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Abstract: The geometric programming problem (GPP) is a beneficial mathematical programming
problem for modeling and optimizing nonlinear optimization problems in various engineering fields.
The structural configuration of the GPP is quite dynamic and flexible in modeling and fitting the
reliability optimization problems efficiently. The work’s motivation is to introduce a bounded solution
approach for the GPP while considering the variation among the right-hand-side parameters. The
bounded solution method uses the two-level mathematical programming problems and obtains
the solution of the objective function in a specified interval. The benefit of the bounded solution
approach can be realized in that there is no need for sensitivity analyses of the results output. The
demonstration of the proposed approach is shown by applying it to the system reliability optimization
problem. The specific interval is determined for the objective values and found to be lying in the
optimal range. Based on the findings, the concluding remarks are presented.

Keywords: interval-based parameters; geometric programming problems; bounded optimization
approach; system reliability

MSC: 90B25; 90C30; 90C90; 90C47; 90C60

1. Introduction

Mathematical programming problems have different forms based on the nature of
objective functions and constraints. The geometric programming problem, a typical form
of mathematical optimization characterized by objective and constraint functions of a
particular form, was introduced by [1]. Later, the advanced study in the domain of the GPP
was performed by [2,3]. Several engineering applications [4] have investigated the effec-
tiveness and importance of the GPP. The GP optimization approach inevitably outperforms
other existing techniques due to the objective function’s relative magnitudes instead of the
decision variables. Initially, the GP technique’s basic working principle is based on finding
the optimal solution of the objective function and then proceeding further to determine the
optimal values of the design variables. This characteristic feature of the GPP is essential
and fruitful in circumstances where the decision-makers are interested in first finding the
optimal values of the objective function. Thus, the polynomial structure of the objectives
and constraints leads the GPP towards the simpler convex solution space [2,4]. GP opti-
mization techniques can tackle this situation, and the computational activities are aborted
to obtain the optimum design vectors. One of the GP techniques’ most crucial advantages
over others can be regarded as it mitigates the complex optimization problems into the
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different piecewise linear algebraic equations. On the other hand, the GP approach deals
only with the posynomial types of algebraic terms, meaning that it solely facilitates the
objective function and the constraints with posynomial structures, which can be considered
significant drawbacks.

Many engineering optimization problems deal with the manufacturing and production
processes of some products, machinery parts, and the raw equipment used in the final
usable machines and products. They care about the structure, dimensions, quality, and
specifications of the raw material parts that are very important to be transformed and
converted into usable products. For example, the cofferdam, shaft, journal bearings, etc.,
are the raw parts that are the building block raw parts of the various products and machines.
Hence, the mathematical models with the specifications of these raw parts are built up
and further used in manufacturing and producing the final products. Sometimes, the
perfect specifications cannot be achieved due to some vagueness or technical errors in the
functioning machine, for which the experts/managers allow some marginal variations
among the specifications and dimensions of such raw parts. Afterward, it can be managed
or adjusted to some extent. In system reliability modeling, various parameters can be
taken as varying between some specified intervals. This means that the parameters can
be taken as uncertain, and using some specified tools, they can be converted into crisp
ones. In the literature, the concept of fuzzy and random parameters is available, which
deals with the vagueness and randomness in the parameters. However, we have provided
an opportunity to define the parameters under the continuous variations bounded by
upper and lower limits. Instead of taking the vague and random parameters, one can
assume the continuous variations in the parameters’ values can be tackled with the two-
level mathematical programming techniques discussed in this paper. Additionally, the
sensitivity and post-optimality of the obtained solution results are waived off due to the
working procedure of the proposed approach. Hence, the proposed bonded approach for
the GPP can be easily implemented on various non-engineering problems while dealing
with varying parameters.

The remaining part of the paper is summarized as follows: In Section 2, some relevant
literature is discussed, while Section 3 presents the basic concepts and modeling of standard
geometric programming problems along with the proposed bounded solution methods. The
computational study is presented with a particular focus on system reliability optimization
in Section 4. Analyses of the computational complexity are also performed with other
existing approaches. Finally, conclusions and the future scope are discussed based on the
present work in Section 5.

2. Literature Review

The GPP is a relatively new method of solving nonlinear programming problems.
It is used to minimize functions in the form of posynomials subject to constraints of the
same type. Practical algorithms have been developed for solving geometric programming
problems [1–3]. Liu [5] proposed the posynomial GPP subject to fuzzy relation inequalities.
In 2018, Lu and Liu [6] also studied a class of posynomial GPPs that considers the evalua-
tion of a posynomial GPP subject to fuzzy relational equations with max–min composition.
Ahmad and Adhami [7] also addressed the interval-based solution approach for solving
transportation problems under varying input parameters. Chakraborty et al. [8] discussed
the multiobjective GPP with the aid of fuzzy geometry. Garg et al. [9] presented the reliabil-
ity optimization problem under an intuitionistic environment. Islam and Roy [10] investi-
gated the modified GPP and applied it to many engineering problems. Islam and Roy [11]
developed a new multiobjective GP model and used it to solve the transportation problem.
Recently, a interesting study on GPP was presented by [12–15]. Khorsandi et al. [16] de-
veloped a new optimization technique for GPP. Mahapatra and Roy [17] also solved the
reliability of a system using the GPP approach.

However, the geometric programming research approach in the field of reliability
optimization is being performed in the context of mathematical modeling and real-life appli-
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cations. Some recent work is also available on the system reliability, ensuring a significant
contribution to the literature. Negi et al. [18] presented a hybrid optimizer model for system
reliability. Roustaee and Kazemi [19] developed a stochastic model for multi-microgrid
constrained reliability system and applied it to clean energy management. Zolfaghari and
Mousavi [20] proposed an integrated system reliability model for the inbuilt component un-
der uncertainty. Sedaghat and Ardakan [21] developed a novel computational strategy for
redundant components in the system reliability optimization. Meng et al. [22] discussed the
interval parameters by the sequential moving asymptote method for the system reliability
based on the integrated co-efficient approach. Kugele et al. [23] presented a research work
by integrating the second-degree difficulty in carbon ejection controlled, reliable, innovative
production management and implemented it on a computational dataset. Son et al. [24]
used the modeling texture of the GPP in the levelized cost of energy-oriented modular string
inverter design and discussed it in the field of PV generation systems. Shen et al. [25] also
introduced a novel method for energy-efficient ultrareliability using the outage probability
bound and the GPP technique. Rajamony et al. [26] designed multi-objective single-phase
differential buck inverters by considering an active power decoupling and applied it to
power generation. Singh and Singh [27] suggested the geometric programming approach
for optimizing multi-VM migration by allocating transfer and compression.

All the studies are confined to either fuzzy- or stochastic-based approaches, but it
may possible that input parameters may vary within some specified intervals bounded
by upper and lower bounds. In this situation, the fuzzy and stochastic approaches may
not be applied successfully. Thus, to overcome this issue, we developed a bounded
solution method comprising the two-level GPP, and the values of the objective function are
obtained directly. Hence, the present study lays down a new direction for obtaining the
optimal solution under the varying parameters. The proposed method is applied to system
reliability optimization problems and yields a result without affecting the system reliability
under variations.

3. Geometric Programming Problem: Basic Concepts

In this sub-section, we discuss some important basic concepts related to geometric
programming problems.

3.1. Basic Concepts

Definition 1 (Monomial). The word “monomial” is derived from the Latin word mono, meaning
only one, and mial solely means term. Therefore, a monomial literally means “an expression in
algebra having only one term”.

Thus, if x1, x2, . . . , xn represent the n non-negative variable, then a real-valued function F of
x, in the following form

F(x) = cxa1
1 xa2

2 · · · x
an
n ,

where c > 0 and ai ∈ R, is known as the monomial function.
Illustrative Example 1: If a, b, and c are non-negative variables, then 6, 0.84, 9a3b−9, 17

√
c/a

are monomial, but 5 + a, 6a− 8c, and 7(a + 8a6b−7) are not monomials.

Definition 2 (Polynomial). The word “polynomial” is also derived from the Latin word poly,
meaning many, and mial solely means term. Therefore, a polynomial literally means “an expression
in algebra having many terms”, i.e., many monomials.

Suppose x1, x2, . . . , xn represent the n non-negative variable, then the sum of one or more
monomials in the following form of a real-valued function F of x:

F(x) =
m

∑
i=1

cix
a1i
1 xa2i

2 · · · x
ani
n ,

where ani ∈ R is known as a polynomial function or simply a polynomial.
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Illustrative Example 2: If a, b, and c are non-negative variables, then 6, 0.84, 9a3b−9, −5c/a,
6a− 8c, and 7(a + 8a6b−7) are polynomials.

Definition 3 (Posynomial). If the coefficients ci > 0 in the polynomial, then it is called a
posynomial. Therefore, the sum of one or more monomials in the following form of a real-valued
function F of x:

F(x) =
m

∑
i=1

cix
a1i
1 xa2i

2 · · · x
ani
n , ci > 0

where ci > 0 and ani ∈ R is called a posynomial function or simply posynomial.
Illustrative Example 3: If a, b, and c are non-negative variables, then 6, 0.84, 9a3b−9,

17
√

c/a + a7b4 are posynomial, but 5− a, 6a− 8c, and 7(a + 8a6b−7) are not posynomial.

Note 1: The term posynomial is used to suggest a combination of positive and
polynomial, that is POSITIVE + POLYNOMIAL = POSYNOMIAL .

Definition 4 (Degree of difficulty). This is defined as a quantity (N−n− 1) present in geometric
programming called the degree of difficulty. In the case of a constrained geometric programming
problem, N represents the total number of terms in all the posynomials and n represents the number
of design variables.

Note 2: The comparison and differences between monomial, polynomial, and posyno-
mial are summarized in Table 1.

Table 1. Comparison between monomial, polynomial, and posynomial.

Monomial Polynomial Posynomial

(1) Deals with a single term Having one or more term Having one or more term

(2) Sum of monomials is not a monomial Sum of polynomials is a polynomial Sum of posynomials is a posynomial

(3) Subtraction of monomials is not a
monomial Subtraction of polynomials is a polynomial Subtraction of posynomials is not a

posynomial

(4) Multiplication of monomials is a monomial Multiplication of polynomials is a polynomial Multiplication of posynomials is a posynomial

(5) Division of a monomial by other
monomials is a monomial

Division of a polynomial by other monomials
is a polynomial

Division of a posynomial by other monomials
is a posynomial

(6) The mathematical expression of a
monomial is F(x) = cxa1

1 xa2
2 · · · x

an
n , c > 0

The mathematical expression of a polynomial
is F(x) = ∑m

i=1 cix
a1i
1 xa2i

2 · · · x
ani
n

The mathematical expression of a posynomial
is F(x) = ∑m

i=1 cix
a1i
1 xa2i

2 · · · x
ani
n , ci > 0

(7) Example: 0.84, 9a3b−9, 17
√

c/a Example: 0.43, 9a3b−9, −5c/a, 6a− 8c Example: 0.59, 9a3b−9, 17
√

c/a + a7b4

3.2. Geometric Programming Problems

Geometric programming problems fall under a class of nonlinear programming prob-
lems characterized by objective and constraint functions in a special form. The texture of
GPP is quite different from other mathematical programming problems and depends on
the characterization of decision variables in its product form. Thus, the modeling structure
of different engineering problems inevitably adheres to the form of the GPP while opti-
mizing the real-life problems. It is introduced for the solution of the algebraic nonlinear
programming problems under the linear or nonlinear constraints, used to solve dynamic
optimization problems. The useful impact in the area can be realized by its enormous appli-
cation in integrated circuit design, manufacturing system design, and project management.
Therefore, the standard form of GPP formulations can be represented as follows (1):

F = Minimize
x

∑l0
k=1 c0k ∏n

j=1 x
α0kj
j

s. x.

∑li
k=1 cik ∏n

j=1 x
βikj
j ≤ 1, i = 1, 2, . . . , m,

xj ≥ 0, j = 1, 2, . . . , n.

(1)



Mathematics 2022, 10, 2435 5 of 19

where l0 is the number of terms present in the objective function, while the inequality
constraints include li terms for i = 1, 2, . . . , m. Geometric programming problems have a
strong duality theorem, and hence, geometric programming problems with enormously
nonlinear constraints can be depicted correspondingly as one with only linear constraints.
Moreover, if the primal problem is in the form of a posynomial, then a global solution
of a minimization-type problem can be determined by solving its dual maximization-
type problem. The dual problem contains the desirable characteristics of being linearly
constrained and with an objective function having wholesome features. This leads towards
the development of the most promising solution methods for the geometric programming
problems.

Assume that we replace the right-hand-side term (RHS) of the constraints in the
GPP (1). Then, the modified GPP can be given as follows (2):

Primal

F = Minimize
x

∑l0
k=1 c0k ∏n

j=1 x
α0kj
j = F0(x)(say)

s. x.

∑li
k=1 cik ∏n

j=1 x
βikj
j ≤ Bi, i = 1, 2, . . . , m,

xj ≥ 0, j = 1, 2, . . . , n.

(2)

where Bi, ∀ i = 1, 2, . . . , m are non-negative numbers. If Bi = 1, ∀ i, then this modified
geometric programming problem (2) is the standard geometric programming problem (1).

Consider that the geometric programming problem (2) is the primal problem, then
its dual problem can be presented in the geometric programming problem (4). For this
purpose, we formulate an auxiliary geometric programming problem (3) by dividing the
constraint co-efficient by its RHS value Bi, which can be depicted as follows:

F = Minimize
x

∑l0
k=1 c0k ∏n

j=1 x
α0kj
j

s. x.

∑li
k=1

cik
Bi

∏n
j=1 x

βikj
j ≤ 1, i = 1, 2, . . . , m,

xj ≥ 0, j = 1, 2, . . . , n.

(3)

The derivation for the dual formulation of the geometric programming problem (2)
can be carried out using the concept of [1–3]. Furthermore, the potential complexity in
obtaining and solving the dual geometric programming problem (4) can be realized by
the research work in [6,16]. Thus, the dual formulation of the geometric programming
problem (2) is presented in the geometric programming problem (4).

Dual

F = Maximize
y

∏l0
k=1

(
c0k
y0k

)y0k

∏m
i=1 ∏li

k=1

(
cikyi0
Biyik

)yik

= F(y)(say)

s. x.
∑l0

k=1 y0k = 1, i = 1, 2, . . . , m,
∑l0

k=1 α0kjy0k + ∑m
i=1 ∑li

k=1 βikjyik = 0, j = 1, 2, . . . , n,
yik ≥ 0, ∀ i, k.

(4)

Theorem 1. If δ is a feasible vector for the constraint posynomial geometric programming (2), then
F0(x) ≥ n n

√
F(y).

Proof. The expression for F0(x) can be written as

F0(x) =
n

∑
i=1

T0

∑
k=1

yik

 c0ik ∏m
j=1 x

α0ikj
ij

yik

 (5)
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We can apply the weighted A.M. ≥ G.M. inequality to this new expression for F0(x)
and obtain  c0ik ∏m

j=1 x
α0ikj
ij

∑n
i=1 ∑T0

k=1 yik

∑n
i=1 ∑

T0
k=1 δik

≥
n

∏
i=1

T0

∏
k=1

 c0ik ∏m
j=1 x

α0ikj
ij

yik

δik

or (
F0(x)

n

)n
≥

n

∏
i=1

(
C0ik
yik

)yik m

∏
j=1

x
∑

T0
k=1 α0ikjyik

ij

using normality condition

=
n

∏
i=1

T0

∏
k=1

(
C0ik
yik

)δik m

∏
j=1

x
∑

T0
k=1 α0ikjyik

ij (6)

Again, Fr(x) can be written as

gr(x) =
n

∑
i=1

Tr

∑
Tr−1+1

yik

 crik ∏m
j=1 x

αrikj
ij

yik

 (7)

Applying the weighted A.M. ≥ G.M. inequality in (7), we have(
Fr(x)

∑n
i=1 δik

)∑n
i=1 yik

≥
n

∏
i=1

Tr

∏
k=Tr−1+1

(
crik

∏

m

j=1
x

αrikj
ij yik

)yik

and

(Fr(x))∑n
i=1 yik ≥

n

∏
i=1

Tr

∏
k=Tr−1+1

(
Crik
yik

)yik m

∏
j=1

x
∑Tr

k=Tr−1+1 αrikjyik

ij

(
n

∑
s=1

ysk

)yik

(r = 1, 2, . . . , l). Using 1 ≥ (Fr(x))∑n
i=1 yik (r = 1, 2, . . . , l) (since Fr(x) ≤ 1(r = 1, 2, . . . , l)),

1 ≥
n

∏
i=1

Tr

∏
k=Tr−1+1

(
Crik
δik

)yik
(

n

∑
s=1

ysk

)yik m

∏
j=1

x
∑Tr

k=Tr−1+1 αrikjyik

ij (8)

Multiplying (6) and (8), we have

(
F0(x)

n

)n
≥

n

∏
i=1

Tr

∏
k=Tr−1+1

(
C0ik
yik

)yik
(

n

∑
s=1

ysk

)yik m

∏
j=1

x
∑

T0
k=1 α0ikjδik

ij

m

∏
j=1

x
∑

T0
k=1 α0ikjyik+∑l

r=1 ∑Tr
k=Tr−1+1 αrikjyik

ij (9)

(r = 0, 1, 2, . . . , l). Using orthogonality conditions, the inequality (9) becomes(
F0(x)

n

)n
≥

n

∏
i=1

Tr

∏
k=1

(
Cik
yik

)δik
(

n

∑
s=1

ysk

)yik

, (r = 0, 1, 2, . . . , l)

i.e., F0(x) ≥ n n
√

F(y). This completes the proof.

Theorem 2. Suppose that the constraint PGP (2) is super-consistent and that x∗ is a solution for
GP. Then, the corresponding DP (4) is consistent and has a solution δ∗ that satisfies

F0(x∗) = n n
√

F(y∗)
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and

y∗ik =

{
uik(x∗)
g0(x∗) , (i = 1, 2, . . . , n; k = 1, 2, . . . , T0)

λir(y∗)uik(x∗) (i = 1, 2, . . . , n; k = Tr−1 + 1, 2, . . . , Tr; r = 1, 2, . . . , l)

Proof. Since GP is super-consistent, so is the associated CGP. Furthermore, since GP has
a solution x∗ = (x∗i1, x∗i2, . . . , x∗ij), the associated GP has a solution p∗ = (p∗i1, p∗i2, . . . , p∗ij)
given by p∗ij = lnx∗ij.

According to the Karush–Kuhn–Tucker (K-K-T) conditions, there is a vector λ∗ =
(λ∗i1, . . . , λ∗il) such that

λ∗ir ≥ 0 (10)

λ∗ir(hir(p∗)− 1) = 0 (11)

∂hi0(p∗)
∂pij

+
l

∑
r=1

λ∗ir
∂hir(p∗)

∂pij
= 0 (12)

Because xij = epij for i = 1, 2, . . . , n, j = 1, 2, . . . , m, it follows that r = 1, 2, . . . , l

∂hir(p)
∂pij

=
∂hir(p)

∂xij

∂xij

∂pij
=

∂gir(p)
∂xij

epij

Therefore, the condition (12) is equivalent to

∂hi0(p∗)
∂xij

+
l

∑
r=1

λ∗ir
∂hir(p∗)

∂xij
= 0 (13)

since epij > 0 and xij > 0. Hence (13) is equivalent to

x∗ij
∂hi0(p∗)

∂xij
+

l

∑
r=1

λ∗irx∗ij
∂hir(p∗)

∂xij
= 0 (14)

Now, the terms of Fir(p) are of the form

uir(p) = crik

n

∏
i=1

x
αrikj
ij

It is clear that

x∗ij
∂hi0(p∗)

∂xij
=

Tr

∑
k=Tr−1+1

αrikj, (i = 1, 2, . . . , n; j = 1, 2, . . . , n; r = 1, 2, . . . , l)

Therefore, (14) implies

Tr

∑
k=1

α0ikjuik(p∗) +
l

∑
r=1

Tr

∑
k=Tr−1+1

λ∗iruik(p∗) = 0, (i = 1, 2, . . . , n; j = 1, 2, . . . , n) (15)

If we divide the last equation by

Fi0(p∗) =
T0

∑
k=1

uik p∗

we obtain
∑Tr

k=1 α0ikjuik(p∗)
Fi0(p∗)

+
∑l

r=1 ∑Tr
k=Tr−1+1 λ∗iruik(x∗)

Fi0(p∗)
= 0
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Define the vector y∗ik by

y∗ik =


uik(p∗)
Fi0(p∗) , (i = 1, 2, . . . , n; k = 1, 2, . . . , T0)
λiruik(p∗)

Fi0(p∗) (i = 1, 2, . . . , n; k = Tr−1 + 1, 2, . . . , Tr; r = 1, 2, . . . , l)

Note that y∗ik > 0(i = 1, 2, . . . , n; k = 1, 2, . . . , T0) and r ≥ 1, either y∗ik > 0 for all
k with Tr−1 + 1 ≤ k ≤ Tr or yik = 0 for all k with Tr−1 + 1 ≤ k ≤ Tr; according to
the corresponding Karush–Kuhn–Tucker multipliers y∗ir, (i = 1, 2, . . . , n; r = 1, 2, . . . , l) is
positive or zero.

Furthermore, observe that vector y∗ satisfies all of the m exponent constraint equations
in DP, as well as the constraint

Tr

∑
k=1

y∗ik =
T0

∑
k=1

uik(p∗)
Fi0(p∗)

=
Fi0(p∗)
Fi0(p∗)

= 1

Therefore, y∗ = (yi1, . . . , y∗iT0
) is a feasible vector for DP. Hence DP is constrained.

The Karush–Kuhn–Tucker multipliers λ∗ir are related to the corresponding λir(y∗) DP
as follows:

λir(y∗) =
Tr

∑
k=1

y∗ik =
T0

∑
k=1

λ∗ir
uik(p∗)
gi0(p∗)

= λ∗ir
Fi0(p∗)
Fi0(p∗)

, (i = 1, 2, . . . , n; r = 1, 2, . . . , l)

The Karush–Kuhn–Tucker condition (11) becomes

λ∗ir(Fir(p∗)− 1) = 0 (16)

Therefore, we obtain
λ∗irFir(p∗) = λ∗ir

Therefore, for r = 1, 2, . . . , l and k = Tr−1 + 1, . . . , Tr, we see that

y∗ik =
λ∗iruik(p∗)

Fi0(p∗)
=

λ∗irFir(p∗)uik(p∗)
Fi0(p∗)

= λir(y∗)uik(p∗) (17)

The fact that δ∗ is a feasible for DP and x∗ is a feasible for GP implies that

F0(p∗) = n n
√

F(y∗)

because of the primal-dual inequality.
Moreover, the values of y∗ik(i = 1.2. . . . , n; r = 1, 2, . . . , l; k = 1, 2, . . . , Tr−1 + 1, . . . , Tr)

are precisely those that force equality in the arithmetic-geometric mean inequalities that
where used to obtain the duality inequality. Finally, Equation (17) shows that either
Fir(p∗) = 1 or y∗ir = 0(i = 1, 2, . . . , n; r = 1, 2, . . . , l). This means that the value of y∗ik
actually forces equality in the primal-dual inequality. This completes the proof.

3.3. Geometric Programming Problem under Varying Parameters

In reality, optimization problems may contain uncertainty among the parameters
that cannot be ignored. Due to the existence of uncertainty among parameters in the real
world, many researchers have investigated the problem of decision-making in a fuzzy
environment and management science. Different real-life problems inherently involve
uncertainty in the parameters’ values. In this case, the decision-makers are not able to
provide fixed/exact values of the respective parameters. However, depending on some
previous experience or knowledge, the decision-makers may furnish some estimated/most
likely values of the parameters that lead to vagueness or ambiguousness. The inconsistent,
inappropriate, inaccurate, indeterminate knowledge and lack of information result in



Mathematics 2022, 10, 2435 9 of 19

vague and ambiguous situations. Thus, the parameters are not precise in such cases. Briefly,
one can differentiate between stochastic and fuzzy techniques for tackling the uncertain
parameters. Uncertainty arises due to randomness, which can be tackled by using stochastic
techniques, whereas the fuzzy approaches can be applied when uncertainty arises due to
vagueness.

Various interactive and effective algorithms are investigated for solving the GPP when
the RHS in the constraint is known exactly. However, many applications of geometric pro-
gramming are engineering design problems in which some of the deterministic parameters
in the RHS are defined in an estimated interval of actual values. There are also many cases
when the RHS may not be depicted in a precise manner. For example, in the machining
economics model, the tool life may fluctuate due to different machining operations and
conditions. In this proposed GPP, uncertainty present in the data us varying between
some specified intervals that differ from both types of the above-discussed uncertainties.
The mathematical model of the GPP under varying parameters can be represented as
follows (18):

Proposed Model

F = Minimize
x

∑l0
k=1 c0k ∏n

j=1 x
α0kj
j

s. x.

∑li
k=1 cik ∏n

j=1 x
βikj
j ≤ B̃i, ∀ i = 1, 2, . . . , m,

xj ≥ 0, ∀ j = 1, 2, . . . , n.

(18)

where B̃i ∈ [Bi,Bi], ∀ i = 1, 2, . . . , m. The geometric programming problem (18) represents
the proposed geometric programming model under varying parameters (B̃i) that are al-
lowed to vary between some specified bounded intervals, i.e., lower (Bi) and upper (Bi)
bounds, respectively.

3.4. Proposed Bounded Solution Method for Geometric Programming Problem

Intuitively, when the input values are varying within some specified intervals, then it is
obvious to have the varying or fluctuating output as well while solving the problems. Hence,
the value of the objective function can be determined in a specified interval according to the
varying parameters. In this paper, we developed a bounded solution scheme to obtain the
lower and upper bound of the geometric programming problems under varying parameters.
The GPP (18) inherently involves variation among the RHS parameters. The following
consideration is taken into account while proposing the bounded solution method.

Suppose that S = {B̃i | Bi ≤ B̃i ≤ Bi, ∀ i = 1, 2, . . . , m} is a set of varying param-
eters defined between the fixed intervals. Now, for each B̃i ∈ S, we define F̃(B̃i) as the
objective function value of geometric programming problem (18) under the set of given
constraints. Assume that F and F is the minimum and maximum value of F̃(B̃i) defined on
S, respectively. Therefore, mathematically, it can be expressed as follows:

F = Minimum {F̃(B̃i)|B̃i ∈ S} (19)

F = Maximum {F̃(B̃i)|B̃i ∈ S} (20)

With the aid of Equations (19) and (20), we can elicit the corresponding pair of two-
level mathematical programming problems as follows:

F = Minimize
(B̃i)∈S

Minimize
x

∑l0
k=1 c0k ∏n

j=1 x
α0kj
j

s. x.

∑li
k=1 cik ∏n

j=1 x
βikj
j ≤ B̃i, ∀ i = 1, 2, . . . , m,

xj ≥ 0, ∀ j = 1, 2, . . . , n.

(21)
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and
F = Maximize

(B̃i)∈S
Minimize

x
∑l0

k=1 c0k ∏n
j=1 x

α0kj
j

s. x.

∑li
k=1 cik ∏n

j=1 x
βikj
j ≤ B̃i, ∀ i = 1, 2, . . . , m,

xj ≥ 0, ∀ j = 1, 2, . . . , n.

(22)

The above problems (21) and (22) represent the two-level geometric programming
problems under varying parameters. Since Problem (21) reveals the minimum of the best
possible values on S, it would be justifiable to insert the constraints of the outer level into
the inner level to simplify the two-level mathematical programming problems into the
single-level mathematical programming problem, which can be presented as follows (23):

F = Minimize
x

∑l0
k=1 c0k ∏n

j=1 x
α0kj
j

s. x.

∑li
k=1

cik

B̃i
∏n

j=1 x
βikj
j ≤ 1, ∀ i = 1, 2, . . . , m,

xj ≥ 0, ∀ j = 1, 2, . . . , n,
Bi ≤ B̃i ≤ Bi, B̃i ∈ [Bi,Bi], ∀ i = 1, 2, . . . , m.

(23)

However, in Problem (23), the value of xj is not known. Thus, it is necessary to obtain
the dual of Problem (23), which can be stated as follows (24):

Model A

F = Maximize
y

∏l0
k=1

(
c0k
y0k

)y0k

∏m
i=1 ∏l0

k=1

(
cikyi0

Biyik

)yik

s. x.
∑li

k=1 y0k = 1,
∑li

k=1 α0kjy0k + ∑m
i=1 ∑li

k=1 βikjyik = 0,
yik ≥ 0, ∀ k = 1, 2, . . . , l0,
Bi ≤ B̃i ≤ Bi, B̃i ∈ [Bi,Bi], ∀ i = 1, 2, . . . , m.

(24)

Finally, Model A is a nonlinear programming problem and can be solved by using
some optimizing software.

The problem (22) would give the maximum value among the best possible objective
values over all decision variables. In order to find the upper bound of the geometric
programming problem, the dual of the inner problem of Problem (22) must be obtained
with the fact that in the geometric programming problem, the primal problem and the
dual problem have the same objective value. By using the strong duality theory of the
geometric programming problem, the dual of inner problem (22) is transformed into a
maximization-type problem to be similar to the maximization type of outer problem (22).
Hence, the problem (22) can be re-expressed as follows:

F = Maximize
(B̃i)∈S

Maximize
y

∏l0
k=1

(
c0k
y0k

)y0k

∏m
i=1 ∏li

k=1

(
cikyi0

B̃iyik

)yik

s. x.
∑l0

k=1 y0k = 1, i = 1, 2, . . . , m,
∑l0

k=1 α0kjy0k + ∑m
i=1 ∑li

k=1 βikjyik = 0, j = 1, 2, . . . , n,
yik ≥ 0, ∀ i, k,
B̃i ∈ [Bi,Bi], ∀ i = 1, 2, . . . , m.

(25)

Since Problem (25) represents the maximum of the best possible values on S, so it
would be justifiable to insert the constraints of the outer level into the inner level to simplify
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the two-level mathematical programming problems into the single-level mathematical
programming problem (26), which can be stated as follows:

Model B

F = Maximize
y

∏l0
k=1

(
c0k
y0k

)y0k

∏m
i=1 ∏li

k=1

(
cikyi0
Biyik

)yik

s. x.
∑l0

k=1 y0k = 1, i = 1, 2, . . . , m,
∑l0

k=1 α0kjy0k + ∑m
i=1 ∑li

k=1 βikjyik = 0, j = 1, 2, . . . , n,
yik ≥ 0, ∀ i, k,
Bi ≤ B̃i ≤ Bi, B̃i ∈ [Bi,Bi], ∀ i = 1, 2, . . . , m.

(26)

Model B is a nonlinear constrained programming problem and can be solved by using
several efficient methods. Thus, Model A and Model B provide the lower and upper
bound to the geometric programming problem under varying parameters and calculate
the objective value directly without violating the optimal range of the objective values
where they should lie. A comprehensive study about the relationship between the globally
optimal cost and the optimal dual value can be found in [4].

4. Computational Study

The proposed bounded solution method for the geometric programming problem
under varying parameters was implemented in different real-life applications. The fol-
lowing two examples were adopted from engineering problems. Furthermore, it was also
applied to the system reliability optimization problem. All the numerical illustrations were
coded in AMPL and solved using the optimizing solver CONOPT through the NEOS server
version 5.0 on-line facility provided by Wisconsin Institutes for Discovery at the University
of Wisconsin in Madison for solving optimization problems; see (Server [28]).

Example 1 ([4]). A cofferdam is an engineering design optimization problem. It is a prominent
structure to attach a trivial submerged area to permit building a permanent structure on an allocated
site. The cofferdam function is elicited in a random environment by transitions in surrounding
water levels. The architecture designs a dam of height x1, length x2 breadth x3, and total required
perimeter x4 and intends to estimate the most promising total cost for making decisions. The RHS
parameters can be of any simplex dimensions such as area, volume, etc., which is not quite certain.
These are no longer crisp or deterministic, but the allowable lower and upper bounds over each
area/volume are determined in the closed interval. Thus, the use of varying parameters is quite
worthwhile and the decision under such variation will be helpful in determining the range of optimal
outcomes. Figure 1 depicts an illustrative example of a cofferdam.
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Figure 1. Illustrative figure of a cofferdam.

Thus, the equivalent mathematical programming problem with varying parameters is
given as follows (27):

F = Minimize
x

2x−0.9
1 x−1.5

2 x−1
3 x−1.6

4 + 4x−1
1 x−1

2 x−0.1
3 x−1

4

s. x.
2x−2

1 x−1
2 x2

3x4 + 1.6x1x3x2
4 ≤ B̃1

1.9x2
1x1.4

2 x3x4 + 3.1x2.2
1 x4 ≤ B̃2

x1, x2, x3, x4 ≥ 0.

(27)

where B̃1 ∈ (3, 3.2) and B̃2 ∈ (2, 2.4) are the varying parameters. Since all the parameters
are crisp except the RHS, then Problems (23) and (26) can be utilized to obtain the upper
and lower bounds of the objective values in Problem (27). According to Problems (23)
and (26), the formulations of the upper and lower bounds for Problem (27) can be presented
as follows:

Model A

F = Minimize
y

(
2

y01

)y01
(

4
y02

)y02
(

2y10

B̃1y11

)y11
(

1.6y10

B̃1y12

)y12
(

1.9y20

B̃2y21

)y21
(

3.1y20

B̃2y22

)y22

s. x.
y01 + y02 = 1,
y01 + y02 − 2y11 + y12 + 2y21 + 2.2y22 = 0,
y01 − y02 − y11 + 1.4y21 = 0,
−y01 + y02 + 2y11 + y12 + y21 = 0,
y01 − y02 + y11 + 2y12 + y21 + y22 = 0,
y01, y02, y11, y21, y12, y22 ≥ 0
3 ≤ B̃1 ≤ 3.2, 2 ≤ B̃2 ≤ 2.4, ∀ i = 1, 2, . . . , m.

(28)

and
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Model B

F = Maximize
y

(
2

y01

)y01
(

4
y02

)y02
(

2y10

B̃1y11

)y11
(

1.6y10

B̃1y12

)y12
(

1.9y20

B̃2y21

)y21
(

3.1y20

B̃2y22

)y22

s. x.
y01 + y02 = 1,
y01 + y02 − 2y11 + y12 + 2y21 + 2.2y22 = 0,
y01 − y02 − y11 + 1.4y21 = 0,
−y01 + y02 + 2y11 + y12 + y21 = 0,
y01 − y02 + y11 + 2y12 + y21 + y22 = 0,
y01, y02, y11, y21, y12, y22 ≥ 0
3 ≤ B̃1 ≤ 3.2, 2 ≤ B̃2 ≤ 2.4, ∀ i = 1, 2, . . . , m.

(29)

Thus, Problems (28) and (29) are the required upper and lower bounds for the geo-
metric programming problem (27). Upon solving the problem at zero degree of difficulty,
the upper and lower bounds for the objective functions are obtained as F = 8.5429 and
F = 4.9271, respectively. However, the objective values at B̃1 = 3.2 and B̃2 = 2.4 are found
to be F̃ = 5.6212. Therefore, the obtain objective function lies between the range of the
upper and lower bounds, which shows that it is justified to reduce the objective values at
the maximum RHS under variations.

Example 2 ([4]). This illustration belongs to a design problem of a journal bearing. The texture of
the journal bearing is an inverse problem, where the eccentricity ratio and attitude angle are obtained
for a defined load and speed. The engineers may not have experience in modeling the structure of this
new type of journal bearing. The volume of steel, the thickness of the intermediate layer and nickel
barrier, and the dimension of the plated overlay of the journal bearing are assumed to be unknown.
Thus, the values of these parameters have been depicted between some specified closed intervals and
taken in the form of lower and upper bounds, respectively. Hence, the varying solution outcomes will
also come by ensuring the optimal objectives between corresponding intervals. Figure 2 represents
the structure of the journal bearing used in this example. Hence, some parameters of the model are
approximately known and are estimated by the engineers. Suppose that x1 is the radial clearance, x2
the fluid force, x3 the diameter, x4 the rotation speed, and x5 the length-to-diameter ratio.

Figure 2. Illustrative figure of a journal bearing.
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The following mathematical programming formulation can depict the design problem
as a geometric programming problem (30):

F = Minimize
x

0.5x2
1x2x4x5 + 1.1x−1

1 x−1
2 x−1

3

s. x.
8.4x1x−1

2 x−1
3 x−1

4 x5 ≤ B̃1
0.5x2x3 + x1x−1

4 x−1
5 + 1.6x3x4 ≤ B̃2

x1, x2, x3, x4, x5 ≥ 0.

(30)

where B̃1 ∈ (4, 4.2) and B̃2 ∈ (0, 1) are the varying parameters. Since all the parameters
are crisp except the RHS, then Problems (23) and (26) can be utilized to obtain the upper
and lower bound of the objective values in Problem (30). According to the problems (23)
and (26), the formulations of the upper and lower bounds for Problem (30) can be presented
as follows (31):

Model A

F = Minimize
y

(
0.5
y01

)y01
(

1.1
y02

)y02
(

8.4
B̃1

)y11
(

8.4
B̃2

)y11
(

0.5y20
y21

)y21
(

y20
y22

)y22
(

1.6y20
y23

)y23

s. x.
y01 + y02 = 1,
2y01 − y02 + y11 + y22 = 0,
y01 − y02 − y11 + y21 = 0,
−y02 − y11 + y21 + y23 = 0,
y01 − y11 − y22 + y23 = 0,
y01 + y11 − y22 = 0,
y01, y02, y11, y21, y22, y23 ≥ 0
4 ≤ B̃1 ≤ 4.2, 0 ≤ B̃2 ≤ 1, ∀ i = 1, 2, . . . , m.

(31)

where y21 + y22 + y23 = y20 and the upper bound can be stated as follows (32):

Model B

F = Maximize
y

(
0.5
y01

)y01
(

1.1
y02

)y02
(

8.4
B̃1

)y11
(

8.4
B̃2

)y11
(

0.5y20
y21

)y21
(

y20
y22

)y22
(

1.6y20
y23

)y23

s. x.
y01 + y02 = 1,
2y01 − y02 + y11 + y22 = 0,
y01 − y02 − y11 + y21 = 0,
−y02 − y11 + y21 + y23 = 0,
y01 − y11 − y22 + y23 = 0,
y01 + y11 − y22 = 0,
y01, y02, y11, y21, y22, y23 ≥ 0
4 ≤ B̃1 ≤ 4.2, 0 ≤ B̃2 ≤ 1, ∀ i = 1, 2, . . . , m.

(32)

where y21 + y22 + y23 = y20.
The above Problems (31) and (32) provide the required upper and lower bound for the

problem (30). Both of these problems are concave programming problems with linear con-
straints. Upon solving the problem at zero degree of difficulty, the upper and lower bounds
for the objective functions are obtained as F = 4.314 and F = 3.045, respectively. However,
the objective values at B̃1 = 4.2 and B̃2 = 1 are found to be F̃ = 3.561. Therefore, the obtain
objective function lies between the range of the upper and lower bounds, which shows that
it is justified to reduce the objective values at the maximum RHS under variations.

4.1. Application to System Reliability Optimization

Assume system reliability having n components connected in series. Suppose ri (i =
1, 2, . . . , n) represents the individual reliability of the i-th component of the system. Similarly,
Rs (r1, r2, . . . , rn) is the reliability of the whole series system. Consequently, Cs (r1, r2, . . . , rn)
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depicts the total cost of n components associated with the system reliability. It seldom
happens that the system reliability is maximized when the cost of the associated system
is exactly known; however, some varying cost may make it easier to execute the smooth
function of the framework. The obtained lower and upper bounds on the cost objective
function will ensure the variation in total cost associated with the system and help with
allocating the budget for maintenance or renovation, etc. In the same manner, minimizing
the system cost under the varying reliability of the whole system would be quite a worth-
while task. The minimization of the system cost without affecting the system reliability is
much needed to ensure the longer performance of the components. Thus, we considered
that the system reliability is varying between some specified intervals and bounded by
upper and lower bounds. This situation is quite common due to uncertainty in the failure
of any components. In real-life scenarios, the minimization of the total system cost by
maintaining the system reliability would be a more prominent modeling texture of the
reliability optimization problems (see [17,29,30]). Therefore, the mathematical model for
the minimization of system cost under varying system reliability takes the form of the
geometric programming problem and can be represented as follows (33):

F = Minimize Cs (r1, r2, . . . , rn) = +∑n
i=1 Cir

αi
i

s. x.
(r1 × r2 × · · · × rn) = ∏n

i=1 ri ≥ R̃s
Rs ≤ R̃s ≤ Rs
0 ≤ ri ≤ 1 ∀ i = 1, 2, . . . , n.

(33)

where αi is the acceptable tolerance linked with the i-th component. We considered the
three components connected in series, and the relevant data are summarized in Table 2.

Table 2. Input data for the system reliability optimization problem.

C1 C2 C3 α1 α2 α3 Rs ≤ R̃s ≤ Rs

150 210 270 20 15 10 0.6358 ≤ R̃s ≤ 0.9776

Since all the parameters are crisp except the system reliability, then Problems (23) and (26)
can be utilized to obtain the upper and lower bounds of the objective values in Problem (33).
According to the problems (23) and (26), the formulations of the upper and lower bounds
for Problem (33) can be presented as follows (34):

Model A

F = Minimize
y

(
150
y01

)y01
(

210
y02

)y02
(

270
y03

)y03
(

1
R̃sy11

)y11
(

1
R̃sy12

)y12
(

1
R̃sy13

)y13

s. x.
y01 + y02 + y03 = 1,
20y01 + 15y02 + 10y03 + y11 + y12 + y13 = 0,
y01 − y02 − y03 + y11 + y12 + y13 = 0,
y01, y02, y03, y11, y12, y13 ≥ 0
0.6358 ≤ R̃s ≤ 0.9776, ∀ i = 1, 2, 3.

(34)

whereas the upper bound can be stated as follows (35):
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Model B

F = Maximize
y

(
150
y01

)y01
(

210
y02

)y02
(

270
y03

)y03
(

1
R̃sy11

)y11
(

1
R̃sy12

)y12
(

1
R̃sy13

)y13

s. x.
y01 + y02 + y03 = 1,
20y01 + 15y02 + 10y03 + y11 + y12 + y13 = 0,
y01 − y02 − y03 + y11 + y12 + y13 = 0,
y01, y02, y03, y11, y12, y13 ≥ 0
0.6358 ≤ R̃s ≤ 0.9776, ∀ i = 1, 2, 3.

(35)

The above problems (34) and (35) provide the required upper and lower bound for
the problem (33). Upon solving the problem at zero degree of difficulty, the upper and
lower bounds for the system cost are obtained as Cs = 521.95 and Cs = 216.35, respectively.
However, the system cost at R̃s = 0.88 is found to be C̃s = 351.29. Therefore, the obtained
system cost lies between the range of its upper and lower bounds, which shows that it is
justified to reduce the system cost at maximum system reliability under variations.

4.2. Analyses of Computational Complexity and Discussions

This proposed bounded solution method captures the behavior of varying parameters
and provides the interval-based solution of the objective function. Most often, uncertain
parameters exist in any form, such as they may take the form of randomness, fuzziness, and
any other aspects of uncertainty. The uncertainty among parameters arises due to vagueness
being able to be dealt with by using fuzzy approaches, whereas the stochastic technique is
applied when the uncertainty involves randomness among the parameters. More precisely,
contrary to other uncertain optimization approaches, the developed approach adheres to
comparatively less computational complexity in the sense of mathematical computation
(e.g., some mathematical calculations are used to derive the crisp or deterministic version
of fuzzy or random parameters), and there is no scope for obtaining the deterministic
version of the problem for such varying geometric programming problems. The beauty
of the proposed method can be highlighted by the fact that sensitivity analyses (post-
optimality analysis) doe not need to be performed because the continuous variations
among the parametric values directly produce the range of optimal objective functions
from the interval parameters. Thus, the propounded solution approach can be the most
prominent and efficient decision-maker while dealing with uncertain parameters other
than the fuzzy or stochastic form.

The generalization of the conventional geometric programming problem of constant
parameters is highlighted for interval parameters. The most prominent and extensive
idea is to determine the lower and upper bounds of the range by applying the two-level
mathematical programming technique to geometric programming problems. With the aid
of a strong duality theorem, the two-level geometric programming problems are converted
into a pair of one-level geometric programming problems to implement the computational
study. When all the varying parameters degenerate to constant parameters, the two-level
geometric programming problem turns into the conventional geometric programming
problem. In general, in interval geometric programming problems, it may probably happen
that the problem is infeasible for some specified range of varying parameters. Thus, our
proposed methods are free from infeasibility and ignore those complexities due to infeasible
values. The proposed method obtains the lower and upper bounds of the feasible solutions
directly. In addition, the suggested method does not examine the range of values that results
in infeasibility. Furthermore, developing two-level geometric programming problems can
determine the lower and upper bounds of the objective values. However, mathematical
programming is nonlinear in the case of geometric programming problems, which may
be very typical for solving large-scale problems. The comparative study is presented in
Table 3.
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Table 3. Comparison between the proposed method and traditional methods.

Proposed Method Traditional Methods

(1) Deals with the varying parameters No scope for dealing with such parameters
(2) No need to consider the fuzzy or random
parameters while dealing with uncertainty

It may require the fuzzy or random parameters
while dealing with uncertainty

(3) No need to obtain the crisp or deterministic
version of uncertain models

It requires the crisp or deterministic version of
the uncertain models

(4) Sensitivity or post-optimal analysis is not
required for the obtained solutions

Sensitivity or post-optimal analysis can be
performed separately

(5) Less computational complexity in terms of
mathematical calculations

Comparatively involves more computational
complexity in terms of mathematical
calculations

The presented work can be described as an empirical case research work by filling
the various gaps [8,9,17,19,29] such as instant variation among parameters, two-level
mathematical programming, duality theory in the GPP, and the automatic post-optimal
analysis metric. In system reliability modeling, various parameters can be taken as varying
between some specified intervals. For example, the cofferdam, shaft, journal bearings, etc.,
are the raw parts that are the building block materials of the various products and machines.
This means that the parameters can be taken as uncertain, and using some specified tools,
they can be converted into a crisp one. In the literature, the concept of fuzzy and random
parameters is available, which deals with the vagueness and randomness in the parameters.
However, we have provided an opportunity to define the parameters under the continuous
variations bounded by upper and lower limits. Instead of taking the vague and random
parameters, one can assume the continuous variations in the parameters’ values can be
tackled with the two-level mathematical programming techniques discussed in this paper.
Additionally, the sensitivity and post-optimality of the obtained solution results are waived
off due to the working procedure of the proposed approach.

In the future, a solution method that involves all the parameters under variation in
the geometric programming formulation is much required to ensure solvability. The values
near the lower and upper bounds have a significantly lower probability of occurrence. If the
distributions of varying data are known in the stochastic environment, then the distribution
of the objective function would be obtained, which is more realistic, and the scenario is
generated for consequent decision-making. Therefore, this lays down another direction
for future research by deriving the distribution of the objective functions based on the
distributions of the varying parameters.

5. Conclusions

The geometric programming problem is an integrated part of mathematical program-
ming and has real-life applications in many engineering problems such as gravel-box
design, bar–truss region texture, system reliability optimization, etc. The concept of vary-
ing parameters under the objective functions is discussed with the aim that uncertainty
is critically involved and affects engineering problems’ formulations directly. The pro-
pounded research work is developed and introduces an interval-based solution approach
to finding the upper and lower limits on the objective function of the varying parame-
ters. The outer- and inner-level geometric programming problem is transformed into a
single-level mathematical programming problem. The outcomes are summarized in the
numerical illustrations and observed in the precise interval where they should exist. The
system reliability optimization problem also provides evidence of the discussed problem’s
successful implementation and dynamic solution results. The minimum system cost is
obtained at the utmost system reliability, which also falls into the lower and upper bounds
of the system costs.

The scope of usual sensitivity analysis is not further required due to the flexible
nature of the proposed solution method. The propounded approach allows the abrupt
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fluctuations among the parameters between given intervals for which bounds over the
objective functions are directly obtained. It also makes the computational algorithm easier
than other methods by ignoring the uncertain parameters such as fuzzy, stochastic, and other
uncertain forms that yield a solution procedure that is comparatively more complex. The
developed approach may be extended for future research to stochastic programming, bi-level
or multilevel programming, and various engineering problems with real-life applications.
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