦΓ] , (B.5)

where SL[Φ] is the familiar Liouville action

SL[Φ] = c

48π

∫
d2z
√
g
(

2 ∂Φ ∂̄Φ +RΦ
)

(B.6)

and
ΦΓ = log ∂zΓ(z) + log ∂z̄Γ̄(z̄) .

The sum over Γ in eq. (B.5) is over the finitely many inequivalent covering maps that exist
for specified branching data, namely, {wi, xi}. Specifying these fixes (n− 3) locations zi
on the covering space (three points can be fixed using the global Mobius invariance). In
other words, we get contributions from only discretely many points on the moduli space of
the covering space. In [8, 10], these points were seen to be precisely the ones which give a
non-zero contribution to the worldsheet correlator. This cements the identification of the
covering space with the worldsheet as conjectured already in [27, 28].
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x = Γ(z)

bz bx

(a) (b)

Figure 6. Feynman graph of a symmetric orbifold correlator, formed by the preimage of a Jordan
curve under Γ. Here n = 4, wi = 2 and so N = 3. Figure taken from [11].

.

B.2 Branched coverings and Feynman diagrams for the orbifold CFT2

Next, we recollect the diagrammatic picture of orbifold correlators introduced in [28]. The
basic idea is to consider a double-lined (dashed and solid) Jordan curve on the base sphere
S2[x] passing through the n insertion points xi with the coloured (solid border) face enclosing
x = ∞ (see the right hand figure in figure 6). Then the pre-image of this curve under
the covering map Γ defines a ‘Feynman graph’ for the contribution from this particular Γ
to the correlator (B.5). This graph has bi-fundamental lines (edges) joining the different
vertices (located at the zi). The poles of Γ being pre-images of x = ∞ are now located
in the interior of the N colored faces in the Feynman graph. Thus these bifundamental
Feynman graphs give a bi-colouration of the worldsheet Riemann surface.

The sum over the inequivalent covering maps is nothing other than a sum over the
inequivalent Feynman graphs, subject to the diagrammatic constraints explained in [28].
We have a one to one correspondence of each Feynman graph with a particular worldsheet
(point in the moduli space which admits the corresponding covering map). We will now see
that this association and the geometric picture of gluing up of these Feynman graphs to
form the worldsheet is captured, for large twist wi, by the Strebel construction as in [31, 34].

B.3 The large twist limit and the Strebel construction

While the Lunin-Mathur approach to the orbifold CFT correlators is powerful in principle,
it is difficult in practice since one needs to explicitly obtain the covering map Γ(z). In [11]
it was shown that this problem simplifies in the large N i.e. large twist limit. Let us recap
the main steps in [11]. For an n-point function (B.1) (with zn = Γ−1(xn) =∞), we have

∂Γ(z) = MΓ

∏n−1
i=1 (z − zi)wi−1∏N
a=1(z − λa)2

, (B.7)
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where MΓ is a non-zero constant. Following [41], the condition that the λ are simple poles
of Γ(z) leads to N “scattering equations”

n−1∑
i=1

wi − 1
λa − zi

=
N∑
b 6=a

2
λa − λb

, (a = 1, . . . , N) . (B.8)

In principle, these determine the poles {λa} in (B.7) and therefore the covering map (upto
overall additive and multiplicative factors). The crucial observation of [11] was that, in the
limit of large wi, these are the saddle-point equations of a Penner-like matrix model, with
a logarithmic potential. We can then compute the covering map in terms of the ‘spectral
curve’ y0(z) of the matrix model. To leading order in 1

N

1
N
∂ ln ∂Γ = y0(z) . (B.9)

The spectral curve y0(z) is a hyperelliptic curve with cuts formed from the coalesced poles
{λa} of Γ(z) in the large N limit. This curve is therefore specified by 2(n − 3) numbers
which are the A and B-cycle periods around the cuts. These parameters serve as the free
moduli characterizing the different covering maps that contribute to the original correlator.

Diagrammatically, the situation is as shown in figure 7. The coalescing poles form
transversal cuts across the edges of the original Wick contractions between vertices of
the Feynman graph (see the right hand figure in 7). Thus the cuts of the spectral curve
correspond to the edges of the dual to the original (Skeleton) Feynman graph. The A- and
B-cycle periods of the spectral curve simply count the number of eigenvalues i.e. poles. This
number, for large twist, is simply given by the number of Wick contractions of the edges
(see left figure in 7): ∮

Cij

dz

2πi y0(z) = nij
N

, (B.10)

where nij is the number of Wick contractions in the edge connecting i-th and j-th vertex.
Note that in the strict large N limit, these periods can take arbitrary real values (upto an
overall scaling).

Rather remarkably, the quadratic differential formed from the spectral curve −y2
0(z)dz2

− y2
0(z)dz2 ≡ 4π2φS(z)dz2 (B.11)

defines a Strebel differential φS(z)dz2, a quadratic differential holomorphic everywhere
except with double poles at n marked points zi such that all the “lengths” between its
zeroes {ak} are real

lkm =
∫ am

ak

√
φS(z) ∈ R+ . (B.12)

The latter condition is clearly satisfied due to eq. (B.10). Each Strebel differential defines a
Strebel graph whose vertices are the zeroes of the differential and edges are trajectories
connecting these zeroes such that the length of these trajectories are real (See figure 1).
From our construction, we identify the Strebel graph corresponding to a covering map to the
dual of the Feynman graph of that covering with its edges as the cuts of the spectral curve.
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jth vertex

ith vertex

∮
Cij

dz

2πi
y0(z) =

nij

N

Cij

Figure 7. (Left) The poles of the covering map coalesce to form cuts across the edges of the
Feynman graph where the period integral counts the number of Wick contractions. (Right) Feynman
graph and it’s dual for the four-point function of each operator with twist two. Figure taken
from [11].

The significance of this connection lies in the theorem of Strebel [32], which states, for every
Riemann surface Σg,n with genus g and n marked points where n > 0 and 2g + n > 2, and
any n specified positive numbers (w1, . . . , wn), three exists a unique Strebel differential.
Thus the Strebel lengths parametrise the moduli spaceMg,n. We can therefore associate to
each Strebel graph with its lengths, and thus Feynman graphs with fixed number of Wick
contractions, to a given point in the moduli space.

In other words, in the large twist limit (with specified twists) (w1, . . . , wn), corresponding
to each covering map specified by the periods of the A and B-cycles (or lengths of the edges
of the Strebel graph) there exists a point in the (decorated) moduli space of the n-punctured
sphereM0,n. The sum over coverings defining the symmetric orbifold correlator in eq. (B.5)
goes over to an integral covering this moduli space exactly once, see figure 8.

The Lunin-Mathur weight of the Liouville action for the conformal factor also has a
natural interpretation from the point of view of the worldsheet picture. One finds [11]

SL[Γ] = N2

8π

∫
d2z|φS(z)| = 1

4π

∫
d2z

∣∣S[Γ]
∣∣ . (B.13)

The first equality tells us that the action weighting each covering map is given by the
Strebel area i.e. the worldsheet area when we fix the worldsheet metric to be in Strebel
gauge ds2 = |φS(z)|dzdz̄ [35]. In the second equality, we have used the identification of the
Strebel differential and the Schwarzian,

4π2φS(z) = 2
N2S[Γ] , (B.14)

which holds in the strict large N limit. As we saw in section 5, such an identification holds
in the case of AdS5 too, in the special kinematic configuration considered there.
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Matrix model 
analysis

In large twist limit

Dual graph

Strebel’s theorem

Worldsheet 
analysis

Covering map 
contribution to 

twist correlators

Spectral curve 
with cuts

Schwarzian of the 
covering map

Strebel 
differential

Strebel graph

Feynman graph

“Integer point” 
on moduli space

Worldsheet 
contribution localised 

on these points

Figure 8. Flowchart explaining the general logic of how a field theory correlator directly maps onto
a worldsheet integral over string moduli space where each Feynman diagram gets associated with a
point on the moduli space. This is seen in the middle and right hand verticals of the figure. The left
hand side indicates the specific way the equivalence is seen in the AdS3 case, where it proceeds via
an auxiliary matrix model. This tool bridges the field theory and the string theory in this case.
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