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Numerical weather prediction (NWP) models such as the Weather Research and
Forecasting (WRF) model are increasingly used over the Indian region to forecast
extreme rainfall events. However, studies which explore the application of high-
resolution rainfall simulations obtained from the WRF model in urban hydrology are
limited. In this paper, the utility of a model coupling framework to predict urban floods
is explored through the case study of Bangalore city in India. This framework is used to
simulate multiple extreme events that occurred over the city for the monsoons of years
2020 and 2021. To address the uncertainty from the WRF model, a 12-member
convection permitting ensemble is used. Model configurations using Kain Fritsch and
WSM6 parameterization schemes could simulate the spatial and temporal pattern of the
selected event. The city is easily flooded with rainfall events above a threshold of 60mm/
day and to capture the response of the urban catchment, the Personal Computer Storm
Water Management Model (PCSWMM) is used in this study. Flood forecasts are created
using the outputs from the WRF ensemble and the Global Forecasting System (GFS). The
high temporal and spatial resolution of the rainfall forecasts (<4 km at 15-min intervals), has
proved critical in reproducing the urban flood event. The flood forecasts created using the
WRF ensemble indicate that flooding and water levels are comparable to the observed
whereas the GFS underestimates these to a large extent. Thus, the coupled
WRF–PCSWMM modelling framework is found effective in forecasting flood events
over an Indian city.
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INTRODUCTION

The sixth assessment report of the Intergovernmental Panel on Climate Change (IPCC) observes that
human-induced warming is increasing at 0.2°C per decade which will lead to an inevitable increase of
1.5°C in the global temperature (Allen et al., 2018). This would imply a substantial increase in the
occurrence/intensity of extreme events which is evident from the rising numbers of extreme events in
cities. (Shastri et al., 2015; Paul et al., 2016; Paul et al., 2018; Roxy et al., 2017). Floods in the rapidly
urbanising India have devastating effects on the property due to the unplanned growth of its cities.
The problem of urban flooding is critical because of the fast responses of these catchments to extreme
rainfall and shorter times of concentration, (Awol et al., 2021). High intensity rainfall events and
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inadequate storm water infrastructure, results in a huge amount
of flood runoff in cities in a short period of time (Mondal and
Mujumdar, 2015; Rupa and Mujumdar, 2019). Implementation
of traditional structural flood mitigation measures such as
detention ponds, levees, pump-sump systems, and culverts is
difficult to execute in densely populated urban areas. With the
inevitable increase in urban floods in the near future, the World
Meteorological Organization (WMO) encourages a shift to non-
structural measures such as real time flood forecasting and early
warning systems to minimize flood impact (World
Meteorological Organization, 2011). The Hydromet Alliance
group launched at the United Nations Framework Convention
on Climate Change (UNFCCC) Conference of the Parties in 2019
(COP 25) focuses on the development of reliable weather, climate,
and hydrological (hydromet) services which will help in the
installation of early warning systems (Houmann, 2016)
worldwide.

Numerical weather prediction (NWP) models represent the
atmosphere as a dynamic fluid and solve for its behaviour
through the use of mechanics and thermodynamics and play an
important role in early warning systems. Regional Climate Models
(RCMs) (which are also NWP models) are used to resolve region
specific weather patterns using real time weather data available at a
coarse resolution from global NWPmodels. A dynamic downscaling
approach is used to generate forecasts that can provide reliable
information at a scale that resolves local interactions between
topography and synoptic phenomena, which then can be applied
in hydrologic models (Thayyen et al., 2013; Patel et al., 2019).

The Weather Research and Forecasting (WRF) model, a
commonly used RCM, has been used in several studies over the
Indian region to simulate extreme rainfall events (Sahoo et al., 2014;
Chawla and Mujumdar, 2015; Chevuturi et al., 2015; Chawla et al.,
2018; Mohandas et al., 2020; Kadaverugu et al., 2021; Kirthiga et al.,
2021). Rainfall being a result of many atmospheric processes over
different scales, is the most difficult process to be captured by the
WRFmodel. Uncertainty in initial and boundary conditions, physics
schemes, and sensitivity of the model concerning configuration of
the domain size and grid spacing are themain contributing factors to
the model performance (Arnold et al., 2012; Liu et al., 2012; Sun
et al., 2014). Although many studies have shown that the best
combination of physics schemes can be determined for a region,
it is difficult to identify the characteristics of future rainfall events as
the current rise in global temperature has led to unprecedented
changes (Tian et al., 2017). In order to consider the uncertainties
associated with the selection of physics schemes, it is a commonly
accepted practice to generate an ensemble with multiple model runs
(Ji et al., 2012). An ensemble generated using a combination ofWRF
model setups with a grid resolution less than 4 km is referred to as a
convection permitting ensemble. This resolution limits the errors
from the physics scheme that parameterizes the convective process
and improves interactions between different processes of the WRF
model (Clark et al., 2016).

With increasing computational power, there is an increase in
the resolution of products from NWP models. Outputs from the
Global Forecasting System (GFS, an operational weather forecast
model), are currently available at a high resolution of 25 km as
compared to the earlier resolutions of 100 and 50 km. Few studies

in the Indian region have explored the utility of such NWP
products for hydrological modelling of river basins. Singh et al.
(2021) compared different NWP products at a common grid of
0.5° to evaluate the hydrological parameters in five major river
basins in India. Goswami et al. (2018) used a NWP product at
17 km resolution over the Narmada basin during the southwest
monsoon period and found that the rainfall estimates had
location specific biases. Studies outside India have
demonstrated the success of flood models coupled with
weather forecast models like WRF in forecasting floods in
urban catchments (Sikder et al., 2019). Real time prediction of
the urban flood was demonstrated for Milano, Italy, by Ravazzani
et al. (2016) where the WRF model was coupled with a spatially
distributed rainfall-runoff model. A study on Can Tho city in
Vietnam indicates the effects of urbanization on the local
precipitation using the WRF model coupled with a land use
model (Huong and Pathirana, 2011). Over the Indian region
similar studies have been conducted over river basins.

Dhote et al. (2018) used WRF model output for forecasting a
heavy rainfall event 3 days prior to its occurrence over the North-
Western Himalayas. Asghar et al. (2019) compared the
applications of WRF forecast against the GCM products and
concluded that the WRF model outputs perform better over the
transboundary Chenab River. Coupling of high-resolution
hydrologic models with WRF model outputs reduce
uncertainties associated with the localization of rainfall driven
flood responses in catchments with complex terrain and short
response time (Yucel et al., 2015). Flood forecasting systems have
been developed for the coastal cities of Mumbai and Chennai by
coupling WRF forecasts with the integrated MIKE 11, MIKE 21,
andMIKE FLOODmodel (Ghosh et al., 2019; Ghosh et al., 2022).
There are no such studies conducted for inland catchments with
complex topography with hydrology governed by lakes which
acts as storage structures. An experiment is designed to examine
the additional value in improving flood forecasts by using the
WRF model as compared to using the coarser resolution NWP
products (like GFS) over Bangalore city in India. A loosely
coupled modelling framework is used for the experiment with
rainfall forecasts from the WRF ensemble being fed into the
PCSWMM hydrological model to create flood forecasts.

Bangalore city has faced an increase in severe flood events over
the last decade due to an increase in rainfall intensities, an
increase in developed areas, and the associated changes in the
land surface properties (Mujumdar et al., 2021). Research groups
in the CSIR-4PI [Council of Scientific and Industrial Research
(CSIR) Fourth Paradigm Institute] have worked on the
generation of high resolution rainfall forecasts from the WRF
model over Bangalore city and at a ward scale over Karnataka
(Rakesh et al., 2015; Rakesh et al., 2021; Mohapatra et al., 2017;
Sahoo et al., 2020b; Bhimala et al., 2021). An ensemble of WRF
Forecasts is developed for the Bangalore city in this paper and is
used in the hydrologic model to create flood forecasts at storm
water drains. Forecasts generated 6 h prior to the event are fed
into a detailed hydrological model, the Personal Computer Storm
Water Management Model (PCSWMM), built using high
resolution datasets. The specific objectives of the study are:
evaluation of rainfall forecasts from a convection permitting
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WRF ensemble and assessment of flood forecasts from the
hydrological model using the WRF ensemble output. The
outputs from the WRF model are evaluated against the output
from the GFS, which is used for forcing the WRF model. In this
paper, we evaluate the skill of a WRF ensemble (developed using
multiple physics parameterization schemes) to capture the spatial
and temporal distribution of the heavy rainfall event and the
consequent urban flooding. The best performing ensemble
members are identified using error indices and a subset of the
initial ensemble is fed into the detailed PCSWMM model

developed over Bangalore city. The calibrated and validated
flood model is then used to obtain flood forecasts for inputs
from the WRF ensemble and the GFS output.

DATA AND METHODS

Study Area
Bangalore city is geographically located between 12.75°N-13.17°N
and longitude 77.42°E–77.75°E, covering 709 km2. The

FIGURE1 | Study area and data used for development, calibration and validation ofWRF and PCSWMMmodels. (A–D), WRFmodel domain configuration used for
simulating extreme rainfall events over Bangalore city (A), Location of automatic rain gauges overlain over the digital elevation model (DEM) (B), Location of water level
sensors with storm water drainage network, valley boundaries and lakes used for the development of the hydrological model (C) and Spatial map of observed rainfall for
20–21 October 2020 heavy rainfall event along with observed water levels represented as the percentage of flow depth with respect to drain depth (D).
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administrative boundary of the Bruhat Bengaluru Mahanagara
Palike (BBMP), a city level governing body is selected for
demarcating the study area. Figure 1A shows the location of
the study area within the atmospheric model. The city is located at
the southern part of the Deccan plateau and the elevation ranges
from 896 to 673 m (MSL) towards the south west Bangalore. The
natural topography divides the city into three outwardly draining
watersheds—Hebbal (HB) valley, Koramangala-Chellaghatta
(KC) valley, and Vrishabhavathi (VV) valley. The undulating
terrain facilitates creation of a large number of lakes across the
city (188 lakes approx.), which are interconnected through
natural drains. Figures 1B,C show the high-resolution datasets
used in the flood model development. The region receives rainfall
from both south-west (from June to September) and north-east
(from October to December) monsoon. The extreme
precipitation events over Bangalore city have high spatial
variability. The spatial distribution of the rainfall observed for
the extreme event considered for the study is shown in Figure 1D.
The extreme rainfall threshold over Bangalore city is identified as
60 mm/day (Mohapatra et al., 2017). It was observed that about
55% of rain gauge stations recorded rainfall more than 60 mm
and the heavy rainfall was mainly localized to Vrishabhavathi
valley region. The maximum values from critical water level
sensors are expressed in terms of drain depth as shown in
Figure 1D.

Description of the Atmospheric Model
The atmospheric model used in the study is the WRF model
which is used widely over the Indian region for creating short
range rainfall forecasts. The WRF model version 3.6 (Skamarock
et al., 2008) creates high resolution weather forecasts for a specific
region. The dynamic core of the model solves the compressible
non-hydrostatic Euler equations and the physical processes,
which cannot be resolved to the model grid are represented
empirically using parameterization schemes. The initial and
boundary conditions required for the WRF model are
generated from the Global Forecast System (GFS) which is a
global weather forecast model maintained by the National Centre
for Environmental Prediction (NCEP, 2015). The three hourly
forecasts of climate variables at a horizontal resolution of 0.25° ×
0.25° are given as an input to the model.

Description of the Hydrological Model
An urban flood model is useful in the assessment, study, and
forecasting of flood conditions for reliable flood mitigation
measures (Qi et al., 2021). In this study, the flood model used
is the PCSWMM model (based on the United States
Environmental Protection Agency’s SWMM5 model), which is
a dynamic rainfall runoff model designed to simulate single and
long-term events specifically for urban areas (Rossman, 2005;
CHI, 2020). PCSWMM provides tools for 1D and 2D analysis of
rainfall runoff process and also has the ability to model storm
water source technologies (low impact development) to manage
water quality and quantity. It facilitates modelling with the
implementation of graphical user interface and GIS
(Geographic Information System) enabled tools which make
visualization and processing easier. PCSWMM can represent

natural systems in urban regions as it can incorporate lakes
and tanks using the storage unit feature. The model accounts
for the hydrological processes that produce runoff from the urban
catchments which include time-varying rainfall, evaporation,
infiltration and helps in modelling the generation and
transportation of runoff through a system of pipes, channels,
and storage structures. The flowchart of the PCSWMM model
methodology is shown in Supplementary Figure S1. The choice
of hydrological modelling platform depends on the hydrological
characteristics of the study areas and the data available. Bangalore
is an inland catchment with a complex terrain with around 244
lakes acting as storage structures within the city and flooding is
monitored via the water level in the storm water drains which
were constructed based on the natural drainage within the city.
The PCSWMM model is most suitable for modelling urban
catchments with fast responses and connections between lakes
and storm water drains. Hence, the PCSWMM modelling
platform has been used for the study.

Coupling of Atmospheric and Hydrologic
Model
WRF and PCSWMM models are one-way coupled with the
rainfall forecasts from the high-resolution grid of the
atmospheric model being forced into the hydrologic model to
generate flood forecasts at predefined locations within the city.
The forcing conditions which are generated at 18 UTC prior to
the day of the event are selected for the model run. The coupled
model cycle (as shown in Figure 2) is completed before 06 UTC
of the event date.

On test runs using different initial conditions, it is observed
that the forecast boundary condition generated closest to the
event gives a significantly improved result. After running the
model, the rainfall variable is extracted from the WRFmodel grid
at a high spatial and temporal resolution. A script using NCAR
Command Language (NCL) and NetCDF Operators (NCO)
commands are used to convert the coordinates and to extract
time series files corresponding to grids nearest to the locations of
the stations with the observed Automatic Rain Gauge (ARG)
network (National Centers for Environmental Prediction, 2019;
Zender, 2008; Zender, 2014). The time series of the rainfall
forecast is provided as an input to the rain gauge locations
using a Matlab code (Matlab, 2010). The spatial distribution of
rainfall from these rain gauges within the sub-catchments are
specified in the PCSWMM model using the Thiessen polygon
(Akhter and Hewa, 2016) weighted method. After simulation, the
flood model forecasts water levels at sensor locations distributed
in the storm water drain network. Figure 2 shows the broad
framework of model coupling.

Experiment Design Using the WRF Model
The WRF model comprises of three nested domains, with the
outermost domain of 9 km resolution covering the Indian region
with the adjacent oceans, the intermediate domain covering the
southern part of India at a resolution of 3 km, and the innermost
domain centered over the city of Bangalore with a resolution of
1 km as shown in Figure 1A. The WRF model takes 12 h to
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FIGURE 2 | Flowchart representing the methodology of coupling of the atmospheric and hydrologic model. Operational GFS data is used to run the WRF model to
generate high resolution rainfall forecasts. The data corresponding to the locations of the observed network is extracted and given as an input to the PCSWMM flood
model to forecast water levels at critical sensor locations.

TABLE 1 | WRF model configuration and physics scheme.

Domain 1 Domain 2 Domain 3

Horizontal grid 9 km 3 km 1 km

Time steps 45 s 15 s 5 s

Number of grids 325 271 325

Vertical levels 38 terrain-following sigma (σ) coordinates

Shortwave radiation Dudhia (Dudhia, 1989)

Longwave radiation Rapid radiative transfer model (Mlawer et al., 1997)

Land surface model Thermal diffusion model (Dudhia, 1996)

Planetary boundary layer Boulac (Bougeault and Lacarrere, 1989)

Urban surface physics Single layer urban canopy model (Chen et al., 2011)

Land use Advanced wide field sensor (AWiFS) (Gharai, 2018)

Topography Shuttle radar topography mission V3 (Farr et al., 2007)
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complete 30 h of simulation. Therefore, the forecast conditions
generated by the Global Forecast Model (GFS) at 18 UTC the
previous day is selected for the event. The model configuration
used here has 38 vertical levels and the model top is kept at a
constant pressure surface of 50 hPa. The details of the WRF
model configuration are shown in Table 1.

The land use land cover dataset in the United States Geological
Survey (USGS) set of static data comprising of albedo, green
fraction, land use land cover is replaced with a recent version of
the dataset from the Indian Space Research Organization (ISRO)
(2018-2019). The LULC data generated by the National Remote
Sensing Centre (NRSC), ISRO, was derived from the Indian
satellite IRS-P6, Advanced Wide Field Sensor (AWiFS) and is
compatible with WRF pre-processing system. Many studies have
demonstrated the improvement in the model outcomes, using
this dataset over the Indian region (Kar et al., 2014; Sahoo et al.,
2020a; Gupta et al., 2021), and also over the Bangalore region
(Sahoo et al., 2020b). Navale and Singh (2020), Golzio et al.
(2021) have demonstrated the significant impact of variation in
topography on the fine scale pattern of rainfall generated by the
WRF model over complex topography. The default topography
dataset is the Global Multi-resolution Terrain Elevation Data
(GMTED) (Danielson and Gesch, 2011) which has a resolution of
900 m (30 s).

This is replaced with the latest version of the Shuttle Radar
Topography Mission (SRTM) dataset made available by the
National Aeronautics and Space Administration (NASA). The
NASA SRTM version 3 is a recently released version of the high
resolution 30 m SRTM data which was void-filled using the
GMTED 2010 data and the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) Global Digital
Elevation Model Version 3.

An ensemble of forecast scenarios is generated using a
combination of convective and microphysics parameterization
schemes that were used in the past studies over Bangalore city
(Mohapatra et al., 2017; Bhimala et al., 2021; Rakesh et al., 2021;
Sarkar and Himesh, 2021). The city having a complex terrain,
may benefit from the high-resolution simulations as
demonstrated by earlier studies. The simulations are carried
out for each ensemble member, for 30 h and the model
outcomes are recorded at a 15-min interval. The first 6 h are
treated as spin-up and the 24 h corresponding to the rainfall event
are used for analysis.

Studies have shown that certain processes that contribute to
convection can only be captured when the resolution of the
numerical model is below 2 km (Iriza et al., 2016). To
understand this in detail, the rainfall forecasts obtained from
both the domains—3 and 1 km are used in the study. It is also
observed in the experimental test runs that different physics
parameterization scheme combinations simulated the heavy
rainfall event at both resolutions. The most commonly used
convective parameterization schemes are the Kain Fritsch and
the Betts Miller Janjic (BMJ) scheme. Kain Fritsch is a scheme
that uses the Convective Available Potential Energy (CAPE)
removal method to detect the onset of convection (Kain and
Fritsch, 1993; Kain, 2004). BMJ scheme is an adjustment type
scheme that generates deep and shallow convection (Janjić, 1994).

The Grell Freitas scheme is a recently added convective scheme to
the WRF model and has shown good performance over the
Cauvery catchment region in Karnataka (Sarkar and Himesh,
2021). The three convective parameterization schemes chosen are
based on the previous work done over Bangalore city by CSIR-4PI
(Mohapatra et al., 2017; Bhimala et al., 2021; Rakesh et al., 2021;
Sarkar and Himesh, 2021).

The microphysics (MP) scheme is responsible for heat and
moisture flux within the atmosphere and gives the surface
resolved rainfall. The WRF Single-Moment 6-class scheme
(WSM6) is a scheme with ice, snow, and graupel processes
suitable for high-resolution simulations. The WRF Double-
Moment 6-class scheme (WDM6), has been developed by
adding a double-moment treatment for the warm-rain process
into the WSM6 scheme. Mohapatra et al. (2017) compared
simulations of the WRF model for localised and non-localised
urban extreme rainfall events over Bangalore city. The study
concludes that the WRF model has a tendency to underestimate
the magnitude of non-localized or uniformly distributed heavy
rainfall events. This has been attributed to the incorrect treatment
of cloud droplet size by the WSM6 scheme and the study suggests
using the WDM6 scheme, as it has a better representation of
physical processes.

Combinations using two microphysics schemes, three
convective parameterization schemes, and two different
resolutions result in a 12-member ensemble. The details of the
ensemble are given in Table 2. In order to quantify the additional
value provided by the rainfall forecasts from the WRF ensemble,
the rainfall variable from the GFS is extracted. The time series for
the locations of the ARG network is extracted from the
corresponding grids of the GFS. The hydrological model is
forced using the rainfall values from both the GFS and the
WRF ensemble.

Calibration and Validation of the PCSWMM
Model
The development of the flood model for Bangalore city is
completed using high density storm water drainage network,
lakes data, and ARG network as shown in Figures 1B,C. The
digital elevation model of 10 m resolution (as shown in
Figure 1B) is procured from the National Remote Sensing
Centre (NRSC), India. The details of the administrative
boundaries and lakes used in the model are provided by
Bruhat Bengaluru Mahanagara Palike (BBMP) and Regional
Remote Sensing Centre (RRSC) (Hebbar et al., 2018) as shown
in Figure 1C. The percentage imperviousness of sub-catchments
is calculated using the Land Use Land Cover (LULC) map for the
year 2020 provided by the Bengaluru Development Authority
(BDA). The details of the input data to the PCSWMMmodel are
given in Supplementary Table S1. The datasets for the model
setup., viz., nodes, drains, storage tanks, ARG locations, and sub-
catchments are processed, connected and imported from ArcGIS
(version 10.3) to PCSWMM. The runoff is computed at the sub-
catchment level after accounting for various losses and the flow
from the sub-catchment outlets is routed kinematically through
storm water drainage channels. More details on urban flood
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model development for Bangalore city are given in Mujumdar
et al. (2021).

The three valleys are independent of each other with different
outlet points and in their response to rainfall events. Hence the
valleys are calibrated and validated separately for different rainfall
events. The observed water level data at some sensors because of
blockage to the flow, shows fluctuations and rise in water depth
irrespective of rainfall. The water level sensors are selected for
calibration and validation based on the availability of the
observed water level data with no unaccounted flow and
continuity of the data in the time period. The PCSWMM
model developed over Bangalore city is calibrated using a
recent heavy rainfall event that occurred on 8, 9 September
2020 (Supplementary Figure S2A).

The model output is verified against water level data at a high
temporal resolution of 15 min. The parameters considered for the
calibration of the model include sub-catchment properties which
are width, Manning’s roughness coefficient, and percentage
imperviousness, properties of the storm water network, viz.,
the slope and roughness coefficient of the conduits. The model
is further validated for a heavy rainfall event on 5, 6 November,
2020 (Supplementary Figure S2B). Calibration and validation of
the model is demonstrated here for a sensor located in the Hebbal
valley, a catchment towards the northern side of Bangalore city.
The performance indices for the calibration and validation of the
model are as shown in Supplementary Table S2. The model is
seen to perform well and is used to generate flood water levels for
the rainfall forecasts from theWRFmodel ensemble and the GFS.

Event Description
Bangalore city receives rainfall from both south-west (from June
to September) and north-east (from October to December)
monsoon. The model coupling framework discussed
(Figure 2), is used to simulate extreme events over the region
for the monsoons of years 2020 and 2021(Supplementary
Figures S3–S6). An extreme rainfall event that occurred on 20
and 21 October 2020, is selected for a detailed demonstration of
this framework. The spatial pattern of this particular event had
spatial characteristics similar to the mean return levels of annual
maximum precipitation with a 10-years return period
(Supplementary Figure S7).

The southwest monsoon in the year 2020 was prolonged due
to unseasonal weather systems that occurred in the Arabian sea
and the Bay of Bengal (IMD, 2020). The onset of the north east
monsoon season was delayed by 3 weeks. The heavy rainfall event
marked the end of the southwest monsoon of 2020 over
Bangalore city. This event occurred between the depression
over the Arabian Sea (17–19 October 2020) and the
depression over Bay of Bengal (22–24 October 2020).

The city received heavy rainfall throughout on 20 and 21
October 2020 and a daily rainfall maximum of 124.5 mm was
observed at Kengeri station in Raja Rajeshwari Nagar located in
the Vrishabhavathi valley (Supplementary Figure S8). In the
event of a flood, water levels at the sensors that exceed 75% of the
drain depth are assumed to be critical as per the alert system
followed by the urban flood model during flooding (Mujumdar
et al., 2021). The five sensors which were identified as critical at
the time of the observed event is then selected and studied here.
The maximum water level from these sensors is expressed in
terms of the percentage of drain depth which shows the level of
water relative to the drain depth at each location. The details of
the water level sensors such as location, depth of drain, and
observed water level data for the 20–21 October 2020 event at
critical sensors (>75% drain depth) are given in Supplementary
Table S3 (Supplementary Figure S9).

Performance Indices for Rainfall Forecasts
The skill of the WRF model presented here is evaluated by
comparing the simulated and observed rainfall at a high
resolution of 15 min. The performance indices are used to
analyze spatial and temporal errors across the observational
network. To calculate categorical indices, the variable values
are considered in a non-probabilistic manner. Categorical
statistics are computed from the elements in the contingency

TABLE 2 | List of physics combinations for the 12-member WRF ensemble.

S. no. Scenario name Microphysics
parameterization scheme

Cumulus
parameterization scheme

Resolution (km)

1 WSM6KF3 WSM6 Kain Fritsch 3
2 WSM6KF1 WSM6 Kain Fritsch 1
3 WSM6GF3 WSM6 Grell Freitas 3
4 WSM6GF1 WSM6 Grell Freitas 1
5 WSM6BMJ3 WSM6 Betts Miller Janjic 3
6 WSM6BMJ1 WSM6 Betts Miller Janjic 1
7 WDM6KF3 WDM6 Kain Fritsch 3
8 WDM6KF1 WDM6 Kain Fritsch 1
9 WDM6GF3 WDM6 Grell Freitas 3
10 WDM6GF1 WDM6 Grell Freitas 1
11 WDM6BMJ3 WDM6 Betts Miller Janjic 3
12 WDM6BMJ1 WDM6 Betts Miller Janjic 1

TABLE 3 | Contingency table for the calculation of categorical indices.

Model/Observed Rain (R) No rain (N)

Rain (R) RR (Hits) RN (False alarms)
No Rain (N) NR (Misses) NN (Correct negatives)
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table (Wilks, 2006) as shown in Table 3. Hits refer specifically to
those grids which show rainfall. For a sample threshold value of
40–60 mm, the values are calculated accordingly. If the observed
grid is showing a value between 40 and 60 mm and the
corresponding model grid is showing a value in the same
range, it is a Hit.

If the model grid is showing a value lesser than 40 mm it is a
Miss. If the model grid is showing a value greater than 60 mm it is
a false alarm. If the value in the observed grid doesn’t fall within
this range and the same is calculated for themodel grid, then it is a
correct negative.

The Critical Success Index (CSI), also known as the Threat
Score, describes the overall skill of the simulation relative to the
observation. The CSI value ranges from 0 to 1, where 0 indicates
no skill and 1 indicates perfect skill. It measures the fraction of
observed and forecast events that were correctly predicted. It does
not distinguish the source of the forecast error. It is described as
shown in Eq. 1.

CSI � hits

(hits +misses + false alarms)
(1)

Some additional indices that are calculated using the contingency
table are accuracy, bias score (BS), probability of detection (POD)
and Hiedke Skill Score (HSS) the details of which are provided in
the supplementary document (Supplementary Table S4).

The categorical indices are obtained based on the spatial
distribution patterns from the observed rainfall. Continuous
and categorical indices are calculated in comparison with the
observed data and the ensemble members performing better are
identified. The rainfall time series for each station is provided as
an input to the PCSWMM model and the model is run with the
best performing subset of the WRF ensemble. The 3-h time series
from the GFS were also given as an input to the PCSWMM
model. The water levels at various locations are compared and
analyzed for performance evaluation against the observed data.

RESULTS AND DISCUSSSION

The performance of theWRF ensemble is assessed for the selected
event using categorical indices. The best performing members are
then selected as a subset and used in hydrological modelling. The
additional value from the high resolution WRF model output (3
and 1 km at 15 min intervals) as compared to the GFS data
(25 km at three hourly intervals) is quantified in this section.

Verification of Spatial Distribution
gridded data is plotted using the ArcGIS software after
accumulating rainfall, 08:30 a.m. to 21 October 08:30 a.m.
2020 (ESRI, 2020). It can be observed that the microphysics
scheme plays a significant role in the amount of rainfall simulated
from Figure 3. Scenarios using the WSM6 scheme (Figures
3A–F) have forecasted a higher quantity of rainfall as
compared to those with WDM6 (Figures 3G–L). The single-
moment microphysics scheme predicts the total mass
concentration of hydrometeors (liquid or solid water particles

that may be suspended or fall through the atmosphere) whereas
double moment schemes include the prediction of total number
concentration (number of particles per volume). Cloud
Condensation Nuclei (CCN) and number concentration are
the two additional variables predicted in the double moment
scheme. This scheme is selected because it has a better physical
representation of the processes. However, some studies have
shown that in certain regions the simulation of CCN has
resulted in an overall decrease in the rainfall quantity (Li
et al., 2008). Also, the performance of the double moment
scheme is dependent on the accuracy of a large number of
microphysics processes than the single moment scheme (Lim
and Hong, 2010).

The convective parameterization (CP) scheme details the sub-
grid processes associated with convective clouds and operates
only on individual columns where the scheme is triggered and
provides the convective component of rainfall. Among the
convective schemes selected for the study, Kain Fritsch gives
better spatial representation in comparison to the observed
rainfall (Figures 3A,D,G,K). The location of the event is well
simulated by the Kain Fritsch scheme across domains and
microphysics schemes.

The comparison of results for 1 and 3 km shows no significant
pattern to determine the better performance among the two
domains. The 1 km domain performs better for the WSM6
microphysics scheme whereas, the 3 km domain performs
better for the WDM6 scheme. A similar observation was made
in a comparison study by the Korean Meteorological Agency
which observes that both WSM6 and WDM6 underestimate
convective events in spite of WDM6 predicting realistic rain
drop size and relative humidity due to a dependence on grid
resolution (Min et al., 2015). However, for a combination of
certain physics schemes - WSM6KF (Figures 3A,D) and
WDM6GF (Figures 3H,K), both the domains offer a fair
representation of the spatial pattern. More events need to be
considered in order to understand the combined impact of grid
resolution and microphysics schemes. Out of the 12 forecast
scenarios, 10 indicate the occurrence of a heavy rainfall event for
the given time period within the city (Figures 3A–I,K).

Categorical Indices
The categorical indices are calculated for the 12 simulations
created for the heavy rainfall event that occurred on 20–21
October 2020. For each simulation, the indices are calculated
for different rainfall thresholds—20, 40, 60, 80, 100, and 140 mm
as shown in Supplementary Figures S10A,B. Capturing the
location of the rainfall, plays an important role in flood
forecast and therefore the ensemble members which capture
the location of the rainfall range gives higher CSI values. For
example, the rainfall in the range of 40–60 mm lies in the central
part of the city and the members WSM6GF1, WSM6BMJ3, and
WSM6KF1 capture it with the highest CSI values
(Supplementary Figure S10B). The heavy rainfall range
(>60 mm) for this event occurs towards the south western side
of Bangalore city, and although there is a general underestimation
from the ensemble, some scenarios, viz., WSM6KF3, WSM6KF1,
andWDM6KF3 predict the location accurately (Figures 3A,D,J).
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FIGURE 3 | Spatial distribution of 24 h accumulated rainfall (mm) from WRF ensemble, Global Forecast System (GFS) data and observed rainfall. (A–N), Spatial
distribution of 24 h accumulated rainfall (mm) from WRF ensemble simulations WSM6KF3 (A), WSM6GF3 (B), WSM6BMJ3 (C), WSM6KF1 (D), WSM6GF1 (E),
WSM6BMJ1 (F), WDM6KF3 (G), WDM6GF3 (H), WDM6BMJ3 (I), WDM6KF1 (J), WDM6GF1 (K), WDM6BMJ1 (L), the Global Forecast System (GFS) data (N), and
observed (M), over the Bangalore city for the period 0300 UTC 20 October to 0300 UTC 21 October 2020. The heavy rainfall quantities (>60 mm/day) is well
represented by the WRF ensemble and it can be seen from (A–L) that the extreme rainfall pattern is reflected in the WRF ensemble output as compared to the GFS. The
three columns correspond to the three convective parameterization schemes selected for the study—Kain Fritsch, Grell Freitas, and Betts Miller Janjic. The first two rows
show the results from WSM6 microphysics schemes and the next two rows present the results from WDM6.
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The WSM6KF3 configuration of the WRF ensemble is also
validated across four heavy rainfall events from the monsoons
of 2020 and 2021—September 8–9, October 20–21 for the year
2020 and November 4–5, October 11–12 for the year 2021. The
spatial verification and categorical metrics calculated across
these events for different rainfall thresholds are included in
the supplementary material (Supplementary Figures S3–S6,

S11; Supplementary Tables S4, S5). On an average, the model
setup has a better performance than a random/chance forecast
for a rainfall threshold of 60 mm as can be seen by the positive
value of Hiedke Skill Score (Supplementary Figure S11).
Based on the spatial distribution of rainfall and categorical
indices, the ensemble members with better model
performance are identified and used in the flood forecast

FIGURE 4 | Comparison of rainfall time series from the selected forecast scenarios for rain gauge locations. (A–C), Comparison of rainfall time series from the WRF
forecasts, GFS forecasts and Observed rainfall for ARG locations in Koramangala-Chellaghatta valley (A), Vrishabhavathi valley (B), and Hebbal valley (C). (D),
Comparison of 15-min maximum rainfall from eachmember of the ensemble with the 15-min maximum value from observed ARG network. TheWRF ensemble is able to
capture the intensities of the event as compared to the GFS.

Frontiers in Earth Science | www.frontiersin.org May 2022 | Volume 10 | Article 88384210

Davis et al. Real Time Flood Forecasting Framework

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


model. The members identified to be given as an input to the
hydrological models are—WSM6KF3, WSM6KF1,
WSM6GF3, WSM6GF1, WDM6KF3, and WSM6BMJ3. The
time series of this subset is further verified at locations
adjacent to the critical water level sensors in the
hydrological model.

Verification of Temporal Distribution
The 15-min time series data corresponding to the automatic rain
gauges is extracted from the above-mentioned WRF ensemble
subset and is provided as an input to the PCSWMM model. The
time series for six ensemble members at three critical locations
(one representative of each valley) are examined here as shown in
Figure 4. The GFS data extracted for the location is also shown in
Figure 4. It can be seen for all valleys, that the 15-min maximum
value of the observed time series is captured.

For Koramangala-Chellaghatta (KC) valley, maximum values
and the temporal patterns of rainfall at 15 min are captured by the
ensemble member, for Vrishabhavathi (VV) valley the patterns
are captured with lesser intensity and in Hebbal valley, a slight
overestimation is noted as shown in Figures 4A–C. The GFS data
(red bar graphs shown on the inverted axis in Figures 4A–C)
consistently underestimates the daily rainfall value at all three
locations and the timing of the peak occurs after the rainfall event
at some locations.

TheWRFmodel is able to capture the intensities of the rainfall
albeit with a temporal shift. This could be due to the fact that the
single layer urban canopy physics option used may not capture
the heat exchanges that happen within the city. Opting for a
multi-layer urban canopy model and incorporating detailed
representation of urban land use classes in future studies may
improve the timing of the prediction (Holt and Pullen, 2007;
Salamanca et al., 2011; Jandaghian and Berardi, 2020). The WRF
model output is captured at every 15 min as against the 3-h time
interval of the input GFS data. The 15-min maximum value for
the rainfall forecast from each WRF ensemble member is
compared against the observed data. Even the lower
performing members of the ensemble, WDM6KF1, and
WDM6BMJ1 based on the spatial verification shown in
Figures 3K,L have captured a maximum value of 17.88 and
25 mm respectively, as compared to the observed value of 24 mm.

Most ensemble members capture the 15-min maxima with a
variation of not more than 10 mm. This implies that irrespective
of the spatial and temporal displacements of the simulated
rainfall, the maximum intensity is fairly well captured by the
WRF model ensemble. The maximum from the GFS is 30 mm in
a 3-h interval which is very low in comparison to the values from
the WRF ensemble. From this section, it can be concluded that
three hourly rainfall forecasts from GFS fail to capture the
temporal variability and intensity of the observed rainfall.

Comparison of PCSWMM Model Output
TheWRF ensemble members are selected based on their ability to
simulate the spatial distribution and location of heavy rainfall
(>60 mm/day), and the forecasted rainfall is given as inputs to the
hydrological model. Prediction of water levels in urban flooding
situations requires accurate sub-hourly intensity/values of rainfall

to be given as an input to the flood models. The data extracted at
rain gauge locations from the nearest grids in the WRF model is
given as input to the PCSWMM model. The spatial plot of the
PCSWMM input data is shown in Figure 5. The spatial
distribution of rainfall is improved by downscaling the GFS
data as visible in Figures 5A–H in terms of extent and
intensity, and similar improvement can be observed for water
level forecasts.

The critical water level sensors in Vrishabhavathi,
Koramangala-Chellaghatta, and Hebbal valley are selected for
the analysis based on the observed water level depth during the
storm event (>75% of drain depth). The plots also show the
outputs from PCSWMM for these sensor locations across
Bangalore city (Figures 5A–G) and the peak water level
depths at those locations are expressed in terms of the
percentage of the drain depth covered. The PCSWMM model
simulation outputs for the three hourly rainfall time series from
the GFS data are also shown in Figure 5G.

The spatial distribution of the rainfall forecasts has a
significant impact on the water level peak forecasts as can be
seen from Figures 5A–F. For Koramangala-Chellaghatta and
Hebbal valley, the WRF model forecasts are performing better
than the GFS data forecasts. For the critical sensors in
Vrishabhavathi valley, which had the highest recorded water
levels (exceeds the drain depth by 122 and 21%), the values
are underestimated by both the WRF ensemble and GFS data.
The flood model responds well to all sources of rainfall input
(Observed, WRF ensemble, and GFS data) and the variation in
the water level correlates with rainfall intensities. The error in
predicting the location of the heavy rainfall threshold (above
60 mm/day) impacts the forecasts of the flooding locations from
the hydrological model.

It can be observed that water level peaks are being captured at
certain locations in spite of a general underestimation in the
rainfall forecasts. This can be attributed to the fact that the sub
hourly rainfall intensity which is a strong indicator of the
extremity of the event is captured to a larger extent by the
WRF downscaled forecasts. It can be observed in Figure 4C
that the 15-min maximum rainfall from observed sensors which
is 24 mm is fairly captured by all members of the ensemble.

A spatial shift in the simulated rainfall can be observed in
certain ensemble members towards the southern side of
Bangalore (shown Figures 5C,D), which is reflected in the
simulated water depths. The spatial distribution of rainfall has
improved to a greater extent using the WRF ensemble forecasts,
Also, the forecasted water levels are closer to the observed data
and higher than the GFS data forecasts.

Verification of Flood Forecasts From
PCSWMM
The high spatial and temporal intensity of the urban flood that
occurred following the heavy rainfall event on 20–21 October
2020 is captured fairly by the PCSWMM model. The observed
rainfall data from the ARGs is given as an input and the flood
model output (Input_ARG_Rainfall) is compared with the water
level sensor data and flood forecast values from the WRF
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ensemble and GFS data as shown in Figures 6A,B. It can be
observed from Figure 6A the water level forecast from the WRF
ensemble provides a good indication of high water levels and
shows a high variability when compared with forecasts from the
GFS data as shown in Figures 6A,B. Similar result can be

observed for sensors in Vrishabhavathi valley (Supplementary
Table S6). From extensive field visits and ground scenario
comparisons, it is observed that certain obstructions in the
form of debris from sewage flow, including solid waste and
tree/plant growth, cause the water in the storm water drains to

FIGURE 5 | Rainfall forecasts fromWRF ensemble members and GFS forecast and the corresponding water level forecasts. (A–F), Spatial variability in rainfall and
corresponding flood forecasts from WRF ensemble member WSM6KF3 (A), WSM6GF3 (B), WDM6KF3 (C), WSM6KF1 (D), WSM6GF1 (E), WSM6BMJ3 (F), (G,H)
Spatial variation in rainfall and corresponding flood forecasts from GFS (G), and Observed ARGs (H). The red boxes indicate the forecasted water levels at critical
locations by the model represented as percentage of drain depth occupied by water. The water level forecasts show similarity with the observed water levels which
are better than the forecasts using GFS.
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FIGURE 6 | Comparison of water level at critical water level sensor locations. (A,B), Comparison of forecasted water level using WRF ensemble forecasts, GFS
forecasts and observed rainfall with observed water levels at water level sensor location in Vrishabhavathi valley (A) and Koramangala-Chellaghatta valley (B) at 15-min
interval. The water level is captured fairly using WRF forecasts than GFS forecasts. (C,D), comparison of forecasted water levels from WRF ensemble members(3 h
averaged) and GFS forecasts at three hourly intervals at water level sensor location in Vrishabhavathi valley (C), and Koramangala-Chellaghatta valley (D).
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rise resulting in outliers in the observed water level sensors data as
shown in Figure 6B. It can be seen from Figure 6B, that the flood
forecast is not able to capture the peak value (2.2 m) which maybe
a result of external factors and not the rainfall event. Excluding
the outlier value, the maximum water level (0.9 m) is reflected in
the flood forecasts generated using the WRF ensemble.

Based on observations made for Vrishabhavathi Valley, it can
be observed from Supplementary Table S6, that the model
performs well in predicting water level peaks for all valleys. As
shown in Supplementary Table S6, 50 and 16.7% of the ensemble
members indicate flooding (>75% drain depth) for Koramangala-
Chellagatta and Vrishabhavathi valley respectively which is useful
for early warning and disaster preparedness. The average
percentage drain depth obtained from the flood forecast using
WRF ensemble is 63 and 70 for Vrishabhavathi and
Koramangala-Chellagatta valley, respectively.

The WRF forced PCSWMM model output was further
averaged to 3 h to match with the resolution of the GFS data
The results shown in Figures 6C,D, indicate that the WRF
ensemble captures the variability with a slight underestimation
in the flood peak. Flooding in urban areas is majorly caused by
high-intensity short duration rainfall which leads to saturation of
the available pervious area and overwhelming of the drainage
capacity. When using the forecast from the GFS data as rainfall
input, with an interval of 3 hmost of the rainfall infiltrates and the
soil is not saturated enough to produce an overland flow that can
contribute to an increase in the water level. This results in the
water levels remaining unchanged throughout the hydrological
model run (Figure 6). The high-resolution rainfall forecasts from
the WRF ensemble produce the flood peaks more effectively than
the GFS data as shown in Figure 7. The hydrological model
simulation when forced with global forecast at 3-h intervals, is not
able to accurately represent the hydrology specially of an urban
area and thus highly underestimates the flood magnitude.

CONCLUSION

The rising number of extreme events in Indian cities is a serious
concern with the high population density and unplanned growth,
making them suffer huge economic losses in the aftermath of

such an event. As per the recent IPCC reports, the increase in the
global temperature is bound to bring about unprecedented
changes which cannot be predicted by analyzing historical
data. The impact of recent urban floods highlights the
requirement for the development of a high-resolution flood
forecasting system for Indian cities. The nature of the urban
flood demands a system built using high resolution data to
capture the sub-hourly intensities occurring for short
durations, as, such rainfall events are known to cause
extensive damage. The city of Bangalore has a high-density
network of automatic rain gauges and water level sensors. The
data is made available at a 15-min temporal resolution; hence the
city is used as a case study to evaluate a real time flood forecasting
system. In this context, the real time forecast data at a resolution
of 25 km from the Global Forecast System model—is used to as a
boundary condition to drive the WRF model. As Bangalore
covers an area of 765 km2, climate data at 25 km maybe
insufficient to resolve interactions with local topography and
adequately forecast convective systems that may cause extreme
rainfall events and urban flooding as a consequence. Hence, a
popularly used RCM, the WRF model, is used to dynamically
downscale real time climate information to a high resolution of 3
and 1 km. As WRF model outputs contain some uncertainty
associated with the complexity of the rainfall generation process,
a combination of 12 model configurations, with different physics
schemes are used for the experiment.

The PCSWMMmodelling platform is used to study the urban
hydrology, using high resolution datasets to obtain water level
observations in open channel drains. The model was calibrated,
validated, and run for real time scenarios and have been able to
effectively capture the points of flooding for the selected extreme
events. This urban flood model is used for flood forecasting by
using rainfall data from the WRF model and GFS data. The
additional value brought about by using the WRF model is
evaluated by comparing the flood forecasts from GFS data
with the observed.

The present study reveals that the high-resolutionWRFmodel
is able to provide additional value in terms of characteristics of the
rainfall pattern and sufficient variability in the water level pattern
as compared to the 25 kmGFS data. The accumulated rainfall and
its location are found to be sensitive to the choice of convective

FIGURE 7 | Comparison of maximum water level at critical water level sensor locations. (A,B), Comparison of water level between maximum value from WRF
ensemble forecast, GFS forecast and observed data at sensor location in Koramangala-Chellaghatta valley (A), and Vrishabhavathi valley (B). The bias between theWRF
ensemble and the GFS is 0.68 and 0.32 m. The flood maximum value is predicted by the WRF ensemble at both locations.
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and microphysics parameterization schemes. Model simulated
rainfall is noted to be closer to the observed rainfall in the case
when the microphysics scheme is WSM6 and the convective
parameterization scheme is Kain Fritsch.

Ten out of the twelve members of the WRF ensemble, forecast
an extreme rainfall event within the city. The GFS data shows a
rainfall event but fails to capture any rainfall above 60 mm/day
which is the threshold for flooding in Bangalore city (Mohapatra
et al., 2017). Six out of twelve members are successful in capturing
the location and spatial distribution of the event and are used as
an input for the calibrated PCSWMM model (Supplementary
Figure S2).

The spatial and temporal resolution of the rainfall input plays
an important role in the urban flood event analysis. The dense
spatial and temporal network used for verification of the
performance of the forecasting framework is a novelty of the
work. It can be seen that the flood model outputs using the WRF
ensemble data have more variability as compared to the runs
using the GFS data as an input. The inability to capture the
extreme rainfall features and the coarse temporal resolution of the
GFS data has caused the water level output to be both spatially
and temporally unvaried. The WRF ensemble aids in the model
performance for flood forecasts with the ensemble water level
peaks being much closer to the observed than GFS data
(Figure 7). The flood peak appears 6–8 h in advance as
compared to the observed which may be due to inadequate
representation of urban heat island effect within the model
(Paul et al., 2018).

The study demonstrates the first ever integrated
application of a high-resolution numerical weather model
coupled with a detailed hydrological model to capture a
recent urban flood event over an Indian city. The urban
catchment considered for the study is a lake based inland
catchment and can serve as a model for other cities with
similar urban hydrology. While the Bangalore city is a highly
gauged or data rich study area that facilitates urban flood
forecasting studies, the study framework can be adaptable for
any city by giving inputs that reflect extreme rainfall events.
The best performing member of the modelling framework
(WSM6KF3) has been tested for various events and the
performance across events have been included in the
supplementary section for the sake of brevity
(Supplementary Figures S3–S6, S11, Supplementary
Tables S4, S5). The WSM6KF3 member has been tested
for four heavy rainfall events from the monsoons of 2020
and 2021—September 8, 9; October 20, 21; 2020: November 4,
5; October 10, 11; 2021. The combined categorical indices
have been added to the supplementary material
(Supplementary Figure S11). On an average, the model
setup has a better performance than a random/chance
forecast for rainfall threshold above 60 mm as can be seen
by the positive value of Hiedke Skill Score (Supplementary
Figure S11A).

The WRF model ensemble is being improved continuously to
reduce inconsistencies and errors in the initial conditions. The
current physics ensemble selected for the study needs to be
calibrated further in order to develop an ensemble with each

member equally likely to predict a convective storm one to 3 days
in advance. The accuracy of the ensemble can be further
improved by assimilation of the observed network data. The
one-way coupled framework has certain limitations as the
feedback of surface hydrology variables such as lateral water
flow and soil moisture to the atmospheric model are not
considered. The lack of a two-way feedback mechanism also
leads to the separation of the rainfall process from the land
surface hydrological processes.

The modelling framework is designed to generate short range
forecasts for the city of Bangalore. Continuous assessment of the
operational runs of this framework can be used to develop
medium range and long-range flood forecasts. Operational
forecasts from the flood forecasting framework aids in
building climate resilience for the city if and when these urban
feedbacks are considered into regional planning processes
(Gonzalez et al., 2021). The accuracy of the modelling
framework can be further improved to include future sources
of climate data—localised climate zones, data assimilation, higher
resolution LULC and DEM. It can also be utilised for future
climate scenarios if uncertainties from corresponding future land
use land cover prediction datasets that will be used in the
hydrological models is quantified.
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