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Tridiagonal and Block Tridiagonal Computed Sparse Preconditioners for Large
Electrodynamic Electric Field Integral Equation (EFIE) Solution

Yoginder Kumar Negi

Abstract—1In this work, we propose simple and efficient tridiagonal
computed sparse preconditioners for improving the condition number
for large compressed electric field integral equation (EFIE) method
of moment (MoM) matrix. The preconditioner computation is based
on the triangle and block triangle interaction and filled tridiagonally.
The computed preconditioner is highly sparse and retains the O(N)
complexity of computation and preconditioner matrix solution time.
Numerical results show the efficiency and accuracy of the proposed
preconditioner.

Index Terms—Hierarchal matrices (H-Matrix), integral equation,
method of moment (MoM), preconditioner.

I. INTRODUCTION

In the last few decades, computational electromagnetic (CEM)
methods have gained popularity for various electromagnetic analyses
due to their accuracy and efficiency. The frequency domain electric
field integral equation (EFIE) based method of moment (MoM) [1] is
one of the popular methods in CEM for solving complex electromag-
netic radiation/scattering problems [2]. MoM leads to a dense matrix
with O(N?) matrix fill time and memory requirement for N x N size
matrix. Solving MoM system of equations requires O (N 3) time with
direct solver and N;; O(N 2) time with a conventional iterative solver
for Ny, iterations. The real-world electromagnetics problems are
geometrically large and complex; the solution of large-scale problems
with MoM is limited due to the high matrix storage, computation, and
solve cost. Direct solvers have the advantage of one-time factorization
cost for a fixed time and memory. Solving large problems with a
direct solver may be time-consuming and memory-intensive; even
a few of the proposed fast direct solvers [3], [4] scale poorly for
3-D large complex problems. At the same time, the iterative solver
needs less memory and fewer matrix operations than the direct solver.
In the iterative solver, high storage and computation cost can be
mitigated by incorporating matrix compression based fast solver
methods like multilevel fast multipole algorithm (MLFMA) [5],
precorrected fast Fourier transform (FFT) [6], adaptive cross approx-
imation (ACA) [7], [8], Hierarchal matrices (H-Matrix) [9], [10], and
IE-QR [11]. The matrix storage, fill-time and matrix-vector product
time can be reduced to O(NLogN) with a reduced solution time of
Nijt» O(NlogN) for Nj;, iterations. EFIE being a Fredholm integral
equation of the first kind, the eigenvalue tends to cluster at zero
and infinity leading to the poor condition number of the matrix.
As the number of unknowns increases, the number of large and

Manuscript received May 7, 2021; revised November 2, 2021; accepted
November 15, 2021. Date of publication December 29, 2021; date of current
version June 13, 2022. This work was supported by the Department of Science
and Technology (DST) Government of India through the National Supercom-
puter Mission (NSM) Project under Grant SP/DSTO-20-0130. (Corresponding
author: Yoginder Kumar Negi.)

The authors are with the Supercomputer Education and Research
Centre, Indian Institute of Science, Bangalore 560012, India (e-mail:
yknegi@gmail.com; balki@iisc.ac.in).

Color versions of one or more figures in this communication are available
at https://doi.org/10.1109/TAP.2021.3137406.

Digital Object Identifier 10.1109/TAP.2021.3137406

and N. Balakrishnan

small eigenvalues also increases, which leads to an increase in the
ill-conditioning of the matrix. Ill-conditioned matrices are highly
sensitive to perturbation in the system, which may jeopardize the
accuracy of the solution and leads to a high iterative solution iteration
count. Preconditioning [12]-[14] of a matrix helps to improve the
condition number of the matrix by clustering the eigenvalues around 1
and reducing the solution iteration count. Preconditioning is a way
to convert the coefficient matrix from a system of the equation to the
desired property system before the solution.

Broadly, preconditioners can be classified as analytic and alge-
braic. Analytic preconditioners like Calderon preconditioner [15]
are kernel-dependent and sensitive to characteristics of the operator,
thus applicable to a narrow class of problems. In comparison,
algebraic preconditioners are more versatile and applicable for a
broad range of problems. Incomplete LU (ILU) [16]-[18] and sparse
approximation inverse (SPAI) [19], [20] are the few popular algebraic
preconditioners for accelerating the iterative solution process. For
significant size problems, ILU is limited due to the serial nature of
LU factorization and selection of drop tolerance (7) and fill-in (p)
parameters. On the contrary, SPAI is limited by the quadric cost
of computation and is applicable for parallel process-based matrix
solutions. The near-field matrix [21] of a fast solver can also be
used as a preconditioner, but the high factorization cost limits the
application as a preconditioner. A scaled near-field block-diagonal
preconditioner is presented in [22]-[25], but the diagonalization
process is complex. The preconditioner should be simple and low-cost
in computation, and effective in improving the condition number of
the matrix.

The diagonal and block-diagonal preconditioners are the simplest
but are not effective in improving the condition number of the
large size matrix [26]. In this communication, we propose novel
sparse preconditioners based on the tri-diagonal and block tridiagonal
interaction. The preconditioner is highly sparse and has a very low
solution time. Tridiagonal matrix preconditioner is presented in [27]
and [28] and is applied for solving sparse matrices arising from
Navier—Stokes equation. Our proposed sparse preconditioner is based
on the triangle interaction and triangle cluster interaction at the lowest
level of the binary-tree/oct-tree. The sparse preconditioners scale the
columns of the coefficient matrix and improve the spectral property
of the matrix, which further improves the iteration count during
the solution process. The numerical results show the accuracy and
efficiency of the proposed preconditioner method.

The communication is organized as follows: in Section I, a brief
description of EFIE H-Matrix is presented. In Section III, the pro-
posed tridiagonal and block tridiagonal preconditioner is presented.
In Section IV, the efficiency and accuracy of the proposed H-Matrix
are presented. Section V concludes the communication.

II. EFIE H-MATRIX

EFIE-based MoM is a popular method for solving open and closed
conductor body problems in electromagnetics. For a 3-D arbitrary
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shape conducting body, the EFIE boundary condition for an object
illuminated with an incident field on the surface S is given as

|Es(J)+ Eilign =0 ()]

where E; is the scattered electric field due to the induced surface
current J on the object illuminated by an incident electric field E;
and tan in (1) is a tangential component of the electric field. The
scattered electric field can be further written as

Es(J)=—jwoA—-V¢ (@)

where A and ¢ represent the vector and scalar potentials, and @
is the angular frequency. Expanding scalar and vector potential and
using the Galerkin testing method with RWG basis function [29], the
resultant MoM system of (2)

[Z][x] = [b]. 3

In (3), for a given unknown N, [Z] is a dense MoM matrix of
size N x N, b is an incident vector, and x is a solution vector of
size¢ N x 1 . Dense MoM matrix leads to O(NZ) matrix storage
and filling time. The matrix storage and fill time can be reduced
by incorporating fast algorithms for matrix filling and solutions.
These methods work on the principle of analytic and algebraic matrix
compressibility of far-field interaction blocks. MLFMA and FFT are
analytic matrix compression methods. Algebraic matrix compression
methods are ACA and H-Matrix, and IE-QR. These methods are
kernel-independent and easy to implement compared to an analytic
method like MLFMA. In this work, we used half H-Matrix [30] with
recompressed ACA [31] to take advantage of algebraic compression
and reduce the overall matrix storage requirement. For the H-Matrix
construction, the compression scheme can be applied on a binary-tree
based 3-D geometry decomposition, where the matrix compres-
sion is applied for block interaction satisfying the admissibility
condition

ndis (Q, Qg) > min (dia(Qt), dia(QS)) . 4)

The admissibility condition of (4) states that for matrix compres-
sion admissibility constant (7) times the distance between the test
() and source blocks (€5) should be greater than or equal to
the minimum of the block diameter of the test block and source
block. The binary-tree partition of the geometry is carried out
until the number of elements in the block is less than or equal
to 30 basic elements. At the leaf level, the block interaction not
satisfying the admissibility condition is considered as a near-field
interaction. In the case of the multilevel binary tree, the far-field
block satisfying admissibility condition interacted at a higher level
does not interact at the lower level. As the number of unknowns
grows up, the solution time grows up due to the increase in iteration
count. The condition number of the matrix deteriorates as the matrix
size increases; furthermore, mesh inconsistencies and geometry type
may also lead to matrix ill-conditioning. An ill-conditioned matrix
leads to a high iteration count and solution time. Preconditioners
can improve the condition number of the matrix and accelerate the
solution time. In Section III, we propose a simple and efficient
preconditioner based on the tridiagonal and block tridiagonal matrix
computation.

III. TRIDIAGONAL AND BLOCK

TRIDIAGONAL PRECONDITIONING
Iterative solution of large size matrix with Krylov subspace
depends on the condition number of the matrix and matrix-vector
product cost. Matrix-vector product cost can be reduced using fast
solver methods, whereas iteration count in the matrix is condition
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Fig. 1. Triangle interaction for sparse matrix computation.
Fig. 2. Sparse tridiagonal computed preconditioner for 11 x 14 metallic
plate.

number dependent, and as the number of unknown grows, the
condition number of matrix deteriorates. Preconditioning is one of
the efficient methods to improve the condition number of matrix
and expedite the solution process. The preconditioned system can
be either as a left (5) or right (6) and is given as

[P 1z10x1 = [P ] 10 )
21 [P~ [#] = 18] ©)

where P is the preconditioner matrix, Z is the EFIE MoM full
matrix or compressed matrix, b is excitation vector, x and x are the
solution vectors, where X is [P]x. To keep the cost of the iterative
solution low, the preconditioner matrix should be highly sparse in
nature and effective in improving the condition number of the matrix.
In this section, we propose a new sparse preconditioner used as a left
preconditioner for solving a large compressed matrix. The inverse of
the MoM matrix is the ideal preconditioner for solving the MoM
matrix with an iterative method, but the cost of the MoM inverse is
memory and compute-intensive. Most of the algebraic preconditioners
try to depict the inverse of the actual solution matrix. Therefore, most
of the proposed preconditioners in literature are derived from the
actual matrix.

The proposed first tridiagonally computed sparse preconditioner
is highly sparse and is derived from the MoM matrix. The sparse
preconditioner is computed by considering only the mesh triangle to
triangle interaction in the MoM matrix. For an illustrative purpose,
Fig. 1 shows three triangles that fill the MoM sparse preconditioner
matrix. Here the triangle #, interacts with 71 and 73 to fill the seven
edges (e, e2, ..., e7) indices in the MoM matrix. If the triangle #q
is boundary triangle it interacts with 7 else it as in the case of
nonboundary, it interacts with 7 and #y. Dotted lines in the figure are
the contributing triangles for the RWG edges. Fig. 2 shows the sparse
tridiagonal preconditioner computed for 14 x 14 metallic plate. The
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Fig. 3. Triangle block binary tree division of geometry for level 2.

Fig. 4. Sparse block tridiagonal computed preconditioner for 24 x 24 metallic
plate for binary tree level 5.
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Fig. 5. Eigenvalue distribution of 1/ radius sphere MoM matrix with 5334
RWG edges.

preconditioner is computed for 280 unknowns with 2688 numbers of
nonzeros (NNZs).

Similarly, we can compute block sparse preconditioner with tri-
angle block interaction. Fast solvers like MLFMA and H-Matrix
rely on the oct-tree or binary-tree (Fig. 3) geometry division. For
the divided geometry, the block matrix interaction is compressed
at different levels with satisfying the far-field criteria. The non-far-
field block interaction at the lowest level is considered near-field.
Taking advantage of the geometric block partition for fast solvers,
the preconditioner is computed for tridiagonal block interaction. The
geometric block partition is done for triangles up to the desired
level, with an average of 30 triangles in a group. For the block
preconditioner computation as shown in Fig. 3, at the lowest level,
triangles in block 1 interact with block O and 1, and in the case of
boundary block 0, it interacts with block 1 triangles.

Fig. 4 shows the sparse block tridiagonal preconditioner computed
for 24 x 24 metallic plate. The preconditioner is computed for 1160
unknowns at binary-tree level 5 with 156 644 NNZ’s.

Fig. 5 above shows the eigenvalue distribution of 14 radius sphere
MoM matrix of size 5334 x 5334.
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Fig. 6. Eigenvalue distribution after tridiagonal computed sparse precondi-
tioned 14 radius sphere matrix.
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Fig. 7.  Eigenvalue distribution after block tridiagonal computed sparse
preconditioned 14 radius sphere matrix.
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Fig. 8. Computation time for tridiagonal and block tridiagonal computed
sparse preconditioner with increasing unknowns.

Figs. 6 and 7 show the eigenvalue distribution of 11 radius sphere
with 5334 unknowns MoM matrix after preconditioning. It can be
observed from the figure that the proposed preconditioners efficiently
scale the columns of the MoM matrix and cluster the eigenvalues
around 1, thus improving the spectral property of the EFIE matrix.

IV. COMPLEXITY ANALYSIS

In this section, we show the efficiency of the proposed sparse
preconditioners for set-up time, LU solve time, and memory. The
complexity analyses are carried for perfect electric conductor (PEC)
plates with increasing unknown and size. One of the prime properties
of a preconditioner should be its linear time complexity for set-up,
and Fig. 8 shows that the proposed preconditioners retain the O(N)
complexity for computation.

Iterative solver cost depends on the matrix-vector product time,
and preconditioned iterative solver depends on the preconditioner LU
solve time of the preconditioner. An efficient preconditioner should
have a very less LU solve time with linear complexity. Fig. 9 below
shows the linear LU solve time complexity for the proposed sparse
preconditioners.
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Fig. 9. LU solve time for tridiagonal and block tridiagonal computed sparse
preconditioner with increasing unknowns.
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Fig. 10. Memory required for tridiagonal computed sparse preconditioner
before and after factorization with increasing unknowns.
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Fig. 11. Memory required for block tridiagonal computed sparse precondi-
tioner before and after factorization with increasing unknowns.

Along with time complexity, memory requirement plays a vital role
in the efficiency of the solution process. A high memory precondi-
tioner may jeopardize the iterative solution limiting the preconditioner
applicable to a small size problem. Figs. 10 and 11 show the O(N)
memory complexity for tridiagonal and block tridiagonal computed
sparse preconditioner before and after factorization.

V. NUMERICAL RESULTS

In this section, we show the accuracy and the efficiency of the
proposed preconditioners. All the simulations are done with ACA
compressed H-Matrix fast solver (compression tolerance = le-3)
and solved with Krylov subspace-based iterative solver (GMRES)
for convergence error of le-6 for PEC geometry. Computation was
carried out for double-precision data type on 128 GB memory and
Intel (Xeon E5-2670) processor system.

A. Accuracy

In this section, we show the accuracy of the proposed precondi-
tioners for open and closed geometry. Fig. 12 shows the monostatic
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Fig. 12. Bistatic RCS of 51 square plate with VV polarized plane wave
incident at & = 0°, ¢ = 0°, and observation angles § = 0° to 180°, ¢ = 0°.
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Fig. 13. Bistatic RCS of 1/ radius sphere with VV polarized plane wave
incident at & = 0°, ¢ = 0° and observation angles 6 = 0° to 180°, ¢ = 0°.

RCS computation for 54 square plate from MoM iterative solver,
tridiagonal and block tridiagonal computed sparse preconditioned fast
solvers for 7400 unknowns.

The RCS is computed for the VV polarized plane wave incident
at @ = 0°,¢ = 0° and observation angles # = 0° to 180°, ¢ = 0°.
It can be observed that the RCS computed from the preconditioned
fast solvers agrees with the MoM computed RCS. For the MoM
solution, the iterative solver takes 430 iterations, preconditioned
tridiagonal preconditioner takes 45 iterations, and preconditioned
block tridiagonal preconditioner takes 30 iterations to converge.

Fig. 13 shows the bistatic RCS computation for a 14 radius
PEC sphere with 5334 unknowns. The RCS is computed using the
Mie series analytic method and preconditioned tridiagonal and block
tridiagonal fast solver for the VV polarized plane wave incident at
6 = 0°,¢ = 0° and observation angles § = 0° to 180°, ¢ = 0°.
It can be observed that the RCS computed from the preconditioned
fast solvers agrees with the Mie series RCS. For matrix solution,
fast solver iterative solution takes 302 iterations, preconditioned
tridiagonal computed sparse preconditioner takes 73 iterations, and
preconditioned block tridiagonal computed sparse preconditioner
takes 52 iterations to converge.

B. Efficiency

In this section, the efficiency of the proposed preconditioners
is validated. As discussed in our previous works [23], [25], the
preconditioner efficiency cannot be concluded with fast iteration only.
Along with iteration count, the preconditioner LU factorization solve
time plays a vital role in overall solution time. In Table I, we show
the solve time efficiency of our proposed preconditioners. The per-
formance of the proposed preconditioners is compared with that of
ILUT, with the parameters are chosen as given in [32]. The relative
efficiency of a preconditioner depends on some key parameters:
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TABLE I
PRECONDITIONER EFFICIENCY FOR DIFFERENT GEOMETRY

Ttotal
N PC Tpc Nigr Tpcsol Tmy (H) Speed-up
Type (s) (s) (s) (180 RHS)

D 63.8798 80 | 0.063675 | 0.703204 3.1384 1.46

201 119,600
Plate TD Block | 237.9965 51 | 0.067345 | 0.703204 2.5727 1.78
ILUT | 273.7414 89 10309779 | 0.703204 4.5838
TD 75.9628 762 | 0.221020 | 1.450142 63.6923 1.36

51 130,293
Sphere TD Block | 801.7663 711 0.079829 1.450142 54.6131 1.59
ILUT | 842.6682 | 843 | 0611366 | 1.450142 87.1266
N TD 724.8528 | 7788 | 0.520205 | 9.319170 3831.65 2.0
a GIC{Z) 412,690 | TD Block | 6077.1354 | 7006 | 0.248953 | 9.319170 3353.40 23
ILUT |26138.339 | 12191 | 3.370137 | 9.319170 7742.02

1) Tpe: preconditioner set-up time; 2) N;;-: average number of
iterations required for convergence for one right-hand side (RHS);
3) Nypg: number of RHS vectors; 4) T),cs: preconditioner solve
time; and 5) Tyump: MoM matrix-vector product time. The total solve
time is given by

Tiotal = Tpe + [Nitr X Npps X (Tpcsol +T 1. 7

Table I shows the speed-up efficiency of the proposed precon-
ditioners for 180 RHS total solve time for a PEC plate, sphere,
and aircraft (AC). For plate and sphere, the iterations are computed
for the VV polarized plane wave incident and observation angles at
6 = 0° to 180° and ¢ = 0° and for 14 m length and 8 m wingspan
AC meshed with A/10 element size at 1 GHz the iterations are
computed for the VV polarized plane wave incident and observation
angles at & = 90° and ¢ = 0° to 180°.

mmv)

VI. CONCLUSION

The proposed preconditioners are simple to compute and eftective
in accelerating the iterative solution of large-size problems. The
preconditioners are sparse matrices based on the tridiagonal triangle
and block tridiagonal interaction. These preconditioners maintain
O(N) set-up time, solution time, and memory complexity. The
preconditioners have a very low set-up time and can be divided
into blocks and computed independently, thus making them highly
efficient for parallel application.
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