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Abstract—In time-varying fading channels, channel coefficients
are estimated using pilot symbols that are transmitted every co-
herence interval. For channels with high Doppler spread, the rapid
channel variations over time will require considerable bandwidth
for pilot transmission, leading to poor throughput. In this paper,
we propose a novel receiver architecture using deep recurrent
neural networks (RNNs) that learns the channel variations and
thereby reduces the number of pilot symbols required for channel
estimation. Specifically, we design and train an RNN to learn the
correlation in the time-varying channel and predict the channel
coefficients into the future with good accuracy over a wide range of
Dopplers and signal-to-noise ratios (SNR). The proposed training
methodology enables accurate channel prediction through the use
of techniques such as teacher-force training, early-stop, and reduc-
tion of learning rate on plateau. Also, the robustness of prediction
for different Dopplers and SNRs is achieved by adapting the num-
ber of predictions into the future based on the Doppler and SNR.
Numerical results show that good bit error performance is achieved
by the proposed receiver in time-varying fading channels. We also
propose a data decision driven receiver architecture using RNNs
that further reduces the pilot overhead while maintaining good bit
error performance.

Index Terms—Time-varying fading channels, Doppler spread,
receiver design, recurrent neural networks, deep channel
prediction, pilot overhead.

I. INTRODUCTION

N EURAL networks have found applications in a wide range
of fields. They are being increasingly used for inference

tasks like regression and classification. With the advent of li-
braries available for training, it has become easier than ever to
train and deploy application specific neural networks. This is
aided by the availability of hardware tailor made for training
neural networks. The time required to train neural networks,
even complex ones having large number of parameters, has
reduced drastically. The networks also have the advantage that
once trained, they are computationally efficient when compared
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to the conventional optimal algorithms. In the field of com-
munications, neural networks have been employed in a wide
range of problems in the physical layer design [1]–[3]. Some
of them include design of codes using neural networks [7],
decoding algorithms via deep learning [4], [5], signal detec-
tion [7]-[11], channel estimation [12]-[14], beamforming and
precoding [15], [16], and autoencoder based transceiver designs
for fading channels [17]. In addition to classification and regres-
sion problems, neural networks have been used in prediction
tasks like clinical prediction [18] and caption prediction for
images [19].

A key problem in wireless communications is channel es-
timation. Specifically, the receiver needs an estimate of the
channel fade coefficient in a given coherence interval of the
channel for reliable decoding of data symbols in that coherence
interval. Towards this, known symbols called pilots are sent over
the channel to the receiver. The receiver estimates the channel
coefficient from the received pilots and uses it for decoding
the data symbols. The transmitter sends periodic pilot symbols
for channel estimation in every coherence interval. The pilot
symbols take up considerable portion of the available bandwidth
if the coherence time of the channel is small.

In this paper, we consider a scenario where there is mobility
at the receiver and/or at the transmitter. The relative motion
between the transmitter and receiver introduces Doppler spread
in the channel and this leads to the channel fade coefficients
being time correlated. We aim to use neural networks to take
advantage of this correlation among the fade coefficients to
reduce the pilot resources for communication. We achieve this by
training neural networks that can learn the temporal dependency
in the fading process and use this knowledge to predict future
values of the fade coefficients. This prediction of future fade
coefficients allows pilot symbols to be sent less often, leading to
increased data throughput. Our new contribution in this paper is
that we propose a novel receiver architecture that uses recurrent
neural networks (RNN) that perform deep channel prediction
and signal detection in time-varying fading channels. To our
knowledge, an RNN-based channel prediction approach for the
design of robust receivers in time-varying fading channels has
not been reported. The new contributions in this paper can be
summarized as follows.
� First, we design and train an RNN to learn the correla-

tion in the time-varying fading channel and predict the
channel coefficients into the future with good accuracy
over a wide range of Dopplers and signal-to-noise ratios
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(SNR). The proposed training methodology enables ac-
curate channel prediction through the use of techniques
such as teacher-forced training, early-stop, and reduction
of learning rate on plateau. The robustness of prediction
for different Dopplers and SNRs is achieved by adapting
the number of predictions into the future based on the
Doppler and SNR. Our numerical results show that good bit
error rate (BER) performance is achieved by the proposed
receiver in time-varying fading channels.

� Next, we propose a data decision driven receiver architec-
ture using RNNs that further reduces the pilot overhead
while maintaining good bit error performance.

The achieved robustness in the receiver performance over a
range of Doppler and SNR conditions illustrates that the pro-
posed RNN-based channel prediction approach is a promising
approach for receiver design in time-varying fading channels.

The rest of the paper is organized as follows. In Section II, we
present the considered system model and a brief background
on deep neural network architectures used in this paper. In
Section III, we present the proposed deep channel predictor, its
architecture, training methodology, and performance. The pro-
posed adaptive channel prediction scheme and its performance
are also presented in this section. In Section IV, we present the
proposed data decision driven architecture and its performance.
Conclusions are presented in Section V.

II. SYSTEM MODEL

Consider a point-to-point wireless communication system
with a single antenna transmitter and receiver. The channel
between the transmitter and receiver is a time-varying fading
channel. The information symbols are chosen from an M -ary
constellation. Let x(t) be the transmit signal at the tth time
instant. The channel fade coefficient at the tth time instant is
denoted by h(t). Let y(t) be the received signal at the receiver
and n(t) be the additive noise. Now, y(t) can be written as

y(t) = h(t)x(t) + n(t). (1)

The channel fade coefficients are statistically modelled by a
circularly symmetric complex Gaussian random variable with
mean 0 and variance 1, i.e., h ∼ CN (0, 1). The additive white
Gaussian noise (AWGN), n(t), is modelled as n ∼ CN (0, σ2),
where σ2 is the variance of the noise.

We consider a mobile communication scenario where there
is relative motion between the transmitter and receiver. This
introduces Doppler spread in the channel due to time selectivity
and the channel fades h(t) become temporally correlated. The
correlation in h(t) depends on several factors such as scatterers
in the propagation environment, relative velocity between the
transmitter and receiver, etc. The power spectral density (PSD)
of h(t) is non-zero in the interval [−fmax

D , fmax
D ], where fmax

D is
the maximum Doppler frequency given by [20], [21]

fmax
D =

fcv

c
. (2)

In (2),v is the maximum relative velocity between the transmitter
and the receiver, fc is the carrier frequency and c is the speed of
light. Therefore, the Doppler spread of the channel is given by

2fmax
D . For a low Doppler spread, the channel changes slowly

over time, while a high value of Doppler spread indicates that
the channel varies rapidly with time. The coherence time (Tc)
of the channel is inversely proportional to the Doppler spread,
Tc ∝ 1/fmax

D . In order to detect the transmitted signal x(t) from
y(t), the value of h(t) has to be estimated at the receiver. In each
transmission block spanning one coherence time, the channel
gain is estimated and employed for detection of the data signal
transmitted in that coherence block.

Typical wireless communication systems transmit one or
more pilot symbols in each coherence block to estimate the
channel coefficients. Let Tp and Td be the duration of pilot
transmission and data transmission, respectively, in a coherence
block, i.e.,Tc = Tp + Td. Let p(t) be the pilot signal transmitted
at the tth time instant. The signal received during the pilot
transmission phase can be written as

yp(t) = h(t)p(t) + n(t). (3)

The linear minimum mean square error (LMMSE) estimate
of the channel coefficient that achieves the Cramer-Rao lower
bound is given by [22], [23]

ĥ(t) =
yp(t)|p(t)|2

p(t) (|p(t)|2 + σ2)
. (4)

The transmission of pilots reduces the spectral efficiency and
throughput of the communication system. That is, Tp

Tc
fraction

of the channel-uses do not carry data. The efficiency of channel
usage is defined as

η = 1 − Tp
Tc
. (5)

For a fixed number of pilots per coherence block, as the coher-
ence time decreases, η also decreases. High mobility wireless
communication channels may require large amount of band-
width to be used for pilot transmission, which, in turn, adversely
reduces the achievable data rate and system capacity.

Since the time-varying channel coefficients are temporally
correlated, the number of pilots transmitted to estimate the
channel coefficients can be reduced by learning this correlation
model and using the learnt model in channel estimation. As the
correlation model could be different for different channel ge-
ometries, a statistical solution to this problem may not be robust.
Therefore, we propose to employ a deep learning based solution
to learn the channel correlation model and predict the channel
coefficients into the future to reduce the pilot transmissions.
Towards this, we employ recurrent neural networks (RNN)
and fully connected neural networks (FCNN) to construct the
proposed deep channel predictor and the receiver. Consequently,
in the following subsection, we present a brief background on
deep neural networks, focusing on FCNNs and RNNs.

A. Deep Neural Networks

The deep neural network architectures that we employ are
FCNNs and RNNs.

1) Fully Connected Neural Networks: A deep FCNN con-
sists of multiple layers of neurons. Every neuron in a layer is
connected to all neurons in the adjacent layers, thus forming a
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Fig. 1. Architecture of a fully connected neural network.

Fig. 2. Architecture of a recurrent neural network.

fully connected network. The architecture of a deep FCNN is
illustrated in Fig. 1. Deep FCNNs have been known to be suitable
for learning or approximating any linear/non-linear function
for tasks such as detection or estimation [24]. For data that
is temporally correlated, RNNs are known to provide better
learning performance than FCNN [25].

2) Recurrent Neural Networks: A deep RNN can be con-
structed by the repetition of a one or more blocks over time,
where a single block consists of multiple trainable parameters.
That is, the output of a single block is fed back recursively, thus
enabling the network to have memory and learn temporal cor-
relation in the input data. This is referred to as ‘time unfolding’
of the network. The architecture of a deep RNN is illustrated in
Fig. 2.

In Fig. 2, the left portion shows the recurring unit of the
RNN and the right portion illustrates the unfolding over time.
The input and output of the RNN at the ith time instant are
represented by Ii’s and Oi’s, respectively. Si’s are referred to
as hidden states of the RNN. There are three trainable weight
matrices and two trainable biases in such an RNN. A weight
matrixWSI is employed in the link between Ii andSi. Similarly,
weight matrices WOS and WSS are employed in the links
between Si and Oi, and between Si and Si−1, respectively.
The biases bS and bO are added when computing Si and Oi,
respectively. The matrices and biases are the same across all
unfolding, i.e., the entries of the matrices and biases are not a
function of the time.

There are several implementations of RNN. In this paper, we
make use of an implementation known as the long short-term

Fig. 3. Recurrent unit of the LSTM architecture.

Fig. 4. Block diagram of the channel predictor neural network.

memory (LSTM) [26]. The block diagram of the recurrent unit
of the LSTM architecture of RNN is shown in Fig. 3. This ar-
chitecture consists of three gates. These gates learn the temporal
information that are relevant and pass it to the next iteration. In
each gate, a sigmoid function is applied that restricts the output
to values between 0 and 1. The output of the activation are then
multiplied to decide which part of the information is relevant.
During training, the weights are updated such that the relevant
information gets a larger weight which yields a value close to 1
after the sigmoid function. In Fig. 3, the variable ci, called the
cell state, is made available to all unfolded blocks. The variable
Si refers to the hidden state of the cell and Ii is the input to
the cell. In our setup, the input Ii corresponds to either the
channel estimates from (4) or the fed back prediction values (see
Fig. 4). The ci’s and Si’s are updated at each stage i using Ii’s.
However, the information that is passed on to the next iteration
depends on the gate values. We use LSTM implementation of
the RNN because, as opposed to the basic RNN implementation,
LSTMs are able to learn correlation model in long time varying
sequences [26].

We use PyTorch machine learning library for the implemen-
tation, training, and testing of all the neural networks proposed
in this paper [27]. We use the Nvidia Titan RTX GPU platform
to carry out all the simulations.

III. PROPOSED DEEP CHANNEL PREDICTOR

In this section, we present the proposed RNN based deep
channel predictor, its architecture, training methodology, and
performance. The channel predictor uses the received pilot
symbols to learn the channel variation model and predict the
future channel coefficients.
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Fig. 5. Mean square error of predictions made by predictor network for
different number of layers in the LSTM network.

A. Architecture

The proposed deep channel predictor consists of two predic-
tion networks, one each for predicting the real and imaginary
parts of the channel coefficients. The architecture for these
networks are the same and they are trained separately. The deep
channel predictor network consists of an LSTM network and
an FCNN. The block diagram of the proposed deep channel
predictor is shown in Fig. 4.

The purpose of using LSTM is two fold. First, the LSTM is
capable of identifying temporal correlations in the inputs and
learning a correlation model. Second, the LSTM can leverage
the learnt correlation model to make predictions that obey
the model. Also, we choose a single layer LSTM architecture
for the predictor network based on the following performance
evaluation. Fig. 5 plots the mean square error (MSE) perfor-
mance of the trained predictor network as a function of SNR,
for different number of layers in the LSTM architecture. It
is seen that the MSE of the predictions improves in the low
to mid SNR regime when the number of layers is increased
from 1 to 3. However, with further increase in the number of
layers, the MSE performance of the network degrades, which
can be attributed to the phenomenon of over-fitting, wherein
a network learns to perform well only on the data set used in
training [28]. This is illustrated in Figs. 6(a) and 6(b) which
show the training/validation loss performance for 1-layer LSTM
and 5-layer LSTM, respectively. It is seen that both 1-layer and
5-layer LSTMs show convergence to small training loss values
(indicating successful training). However, in the validation phase
(where data not in the training data set is used for validation)
the validation loss in 5-layer LSTM does not show convergence
to small values (indicating over-fitting), while 1-layer LSTM
achieves convergence to small loss values in validation phase
as well. Although LSTM architecture with 3-layers has the
best MSE performance, the improvement it offers over 1-layer
LSTM architecture is not significant compared to the complexity
it introduces. For example, the number of parameters in the
predictor network with 1-layer, 2-layer, and 3-layer LSTMs are

Fig. 6. Training and validation loss trajectory for 1-layer and 5-layers LSTM
architectures.

TABLE I
PARAMETERS OF LSTM LAYER OF CHANNEL PREDICTOR

TABLE II
PARAMETERS OF FCNN LAYER OF CHANNEL PREDICTOR

41301, 122101, and 202901, respectively. The five-fold increase
in the number of parameters when compared to the 1-layer
LSTM makes the 3-layer architecture to be slower and harder to
train than the 1-layer counterpart. Further, above 25 dB, the MSE
performance of the predictor network with 1-layer, 2-layers, and
3-layers LSTM architectures are almost similar. Therefore, we
choose 1-layer LSTM architecture with the parameters listed in
Table I for the predictor network throughout this paper for its
simplicity and reasonably good MSE performance.

The FCNN layer is employed to reduce the output of the
LSTM layer to the required dimension. In our setup, the data
from the output of the LSTM has a dimension of 100, which
is to be reduced to a dimension 1 indicating a single channel
prediction. However, picking one dimension arbitrarily may not
yield the best solution. The FCNN takes the 100-dimensional
data as input, and during training assigns large weights to
those outputs which have a potentially higher bearing on the
prediction value as compared to the rest. This can improve the
performance of the predictions made by the setup. The FCNN
layer parameters are listed in Table II.

Fig. 4 shows the block diagram that depicts the working of the
channel predictor. The predictor network expects an n-length
sequence of channel coefficients as input. The working of the
network is divided into two phases, namely, the initial estimation
phase and the subsequent prediction phase. In the estimation
phase, n pilots are transmitted in n coherence intervals. The
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Fig. 7. Block diagram of the channel predictor aided receiver.

LMMSE channel estimates from these transmitted pilots are
obtained using (4). These estimates are used to initialize the
entries of the input vector c = [c1 c2 · · · cn] with entries
arranged chronologically, c1 being the least recent estimate and
cn being the most recent. This initialized vector is provided
as the input to the LSTM network. The entries of c reflect
the correlation among the channel coefficients, and are used
by the LSTM network to predict the channel coefficients in
the subsequent coherence intervals. The output of the LSTM
network is fed to the FCNN layer.

The FCNN layer produces one channel prediction at its output.
This output is the prediction for one-step into the future, i.e., this
output is the predicted coefficient for the coherence interval next
to the coherence interval for which the most recent estimate
cn was obtained. This concludes the initial estimation phase.
Subsequently, in the prediction phase, the input vector c is left
shifted so that c1 is flushed out and the previously obtained
prediction value is used to fill the vacant cn space after the left
shift operation. The input of the LSTM is thus updated with
the most recent prediction. A procedure similar to that in the
estimation phase is followed again to obtain the channel predic-
tion corresponding to the next coherence interval. This process is
repeated for as many times as the number of predictions required.
The predictions thus made by the network are stored in an array.
At the end of required number of predictions, the array is used
to decode the transmitted symbols. The architecture is therefore
flexible in the sense that it allows for dynamic adjustment of the
number of channel predictions.

The block diagram of the overall channel predictor aided re-
ceiver is shown in Fig. 7. The channel predictor block is followed
by a data decoder. The data decoder can be maximum likelihood
(ML) decoder or a neural network (NN) based decoder. We will
use ML decoding for transmission schemes that decode symbol
by symbol, due to low ML decoding complexity in such cases.
For block transmission schemes which require joint decoding
of symbols (e.g., cyclic prefix single carrier (CPSC) scheme in
Section III-G), we will use NN-based decoder approach.

Further, the channel predictor and the NN decoder can be
trained together as a single network, as it would alleviate the need
for a separate decoder. However, we keep the training for the
predictor and the decoder separate with the intention of having
a universal predictor network. That is, once trained, the predictor
network can be used in conjunction with any decoder. On the
other hand, if training is done for the predictor and decoder
together, there is a need to train and store multiple models, each
corresponding to a different decoder.

B. Training Methodology

In this subsection, we describe the training of the chan-
nel predictor network. To train the channel predictor network,

correlated channel coefficients that mimic a channel with time
selectivity are used. This data is generated using the Clarke
and Gan’s model [20]. For a time-selective channel, the auto-
correlation function of the fading process h(t) is given by

ψ(Δt) = J0(2πf
max
D Δt), (6)

where J0(.) is the modified Bessel function of the first kind and
zeroth order. The PSD of h(t), which is also referred to as the
Jakes’ spectrum, is given by

SH(f) =
rect

(
f

2fmax
D

)
πfmax

D

√
1 −

(
f

fmax
D

)2
, (7)

where rect(·) is the rectangular function defined as

rect(x) =

{
1, x ∈ [− 1

2 ,
1
2 ]

0, otherwise.
(8)

Specifically, we use the implementation of Clarke and Gan’s
model given by Smith in [21] to generate the required data. In
our simulations, a coherence block consists of 42 symbols for
fD = 50 Hz and 11 symbols for fD = 100 Hz.

To begin the training, the LSTM and FCNN networks in Fig. 4
are initialized with random or untrained weights. A large number
of correlated channel coefficient samples are generated using the
implementation mentioned above, so that the network is able to
generalize well. The channel coefficients are separated into real
and imaginary parts. The real (imaginary) part is used as training
data for the predictor network which is set to predict real (imagi-
nary) part of the channel coefficients. While training, the number
of predictions made by the network is fixed at 100. The network
is trained with 10-length sequence of input data and 100-length
sequence of ground truth predictions or expected predictions.
Both are obtained from the correlated channel coefficients ob-
tained through Smith’s method. Therefore, we sample blocks
of length 110 from the generated samples of correlated channel
coefficients. The sampled sequence is structured such that the
first entry in the sequence is the least recent and the last entry is
the most recent. The first 10 entries (from the least recent end) of
the sequence are provided as input to the predictor network. The
network produces 100-length predictions. These predictions are
compared with the last 100 entries of the 110-length sequence
by computing a mean square error (MSE) loss function, given
by

L(x, x̂,Θ) = E[x− x̂(Θ)]2. (9)

In the above equation, E[·] is the expectation operator, x is
the 100-length expected output, and x̂(Θ) is the 100-length
output of the neural network, which is a function of the network
parameters Θ. At each training iteration, the value of (9) is
computed and the weights are updated so as to minimize the loss
function through back propagation. This procedure is repeated
for real and imaginary predictions in each iteration. The values
of the hyper parameters used for training the channel predictor
are given in Table III.

Remark 1: Note that the predictor network is trained at a
Doppler frequency of 10 Hz (see Table III). The predictor
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Fig. 8. Comparison of training and validation loss trajectories as a function of epochs with and without the training enhancement features.

TABLE III
HYPER PARAMETERS USED FOR TRAINING CHANNEL PREDICTOR

Fig. 9. Mean square error of predictions as a function of number of predictions
for different SNR and fD values.

trained at 10 Hz Doppler is able to predict well over a range of
Doppler values (as will be shown in Figs. 9 and 12 later). This
is because the training teaches the LSTM network essentially
to observe the underlying correlation model in the input data
and leverage the observed model to predict future coefficients.
In the 10 Hz case, the network trained at 10 Hz observes that
the channel coefficients have strong correlation and it outputs
predictions that obey the underlying slow variation model. In
the 100 Hz case, the input changes are more abrupt and the same

trained network is able to adapt to this underlying fast variation
model as well and produce predictions that obey the faster trend.

1) Training Enhancement Features: The training method
outlined above, by itself, either leads to a large number of
iterations before converging (where the loss function assumes a
small enough value) or to a condition where the network does not
converge at all (where the loss function did not monotonically
decrease). This is because in each iteration during the initial part
of the training, the prediction made is inaccurate due to untrained
weights and the erroneous value is fed back to the input to make
another prediction. It is only at the end of 100 predictions that
the loss function is evaluated and the back propagation to update
weights is performed. Due to the error accumulating at the
input, the output might become garbled leading to poor weight
updates, resulting in slow convergence or divergence. Therefore,
we employ additional techniques while training as enumerated
below.
� Teacher force training: This technique is employed to alle-

viate the problem mentioned above. Teacher force training
involves supplementing the training with the ground truth
data. During training, data is fed back from the output
of the predictor network to the input. With teacher force
training, with small probability, p, the ground truth data
corresponding to that time instant is supplied from the
100-length expected output. This prevents the input from
accumulating error due to inaccurate predictions. In our
training setup, we found that a probability of p = 0.2
works well for quick convergence of the network. This
implies that with 1 − p = 0.8 probability the prediction
made by the network itself is fed back to its input to
make further predictions. Since the input is not allowed
to deviate uncontrollably from the actual values, this helps
the network converge faster.

� Reduce learning rate on plateau: Learning rate is a hyper
parameter that needs to be set while training. The value
of the learning rate decides how fast or slow a network
learns, by pacing the weight updates. A large learning rate
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Fig. 10. BER Performance of the proposed channel predictor aided receiver with ML decoder for fixed number of predictions (N=100, η = 90.9% and N=10,
η = 50%) at fD = 50, 100 Hz for 4-QAM and 16-QAM. (a) 4-QAM. (b) 16-QAM.

Fig. 11. Achieved MSE performance of predictions as a function of number
of future predictions and Doppler for a given SNR of 10 dB and 20 dB.

(of the order of ∼ 0.01) is desirable at the initial stages of
training. However, when the loss function hits a plateau a
large learning rate may not help the loss function to reduce
further. This is because the large value of the learning rate
forces large weight updates and may result in unsettling the
network from the state it is in. A small learning rate would
ensure that the weight updates are small and the would help
the network to find the minimum within the plateau. If this
does not happen and the loss function continues to maintain
the value at plateau, the technique calls for increasing the
learning rate back to its original value. In our training setup,
we implemented this by reducing learning rate by a factor
of 10 every time the loss function value did not reduce for
10 consecutive training iterations. To prevent the learning
rate from becoming minuscule, we set the minimum value

Fig. 12. MSE performance of predictions as a function of fD for a given SNR
of 10 dB.

to be 10−8. In the process of decreasing the learning rate, if
at any stage the value of loss function is found to increase,
the learning rate value is reset to its original value.

� Early stop: Yet another problem that is associated with
training neural networks is that of over-fitting. Over-fitting
is said to occur when the network is allowed to learn for
a long time on the available data. This results in a trained
model that is tailor made for the training data, but fails
to generalize to data beyond those seen while training.
That is, the model performs poorly on any data that is not
present in the training data. To prevent this from happening
we employ a technique called early stop. The early stop
technique dictates that the training be stopped when the
network is not able to learn any further. This happens when
the loss function does not reduce across iterations. We
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implement this after a minimum of 200 epochs of training.
Following this, if the learning rate has already dropped to
10−8 from the second technique and the loss function does
not reduce significantly in the next 50 iterations, we stop
training the network. If such a scenario never occurs during
training, the training is stopped after 1000 epochs.

C. Performance Results

In this subsection, we present simulation results on the
training performance, prediction error performance, and BER
performance associated with the proposed channel predictor
aided receiver developed in the previous subsections. In all the
simulations, a fixed 4-QAM symbol is used as a pilot symbol,
and the pilot symbol power and the data symbol power are kept
the same. In practice, the pilot power is typically kept at the same
or a higher level compared to the power in the data symbols.

1) Training Performance: Fig. 8 shows the training trajec-
tory in terms of training loss and validation loss at each epoch
comparing training performed with and without the above men-
tioned enhancement features. In Figs. 8(a) and 8(b), the plotted
line shows the mean of the training loss and validation loss,
respectively, while the shaded area around the line is indicative
of the variance observed in the losses across training runs. The
training loss (MSE loss between the predicted coefficients and
the actual coefficients evaluated during training) in the presence
of the enhancement features shows convergence at about 50
epochs for the training loss trajectory and about 100 epochs
for the validation loss trajectory, after which the loss remains
almost constant. This quick convergence is attributed to teacher
force training and subsequent consistency in the loss function
value is due to the reduced learning rate. Further, as the variance
in the validation loss (MSE loss evaluated on data not present
in training data) decreases to small values around 200 epochs,
the training is stopped and the network parameters are frozen
in accordance with the early stop training feature. In contrast,
without the enhancement features, the training loss does not
seem to converge as it assumes a high value throughout. A similar
trend is observed in the validation loss trajectory as well. Without
the enhancement features, the network shows large variations in
the validation loss and training loss even at 200 epochs, which
leads to slow convergence. Fig. 8, therefore, demonstrates the
effectiveness of the enhancement features in attaining faster
convergence.

2) Prediction Error Performance: Fig. 9 shows the MSE
performance of predictions as a function of number of future
predictions made by the channel predictor. The plots are obtained
for fD = 10, 50, and 100 Hz. The following observations can
be made from Fig. 9. First, the MSE performance is found to
improve with increasing SNR, which is expected. Next, for a
given SNR and fD, increasing the number of future predictions
increases the MSE. As the number of predictions is increased at a
given SNR and fD, more errors are accumulated which explains
the observed trend. Therefore, choosing the right number of
future predictions becomes crucial to ensure robustness across
different values of Dopplers and SNRs. For a given SNR and

number of predictions, the MSE curves for different fD values
are close.

3) BER Performance: In Figs. 10(a) and 10(b), we demon-
strate the BER performance achieved by the proposed channel
prediction aided receiver with ML decoder for 4-QAM and
16-QAM, respectively. Performance with perfect channel state
information (CSI) is also plotted for comparison. We consider
two scenarios to demonstrate the effect of number of future
predictions on the BER performance. The first is a greedy
scenario (with respect to bandwidth efficiency), where we set
the number of predictions to be fixed at 100 across different
Eb/N0 and fD values. This corresponds to a bandwidth effi-
ciency of 90.9%. The second is a conservative scenario (with
respect to MSE of predictions), where the number of predictions
is fixed at 10 instead of 100, corresponding to a bandwidth
efficiency of 50%. The following observations can be made.
First, it can be seen that in the conservative scenario with 10
predictions, the achieved BER performance is very close to
the ideal performance with perfect CSI for both 4-QAM and
16-QAM with fD = 50, 100 Hz. Second, although the greedy
scenario achieves good bandwidth efficiency, the BER perfor-
mance takes a hit. The performance gap between the greedy and
the conservative scenarios is more for the channel with a higher
Doppler. While the performance hit in the greedy scenario is not
very significant in the 4-QAM case, it is quite severe in the case
of 16-QAM (see BER plots in Fig. 10(b) for 100 predictions).
This constrains the number of predictions to be conservatively
fixed at 10 in order to achieve good BER performance, which
leads to poor bandwidth efficiency. Motivated by this need
and opportunity for improvement, in the following subsection
(Section III-D), we propose an adaptive scheme that allows the
receiver to dynamically adjust the number of future predictions
employed in the prediction algorithm in accordance with the
operating SNR and Doppler.

D. Adaptive Channel Prediction

In the previous subsection, the number of future predictions
employed in the prediction algorithm is fixed. Here, we pro-
pose to adapt the number of predictions in accordance with
the operating SNR and Doppler with a motivation to improve
bandwidth efficiency and performance. The idea is to create
and use a lookup table consisting of the achieved MSE between
the channel predictions and the actual channel coefficients for
different number of future predictions, SNRs, and Dopplers. The
desired target MSE for a given operating SNR is set to be the
MSE between the LMMSE channel estimate in (4) and the actual
channel coefficients. For a given operating SNR, Doppler, and
target MSE, the number of future predictions to be employed in
the predictor algorithm is obtained from the lookup table. This
makes the prediction algorithm to adaptively employ different
number of future predictions for different operating conditions.

In Fig. 11, we show the 3D plots of the entries of the lookup
table (i.e., achieved MSE values) for different values of number
of predictions (N = 5 to 100) and Doppler (D = 5 to 100 Hz)
at SNRs of 10 dB and 20 dB. It can be seen that for a fixed N ,
the achieved MSE decreases with decreasing D. Likewise, for
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Fig. 13. Number of future predictions chosen by the prediction algorithm as
a function of SNR for different values of fD .

a fixed D, the MSE decreases with decreasing N . It can also be
observed that, for allN andD values, the achieved MSE values
at 20 dB SNR are less than those at 10 dB SNR. The contour
lines plotted in the N -D plane at the bottom are for the surface
corresponding to 20 dB SNR. A given contour line shows all
the (N,D) values for which the achieved MSE is the same. For
example, the outermost contour with (100,5) and (5,100) as the
end points has an MSE of 0.002. In this contour, asD decreases
from 100 Hz to 5 Hz, N increases from 5 to 100. Further, the
innermost contour is a point at (N,D) = (100, 100) that has an
MSE value of 0.012.

In Fig. 12, we show the 2D plots of the MSE performance
of the predictions as a function of channel correlation (Doppler
spread) for N = 20, 50, and 100 predictions, at a fixed SNR of
10 dB. It is seen that for all values of the Doppler spread, the MSE
values are least when the number of predictions is 20 and the
highest when the number of predictions is 100. Further, the MSE
values across different Doppler spreads are close when N =
100, while they are even closer when N = 50, 20. For instance,
at 100 Hz Doppler the maximum increase in MSE compared to
10 Hz Doppler is only about 0.011 for the case of 100 predictions,
while this number drops to 0.0045 for the case of 20 predictions.
This demonstrates that the network trained at 10 Hz is able to
generalize and perform quite well across the considered Doppler
range (up to 100 Hz).

The prediction algorithm chooses the number of predictions
(for a given operating SNR, target MSE for that SNR, and
Doppler) corresponding to an achieved MSE in the lookup table
that is less than the target MSE. Fig. 13 shows the number of
predictions chosen by the algorithm from the lookup table for
different SNRs in the range −5 dB to 40 dB and fD values in
the range 10 Hz to 100 Hz. Here, the target MSE at an SNR is
obtained by evaluating the MSE of LMMSE estimates obtained
by pilot transmissions at that SNR. It can be seen that, for a given
fD, the number of predictions chosen by the algorithm shows
a bell-shaped behavior as the SNR is increased. For example,
at very low SNRs, the algorithm chooses very few number of

predictions to meet the target MSE. This is because the correla-
tion in the input to the channel predictor is perturbed significantly
by the additive noise having a high variance. This leads to
a high MSE of predictions, forcing the algorithm to choose
a correspondingly small value for the number of predictions.
As the SNR increases, the number of predictions chosen by
the algorithm increases. This is because the fluctuations in the
correlation in the input decreases with increasing SNR (i.e.,
decreasing noise variance). As the SNR increases further beyond
a certain value, although the disturbance to the correlation re-
duces further, the algorithm chooses smaller and smaller number
of predictions, which can be explained as follows. First, the
target MSE (obtained from (4)) decreases with increasing SNR.
Second, the achieved MSE for a fixed number of predictions,
i.e., the prediction error does not decrease as fast as the target
MSE with SNR. The combined effect of these two makes the
algorithm to choose reduced number of predictions at high SNR.

In Figs. 14(a) and 14(b), we demonstrate the BER perfor-
mance achieved by the proposed adaptive channel predictor
aided receiver with ML decoder for 4-QAM and 16-QAM,
respectively. The performance at fD = 50 Hz and 100 Hz are
shown. The performance with perfect CSI is also shown. It can
be seen that, with the proposed adaptation of the number of
predictions, the receiver is able to achieve a performance that
is very close to the ideal performance with perfect CSI for both
50 Hz and 100 Hz Doppler, while also being bandwidth efficient.
For example, in Fig. 10(b), for fD = 100 Hz, the greedy scenario
fixes the number of predictions to be 100 for all values ofEb/N0,
which causes the BER to floor at 3 × 10−2. The adaptive scheme,
on the other hand, chooses the number of predictions to be
100 until an Eb/N0 value of 7 dB, after which it reduces the
number of predictions towards 5 at 40 dB Eb/N0, leading to
better performance (no flooring is seen). Likewise, in Fig. 10(a),
for fD = 50 Hz, the conservative scenario fixes the number of
predictions to be 10 throughout the Eb/N0 range. Although the
performance for fD = 50 Hz in Figs. 10(a) and Fig. 14(a) are
almost same, the bandwidth efficiency in Fig. 10(a) is only 50%,
as there are 10 predictions made for 10 pilots transmitted. On
the other hand, in Fig. 14(a), the adaptive scheme chooses the
number of predictions to be greater than 10 until the Eb/N0

value of 20 dB. For example, at 20 dB, the number of predictions
chosen is 15 which translates to a bandwidth efficiency of 60%,
and at 6 dB, the number of predictions is 100, which achieves a
bandwidth efficiency of 90.9%.

Next, we consider a non-neural network based benchmarking
scheme to compare the performance of the proposed adaptive
scheme. The benchmarking scheme employs LMMSE channel
estimation and linear interpolation (LI) along with ML decoding.
For fair comparison, the bandwidth efficiency is kept same in
both the proposed as well as the benchmarking schemes. We
achieve this as follows. In both the schemes, transmission is
made in frames consisting of pilot symbols and data symbols.
The number of pilot symbols (np) and data symbols (nd) in each
frame are taken to be np = 10 and nd = Nc, where Nc is the
number of predictions chosen by the predictor algorithm. In the
proposed scheme, np = 10 pilot symbols followed by nd = Nc

data symbols are transmitted in a frame. In the benchmarking
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Fig. 14. BER performance of the proposed adaptive channel predictor aided receiver with ML decoder at fD = 50, 100 Hz for 4-QAM and 16-QAM.

Fig. 15. BER performance comparison between the proposed adaptive scheme
with ML decoder and the benchmarking scheme with LMMSE channel estima-
tion and linear interpolation.

scheme, one pilot symbol is sent followed by nd

np
(= Nc

10 ) data
symbols and this pilot-data symbol sequence is repeated till
the end of the frame. LMMSE channel estimation is performed
during the pilot symbols and linear interpolation is performed to
obtain the channel estimates for the duration between two pilot
symbols.

Fig. 15 shows a BER performance comparison between the
proposed adaptive scheme with ML decoder and the bench-
marking scheme for 16-QAM at fD = 50 Hz and 100 Hz. It
is seen that the proposed scheme performs significantly better
than the benchmarking scheme in the low-to-moderate range of
Eb/N0 values (0 to 20 dB). This is because of poor interpolation
accuracy in the benchmarking scheme in this Eb/N0 range,
which can be explained as follows. TheNc values chosen in the 0
to 20 dB range are large compared to the number of pilot symbols
np (e.g., Nc is 60 at Eb/N0 = 10 dB for fD = 50 Hz and np is

10). A large value of Nc

np
means the pilots in a frame are spaced far

apart leading to less accurate interpolation. In the higher range
of Eb/N0 values, the Nc

np
ratio becomes small due to smaller

values ofNc, leading to closer spacing of pilots and hence better
interpolation accuracy. This makes the benchmarking scheme
perform close to the performance of the proposed scheme in the
high Eb/N0 range.

E. Comparison With Linear Prediction Scheme

In this subsection, we compare the performance of the pro-
posed channel predictor aided receiver with that of a receiver
with channel predictor replaced by a linear prediction algorithm.
A time-varying channel with fD = 50 Hz is considered. The
linear prediction algorithm models the time-varying channel
coefficients as an auto-regressive (AR) process of order 2, i.e.,
for any time t,

h(t) = ρ1h(t− 1) + ρ2h(t− 2), (10)

where ρ1 and ρ2 are the parameters of the AR(2) process that
need to be estimated. The values of ρ1 and ρ2 are computed
as follows. 10 pilot symbols followed by Nc 4-QAM data
symbols (corresponding to η = Nc

10+Nc
) are transmitted, where

Nc (the number of predictions) is chosen in accordance with
the adaptive prediction algorithm in Section III-D. 10 LMMSE
channel estimates at t = 0, 1, . . . , 9 are obtained using the re-
ceived pilot symbols. A set of 8 equations corresponding to time
t = 2, 3, . . . , 9 is obtained from (10) using the LMMSE esti-
mates. The Yule-Walker (YW) estimation technique [29], [30]
is employed on these equations to determine the values of ρ1

and ρ2. To obtain Nc channel predictions for t > 9, (10) is
recursively used with the estimated ρ1 and ρ2 values.

Fig. 16 shows the BER performance comparison between
the proposed channel predictor aided receiver and linear pre-
diction aided receiver, both with ML decoder. At low SNRs, the
LMMSE estimates are noisy and the values of ρ1 and ρ2 obtained
through YW estimation theory are inaccurate. This leads to
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Fig. 16. BER performance comparison between the proposed channel pre-
dictor aided receiver and the linear prediction aided receiver, both with ML
decoder.

TABLE IV
TAP PROFILE OF THE 3GPP CHANNEL MODELS

poor quality of predictions and poor BER performance. As
SNR increases, the performance of linear prediction algorithm
aided receiver improves owing to better ρ1 and ρ2 estimates and
reducedNc. However, it is observed that the performance of the
proposed channel predictor aided receiver is better than the linear
predictor counterpart (e.g., at 10−4 BER, the proposed predictor
aided receiver has an advantage of about 2.5 dB compared to the
linear prediction receiver).

F. Performance in 3GPP Channel Models

In this subsection, we present the MSE performance of the
proposed channel predictor network under different multipath
channel propagation models defined by 3GPP [32], [33]. We
consider extended pedestrian A (EPA) model, extended ve-
hicular A (EVA) model, and extended typical urban (ETU)
model under slow (fD = 5 Hz) and fast (fD = 70 Hz) mobility
conditions. The tap delays and power delay profiles of these
models are given in Table IV. We use fD = 5 Hz for EPA model,
fD = 5, 70 Hz for EVA model, and fD = 70 Hz for ETU model.
The MSE performance in a multipath propagation model with
L taps is obtained as follows. For estimating the channel across
multiple taps, np pilot sequences are transmitted. Each pilot
sequence consists of a pilot symbol along with L− 1 preceding
and succeeding zeroes, making the length of each pilot sequence
to be 2L− 1. np LMMSE channel estimates corresponding to
each tap are obtained from the received pilot sequences. Nc

number of deep channel predictions are made on each tap and

Fig. 17. MSE performance of the proposed channel predictor network under
various 3GPP channel models in [32], [33] as a function of SNR and η.

the MSE of the predicted coefficients are calculated with respect
to the actual channel coefficients.

Training of the predictor network is carried out using channel
coefficients obtained from the synthetic dataset obtained for
a single-tap channel (i.e., the network is not trained with the
dataset from the actual 3GPP models). However, the trained
network could work well for all the actual 3GPP models which
have multiple taps and non-uniform power-delay profiles as
shown in Table IV. This can be seen in Fig. 17(a) which shows
the obtained MSE values as a function of SNR withnp = 10 and
Nc is chosen according to algorithm in Section III-D. It is seen
that the MSE values for all the considered 3GPP models decrease
with SNR, closely following the MSE of the LMMSE estimates
in the low and mid SNR regimes. For EVA with fD = 70 Hz
and ETU, there is a small deviation observed in MSE in the high
SNR regime due to high Doppler spread. Fig. 17(b) shows the
MSE performance of the channel predictor as a function of the
bandwidth efficiency η for the 3GPP models. It is seen that the
MSE is below 10−2 for η ≤ 0.8, showing that the predictions are
reasonably accurate even when operating at a bandwidth effi-
ciency of 80%. On the other hand, the MSE achieved by the linear
prediction scheme in Section III-E is found to be much higher.
So, although the predictor network is trained on a synthetic
dataset, the network could learn to observe the correlation in the
channel coefficients at its input and use the learnt correlation
to make further predictions, even in settings or environment
not seen while training. This demonstrates the generalization
capabilities and robustness of the proposed channel predictor.

G. Block Transmission in Doubly-Selective Fading Channel

In this subsection, we consider block transmission and detec-
tion in doubly-selective fading channels and evaluate the per-
formance of the proposed deep channel predictor. We consider
a cyclic prefix single carrier (CPSC) system, where the channel
is taken to be both frequency and time selective. Each CPSC
frame consists ofnp pilot sequences (see Section III-F) followed
by Nc = N − np(2L− 1) data symbols, where N is the CPSC
frame length, andL is the number of channel taps. Deep channel
prediction is done on each tap and the predicted coefficients
are given, along with the received data symbols, as input to
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Fig. 18. BER performance of the proposed predictor network in a CPSC
system with NN-based ViterbiNet detector.

the detector. We demonstrate the advantage of using NN-based
detection in such channels by comparing the performance of
a) maximum-likelihood (ML) detection using Viterbi algorithm
and b) NN-based detection. In the ML detection using Viterbi
algorithm, the channel coefficients predicted by the deep channel
predictor are used to evaluate the likelihood costs. For NN-based
detection, we use ViterbiNet [31], which uses learning based
computation of likelihoods in the Viterbi algorithm. We train
the ViterbiNet detector using the fade coefficients predicted by
the deep channel predictor.

Fig. 18 shows the BER performance of the considered CPSC
system with N = 128, L = 2, 4-QAM, and fD = 50 Hz. The
performance of ML Viterbi detector and NN-based ViterbiNet
detector are shown. Performance with channel prediction for
np = 2, 4 per CPSC frame are shown. Performance plots with
perfect CSI are also shown for comparison. The following
observations can be made from Fig. 18. The ViterbiNet detector
trained using perfect CSI achieves almost the same performance
as the ML Viterbi detector performance with perfect CSI. The
performance of both the detectors degrade when predicted chan-
nel coefficients are used. The performance degradation in ML
Viterbi detector is significantly higher than that in ViterbiNet
detector. For example, the ML Viterbi detector performance
floors at a BER of about 10−2 for np = 2 at 25 dB SNR, whereas
the ViterbiNet detector achieves a significantly better BER of
about 10−4 for the same SNR. Also, for np = 4, the ViterbiNet
detector performs close to that with perfect CSI (within about
2.5 dB gap at 10−5 BER), whereas ML Viterbi detector starts
flooring at 10−4 BER itself. This is in corroboration with the
results reported in [31], where it is shown that, in the presence of
imperfect channel state information (CSI), the performance of
conventional Viterbi algorithm degrades significantly whereas
the NN-based ViterbiNet detection achieves significantly better
performance. The better performance of the combination of the
proposed deep channel prediction and NN-based ViterbiNet de-
tection therefore demonstrates the benefit of learning approach
in communication receivers.

IV. DATA DRIVEN CHANNEL PREDICTION

In this section, we present the proposed data decision driven
channel prediction architecture and its performance. The motiva-
tion for the data decision driven approach is as follows. We note
that the maximum bandwidth efficiency obtained in the adaptive
prediction scheme proposed in the previous section is 90.9%,
which is obtained when the number of predictions Nc = 100
and number of pilots np = 10. In the high SNR region, however,
the algorithm reduces Nc to 5, where it attains a bandwidth
efficiency of only 33%. We aim to improve this low bandwidth
efficiency by using a data decision driven prediction architecture
proposed in the following subsection.

A. Architecture

In the proposed data driven prediction approach, we adopt
a 1:k transmission scheme in which 1 pilot block (consisting
of np pilot symbols) is sent every k data blocks (each data
block consisting of Nc data symbols) as shown in Fig. 20. The
shaded block in Fig. 20 represents a pilot block which is used
to obtain LMMSE estimates of the channel. The predictions
obtained using these estimates are used to decode Nc data
symbols transmitted in the subsequent striped data block. In the
case of k = 1 (i.e., 1:1 scheme), one pilot block and one data
block are sent in an alternating fashion, leading to a bandwidth
efficiency of Nc

np+Nc
. The 1:1 scheme is a purely pilot driven

prediction scheme and there is no data driven prediction. On the
other hand, for k > 1, there is data decision driven prediction
(described in the next paragraph) and the bandwidth efficiency
improves to kNc

np+kNc
.

The block diagram of the proposed data decision driven
prediction architecture is shown in Fig. 19. The channel predictor
and ML decoder blocks are the same as in Fig. 7. The predictions
from the channel predictor are fed to the ML decoder, which
uses the predictions to decode data symbols received through the
channel. The LMMSE estimator block receives these decoded
symbols from the ML decoder along with the symbols received
through the channel. Here, the decoded symbols from the ML
decoder are treated as pilots and the signal received from the
channel as the faded version of these pilots, and an LMMSE
estimate of the fade coefficients are obtained from this decoded
data. These LMMSE channel estimates act as a refined version
of the predictions made by the channel predictor network. The
refined channel estimates are used to once again decode the data
symbols using a second ML decoder. If the decoded symbols
from the second ML decoder match the decoded symbols from
the first ML decoder, then the refined channel estimates are fed
back to the input of the channel predictor to enable further
predictions. If they do not match, then the current decoded
symbols are fed back to the LMMSE estimator (as pilots) as
before, and another set of refined channel estimates are obtained.
This process of data decoding and channel estimate refinement
are iteratively repeated until the decoded outputs from two
consecutive iterations match. When this happens, the LMMSE
channel estimates in the subsequent iterations do not change, as
the decoded symbols being fed back as pilots to the LMMSE
estimator do not change. This is set as the convergence criterion
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Fig. 19. Block diagram of the proposed data driven channel prediction scheme.

Fig. 20. Arrangement of pilot and data symbols in data driven channel pre-
diction.

in the receiver. If the criterion is not met for a certain number of
iterations (e.g., 200 iterations), then the last obtained LMMSE
estimates are used as the feedback to the input to make further
predictions. If there is an error in decoding a symbol and the
corresponding LMMSE estimate is fed back to the channel
predictor input, then the further predictions obtained may have
a large MSE and this may result in more subsequent errors. The
value ofk is chosen such that this error propagation is minimized.

B. Performance Results

In Fig. 21(a), we present the MSE performance of the pre-
dictions made by the data driven channel prediction scheme at
fD = 50, 100 Hz for 16-QAM. The values of k considered are
k = 1, 5, 10. It is seen that at low SNR values, the 1:1 scheme has
a lower MSE than the 1:k schemes, k = 5, 10. This is because
there is no data driven prediction in the 1:1 scheme and hence
there is no error propagation due to decoding errors. On the other
hand, in the 1:k scheme (k = 5, 10), the MSE of the predictions
degrades due to error propagation caused by decoding errors at
these low SNR values. As the SNR increases, the MSE of the 1:k
schemes decreases (due to fewer decoding errors) and the gap
from the MSE of 1:1 scheme reduces. In the high SNR regime,
the 1:1 and 1:k schemes achieve similar MSE performance,
again due to fewer decoding errors in the 1:k schemes.

Fig. 21(b) shows the achieved BER performance with ML
decoder corresponding to the MSE performance presented in
Fig. 21(a). We observe that both the 1:5 and 1:10 schemes
perform close to the 1:1 scheme. We also see that the BER
performance of 1:5 scheme is closer to that of the 1:1 scheme

TABLE V
VALUES OF np, k, AND Nc USED FOR COMPARISON WITH NN-BASED

PREDICTION SCHEME IN [34]

than the 1:10 scheme for both fD values, which is justified owing
to larger number of pilots in the 1:5 scheme. We further note
that the main advantage of the data driven prediction scheme
is its bandwidth efficiency due to the reduced number of pilots
used in the scheme. For example, for the 1:10 scheme, when
the maximum value of Nc = 100 is chosen by the adaptive
algorithm, the total number of symbols decoded per estimation
phase (consisting of 10 pilot transmissions) is 103 (i.e., 10
prediction phases with 100 symbols per prediction phase) and
the bandwidth efficiency achieved is 1000

1010 = 99%. Likewise, for
Nc = 5, the bandwidth efficiency achieved is 50

60 = 83.3%. Sim-
ilarly, for the 1:5 scheme, the maximum and minimum achieved
bandwidth efficiencies are 98% and 71.4%, respectively. Recall
that, in the previous scheme without data driven prediction (i.e.,
1:1 scheme), the bandwidth efficiencies achieved for Nc = 100
and 5 are 90.9% and 33%, respectively. In conclusion, we find
that the system is able to utilize the channel very efficiently by
maximizing the number of data symbol transmission phases per
pilot symbol transmission phase, and this is achieved at the cost
of a small loss in BER performance.

C. Comparison With NN-Based Prediction Scheme in [34]

In this subsection, we compare the performance of the
proposed data driven channel prediction scheme with an LSTM
based channel prediction scheme reported in [34] both with
ML decoder. 16-QAM modulation and fD = 153 Hz are
considered. We fix the ratio of number of pilot symbols (np)
to the number of data symbols (also the number of predictions,
kNc (see Section IV-A)), while varying np and kNc. The
(np:kNc) values considered are (10:40), (50:200), (100:400),
and (150:600). Table V shows the values chosen for np, k, and
Nc in each case. Fig. 22 shows the BER comparison between
the two schemes. As expected, the performance of (10:40)
scheme is better than the (150:600) scheme in both the cases
due to smaller number of predictions per pilot block. It is further
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Fig. 21. MSE and BER performance of 1:k data decision driven channel prediction scheme with ML decoder at fD = 50, 100 Hz for 16-QAM.

Fig. 22. BER performance comparison between the proposed scheme and the
NN-based prediction scheme in [34], both with ML decoder.

observed that the proposed scheme achieves significantly better
BER performance compared to the scheme in [34]. This
performance advantage in the proposed scheme is attributed to
the data driven feature and the training enhancement features
incorporated in the proposed scheme.

V. CONCLUSION

We proposed a neural network based framework for the
design of robust receivers in time-varying fading channels
with temporal correlation in the fading process. Central to the
proposed framework is the deep channel predictor which uses an
RNN that learns the underlying correlation model in the fading
process and makes predictions of the channel fade coefficients
into the future thereby reducing pilot resources. An FCNN based
data symbol decoder aided by the RNN based channel predictor
constituted the receiver architecture. The basic version of the

channel predictor kept the number of future predictions fixed
regardless of the operating SNR and Doppler. An augmented
adaptive channel prediction architecture which chose the
number of future predictions in accordance with the operating
SNR and Doppler further improved the bandwidth efficiency and
performance. A data decision driven prediction architecture with
decision feedback provided a balance between pilot resources
and performance. The achieved robustness in the receiver per-
formance over a range of Doppler and SNR conditions demon-
strates that the proposed deep channel prediction approach is a
promising approach for receiver design in time-varying fading
channels. Finally, we note that the deep channel prediction
considered in this paper is in the time-domain. Accordingly, we
presented the performance of the proposed predictor in CPSC
systems which are essentially time-domain systems. Learning
architectures for channel prediction in frequency-domain
systems such as OFDM systems can be devised likewise. We
suggest this as a topic for future research. Deriving theoretical
guarantees for the performance of deep neural networks based
approaches is known to be often intractable and difficult. This
could be an important focus area for future research.
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