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ABSTRACT
We recently proposed effective normal modes for excitonically coupled aggregates that exactly transform the energy transfer Hamiltonian
into a sum of one-dimensional Hamiltonians along the effective normal modes. Identifying physically meaningful vibrational motions that
maximally promote vibronic mixing suggested an interesting possibility of leveraging vibrational-electronic resonance for mediating selective
energy transfer. Here, we expand on the effective mode approach, elucidating its iterative nature for successively larger aggregates, and extend
the idea of mediated energy transfer to larger aggregates. We show that energy transfer between electronically uncoupled but vibronically
resonant donor–acceptor sites does not depend on the intermediate site energy or the number of intermediate sites. The intermediate sites
simply mediate electronic coupling such that vibronic coupling along specific promoter modes leads to direct donor–acceptor energy transfer,
bypassing any intermediate uphill energy transfer steps. We show that the interplay between the electronic Hamiltonian and the effective mode
transformation partitions the linear vibronic coupling along specific promoter modes to dictate the selectivity of mediated energy transfer
with a vital role of interference between vibronic couplings and multi-particle basis states. Our results suggest a general design principle
for enhancing energy transfer through synergistic effects of vibronic resonance and weak mediated electronic coupling, where both effects
individually do not promote efficient energy transfer. The effective mode approach proposed here paves a facile route toward four-wavemixing
spectroscopy simulations of larger aggregates without severely approximating resonant vibronic coupling.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0088855

I. INTRODUCTION

Impulsively excited vibrational wavepackets often accompany
ultrafast electronic energy or charge transfer dynamics as mere
spectators and could be understood within the Born–Oppenheimer
approximation. However, specific vibrational motions can some-
times strongly couple with electronic motions, causing the break-
down of the adiabatic framework to drive ultrafast internal
conversion between electronic states. Such examples may include
initial steps of photosynthesis,1 photochemistry of vision,2 and phase
transitions in quantum materials.3 Identifying vibrational motions
that promote vibronic mixing opens an interesting avenue of driving
state selective photochemistry, such as inhibiting “promoter” modes
to extend the excited state lifetime4 or driving promoter modes to
modulating charge transfer in organic crystals,5,6 transition metal
dichalcogenides,7 and donor–bridge–acceptor molecules.8

Path-integral9 and effective mode schemes10,11 can, in princi-
ple, treat all intramolecular Franck–Condon (FC) vibrational modes
of the system on the same footing to provide a numerically exact
microscopic view of quantum decoherence even for molecular
aggregates. While the calculations of population transfer rates,
including the full multidimensional vibrational subspace, are now
feasible, calculations of spectroscopic signatures of four-wavemixing
spectroscopies, which scale as the fourth power of the number of
basis states, may still be too expensive.

Demonstrations of mode-selective photochemistry suggest that
the differentiability between spectroscopically meaningful spectator
and promoter vibrational motions is desirable for guiding synthetic
design and optical spectroscopy. Promoter modes correspond to
inter- or intramolecular vibrational modes with specific motions
and sometimes definite symmetries, which mix electronic degrees of
freedom to dominate the short-time quantum dynamics.10 Promoter
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modes are, therefore, spectroscopically interesting to identify. Effec-
tive modes constructed by combining several intramolecular FC
vibrations through bilinear couplings11 may not provide a spec-
troscopically meaningful distinction between promoter vs spectator
vibrational modes.

Several theoretical approaches12–14 for simulating quantum
dynamics and four-wavemixing spectroscopies of molecular aggre-
gates have relied on the above distinction to treat promoter modes
explicitly in the system Hamiltonian, while quantum relaxation of
singly excited states due to the rest of the bath is treated using
quantum master equations or symmetric and asymmetric Brownian
oscillators when a symmetry-based distinction15 between singly
excited electronic states is possible. A numerically exact treatment
of the system Hamiltonian of a molecular aggregate with several
singly excited states and vibrational modes of spectroscopic interest
requires an exponentially scaling basis set,40 and it becomes com-
putationally impractical for four-wavemixing simulations, which
further scale to the fourth power of basis set size. This often necessi-
tates a description of vibronic excitons, which relies on the scaling
down vibrational dimensionality of the basis by restricting vibra-
tional excitations on ground electronic states. Such approximations,
namely, the one-particle approximation16 and numerically similar
coherent-exciton scattering approximation,17 are very successful
in describing linear spectroscopic properties of large molecular
aggregates18 and organic thin films.19 However, we have recently
shown40 that specific situations such as vibronic resonances20 cause
multi-particle basis states to gain substantial oscillator strength.
The resulting exciton delocalization, vibrational distortion field, and
quantum dynamics cannot be described under such approximations.

The above challenges suggest that the theoretical approaches
that can identify spectroscopically meaningful promoter vibrational
motions, reduce the vibrational dimensionality of the multidimen-
sional energy transfer problem, and treat non-adiabatic vibronic
coupling exactly can serve as a useful tool to guide the molecular
design and spectroscopic experiments and simulations. Early theo-
retical treatments21–23 of energy transfer in a dimer have analyzed
the problem in terms of physically motivated tuning and correlation
effective modes, akin to longitudinal and totally symmetric deforma-
tions of a quantum particle in a two-dimensional (2D) box potential.
For a given FC active intramolecular vibrational mode, q̂A and q̂B on
molecules A and B, respectively, the dimer energy transfer Hamil-
tonian is transformed as a sum of separable 1D Hamiltonians, that
is, Ĥ(q̂A, q̂B) = Ĥ(q̂+) + Ĥ(q̂−). Tiwari et al. have shown20,24,25 that
anti-correlated motions along q̂− tune the singly excited state energy
gaps and are solely responsible for driving non-adiabatic energy
transfer between vibronically resonant states. The q̂− mode is akin to
the tuning vector in conical intersections that defines the direction
of Hellmann–Feynman forces26 in non-adiabatic transitions. Cor-
related motions along q̂+ do not tune singly excited state energy
gaps, play no role in vibronic mixing, and can be treated under
the adiabatic framework. As far as the role of vibronic coupling in
influencing the dynamics and spectroscopic signatures is concerned,
the dimensionality of the problem is reduced to Ĥ(q̂−) while still
treating vibronic coupling exactly.

The above analysis of dimer energy transfer in terms of phys-
ically intuitive tuning and correlation vibrational modes motivated
our earlier work27 where an extension of these effective modes to
larger molecular aggregates was proposed. Taking the example of a

3-mer, we showed that a linear combination of correlation and tun-
ing modes akin to the dimer and subsequent Gram–Schmidt orthog-
onalization yields physically meaningful effective normal modes of
the aggregate—a global correlation mode that does not tune any
energy gap, a global tuning mode that tunes all nearest-index energy
gaps, and a second-nearest-index tuning mode. The above transfor-
mation preserves the vibrational frequencies of the system and does
not yield bilinearly coupled effective modes. Interestingly, express-
ing the Hamiltonian in terms of the effective modes leads to a sum
of 1D Hamiltonians, one along each such effective mode, such that
the role of individual effective modes in promoting vibronic mixing
can be individually analyzed. The new physical insights gained from
this approach suggested an interesting design principle of leveraging
vibronic resonances to mediate selective energy transfer to the
acceptor in the presence of an intermediate site.

Here, we extend the effective-mode approach and its applica-
tions. We elucidate the iterative structure of effective normal modes
for successively larger aggregates. Starting from specific 3-mer exam-
ples, it is analytically shown that the effective mode transformation
partitions the linear vibronic coupling along specific modes with
a crucial role played by the electronic Hamiltonian. The design of
the electronic Hamiltonian ultimately selects the promoter mode
by rearranging vibronic couplings to constructively interfere only
along specific effective modes. The physical intuition so gained is
utilized to generalize the idea of selectively mediating energy trans-
fer to Λ-type systems where multiple intermediate sites and uphill
energy transfer steps may be involved. We consider the special case
of vibronic resonance between the donor and acceptor excitons,
now actively investigated in several photosynthetic proteins,1 singlet
exciton fission28 candidates, and organic polymers.29 We show that
the interference between resonant vibronic couplings along differ-
ent effective modes is phase-independent and always leads to larger
overall couplings. This interference plays a vital role in determin-
ing the selectivity of mediated energy transfer between the donor
and the acceptor by suppressing weaker vibronic couplings with
intermediate sites. The intermediate sites simply mediate weak elec-
tronic coupling between electronically uncoupled donor–acceptor
sites. As long as the donor and acceptor excitons are vibronically
resonant, the intermediate uphill energy transfer steps are bypassed
to selectively mediate transfer to the acceptor. Our results establish
the generality of this design principle for enhancing energy transfer
through synergistic effects of vibronic resonance and weak medi-
ated electronic couplings, where both effects by themselves cannot
promote efficient energy transfer. Similar mechanisms may be oper-
ative in energetically disordered molecular aggregates with a large
number of FC active vibrations, such as photosynthetic proteins
and organic photovoltaic thin films. Our results point to a vital
role of multi-particle basis states in describing such mechanisms
and provide a feasible route toward four-wavemixing spectroscopy
simulations of larger aggregates without severely approximating
resonant vibronic coupling.

This article is organized as follows. Section II formalizes the
effective mode approach, highlighting its iterative nature, and con-
cludes with a physically intuitive picture for the nature of derived
effective modes. Section III applies the effective mode formal-
ism to identify promoter modes in general Λ- or V-type systems
along which vibronic coupling strengths are maximized. Section III
also illustrates the interesting effects such as the role of Ĥelec in
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determining the promoter mode, the interference between vibronic
couplings along different effective modes, and its role in determin-
ing the selectivity of mediate energy transfer. Section IV presents the
conclusions.

II. THEORY
Our recent work generalized the pairwise tuning and corre-

lation modes of an excitonic dimer to an N-mer with total V
intramolecular FC active modes on each molecule. The dimer tuning
and correlation modes, q̂− and q̂+, respectively, could be combined
to give global tuning and correlation modes, Q̂− and Q̂+, respec-
tively. A Gram–Schmidt orthogonalization process leads to the
residual modes such that the NV-dimensional Hamiltonian can be
written as a sum of 1D Hamiltonians along the effective modes Q̂+

and Q̂− and NV − 2 residual modes R̂. Below, we will sketch the
derivation of an N-mer, and in the process, we will elucidate the
iterative nature of the scheme for successively larger aggregates.

A. Hamiltonian
Each molecule of the aggregate is assumed to be a two elec-

tronic level system with site basis states ∣G⟩ and ∣E⟩. The molecules
are electronically coupled through Coulomb interactions between
their ground and excited state transition dipoles. The resulting elec-
tronic basis for the aggregate is constructed from a tensor product
of the site basis of each molecule. This results in a set of N singly
excited electronic basis states, where N = 5 for the case of the 5-mer
considered here. A singly excited state ∣I⟩ denotes the state ∣GAGB
. . .EI . . .GE⟩, where only the Ith molecule is electronically excited.
The purely electronic part of the singly excited Hamiltonian of the
aggregate is given by Ĥelec = ∑I[εI ∣I⟩⟨I∣ + ∑L<IJLI(∣L⟩⟨I∣ + ∣I⟩⟨L∣)],
where the Coulomb coupling matrix element JLI between any two
singly excited electronic states ∣L⟩ and ∣I⟩ is a real quantity. εI is
the electronic site energy for state ∣I⟩. It is assumed that only the
Coulomb integrals contribute to electronic coupling with negligible
electron exchange, although the approach described below can be
extended to include charge transfer couplings as well.27 Note that no
specific spatial arrangement and mutual electronic couplings have
been assumed.

A common set of V intramolecular vibrational modes are
present on the ground and excited electronic state of each molecule
such that dIj denotes the FC displacement on the singly excited elec-
tronic state of the Ith molecule along the jth mode. Note that there
is no loss of generality because the set of FC displacements on each
molecule can be different. The dimensionless vibrational coordinate
for the jth mode on molecule I is denoted by the unit vector operator
q̂Ij . The corresponding nuclear momentum unit vector operator
is denoted by p̂Ij . The ground electronic state Hamiltonian of the
aggregate is given by ĤG = ∑I∑V

j=1
1
2 ωj(p̂2

Ij + q̂2
Ij). We can then write

the singly excited electronic state Hamiltonian, ĤN for the case of an
N-mer, as

ĤN = Ĥelec +∑
I

⎡⎢⎢⎢⎢⎣
ĤG −

V

∑
j=1

ωjdIj q̂j

⎤⎥⎥⎥⎥⎦
∣I⟩⟨I∣. (1)

The energy is defined in frequency units. Indices I and L run
over the molecules A to E of the 5-mer. Linear vibronic coupling

in the first term of Eq. (1) has contributions from FC displace-
ments on the excited state of molecule I along all the intramolecular
vibrational coordinates. Note that the vibrational subspace in ĤG,
and within each electronic subspace in an N-mer singly excited
Hamiltonian ĤN , has a dimensionality of N × V . Truncating the
Hilbert space spanned by the vibrational basis states such that only
nvib,g and nvib,e vibrational quanta are allowed on the ground and
excited electronic states, respectively, the number of basis states
in a numerically exact description of energy transfer scale rapidly
as N.(ne,vib)V.(ng,vib)V(N−1). One-particle approximation (1PA),16,30

numerically similar to coherent-exciton scattering (CES) approx-
imation, where ground electronic state vibrations are restricted
to only the lowest vibrational state, can substantially scale down
the basis set size. Such approximations or their variants such as
2PA have been successfully used to describe linear absorption and
emission line shapes in vibronic dimers,31,32 J- and H-aggregates18

of organic thin films,19 etc. Similar approximations have been
employed33–38 to describe quantum dynamics of vibronic excitons.
We have recently shown? that basis sets with restricted ground state
vibrations may not accurately capture the quantum dynamics aris-
ing from vibronic resonances,20 which are currently an active subject
of investigation39 because of the exciting possibility of vibronically
enhanced energy and charge delocalization.

B. Effective normal modes
The iterative nature of effective normal modes can be under-

stood through mathematical induction by deriving effective modes
for successively larger aggregates starting from a dimer. In our ear-
lier work,27 we derived effective modes for a 3-mer. Below, we build
up from this work to derive a set of effective normal modes for a
5-mer, corresponding to each set of the total V intramolecular vibra-
tional modes per molecule. In doing so, we will highlight the general
structure and the FC displacements associated with these delocalized
normal modes.

The singly excited 5-mer Hamiltonian Ĥ5 is five-dimensional
in the starting intramolecular vibrational basis. For any given set j
of intramolecular modes with frequency ωj on each molecule, we
will assume equal FC displacements for simplicity. That is, dIj = dj
for any molecule I. Since only linear transformations are involved
in the derivation, such a simplification does not limit the generality
of the method. For example, see the derivation of effective normal
modes with unequal FC displacements for the case of a 3-mer in
Sec. S1.1. Minor relative differences in vibrational frequencies and
FC displacements in disordered aggregates such as a photosynthetic
protein will only manifest on longer timescales.

Using the definitions in Eqs. (2) and (3) of Ref. 27 for the case
of an N-mer, the jth set of global tuning and the correlation vectors,
Gj and Cj, respectively, are linear combinations of all the pairwise
tuning (gpn) and correlation vectors (cp) and written compactly as

Gj.q̂ = mpn
j .(ĝpn

j .q̂),
Cj.q̂ = np

j .(ĉp
j .q̂). (2)

Here, index pn denotes the N − 1 nearest-neighbor combinations
and index p denotes all the possible N(N − 1)/2 pairs of sites.
Note that the usage of term nearest-neighbor should be interpreted
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in terms of nearest indices and not in terms of spatial proxim-
ity. For the case of the global tuning vector for a 5-mer, mpn

j

= (mAB
j , mBC

j , mCD
j , mDE

j ). For the case of the global correlation vec-
tor, np

j = (n
AB
j , nAC

j , nAD
j . . .nDE

j ). Both denote a vector of unknown
coefficients that dictates the weightage of pairwise tuning (corre-
lation) modes toward the global tuning (correlation) mode. Equa-
tion (2) represents a dot product of this “weighting” vector with
another vector formed by the contributions of pairwise tuning
(correlation) motions toward adjusting the singly excited state ener-
gies of the two sites that form the pair through linear vibronic
coupling. Patra et al.27 showed that the unknown coefficients can be
obtained by imposing intuitive geometric constraints. For example,
the global tuning vector Gj is orthogonal to all second-nearest-
neighbor energy gap tuning vectors. Similarly, the global correlation
vector Cj is orthogonal to all the pairwise tuning vectors in the
system and the global tuning vector Gj. Imposing such constraints
to determine the unknown coefficients and normalizing the result-
ing vibrational modes yield global tuning and correlation modes for
the 5-mer, Q̂+j and Q̂−j , respectively.

As explained by Patra et al.,27 the remaining N − 2 residual
modes are determined by imposing the constraint in each of the
N electronic domains that the total linear vibronic coupling arising
from the jth set of intramolecular vibrational modes remains the
same in the delocalized vibrational basis. Note that this results in
an overdetermined system of N − 2 unknowns with N constraints,
yielding linearly dependent residual modes. This leads to a certain
flexibility in designing the linearly independent residual modes
using Gram–Schmidt orthogonalization (Sec. II C). After orthonor-
malization, the resulting set of effective normal modes for the 5-mer
can be expressed as a linear transformation Qj = U−1

5×5qj, where Qj

= (Q̂+j , Q̂−j , Q̂ACE
j , Q̂AE

j , Q̂BD
j ) is a column vector of the jth set of delo-

calized effective modes for the 5-mer. The superscripts on the three
residual modes indicate the diabatic electronic sites on which the
residual effective mode has FC displacements. The physical meaning
and choice of these residual modes will be discussed in Sec. II C. qj
= (q̂Aj , q̂Bj , q̂Cj , q̂Dj , q̂Ej) is a column vector of the jth set of intramole-
cular vibrational modes. The orthogonal transformation matrix
U5×5, shown in Eq. (S12), transforms the jth set of intramolecular
vibrational modes into delocalized effective normal modes of the
aggregate. A similar transformation U3×3 is shown in Sec. S1.1. Two
crucial points that highlight the generality of the approach should
be noted here: 1. No j subscript on the transformation U is inten-
tional because the same orthogonal transformation is valid for any
set j in the total V sets of intramolecular modes; this is highlighted
schematically in Fig. 1 and discussed in Sec. II C. 2. The coefficients
of orthogonal transformation U also determine the set of FC dis-
placements along the corresponding jth set of delocalized effective
modes in Qj. The set FC displacements for the 3- and 5-mer are
tabulated in Tables S1 and S2, respectively. The derivation of 5-mer
effective modes is detailed in Sec. S1.2.

Overall, the orthogonal transformation UN×N between intra-
molecular and delocalized effective modes allows one to express
the linear vibronic coupling terms of the aggregate Hamiltonian
ĤN in Eq. (1) in terms of the delocalized effective normal modes.
As explained schematically in Fig. 1, this amounts to writing
the NV-dimensional Hamiltonian in Eq. (1) as a summation of
N × V 1D Hamiltonians, one along each effective mode. The 1D

FIG. 1. Effective mode transformation. Effective normal modes for an aggregate
of N molecules each having V intramolecular FC modes. Each set of the total V
set of modes corresponds to a particular set of N effective modes. The effective
modes Q̂+j do not tune any energy gaps and are mere spectators in vibronically
enhanced energy transfer. Other effective modes can tune energy gaps, nearest-
neighbor energy gaps in the case of Q̂− and non-nearest-neighbor in the case of
N − 2 residual modes Q̂ R, to affect short-term non-adiabatic dynamics depending
on how strongly they couple different electronic degrees of freedom. Using the
effective mode transformation, the NV-dimensional energy transfer Hamiltonian
can be written as a sum of N × V 1D Hamiltonians, one along each effective mode.

Hamiltonians for the 5-mer are shown in Eq. (S13). From this
simplified structure, the set of global correlation modes {Q̂+j }V

j=1,
akin to totally symmetric deformation of an N-dimensional box, do
not tune any singly excited state energy gaps in the aggregate and
play no role in mixing the electronic domains in Ĥelec. As shown in
our previous work27 for the case of a 3-mer, in order to ascertain
the role of remaining N(V − 1) modes in promoting vibronically
enhanced energy transfer, significantly faster calculations along the
reduced 1D Hamiltonians can be carried out such that effective
modes that promote vibronic mixing vs those that are mere
spectators could be differentiated. While extensive effective-mode
schemes10 that can treat all the intramolecular vibrational modes on
the same footing have been demonstrated for excitonically coupled
aggregates,11 the unique aspects of the current approach, although
may be only limited to a few spectroscopically observed vibrations of
interest, are that the motions along these effective vibrational modes
are physically interpretable and their frequencies directly relate to
spectroscopic observables. The effective mode structure proposed
here is not bilinearly coupled (orthogonal) and preserves the
vibrational frequencies of the system. Thus, a reduction in the
dimensionality of the vibrational sub-space is made possible by
identifying promoter vs spectator vibrational motions. We have
demonstrated this aspect in our original communication27 and will
further extend that in the current article. Furthermore, as opposed
to approximations40 relying on multi-particle basis set truncation,
the non-adiabatic vibronic mixing and the resulting enhancement
of energy or charge transfer are treated numerically exactly in the
effective mode transformation.

C. Iterative nature of physically meaningful effective
modes

Because the design of the effective normal modes preserves
the vibrational frequencies of the system with no bilinear cou-
plings between modes, an iterative structure for the effective modes
of successively larger aggregates becomes possible. As mentioned
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above, the N electronic domains for N − 2 (to be determined) resid-
ual modes lead to a certain flexibility in constructing the residual
effective modes through Gram–Schmidt orthogonalization. We start
with the case of a 3-mer, where the global correlation mode Q̂+j
does not tune any singly excited energy gap and the global tuning
mode Q̂−j tunes all the nearest-neighbor energy gaps. The only choice
of residual mode turns out to be the mode Q̂AC

j , which tunes the
remaining A–C energy gap or the second-nearest-neighbor energy
gap in the system. The superscript indicates the electronic domains
with non-zero FC displacements along the effective mode.

A general schematic for choosing the residual modes for an
N-mer is shown in Fig. 2(a). Applying this schematic to a 5-mer,
the residual effective modes become Q̂ACE

j , Q̂AE
j , Q̂BD

j . The choice
of residual effective modes fixes the electronic domains in which
the residual mode has zero and non-zero FC displacements. Other
equivalent choices of residual modes are also possible and simply
lead to residual modes with the same set of FC displacements but
on different electronic domains. This is shown in Sec. S1.3. The
knowledge of effective modes and corresponding FC displacements
for smaller aggregates, such as a 3-mer, implies that the unknown
FC displacements along the residual effective modes for a larger
aggregate, such as a 5-mer, are already known. This is depicted in
Fig. 2(b) in the form of color-coding, where modes of similar colors
have the same set of FC displacements with the electronic domains
denoted by the superscripts. The FC displacement along the global
correlation mode Q̂+j is also known – dj/

√
N in each of the N elec-

tronic domains. An important point to also recall here is that for a
given N-mer, the transformation UN×N holds for any set j of the total
V sets of intramolecular FC modes. Thus, for any larger aggregate,
the only unknowns are the FC displacements along the global tuning

mode Q̂−j and along the new residual modes, such as Q̂ACEG
j for the

case of a 7-mer.
Table S3 lists the FC displacements in the diabatic site basis

along all the delocalized effective modes shown in Fig. 2(b). The
derivation of FC displacements in Table S3 follows the above for-
malism and discussed in more detail in Sec. S1. To emphasize the
iterative nature of effective modes, Fig. 3 illustrates the pattern of
FC displacements and the diabatic site potentials along the jth set
of effective modes for a 3-mer and 5-mer with a general Ĥelec.
Figure 3(a) plots the pattern of FC displacements along each effective
mode in the diabatic site basis. The direction and size of the arrow
on top of each site map to the signs and magnitudes of FC displace-
ments on the respective sites. Figure 3(b) plots the diabatic site pot-
entials with the FC displacements along the effective modes shown
on scale with the classical turning points. All diabatic sites have equal
FC displacements along Q̂+ modes such that motions along Q̂+

cause no change in relative energy gaps. In contrast, motions along
Q̂− tune relative energy gaps between nearest-neighbor excitons, but
do not tune the second-nearest-neighbor energy gaps. In the same
fashion, motions along effective modes such as Q̂ ACE do not tune the
relative B–E energy gap. The patterns of FC displacements, including
the sign and magnitude, for the 5-mer effective modes Q̂ AC and Q̂ BD

are identical to those along the 3-mer effective modes Q̂ AC. Simi-
larly, the 5-mer effective mode Q̂ ACE has FC displacements identical
to the 3-mer global tuning mode Q̂−.

From Figs. 2 and 3 and Table S3, it is seen that the transfor-
mation to effective normal modes essentially partitions the linear
vibronic couplings arising from intramolecular FC displacements
unequally along the delocalized effective modes. The effective modes
that are delocalized over more number of sites contribute to smaller

FIG. 2. (a) Schematic depiction of global tuning and residual effective modes for the case of an N-mer. The superscript on the residual modes indicates the electronic domains
with non-zero FC displacements. For any given effective mode, each curved line connecting two electronic domains corresponds to the energy gap tuning vector between
the two domains such that pairwise combinations of all such vectors give rise to the overall effective mode. This set of effective normal modes corresponds to each of the
total V sets of intramolecular vibrations. Subscript j is used to indicate that the jth set is, therefore, suppressed here for clarity. (b) Iterative structure of the effective normal
modes for successively larger aggregates. The form of residual modes is based on the schematic shown in (a). The global correlation mode, Q̂+, has a FC displacement
of 1√

N
in each of the N electronic domains. The global tuning mode Q̂− and the residual modes are color coded to map effective modes, which have identical sets of FC

displacements. The electronic domains with non-zero FC displacements along residual modes are shown in superscripts. The map indicates that several effective normal
modes and FC displacements for a general N-mer are equivalent to effective modes for smaller aggregates. For example, for a 7-mer, the only unknowns are the new colors,
that is, the FC displacements along Q̂− and along the new residual mode Q̂ ACEG.
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FIG. 3. (a) FC displacement patterns on singly excited diabatic electronic sites along the effective normal modes. The sites are color coded to map to the diabatic potentials in
(b). The top and bottom panels correspond to 5- and 3-mer, respectively. The direction and size of the arrow on each site map to the sign and magnitude of FC displacement
on the diabatic electronic site, respectively. The FC displacements are shown in Table S3. (b) 1D slices of singly excited diabatic electronic potentials for a general electronic
Hamiltonian Ĥelec plotted along the effective normal modes for a 5-mer (top) and a 3-mer (bottom). The classical turning points 0, ±1, and ±2 are marked on the horizontal
axis for reference, and the respective FC displacements are shown on the same scale. The dashed vertical lines serve as a guide to connect the minima of each curve to
the horizontal nuclear coordinate and highlight the FC displacements along each effective mode. For ease of visualization, the intramolecular FC displacement on each site
is chosen to be d = √N for an N-mer. For weakly coupled FC vibrations considered here, the effective FC displacements in the diabatic site basis will be a small fraction
of the classical turning points of the zero-point level.

vibronic couplings. For example, compare FC displacements for a
2-mer vs a 7-mer, corresponding to the global tuning mode Q̂− in
Table S3. It may be expected that more delocalized effective modes
influence the vibronic dynamics on longer timescales on the account
of reduced vibronic coupling. However, Secs. III A and III B 1
illustrate the crucial role of the purely electronic Hamiltonian Ĥelec
in ultimately determining the dominant promoter mode by
rotating25,27 the linear vibronic couplings to strongly couple only
specific electronic domains. Section III B 2 discusses that con-
structive or destructive interferences between vibronic coupling
matrix elements27,40,41 arising from different electronic sites, effec-
tive modes, or vibrational frequencies are secondary effects that also
dictate the total vibronic mixing along the promoter effective modes.

III. APPLICATIONS
In Secs. III A–C, the above formalism will be applied to gen-

eralize the concept of mediated energy transfer proposed27 in our
previous work. Using examples of Λ- or V-type aggregates, we will
apply the effective mode approach to identify the dominant pro-
moter modes, which maximize vibronic mixing between excitons.
The knowledge gained will be used to illustrate interesting effects
such as the role of Ĥelec in determining the promoter mode, the inter-
ference between vibronic couplings in determining the selectivity

of mediated energy transfer, and the synergy between weak medi-
ated electronic couplings and vibronic resonances in affecting direct
vibronically enhanced energy transfer skipping intermediate uphill
energy transfer steps.

A. Promoter modes in a 3-mer
We will use the formalism described in Sec. II to identify the

promoter modes in a 3-mer system along which vibronic mixing
between excitons is maximized. As we will see, this understanding is
necessary in order to generalize the idea of mediated energy transfer
to larger aggregates and is made possible through the effective-mode
approach presented here. Section S1 derives the U3×3 transforma-
tion for a 3-mer with unequal intramolecular FC displacements dA,
dB, and dC along any given set of intramolecular vibrational modes
on sites A, B, and C, respectively. The transformation U3×3 connects
the set of intramolecular vibrational modes to the corresponding set
of effective normal modes Q̂+, Q̂−, and Q̂ AC as

⎛
⎜⎜⎜⎜
⎝

q̂A

q̂B

q̂C

⎞
⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
D3dA

− 1
D3DACdAdB

− dA√
d2

A + d2
C

1
D3dB

DAC

D3
0

1
D3dC

− 1
D3DACdCdB

+ dC√
d2

A + d2
C

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

Q̂+

Q̂−

Q̂ AC

⎞
⎟⎟⎟⎟
⎠

. (3)
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Here, D3 =
√

1
d2

A
+ 1

d2
B
+ 1

d2
C

and DAC =
√

1
d2

A
+ 1

d2
C

. Note that the
subscript corresponding to the jth set of FC vibrational modes
has been dropped in Eq. (3) for brevity. As shown in Sec. S1.1,
the FC displacements along the effective modes on each electronic
domain can be derived from U3×3 in a straightforward manner.
Table S1 lists these FC displacements. Expressing the vibrational
part of the Hamiltonian in Eq. (1) in terms of the effective modes,
the vibrational Hamiltonian is split into three 1D Hamiltonians
corresponding to each set j of intramolecular vibrational modes,

Ĥ3 = Ĥelec +∑
j

Ĥ3(p̂Aj , q̂Aj , p̂Bj , q̂Bj , p̂Cj , q̂Cj)

= Ĥelec +∑
j

Ĥ(P̂+j , Q̂+j ) + Ĥ(P̂−j , Q̂−j )

+ Ĥ(P̂AC
j , Q̂AC

j ). (4)

For any given set of modes, the linear vibronic coupling part of the
3-mer Hamiltonian, ĤLV

3 , can then be expressed as a sum of vibronic
coupling Hamiltonians along individual 3-mer effective modes,

ĤLV
3 =

⎛
⎜⎜⎜
⎝

−ωQ̂+d+ 0 0

0 −ωQ̂+d+ 0

0 0 −ωQ̂+d+

⎞
⎟⎟⎟
⎠

+
⎛
⎜⎜⎜
⎝

ωQ̂−d−A 0 0

0 −ωQ̂−d−B 0

0 0 ωQ̂−d−C

⎞
⎟⎟⎟
⎠

+
⎛
⎜⎜⎜
⎝

ωQ̂ ACdAC
A 0 0

0 0 0

0 0 −ωQ̂ ACdAC
C

⎞
⎟⎟⎟
⎠

. (5)

Here, dAC
A and dAC

C are FC displacements along the Q̂ AC effec-
tive mode. These are defined as dAC

A =
d2

A√
d2

A+d2
C

and dAC
C =

d2
C√

d2
A+d2

C

.

As seen from Eq. (5), only Q̂− and Q̂ AC dependent Hamiltonians
tune the diabatic site energy gaps and responsible for mixing elec-
tronic domains in Ĥelec. The extent to which Q̂− and Q̂ AC promote
vibronic mixing crucially depends on the structure of Ĥelec. This
point is illustrated below.

The singly excited 3-mer electronic Hamiltonian is shown in
Fig. 4 and setup such that the donor and acceptor sites are not
directly coupled. For both the cases, the (gray) intermediate site
mediates the electronic coupling between the donor and the accep-
tor. The choice of Δ1,2 and electronic couplings J1,2 is such that
the mediated donor–acceptor electronic coupling is very weak with
minimal direct population transfer between the sites. This Hamilto-
nian can be extended to two general cases depending on site energies
Δ1 and Δ2. For case 1, both energy transfer steps are downhill,
whereas case 2 is a general V-type or a Λ-type system with a com-
bination of uphill and downhill energy transfer steps for donor to
acceptor energy transfer.

In general, each of the 3-mer molecules contains several FC
active vibrational modes. However, ultrafast experiments on a vari-
ety of systems suggest3–6,39,42 a role for specific vibrational modes

in driving ultrafast internal conversion between excited electronic
states. Assuming that a particular vibrational mode of spectroscopic
interest is observed in a 3-mer system, we want to identify the effec-
tive modes, which maximally promote vibronic mixing between
the weakly coupled donor–acceptor sites. Although the 3-mer toy
model used here is rather simple, its merit lies in the ability to
analytically understand the interplay of electronic Hamiltonian and
linear vibronic coupling along the effective modes in eventually
determining which vibrational motions act as promoter modes vs
motions, which do not mix electronic degrees of freedom. The
effective-mode approach presented here makes this possible while
also treating vibrational-electronic mixing numerically exactly. As
we will demonstrate, the physical intuition gained from the analysis
of these simple systems is quite useful when thinking about mediated
energy transfer in larger aggregates.

In order to understand the interplay of promoter and spectator
modes for “downhill” case 1, we will start with the specific choice of
electronic site energies −Δ1 = Δ2 = Δ and couplings J1 = J2 = J such
that the resulting Hamiltonian is analytically diagonalizable. The
zero of energy is chosen to be on the intermediate site. The diagonal-
izing transformation is given by Eq. (S16). Section S2.1 applies this
transformation on the linear vibronic coupling part of the Hamilto-
nian. Since ĤLV

3 is separable along 1D Hamiltonians, the contribu-
tions of Q̂− and Q̂ AC toward vibronic mixing can be individually
analyzed. From Eqs. (S18) and (S19), it is seen that the vibronic
coupling matrix element along Q̂− that mixes the donor–acceptor

electronic domains is given by ωQ̂− 1
2[

d2
Ad2

C
d2

A+d2
C
+ d2

B]
1/2

sin[2](2θ).
θ determines the electronic mixing among the 3-mer sites and
given by Eq. (S17). This form of the vibronic coupling implying
direct vibronic mixing between donor–acceptor sites is promoted by
Q̂− even if there was no direct electronic coupling between the
sites. This is so because the effective mode transformation and Ĥelec
rearrange the intramolecular FC displacements that constructively
interfere along the global tuning mode Q̂−. In contrast, as shown in
Eq. (S21), along Q̂ AC, the corresponding vibronic coupling matrix
element is ωQ̂ AC (d2

A−d2
C)√

d2
A+d2

C

sin[2](2θ)
4 . In this case, the vibronic cou-

pling is diminished because it only depends on the difference of
intramolecular FC displacements, which becomes negligible for the
case of identical molecules in an aggregate. Thus, for the “downhill”
3-mer (case 1), motions along the global tuning mode Q̂− maximally
promote vibronic mixing, while vibrational motions along Q̂ AC are
spectators in the process. This point was also shown in our earlier
work.27

For case 2, we will start with a “symmetric” Λ-system with
electronic site energies Δ1 = Δ2 = −Δ and couplings J1 = J2 = J. The
intermediate site energy is again chosen to be the zero of energy. The
choice of the V- or Λ-type system depends on whether the interme-
diate site is above or below the donor–acceptor electronic energies.
Section S2.2 shows that a symmetric Λ system can be analytically
diagonalized. Upon applying this transformation on the Q̂− depen-
dent linear vibronic coupling Hamiltonian, the vibronic coupling
matrix element between the donor–acceptor electronic domains
becomes zero because of exact cancellations between intramolec-
ular FC displacements along Q̂− in the donor–acceptor domains.
This is shown in Eq. (S27). In contrast, as seen in Eq. (S28), the
corresponding vibronic coupling matrix element along the Q̂ AC
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FIG. 4. A general 3-mer singly excited Hamiltonian in the electronic site basis. The electronic domains are arranged as A–B–C, where A and C are donor and acceptor
electronic states, respectively. The electronic energy of the intermediate site is offsetted to be the zero of energy. Specific choices of Δ1,2 lead to “downhill” (case 1) vs a
V- or Λ-type 3-mer system (case 2). For symmetric V- and Λ-system site energies, Δ1 = Δ2 = Δ. Equation (S15) shows that an electronic transformation modifies the
picture such that only one of the resulting ± linear combination states couples strongly to the intermediate state. The stronger coupling is denoted by bold arrows. The
± linear combinations of the donor–acceptor sites are denoted as mixed colors. In the case of a more general asymmetric V- or Λ-system, the ± linear combinations are
still weakly coupled. This weak coupling, zero for the symmetric case, is denoted as the thin arrow between the ± states. The energy levels resulting after this intermediate
transformation are shown for the case of equal electronic couplings, that is, J1 = J2 = J, although Eq. (S15) describes this more generally.

mode depends on the sum of intramolecular FC displacements as
−ωQ̂ AC√(d2

A + d2
C)

cos(θ)
2 . Thus, the roles of promoter versus spec-

tator modes are reversed between the “downhill” vs symmetric V or
Λ 3-mer.

The preceding analysis of the switching roles of “promoter” and
“spectator” modes hints at a tempting possibility of engineering elec-
tronic Hamiltonians to select which vibrational motions can drive
vibronic mixing. It should be emphasized here that the above physi-
cal insights are made possible only upon the effective mode trans-
formation from intramolecular to effective normal modes, which
partitions the linear vibronic coupling from intramolecular vibra-
tions along various effective modes. The electronic Hamiltonian
further rearranges these vibronic couplings to interfere construc-
tively only along specific effective modes. As will be illustrated in
Sec. III B, the resulting vibronic couplings can be leveraged to medi-
ated selective energy only between electronic domains where exciton
energy gaps are resonant with vibrational frequencies.

For the more general V- or Λ-type case, site energies Δ1,2 and
couplings J1,2 are not equal, and the resulting electronic Hamilto-
nian is not analytically diagonalizable in a straightforward manner.
However, an intermediate transformation in Eq. (S15) shows that
the general system can be transformed to a new basis of positive
and negative linear combinations of donor–acceptor electronic sites
weighted by the mixing angle η = arctan(J2/J1). For the general
V- or Λ 3-mer, we will consider the case where the donor site
is strongly coupled to the intermediate site, that is, J2 ≫ J1. This
implies that the donor–acceptor mixing resulting in ± linear com-
bination is such that + combination has dominantly acceptor site
character and vice versa. The resulting donor–acceptor energy trans-
fer mediated purely by electronic coupling is weak and results in
negligible donor to acceptor energy transfer. The alternative choice
of the acceptor strongly coupled to the intermediate site is a straight-
forward extension of the analysis presented here. In the rotated
electronic basis, the ± combinations are now mutually coupled with
strength Δ2−Δ1

2 sin(2η), and the −ve combination is no longer cou-
pled to the intermediate site. The corresponding electronic energy

gap is (Δ2 − Δ1)cos(2η). The +ve combination is now coupled to
the intermediate site with increased coupling strength J1 cos(η) + J2
sin(η). Note that this increase is independent of the relative sign of
electronic couplings. Figure 4 shows the effect of this intermediate
transformation for the special case of J2 = J1 = J.

B. Mediated energy transfer via vibronic resonance
In the general Λ 3-mer described above, direct donor–acceptor

electronic mixing is weak. Therefore, any enhancement of elec-
tronic energy transfer will require mixing between electronic and
vibrational degrees of freedom to either overcome or bypass any
intermediate uphill steps. The following discussion considers a spe-
cial case of vibronic mixing, which exploits a resonance20 between
an excitonic energy gap and a quantum of vibration on the acceptor
exciton to enhance energy transfer. This vibronically enhanced
transfer is enabled by strong mixing of the donor exciton with the
resonantly “selected” vibration on the acceptor.

We consider an excitonically coupled 3-mer with a specific
vibrational mode, which participates in vibronic resonance. Even
for one specific FC vibrational mode per molecule, the dimen-
sionality scales as 3 × n3

vib. However, the above understanding of
symmetric “downhill” and Λ cases suggests a dominant role for only
the Q̂ AC effective mode, reducing it to a 1D problem to a good
approximation.

Figure 5 represents the main results for the general Λ-type
3-mer. Figure 5(a) shows the relative electronic site energies. The rel-
ative site energies and electronic couplings are such that the donor
and acceptor excitons are dominantly the same character as the cor-
responding electronic sites. The resulting donor–acceptor electronic
mixing is weak with <5% population transfer, while population
transfer between the donor-intermediate sites is ∼30%. This is shown
in Fig. S2. A straightforward extension to the case of a V system
is achieved by changing the relative energy of the intermediate site
with respect to the donor and acceptor sites. The corresponding
diabatic site potentials along the dominant effective mode Q̂ AC are
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FIG. 5. (a) The general Λ-Hamiltonian. The donor and acceptor site energies are Δ1 = −430 cm−1 and Δ2 = −280 cm−1, respectively. The electronic couplings are J1
= 40 cm−1 and J2 = 100 cm−1. The intermediate site energy is offsetted to be the zero of energy. (b) Corresponding electronic potential energy curves in the diabatic site
basis along the dominant effective mode Q̂ AC. The diabatic potentials are coupled through the electronic Hamiltonian. The donor, acceptor, and intermediate excitons are
dominantly the same character as electronic sites. The FC displacements are listed in Table S1. The intramolecular FC displacements are such that dA = dC =

√
0.5 and the

FC displacement on the intermediate site dB = 0. The FC displacements are shown on scale with the ±1 classical turning points. The vibrational frequency ω = 125 cm−1 is
chosen to be resonant with the excitonic energy gap between the donor and acceptor excitons. (b) Population dynamics of the Λ-Hamiltonian after exciting a superposition of
vibronically mixed donor and acceptor states upto the first resonant manifold. This is a 1D calculation along the dominant promoter mode Q̂ AC. (d) Population dynamics along
both the effective modes Q̂ AC and Q̂−. This is a 2D calculation. (e) Mediated energy transfer in a 3-mer along the promoter mode Q̂− is maximized at vibronic resonance.
Minimum population on the donor site is plotted as a function of vibrational frequency. The acceptor and intermediate sites are plotted for the time point at which the donor
population is minimum.

shown in Fig. 5(b). The vibrational frequency is chosen such that the
zero-point levels on the donor and acceptor excitons are separated
by quanta of excitation on the acceptor exciton, leading to systematic
degeneracies or vibronic resonances, between the donor–acceptor
excitons. Conceptually similar degeneracies and couplings in the
context of restricted intramolecular vibrational relaxation (IVR)
are known as inter-polyad couplings.43 Denoting the excitons with
dominantly A, B, and C character as α, β, and γ, the approximate
analytic forms of the resonantly mixed eigenvectors from the first
resonant manifold are

∣±⟩ = 1√
2
∣α⟩∣1AC

α ⟩ ± ∣γ⟩∣0AC
γ ⟩. (6)

The above expression follows from the analysis described in ear-
lier Refs. 27 and 41.? The vibrational ket ∣vAC

X ⟩ corresponds to the
vibrational base ket on exciton X along the delocalized effective
mode Q̂ AC with v quanta of vibrational excitation. The analysis

neglects the second order energetic perturbations caused by cou-
pling between neighboring resonant manifolds. Reference 27? shows
that this assumption holds well for small FC displacements and is
sufficient to analytically describe the absorption spectra and pop-
ulation dynamics resulting from exact non-adiabatic eigenvectors
obtained from numerical diagonalization of the full Hamiltonian.
The lowest eigenvector does not mix with any other exciton and
is given by ∣α⟩∣0AC

α ⟩. Equation (6) implies that excitons α and γ
are indirectly mixed through a vibronic resonance, even if direct
electronic mixing between the donor–acceptor sites is weak. It
should be emphasized that this resonant mixing is only possi-
ble due to the presence of both effects: 1. An intermediate site
that weakly mediates electronic coupling and 2. vibronic reso-
nance between the donor and acceptor exciton. Any effect alone
does not cause such a mixing. We have recently shown? that such
resonant mixing, when treated without neglecting ground state
vibrational excitations, leads to fully delocalized vibronic excitons
despite weak initial electronic mixing. Consequently, the vibrational
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distortion fields around resonantly mixed vibronic excitons are also
enhanced.

It follows that when a coherent superposition of such eigen-
vectors is excited, ∼100% of the initially excited population is trans-
ferred to the acceptor. This is shown in Fig. 5(b). The population
dynamics of the system Hamiltonian is calculated by exciting the
donor molecule and projecting the resulting coherent superposition
of the donor–acceptor eigenvectors on the acceptor electronic state.
The details of the calculation are briefly described in Sec. S3. The
dramatic enhancement of population transfer essentially reflects the
ability of vibronic resonance that enhances imperfect delocalization
caused by energetic disorder to perfect delocalization.? The timescale
of this transfer is dictated by the inverse of the A–C domain lin-
ear vibronic coupling along Q̂ AC. Similarly resonant mixing is also
expected along Q̂−. Intuition gained from symmetric “downhill” and
Λ Hamiltonians (Sec. III A) suggests that latter coupling is expected
to play only a minor role due to the destructive interference between
coupling contributions coming from the donor and acceptor FC dis-
placements. This is made evident by a 2D calculation in Fig. 5(d)
along both the effective modes, where the amount and timescale of
transfer are approximately the same as that seen along the dominant
effective mode Q̂ AC.

It should be emphasized that without resonant vibronic mixing,
a purely electronic superposition leads to ∼30% population transfer
between donor-intermediate sites, with <5% transfer to the accep-
tor. At vibronic resonance, the intermediate site switches the role
from an excitation trap to a mediator for vibronically enhanced pop-
ulation transfer. To emphasize the selectivity of mediated transfer,
Fig. 5(e) shows population on the acceptor and intermediate when
the donor population is minimum. The populations are plotted as
a function of vibrational frequency. Away from vibronic resonance,
almost all the donor population is exchanged with the intermediate
site with negligible transfer to the acceptor as expected from Ĥelec.
However, at vibronic resonance, where vibronic couplings become
dominant, the population on the intermediate site is minimized,
while almost all the donor population is selectively mediated to
the acceptor. Interestingly, synergy between vibronic resonance and
weak mediated coupling in this mechanism allows for bypassing the
intermediate uphill energy transfer all together. This will be recalled
in Sec. III B 3.

In contrast to the A–C energy gap tuning motions, which play
the dominant role in a general Λ-system discussed above, for the
“downhill” system, global energy gap tuning motions along Q̂− play
the major role in mediating energy transfer. This was demonstrated
in our earlier study.27 The important point is that the switching
roles of effective modes are dictated by how electronic Hamiltonian
Ĥelec rearranges linear vibronic mixing to constructively interfere
only along specific effective modes. The above examples of mediated
energy transfer in a general Λ- V-system suggest that this could be a
more general design principle made possible by selectively exploit-
ing vibronic resonances in energetically disordered weakly coupled
aggregates with dense FC active vibrational spectral density, such as
photosynthetic proteins. In Secs. III B 1–3, we further comment on
the general aspects of this idea.

1. Selectivity of mediated energy transfer
The vibronic eigenvectors in Eq. (6) suggest that the medi-

ated energy transfer discussed above is independent of whether the

intermediate site was optically dark. This is so because the eigenvec-
tors in Eq. (6) only require the singly excited electronic state of the
donor to be optically allowed for intensity exchange with the first
vibronic progression on the acceptor electronic state. Thus, the opti-
cal properties of the intermediate site do not affect the selectivity of
transfer.

The linear vibronic coupling responsible for mediated energy
transfer in a Λ- or V-system is ultimately arising from the last
term in the linear vibronic coupling Hamiltonian ĤLV

3 in Eq. (5).
This vibronic coupling along the dominant A–C tuning mode is
independent of the FC displacement on the intermediate site [Eq.
(S28)]. Thus, even if the intermediate site has negligible FC dis-
placement along the resonant mode, mediated energy transfer is
still possible.

Instead of optical brightness and FC displacements on the
intermediate site, the dominant factor controlling the selectivity of
mediated transfer to the acceptor is the relative strengths of vibronic
couplings jAC

XY between excitons X–Y along the Q̂ AC mode—jAC
αγ res-

onant vibronic coupling vs jAC
βγ and jAC

αβ vibronic couplings. The
linear vibronic coupling Hamiltonian for the symmetric Λ Hamil-
tonian in Eqs. (S28) and (S29) shows the vibronic couplings in the
respective exciton domains. The amount of mixing is determined by
these vibronic couplings and the energy gap between the participat-
ing states and ultimately determines the selectivity of transfer upon
donor excitation.

We will utilize the analytic understanding of the symmetric
Λ or V system (Sec. III A) in order to think about the selectiv-
ity in the more general Λ system. Figure 6 schematically shows the
vibronic basis states, which dominantly mix together in a general Λ
vs V system. The relative strengths of vibronic coupling elements
for a symmetric Λ system [Eq. (S29)] suggest that even in a gen-
eral system, the ratio of donor–acceptor to donor-intermediate site
mixing, that is, jAC

αγ /jAC
βγ , is strongly enhanced due to the construc-

tive and destructive interference between intramolecular vibronic
coupling elements along the Q̂ AC effective mode. Thus, vibronic
basis states ∣β⟩∣vAC

β ⟩ and ∣γ⟩∣vAC
γ ⟩ couple very weakly compared to

the strongly coupled resonant γ–α states, determining the selectivity
and the timescale of population transfer to the acceptor α. Similarly,
the ratio of donor–acceptor to acceptor-intermediate site mixing
is jAC

αγ /jAC
αβ ∼ cot(θ), where θ is the electronic mixing angle for the

symmetric Λ- or V-system defined in Eq. (S25). Even for moderate-
strong electronic mixing angle of 30○, γ–α population transfer will
be ∼3× faster than α–β exchange timescale. It is interesting to note
how the interplay of Ĥelec and the effective mode Q̂ AC rearranges
vibronic couplings to couple only specific exciton domains. Note
that the vibronic couplings j are multiplied by an additional factor
coming from the matrix elements of the coordinate vector operator.
Thus, a difference in vibrational quantum numbers of the vibron-
ically coupled states along with FC displacements determines the
total strength of the matrix elements. For weak FC displacements
along the delocalized effective modes, this factor is largest when the
difference in vibrational quantum numbers is unity.

As depicted in Fig. 6, a crucial difference can arise between
Λ- and V-systems. For any given set of inter-exciton vibronic
couplings, the α–β vibronic mixing in the case of V-system imparts
a larger α exciton (acceptor) character to β (intermediate) exciton.
This is because lower FC progressions on α (with larger optical
intensity) mix with β. Larger acceptor intensity donated to the inter-
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FIG. 6. Vibronic mixing and selectivity of population transfer along the dominant
promoter mode Q̂ AC. The strength of vibronic coupling between different exciton
domains is schematically denoted as bold and thin dashed arrows to denote strong
and weak coupling elements in Eqs. (S28) and (S29). (a) Λ system. Higher res-
onant manifolds on the donor–acceptor (γ–α) excitons can mix with the lowest
intermediate exciton state. For example, in Fig. 5(b), third progression on the donor
can mix, although weakly, with the intermediate exciton. (b) V system. Higher
vibrational progression on the intermediate exciton can mix into the lowest reso-
nant donor–acceptor manifold. The vibronic states are denoted by ∣X⟩∣vX⟩, where
X = α, β, γ excitons and vX denotes the quanta of vibrational excitation on exci-
ton X along Q̂ AC. Note that, compared to the text, the superscript AC on vibronic
couplings is dropped in the figure for brevity.

mediate site implies overall reduced selectivity compared to a Λ
system. Note that in the above analysis, it is assumed that exci-
ton energy gap Δα,γ ≪ Δβ,γ, that is, the β–γ exciton energy gap is
larger by several vibrational quanta along the resonant mode. For
instance, for calculations in Fig. 5, these exciton energy gaps differ
by ∼3× vibrational quanta. Similar selectivity arguments as above
can be made in the other limit of exciton energy gaps as well. The
interesting case of the two exciton energy gaps being comparable is
discussed in Sec. III B 2.

2. Interference between vibronic couplings
In Sec. III B, we showed that for a general Λ model, both effec-

tive modes Q̂ AC and Q̂− can contribute to vibronic mixing with the
former being the dominant mode. In the presence of vibronic cou-
plings along both effective modes, the resonant manifold in Eq. (6)
is modified by the addition of a third vibronic basis state along
Q̂−. The resulting resonant basis states ∣α⟩∣1AC

α ⟩∣0−α ⟩, ∣α⟩∣0AC
α ⟩∣1−α ⟩,

and ∣γ⟩∣0AC
γ ⟩∣0−γ ⟩ will be denoted as α10, α01, and γ00. Figure 7(a)

schematically shows the resonant manifolds possible in a general
Λ system with exciton energy gaps Δα,γ = Δβ,γ. Analyzing the cor-
responding vibronic couplings in a symmetric Λ system [Eqs. (S27)
and (S29)] can again be useful. These are shown for the first resonant

manifold in Fig. 7(b). The interference between vibronic couplings
is seen by a basis set rotation about the third electronic domain (γ)
with a rotation angle η = arctan( j−αγ/jAC

α−γ). The relative strengths of
vibronic couplings jAC

αγ and j−αγ in a symmetric Λ system imply that
mixing angle η is expected to be small even in a general system. Such
a transformation decouples one state, while coupling the state with
dominant α10 character to γ00 with larger vibronic coupling given
by
√
( j AC)2 + ( j −)2. This is formally similar to the transformation

that decouples41? correlated vibrations from the vibronic coupling
Hamiltonian. Interestingly, the interference between vibronic cou-
plings described here is not phase dependent and always leads to
larger overall couplings. This is distinctly different, for example,
from the case of null excitons44 where charge transfer and Coulomb
couplings can interfere destructively.

The phase-independent interference between vibronic cou-
plings manifests in more general contexts. In the context of multiple
intramolecular vibrational modes in an excitonic dimer, Ref. 41
has shown that depending on the width of vibronic resonance,
vibronic coupling along multiple near-resonant (not exactly reso-
nant) tuning modes can interfere constructively to result in larger
overall vibronic coupling. For example, see Figs. 3 and 5 of Ref. 41.
Extending this reasoning to the case of Λ 3-mer, in the presence
of an additional near-resonant intramolecular mode, the construc-
tive interference in Fig. 7(a) will be further enhanced with overall
coupling

√
∑2

n=1[( jAC
n )2 + ( j−n )2]. This can be easily shown using

transformations similar to Fig. 7(a) [see Eq. (S6) of Sahu et al.? for
a related transformation]. Enhancing the vibronic couplings arising
from individual effective modes and near-resonant modes is one of
the ways of mutual interference of vibronic couplings that leads to
faster population transfer rates. The interference of vibronic cou-
plings along multiple modes implies that vibrational motions along
orthogonal effective modes can simultaneously drive the vibronic
probability density evolution between electronic states. This is simi-
lar to the case of indirect coupling between independent vibrational
modes discussed by Kundu and Makri.9 This will be recalled in
Sec. III C.

The higher resonant manifold between γ–α excitons in Fig. 7(a)
becomes resonant with β00 when exciton energy gap Δα,γ = Δβ,γ.
Now, the intermediate exciton can resonantly mix with the
donor and acceptor excitons, and one may expect less selective
donor–acceptor energy transfer. However, interference between
vibronic couplings can still channel energy transfer selectively to the
acceptor. Figure 7(c) shows the isoenergetic basis states in the sec-
ond resonant manifold, which are coupled by dominant vibronic
couplings jAC

XY and j−XY . Taking clues from the symmetric Λ model
for equal intramolecular FC displacements j−αγ, j−αβ, and jAC

βγ is exactly
zero. The resulting dominant couplings are shown in Fig. 7(c).
The highlighted coupling element jAC

αβ involves a change in vibra-
tional quanta of two and will be negligible even for moderately large
intramolecular FC displacements considered here. From the discus-
sion in Sec. III B 1, jAC

αγ /jAC
αβ ∼ cot(θ) such that α–β coupling is weak

even for moderate electronic mixing. This ratio is further strongly
enhanced due to a change of two vibrational quanta in jAC

αβ . Equa-
tions (S27) and (S29) show that j−βγ is weaker than the dominant jAC

αβ

coupling by a factor of cos(θ)/
√

3. Figure 7(d) shows the resulting
coupled manifold Hamiltonian, where 3 × 3 sub-domains similar
to Fig. 7(a) are highlighted. Using transformations similar to those
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FIG. 7. Phase-independent interference between vibronic couplings along different effective modes. (a) Resonant manifolds and vibronic couplings in a Λ system. The first
resonant manifold with three states arises in a general Λ system with vibronic resonance. The second manifold, with five α–γ states resonant with the intermediate state,
arises only for the special case of equal exciton energy gaps Δα,γ = Δβ,γ. (b) Vibronic couplings in the first resonant manifold derived from Eqs. (S27) and (S29). The
isoenergetic vibronic basis states are α10, α01, and γ00, with corresponding energies εα10 = εα01 = εγ00 . A rotation of basis about the third domain decouples one state while
increasing the overall vibronic coupling strength between the remaining states. (c) Dominant vibronic couplings and corresponding isoenergetic basis states in the second
resonant manifold. Weaker couplings are denoted by the dashed arrows. The circled basis states α11 and α20 have three-particle character and discussed in Sec. III C 1. (d)
Vibronic couplings corresponding to the second resonant manifold. Stronger coupling elements are shown in bold. The square connecting the matrix elements denotes the
3 × 3 sub-manifold formally similar to (b). The vibronic coupling element jAC

αβ is circled to denote that this element is negligible because the matrix element involves two quanta
of the change in the vibrational quantum numbers.

discussed in Fig. 7(b), it can be shown that, as before, vibronic cou-
plings along effective modes interfere as a square. This is also easily
seen if the highlighted jAC

αβ is ignored. This underscores the earlier
point that vibronic couplings along effective modes are partitioned
such that only specific electronic domains are strongly coupled.
The interference between vibronic couplings ensures that mixing
caused by weaker couplings is further suppressed. Thus, both effects
together allow for selective energy transfer to the acceptor, despite
a vibronic resonance with the intermediate exciton. It is interest-
ing to note that such interference effects can also couple vibronic
resonances between different pairs of excitons arising from mul-
tiple vibrational modes. This will be a subject of our forthcoming
publication. A related example is analyzed in our recent work27 on
a downhill 3-mer, where a common vibrational frequency couples
multiple vibronic resonances (see Sec. S12 of Patra et al.27).

3. Bypassing uphill energy transfer
Donor–acceptor energy transfer in a Λ system involves an

uphill energy transfer step and, therefore, may be inefficient in
the presence of weak to intermediate electronic mixing. An uphill
step could be efficiently overcome via coherent electronic cou-
pling large enough to strongly mix the donor–acceptor sites via
the intermediate site. However, an undesirable consequence of a
mechanism relying on large mediated electronic mixing is the unde-
sirable substantial population exchange with the intermediate site.
As a promising alternative, Secs. III B 1 and III B 2 show that par-
titioning of linear vibronic coupling along specific effective modes

and interference between vibronic couplings can be leveraged to
achieve selective donor–acceptor energy transfer that can be sub-
stantially enhanced at vibronic resonance. The uphill energy trans-
fer step to the intermediate site is bypassed in this mechanism
such that the role of intermediate site is minimal and amounts
to mediating weak electronic mixing between the donor–acceptor
sites.

The mechanism for mediated energy transfer proposed above
could serve as an interesting design principle for efficiently medi-
ating energy transfer by skipping uphill energy transfer steps all
together. Energetically disordered aggregates with dense vibrational
spectral density may be promising candidates to explore such
mechanisms. Mediated vibronic coupling may be possible in sin-
glet exciton fission45 where charge transfer (CT) states can be
strongly coupled with (mutually weakly coupled) locally excited (LE)
and correlated triplet (TT) states. However, owing to substantially
higher-lying CT states, the overall electronic mixing between LE
and TT states may be too weak to promote the efficient ultrafast
formation of the TT state.

Note that the mechanism of bypassing uphill energy trans-
fer discussed here is distinctly different from leveraging vibronic
resonances as a quantum ratchet46 to promote uphill energy trans-
fer. For efficient uphill energy transfer to occur, the initial optical
excitation probability of vibronically mixed eigenvectors in Eq. (6)
becomes key. For example, ⟨G∣μ̂∣α⟩⟨0AC

G ∣∣1AC
α ⟩ and ⟨G∣μ̂∣γ⟩⟨0AC

G ∣∣0AC
γ ⟩

become comparable for large intramolecular FC displacements. In
this regime, the energy transfer can be mediated to and from the
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acceptor with equal probability, thus enabling uphill energy trans-
fer via a vibronic resonance. Peters et al. also discussed25 that in
such cases, energy transfer through a nested funnel becomes less
directional. Note that following the same argument, a combina-
tion of higher temperatures and low frequency vibrations such
that occupation probability of v = 1 levels on the ground state
is large can also allow for efficient uphill energy transfer. Ulti-
mately, the timescale of vibronic decoherence41 caused by the
bath becomes crucial for mediated or uphill energy transfer to be
realized.

C. Mediated energy transfer in larger aggregates:
Λ 5-mer

Sections II B and II C discuss the structure of effective modes
for larger aggregates. Based on the schematic shown in Fig. 2(a),
for any given set j of intramolecular FC modes, the 5-mer effective
modes are Q̂+, Q̂−, Q̂ ACE, Q̂ AE, and Q̂ BD. The singly excited elec-
tronic states are denoted as A–E, where A implies site A excited,
while all other sites are in their ground electronic and the diabatic

site FC displacements along these modes are listed in Table S2.
The 5-mer electronic Hamiltonian is shown in Fig. S2 and cho-
sen such that the donor and acceptor are only indirectly coupled
through weak electronic coupling mediated by the intermediate
sites. Figure 8(a) shows the relative electronic site energies on scale.
The intermediate sites are mutually strongly coupled, and the donor
and acceptor are coupled to one of the intermediate sites. The elec-
tronic site energies and couplings are such that upon donor excita-
tion, <5% excitation is transferred to the acceptor, while ∼40% popu-
lation is exchanged with the intermediate sites. This is shown in Fig.
S2. Each molecule has one identical FC active vibrational mode such
that the Hamiltonian for each electronic state of the system, includ-
ing the ground electronic state, is 5D. As in Sec. III B, the frequency
of the vibrational mode is chosen so as to have a vibronic resonance
between the donor–acceptor excitons. As we will see numerically,
the dominant effective modes in this problem are only the A–E
energy gap tuning mode Q̂ AE with a minor role for global tuning
mode Q̂− such that the overall donor–acceptor vibronic mixing can
be very well approximated with a 2D problem along the promoter
modes.

FIG. 8. (a) Relative electronic site energies of the Λ 5-mer system. The intermediate sites are highlighted by the black dashed box. The intermediate sites are mutually
strongly coupled, while the donor and acceptor sites are not directly coupled. They are both weakly coupled to one of the intermediate sites, as shown by the connecting
arrows. The parameters are listed in Fig. S2. Each electronic site has one identical intramolecular FC active vibration of frequency 125 cm−1 and FC displacement
d =
√
( 0.5 ) such that each electronic domain in the 5-mer Hamiltonian is 5D. (b) 2D diabatic site potentials corresponding to the singly excited acceptor and donor

electronic states A and E, respectively. The potentials are plotted along the dominant effective modes Q̂− and Q̂ AE and denoted as X(Q̂ AE , Q̂−), where X = A, E denotes
the singly excited donor and acceptor electronic states. The diabatic potential surfaces are only coupled indirectly through Coulomb coupling with the intermediate sites.
Intermediate sites are not shown for clarity. The FC displacements along the effective modes in the diabatic sites basis are listed in Table S2. 1D diabatic site potentials
for each of the five singly excited electronic states along the two dominant effective modes are also shown. The FC displacements and relative energies are shown to
scale. The vertical dotted lines mark the FC displacements on the coordinate axis. All intermediate potentials are shown in dark gray. (c) Population dynamics of the Λ
5-mer Hamiltonian after exciting a superposition of vibronically mixed donor and acceptor states upto the first resonant manifold in (b) and (c). Top: 4D calculation along all
effective modes except the global correlation vector Q̂+, with vibrational basis ∣v−⟩∣vAE⟩∣vACE⟩∣vBD⟩. Middle: 2D calculation along the promoter modes Q̂− and Q̂ AE with
vibrational basis ∣v−⟩∣vAE⟩. Bottom: 1D calculation along the dominant mode Q̂ AE with vibrational basis ∣vAE⟩.
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Figure 8(b) plots the 2D diabatic site potentials along the domi-
nant effective modes for donor and acceptor singly excited electronic
states E(Q̂ AE, Q̂−) and A(Q̂ AE, Q̂−), respectively. The relative FC
displacements along each effective mode of the 5-mer are listed in
Table S2 and are shown on scale in the Fig. 8(b). Recalling the dis-
cussion of the interference of vibronic couplings in Sec. III B 2,
linear vibronic couplings along all effective modes influence vibronic
probability density evolution on any given excited electronic state,
although on timescales depending on the individual strengths of
vibronic couplings. In the case of the Λ 5-mer, vibronic couplings
along the dominant effective modes, Q̂ AE and Q̂−, will interfere
(Sec. III B 2) to simultaneously dictate the short-time evolution of
the vibronic probability density, which could be a good approxi-
mation to be visualized using the 2D diabatic potentials [Fig. 8(b)]
made possible through the effective mode transformation. The 1D
diabatic potentials individually along the promoter modes Q̂ AE and
Q̂− are also shown. The relative FC displacements between the states
determine the strength of vibronic coupling. It can be seen that the
relative displacement between the donor and acceptor electronic
states is largest along Q̂ AE. Recalling the discussion in Sec. II B,
the effective mode transformation partitions the vibronic couplings
such that smaller FC displacements are expected along a more delo-
calized global tuning mode Q̂− compared to pairwise tuning mode
Q̂ AE, leading to stronger vibronic coupling. As in the case of the
3-mer, even though the donor–acceptor electronic potentials are not
relatively tuned along Q̂−, it is the tuning relative to the intermediate
sites that is responsible for vibronic coupling along the global mode.
As we have seen for the case of the 3-mer (Sec. III A), given the
vibronic couplings along each effective mode, it is ultimately Ĥelec,
which determines the dominant promoter mode.

A dominant role for the effective mode, which directly tunes
the A–E electronic energy gap compared to the global tuning mode,
is not surprising if one recalls the physical intuition gained from the
3-mer Λ model. Furthermore, interference effects between vibronic
couplings (Sec. III B 2) suggest a suppression of weaker couplings in
the dynamics. With these expectations, Fig. 8(c) compares the pop-
ulation dynamics of the Λ 5-mer for the full 4D calculation vs calcu-
lations with reduced dimensionality along the dominant promoter
modes. The calculations are described in Sec. S3. The 4D calcula-
tion, shown in the top panel of Fig. 8(c), is along the effective modes
Q̂−, Q̂ AE, Q̂ ACE, and Q̂ BD and considers vibronic coupling along all
effective modes. Note that the global correlation mode Q̂+ is separa-
ble from the electronic Hamiltonian and plays no role in vibronic
mixing. Similar to the 3-mer, the ∼100% donor–acceptor popu-
lation exchange becomes possible through the combined effect of
weak electronic coupling and vibronically resonant donor–acceptor
excitons. In line with the above expectations, the timescale of
population transfer, which relates to the total vibronic coupling
strength, is approximately equal even for reduced calculations along
Q̂−, Q̂ AE (middle) and along Q̂ AE (bottom) alone. This suggests
that Q̂ AE, indeed, is the dominant promoter mode and influences
dynamics on the fastest timescales. 1D calculations along individ-
ual effective modes are shown in Fig. S3. The above analysis of the
general 5-mer Λ system using the effective mode transformation
allows for identifying the dominant promoter mode and, therefore,
reducing the system dimensionality without severely approximat-
ing vibronic coupling and associated timescales. The generality of
mediated energy transfer in the presence of multiple intermediate

sites is further confirmed by Fig. S4, where again vibronic resonance
selectively enhances direct donor–acceptor transfer while bypassing
intermediate uphill energy transfer steps.

1. Role of n-particle basis states
As discussed in Sec. II, resonant vibronic mixing requires

explicit quantum treatment of vibrations in the system Hamiltonian.
In the case of extended aggregates, this enforces truncation of multi-
particle basis sets for a feasible computation time. Often, truncation
up to two-particle basis states is adequate to describe linear spectral
line shapes.19,47 However, from a quantum dynamical perspective,
resonant vibronic mixing enhances multi-particle basis states contri-
butions through intensity borrowing. A description of fundamental
properties of vibronic excitons, such as delocalization, vibrational
distortion radius, and energy transfer rates, crucially depends? on
multi-particle states.

Although multiple exciton energy gaps are present in the Λ
system treated in Secs. III A and III C, only one vibronic reso-
nance between the donor–acceptor excitons exists. This may make
Λ Hamiltonians seem similar to a dimer where two-particle basis
states can completely describe the system. However, this is not the
case. Consider the Λ system depicted in Fig. 7, where exciton energy
gaps are comparable to vibrational quanta. Recalling the discussion
in Sec. III B 2, the dominant vibronic coupling jAC

αγ dictates the selec-
tivity of mediated energy transfer. As shown in Fig. 7(c), vibronic
excitons α11 and α20 couple with the donor exciton γ through two
mixing channels. Using transformations from the intramolecular
∣vA⟩∣vB⟩∣vC⟩ to delocalized ∣v+⟩∣v−⟩∣vAC⟩ vibrational basis, it can be
shown that vibrational basis states ∣0+⟩∣1−⟩∣1AC⟩ and ∣0+⟩∣0−⟩∣2AC⟩
have substantial three-particle character. For example, following the
analysis similar to Sec. S1 of Ref. 41,

∣α⟩∣0+0−2AC⟩ = 1
2
∣α⟩[∣2A0B0C⟩ + ∣α⟩∣0A0B2C⟩]

+ 1√
2
∣α⟩∣1A0B1C⟩,

∣α⟩∣0+1−1AC⟩ = 1√
6
∣α⟩[∣2A0B0C⟩ − ∣0A0B2C⟩]

+ 1√
3
∣α⟩[∣0A1B1C⟩ − ∣1A1B0C⟩],

where the second term in both equalities indicates a substantial
three-particle character with vibrational excitations on two electron-
ically unexcited states. Thus, it is fairly counter-intuitive that even
a 3-mer with only one vibronic resonance requires three-particle
basis states to correctly describe the interference between vibronic
couplings and resulting selectivity of mediated transfer. Analo-
gous reasoning for the 5-mer in Fig. 8 also suggests a vital role of
multi-particle basis states, the essential idea stemming from the fact
that ground state vibrational excitations on all coupled molecules
contribute to any given singly excited electronic state.

2. Role of the bath
While the effective mode approach described here is valid for

excitonically coupled aggregates, in general, the specific application
of the approach to illustrate mediated energy transfer via vibronic
resonance vitally depends on the bath Hamiltonian. The analysis
mediated energy transfer focuses only on the system Hamiltonian
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and relies on toy-models with the advantage of being amenable to
analytic understanding. Bilinear couplings to bath modes are pos-
sible27 to incorporate in the effective mode approach and will be a
subject of future extensions of the formalism introduced here. The
discussion in Secs. III B 1 and III B 2 suggests selective transfer to
the acceptor even with moderately large Huang–Rhys factors for
intramolecular vibrations. For example, see Figs. 5(e) and S4. This
is so because FC displacements along effective modes in the dia-
batic exciton basis are substantially reduced (Sec. II C) compared
to intramolecular vibrations in the diabatic site basis. More gen-
erally, analytic understanding from simple models considered here
suggests that large Huang–Rhys factors and multiple near-resonant
vibrations may act favorably to achieve broader resonance widths
and larger vibronic couplings even if mediated electronic coupling
is weak. For example, energetically higher-lying CT states mediate
electronic coupling between LE and TT sites only weakly,45 while
a vibronic resonance between TT and LE excitons leverages this
electronic coupling to promote the ultrafast fission reaction.28,48

At room temperature, any energy transfer mechanism is sub-
ject to dominant effects of zero-quantum decoherence, that is, loss
of overlap of bath wavefunctions between the reactant and prod-
uct states in the energy or charge transfer reaction. Tiwari et al.
have shown24 that vibrational modes along which the reactant and
product states do not encounter FC displacements do not contribute
to vibronic decoherence, while constructive interference from near-
resonant vibrational modes increases the vibronic coupling matrix
element and prolongs vibronic decoherence. Fundamentally, the
interplay of FC overlaps between bath vibrational wavefunctions
on the reactant and product electronic states and the vibronic
coupling matrix element between the two states dictates whether
mediated energy transfer through vibronic resonance will survive
decoherence.

Spectroscopic signatures of resonant vibronic couplings have
been reported1 typically in photosynthetic proteins at cryogenic
temperatures. However, order of magnitude faster energy trans-
fer rate in a cyanobacterial antenna protein with expected vibronic
resonance has been reported34 at room temperature by Womick
and Moran. Numerically exact path-integral calculations includ-
ing all intramolecular vibrations in purple bacterial photosynthetic
aggregates also suggest49 a vital role of vibronic resonances in medi-
ating energy transfer away from the site of excitation. Energy50 and
charge51 transfer reactions driven by vibronic coherences have also
been reported for molecules in solution. Similar effects have been
reported for ultrafast singlet exciton fission28,48 and organic polymer
thin films.52 The above reports suggest that energy or charge transfer
mechanisms relying on vibronically mixed degrees of freedom may
survive room temperature fluctuations for certain baths and warrant
a deeper understanding in order to precisely engineer system–bath
couplings and near-resonant vibrations.

IV. CONCLUSIONS
We have extended the effective mode approach to highlight the

physically intuitive and iterative nature of effective normal modes
for successively larger aggregates. By applying the effective mode
transformation, a multidimensional energy transfer Hamiltonian is
written as exactly as a sum of 1D Hamiltonians along each of the
effective modes. The effective mode transformation partitions the

linear vibronic coupling arising from intramolecular FC vibrational
modes along specific effective modes.

Through analytic transformations, we have illustrated how the
interplay of electronic Hamiltonian and the effective mode trans-
formation selects the dominant promoter mode. Our results suggest
an interesting possibility of engineering electronic Hamiltonians
to drive vibronic probability density along specific directions in
the multidimensional excited state electronic potentials. It should
be emphasized that these physical insights are made possible by
the ability to analyze vibronic mixing contributions along specific
effective modes.

Using the effective mode formalism, we have generalized the
concept of mediated energy transfer to Λ− or V-type molecu-
lar aggregates. We have shown that synergy between weak medi-
ated coupling and vibronic resonance allows for skipping any
intermediate uphill energy transfer steps and enhancing vibronic
mixing to near-perfect exciton delocalization. Interestingly, phase-
independent interference between vibronic couplings along dif-
ferent effective modes enhances the dominant vibronic coupling
along the promoter mode while suppressing weaker contributions
from other effective modes. Such interference effects determine the
selectivity of mediated energy transfer.

The approach presented here is a promising route for four-
wavemixing spectroscopic simulations of excitonically coupled
aggregates where rich spectroscopic signatures and interference
effects53,54 arising from dominant vibronic couplings are expected.
This will be the subject of future applications of this approach. Typ-
ically, one-particle approximation to resonant vibronic coupling,
although a severe approximation,40 becomes unavoidable for simu-
lating such systems with practical computation times. Furthermore,
the Λ- and V-type systems analyzed here can be fairly common
in energetically disordered multi-chromophoric aggregates, such as
photosynthetic proteins and organic thin films where multiple near-
resonant vibrational modes and exciton energy gaps are expected.
Our analysis suggests that the inclusion of multi-particle basis states
(beyond two-particle approximation) becomes vital for calculations
describing a functional role of vibronic mixing and coherences in
enhancing energy and charge delocalization.

SUPPLEMENTARY MATERIAL

See the supplementary material for further details of the calcu-
lations, derivations of effective modes, and FC displacements along
the aggregate normal modes in the diabatic site basis and diabatic
exciton basis.
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lived coherences in light-harvesting complexes,” J. Phys. Chem. B 116, 7449–7454
(2012).
36P. Nalbach, C. A. Mujica-Martinez, and M. Thorwart, “Vibronically coher-
ent speed-up of the excitation energy transfer in the Fenna-Matthews-Olson
complex,” Phys. Rev. E 91(2), 22706 (2015).
37J. C. Dean, T. Mirkovic, Z. S. D. Toa, D. G. Oblinsky, and G. D. Scholes,
“Vibronic enhancement of algae light harvesting,” Chem 1(6), 858–872 (2014).
38P. Bhattacharyya and G. R. Fleming, “The role of resonant nuclear modes
in vibrationally assisted energy transport: The LHCII complex,” J. Chem. Phys.
153(4), 044119 (2020).
39G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F.
Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K.
McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano,
K. B. Whaley, and X. Zhu, “Using coherence to enhance function in chemical and
biophysical systems,” Nature 543, 647–656 (2017).
40A. Sahu, J. S. Kurian, and V. Tiwari, “Vibronic resonance is inadequately
described by one-particle basis sets,” J. Chem. Phys. 153(22), 224114 (2020).
41V. Tiwari and D. M. Jonas, “Electronic energy transfer through non-adiabatic
vibrational-electronic resonance. II. 1D spectra for a dimer,” J. Chem. Phys.
148(8), 084308 (2018).

J. Chem. Phys. 156, 184115 (2022); doi: 10.1063/5.0088855 156, 184115-16

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1146/annurev-physchem-052516-050602
https://doi.org/10.1038/nature09346
https://doi.org/10.1364/aop.8.000401
https://doi.org/10.1038/s41586-020-2353-2
https://doi.org/10.1021/acs.jpclett.6b02523
https://doi.org/10.1021/acs.jpclett.0c01834
https://doi.org/10.1021/acs.jpclett.0c01834
https://doi.org/10.1021/acs.nanolett.5b05264
https://doi.org/10.1126/science.1259995
https://doi.org/10.1146/annurev-physchem-090419-120202
https://doi.org/10.1103/physrevlett.94.113003
https://doi.org/10.1063/1.5100529
https://doi.org/10.1007/s11120-014-0002-z
https://doi.org/10.1016/j.physrep.2014.12.001
https://doi.org/10.1016/j.chemphys.2016.08.017
https://doi.org/10.1063/1.4867996
https://doi.org/10.1063/1.4867996
https://doi.org/10.1063/1.1672386
https://doi.org/10.1088/0022-3700/3/12/011
https://doi.org/10.1016/j.chemphys.2008.07.001
https://doi.org/10.1016/j.chemphys.2008.07.001
https://doi.org/10.1021/acs.chemrev.7b00581
https://doi.org/10.1021/acs.chemrev.7b00581
https://doi.org/10.1073/pnas.1211157110
https://doi.org/10.1063/1.1731278
https://doi.org/10.1063/1.1701181
https://doi.org/10.1063/1.5005835
https://doi.org/10.1063/1.5005835
https://doi.org/10.1063/1.5009762
https://doi.org/10.1063/5.0037759
https://doi.org/10.1038/nchem.2371
https://doi.org/10.1038/nchem.2371
https://doi.org/10.1039/d0ee03170d
https://doi.org/10.1080/00268977200100201
https://doi.org/10.1063/1.1861883
https://doi.org/10.1063/1.3176513
https://doi.org/10.1021/jp106713q
https://doi.org/10.1021/jp304649c
https://doi.org/10.1103/physreve.91.022706
https://doi.org/10.1016/j.chempr.2016.11.002
https://doi.org/10.1063/5.0012420
https://doi.org/10.1038/nature21425
https://doi.org/10.1063/5.0029027
https://doi.org/10.1063/1.5027497


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

42P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies,
“Structural observation of the primary isomerization in vision with femtosecond-
stimulated Raman,” Science 310(5750), 1006–1009 (2005).
43M. Herman and D. S. Perry, “Molecular spectroscopy and dynamics: A polyad-
based perspective,” Phys. Chem. Chem. Phys. 15(25), 9970–9993 (2013).
44E. Sebastian and M. Hariharan, “Null exciton-coupled chromophoric dimer
exhibits symmetry-breaking charge separation,” J. Am. Chem. Soc. 143(34),
13769–13781 (2021).
45M. B. Smith and J. Michl, “Recent advances in singlet fission,” Annu. Rev. Phys.
Chem. 64(1), 361–386 (2013).
46P. Bhattacharyya and G. R. Fleming, “Quantum ratcheted photophysics in
energy transport,” J. Phys. Chem. Lett. 11, 8337 (2020).
47M. Anzola, F. Di Maiolo, and A. Painelli, “Optical spectra of molecular aggre-
gates and crystals: Testing approximation schemes,” Phys. Chem. Chem. Phys.
21(36), 19816–19824 (2019).
48R. Tempelaar and D. R. Reichman, “Vibronic exciton theory of singlet fission.
II. Two-dimensional spectroscopic detection of the correlated triplet pair state,”
J. Chem. Phys. 146(17), 174704 (2017).

49S. Kundu and N. Makri, “Real-time path integral simulation of exciton-vibration
dynamics in light-harvesting bacteriochlorophyll aggregates,” J. Phys. Chem. Lett.
11(20), 8783–8789 (2020).
50P. P. Roy, S. Kundu, J. Valdiviezo, G. Bullard, J. T. Fletcher, R. Liu, S.-J. Yang, P.
Zhang, D. N. Beratan, M. J. Therien, N. Makri, and G. R. Fleming, “Synthetic con-
trol of exciton dynamics in bioinspired cofacial porphyrin dimers,” J. Am. Chem.
Soc. 144, 6298 (2022).
51J. D. Gaynor, J. Sandwisch, and M. Khalil, “Vibronic coherence evolution in
multidimensional ultrafast photochemical processes,” Nat. Commun. 10(1), 5621
(2019).
52A. De Sio and C. Lienau, “Vibronic coupling in organic semiconductors for
photovoltaics,” Phys. Chem. Chem. Phys. 19(29), 18813–18830 (2017).
53V. R. Policht, A. Niedringhaus, R. Willow, P. D. Laible, D. F. Bocian, C.
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