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ABSTRACT

Most real-world collectives, including animal groups, pedestrian crowds, active particles, and living cells, are heterogeneous. The differences
among individuals in their intrinsic properties have emergent effects at the group level. It is often of interest to infer how the intrinsic prop-
erties differ among the individuals based on their observed movement patterns. However, the true individual properties may be masked by
the nonlinear interactions in the collective. We investigate the inference problem in the context of a bidisperse collective with two types of
agents, where the goal is to observe the motion of the collective and classify the agents according to their types. Since collective effects, such
as jamming and clustering, affect individual motion, the information in an agent’s own movement is insufficient for accurate classification. A
simple observer algorithm, based only on individual velocities, cannot accurately estimate the level of heterogeneity of the system and often
misclassifies agents. We propose a novel approach to the classification problem, where collective effects on an agent’s motion are explic-
itly accounted for. We use insights about the phenomenology of collective motion to quantify the effect of the neighborhood on an agent’s
motion using a neighborhood parameter. Such an approach can distinguish between agents of two types, even when their observed motion
is identical. This approach estimates the level of heterogeneity much more accurately and achieves significant improvements in classifica-
tion. Our results demonstrate that explicitly accounting for neighborhood effects is often necessary to correctly infer intrinsic properties of
individuals.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0093682

In collective systems, such as animal groups, human crowds,
biological cells, or active particles, simple rules of interaction
between the individuals often give rise to complex dynamics at
the level of the collective. Usually, the individuals that make
up the collective are heterogeneous, with different movement
characteristics. For example, an animal group may consist of
animals of multiple species, migrating cells may have a hier-
archy of leader–follower relationships, or a pedestrian crowd
may contain individuals with different speeds. It is often impor-
tant to identify these intrinsic characteristics of the individu-
als that make up the collective: for example, in a pedestrian
crowd, timely identification of slow-moving or trapped individ-
uals is crucial for stampede prevention. We tackle this problem
in the context of a model collective system, consisting of two
groups of agents with different heading directions, and attempt

to identify the desired directions of motion of the individuals.
We demonstrate that the observed movement of an individ-
ual does not always contain enough information to identify its
intrinsic characteristics: this information is usually lost due to
complex non-linear interactions between the individual and its
neighbors. We devise an approach that explicitly accounts for
interactions with the neighborhood and quantifies how much
the neighborhood of an agent aids or hinders its movement.
This allows us to accurately infer the intrinsic directions of
agents. The approach we present is based on a phenomeno-
logical understanding of collective movement, making this a
data-agnostic approach, i.e., one that does not rely on large
amounts of training-data. Approaches like this are of particular
relevance to real-world problems where clean, labeled data are
hard to obtain.
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I. INTRODUCTION

With the advent of sophisticated imaging techniques and
machine learning algorithms, many experimental studies in the field
of complex systems and complex flows turn to computer vision
to investigate the underlying dynamics of the individuals (agents).
Examples include flocking behavior of social organisms,1–4 dynamics
of traffic flows5 and crowds,6–8 cell migration,9–12 motion of syn-
thetic active particles,13,14 and droplet15–17 and granular flows.18,19 The
agents that make up the collective are tracked, and their velocities
are computed from the measurements. The motion of these agents
is a result of both self-propulsion (or external driving) and inter-
actions between the agents. Generally, these interactions are highly
nonlinear and give rise to complex emergent dynamics. One of the
primary goals in collective motion research is to understand the rela-
tionship between the observed dynamics, the intrinsic motion, and
the interaction effects of the agents in the collective.

Most studies of collective phenomena assume that the indi-
vidual agents in a collective are identical. However, in real-world
systems, this is seldom the case. For example, in animal groups,
heterogeneity can arise due to the differences in age, sex, or behav-
ioral tendencies of the individuals,20–22 all of which can reflect in the
movement patterns of the individuals. Animals can also form multi-
species flocks where each species may have different movement
properties.23,24 In pedestrian dynamics, people in the crowd with
different mobility or with different destinations could significantly
alter the dynamics of the crowd.25,26 In cell migration, one finds
heterogeneity to arise dynamically in the form of leader–follower
states that dictate the migration dynamics of these cells, especially
during processes, such as wound closure.27 In material-collectives,
such as droplets driven through a microchannel, differences in sizes
could modify the level of confinement, which alters the dynam-
ics significantly.17 In the case of Janus particles, the inhomogeneity
in the gold coating on these particles could produce gravitational
torques that affect how they cluster.13 In all these systems, it is usu-
ally of interest to identify the individual differences among agents
based on their movement information and understand the impact
on collective motion.

However, the question of how well one can make such infer-
ences, and how the collective dynamics affect the inferences, is rel-
atively unexplored, as the collective dynamics of the system depend
on the heterogeneity in interesting ways. Schumacher et al.,28 in the
context of cell migration, demonstrate that it is hard to quantify
the actual heterogeneity in a system: higher inter-agent interactions
could exaggerate the true level of heterogeneity, while confinement
can do the opposite.

The problem of inferring properties of a heterogeneous collec-
tive can be posed at three different levels:

1. Estimating the level of heterogeneity: At the coarsest level, one
may need to estimate some measure of the level of heterogeneity
in the collective and characterize the system on a scale ranging
from fully homogeneous to highly heterogeneous.

2. Characterizing individual agents: A harder problem would be
to characterize individual agents according to their properties.
For example, it might be possible to classify individuals into
different types according to some intrinsic characteristics.

3. Recovering intrinsic properties and governing dynamics: At the
highest level, one would wish to recover the full intrinsic prop-
erties of the individual agents or reconstruct the governing
equations of motion for the individuals. This is a significantly
harder problem.

To investigate these questions, we turn to a simple heteroge-
neous collective: a bidisperse collective, which consists of two distinct
groups of agents. The agent properties are set to be identical within a
group but are distinct between groups. Although simple in principle,
such bidisperse collectives come up in a variety of fields, e.g., migrat-
ing cells,29,30 oppositely driven systems, such as charged colloids or
dusty plasmas,31–33 pedestrian crowds,34–36 and mixed-species animal
groups.23,24

We approach the problem of inferring a heterogeneous col-
lective, by setting up an observer that classifies agents into their
groups, based on their movement information. Depending on
the context, fast and accurate classification can be very cru-
cial. For example, while working with densely packed agents, it
may be very hard to retain the tracking for long time windows,
and in problems, such as predicting the onset of a stampede,
timely classification is critical in employing prevention strategies.
The classification problem becomes particularly challenging when
clean, labeled data are not readily available—as is often the case
in real-world scenarios. In these situations, we cannot rely on
the traditional supervised-learning techniques37 for classification.
A physics-inspired approach, based on phenomenological under-
standing of the collective dynamics, is appealing in this context. By
incorporating insights about the dynamics, such an approach can
reduce the dependence on labeled data.

We begin with a description of a model for a bidisperse col-
lective and show how, despite being simple, it gives rise to a wide
range of collective phenomena, which are interesting from the con-
text of inferring the heterogeneity of the collective. We first examine
the performance of a simple observer that takes into account only
the dynamics of a focal agent, but it is reasonable to expect that
the information that aids the classification of a particular agent
is encoded in the motion of that agent itself. However, since the
dynamics of an agent is also driven by collective effects arising
from non-linear interactions with other agents, this approach often
produces misclassifications. We address this problem by explicitly
accounting for the collective effects on the movement of an individ-
ual. Based on the phenomenology of collective motion, we derive a
neighborhood parameter that quantifies the influence of neighbors
on the movement of the focal agent and classify agents based on how
the agent’s velocity compares to the neighborhood parameter. This
enables us to distinguish between agents of different groups, even
when their observed movement is identical. Our analysis presents
a physics-inspired approach to the inference problem, instead of a
supervised-learning approach, which is reliant on the availability of
labeled training-data.

II. MODEL AND DYNAMICS

A. A simple model of a bidisperse collective

We use a simple model of bidisperse collectives (i.e., consisting
of two distinct groups of agents), similar to the models previously
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used in the literature.38,39 Circular agents with radius R are arranged
in a 2D periodic domain, with a packing density ρ. Each agent has
a desired direction of movement, which is the same for all agents in
the group but different between the groups (which we call Group
1 and Group 2). Group 1 agents have a desired velocity along the
positive x-direction and Group 2 agents in the negative x-direction.
An agent is driven by two forces: a restitution force, denoting the
intrinsic effort by the agent to move in the desired direction, and
an inter-agent force, denoting the interactions between agents. The
forces are designed such that the agents cannot overlap.

The following equations govern the dynamics of the agents:

m
dvi

dt
=

m

τ
(v0,i − vi) +

∑

∀j6=i

Fij, (1)

v0,i =

{
+s0ex i ∈ Group 1,
−s0ex i ∈ Group 2,

(2)

Fij =

{
−γ (dij − 2R)

−3d̂ij dij < lcr,
0 otherwise.

(3)

The intrinsic velocity v0,i has a magnitude s0 and is directed
along the positive or negative x-direction depending on the group
of the individual [see Eq. (2)]. This is the source of heterogene-
ity in the model. The inter-individual force Fij is a repulsive force
and decays as a power-law with distance. To prevent collisions,
Fij is chosen such that its magnitude blows up to infinity when
the agent boundaries touch (dij = 2R), where dij is the distance
between the centers of agents i and j. To avoid spurious interac-
tions between far-off agents, Fij is set to 0 beyond a cut-off radius,
lcr = 3R [see Eq. (3)]. m is the mass of an individual agent (set to 1),
τ is the inertial timescale of the system (set to 0.2), and γ determines
the strength of the inter-agent interactions (set to 0.2). ex denotes
the unit vector along the x-direction. We define the packing density
ρ as the number of agents per unit area.

Key parameters that determine the collective dynamics include
the packing density ρ, which we vary between [0.22, 0.58], the intrin-
sic speed s0 between [0.1, 3] and the number ratio, the fraction of
agents in the minority, and Nr between [1/42, 1/2], which quan-
tifies the degree of heterogeneity in the collective. We perform
simulations for each combination of parameters {ρ, s0, Nr}. Since
phenomena observed in bidisperse collectives, such as laning, clus-
tering, jamming, etc., depend upon the initial conditions of the
simulations, we perform 100 simulations for each set of parameter
values where agent positions and their group-identities are assigned
randomly.

B. Model dynamics

In the absence of any obstacles or collisions, an agent
approaches its steady-state velocity v0,i with a timescale τ . However,
when there are other agents present, the inter-agent interactions
affect the movement in interesting ways. An agent can be blocked
or pushed around by other agents in its path, which can result in
diverse dynamics depending on the model parameters.

When the packing density ρ is not too high (agents can freely
move past each other), lateral migration due to interactions with

FIG. 1. The bidisperse collective system exhibits a wide range of dynamics.
(a) The system consists of two different groups of agents, each with its own
desired direction of motion. (b) Examples of dynamics exhibited by the model at
different parameter values. Plots show the horizontal velocities (vi,j ·ex ) for the
two groups of agents from a single realization. The faint blue and red traces are
the individual agent velocities for Group 1 and Group 2 agents, respectively. The
thick blue and red traces are the average velocities (averaged over all agents in
the group) for Group 1 and Group 2 agents. The dotted gray lines show ±s0,
the desired x-velocities for the two groups. Insets show snapshots of the model
dynamics at different time-points. The histograms show the distribution of agent
velocities for the two groups, across all time-points, and across 100 realizations.
Notice that the histograms have a significant overlap, and histograms of the
minority group (red in the top and bottom plots) are significantly shifted from
their respective s0. (Also, see Movie S1) Top: Example of clustering (Nr = 3/14,
ρ = 0.46, s0 = 0.5. Middle: Example of lane formation (Nr = 1/2,
ρ = 0.46, s0 = 1). Bottom: Example of jamming (Nr = 3/14, ρ = 0.58, s0
= 0.5). Multimedia view: https://doi.org/10.1063/5.0093682.1

other agents causes agents of the same group to find each other
passively and form clusters [Fig. 1(b), top panel (Multimedia view)].
The cluster of agents moves together as a unit, and collisions with
the opposite group appear only at its boundary. For these reasons,
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clustered state is an absorbing state: i.e., once a cluster is formed, it
does not break easily, but new agents can join the cluster. Clustering
improves mobility of the agents, as the cluster as a whole is able to
better force its way through opposing agents. Here, the word mobil-
ity is used to qualitatively describe the net movement of the agents in
the collective: higher mobility implies a larger movement of agents
in their respective desired directions.

When Nr is close to 1
2

(symmetric or nearly symmetric regime),
clustering can eventually lead to formation of system-spanning lanes
[Fig. 1(b), middle panel (Multimedia view)]. Since each lane consists
only of one group of agents, mobility is maximum (agent speeds are
close to ±s0) in the laned state.

When ρ is high and the intrinsic velocity s0 is relatively small,
the collective can enter a jammed state, where agents meet head-on
and do not have enough space to move past each other [Fig. 1(b),
bottom panel (Multimedia view)]. For the symmetric case (Nr = 1

2
),

this causes the entire assembly to freeze. For asymmetric cases (Nr <
1
2
), due to an imbalance in the net force, the jammed assembly of

agents slowly drifts in the direction dictated by the majority group.
Shown alongside the velocity plots are the distributions of the

individual velocities for the two groups. For asymmetric cases, the
minority group agents are often pushed in the opposite direction
by the majority group. As a result, the velocity distribution for the
minority group is shifted in the positive direction (see top and bot-
tom panels). Besides, due to collective effects, such as local jamming,
there is a significant overlap between the velocity distributions of the
two groups: for example, when mobility is very low, the two distri-
butions are nearly indistinguishable (bottom panel). In other words,
there can be agents of Group 1 and Group 2 moving with identical
velocities.

III. OBSERVER DESIGN AND CLASSIFICATION

In the context of our model collective, the three levels of the
inference problem become the following:

• Group heterogeneity level: The number ratio Nr is a direct mea-
sure of the level of heterogeneity in the group: heterogeneity is
maximum at Nr = 1/2 and low when Nr is low. Hence, at this
level, our goal would be to estimate Nr.

• Classification level: To classify agents into Group 1 or Group 2,
we only need to ascertain the direction of v0,i, and the magnitude
is irrelevant.

• Discovering intrinsic drives: This involves precisely identifying
both the magnitude and direction of v0,i.

In this paper, we mainly focus on the first and second inference
problems and provide a broad discussion on how one could tackle
the third, harder problem.

An observer collects movement information about the agents,
i.e., their positions and velocities, but has no other information
about the details of the model. The observer then attempts to classify
agents as Group 1 or Group 2 [Fig. 2(a)].

A. Observing agents with a simple observer model

A straightforward approach for classification is to classify
agents based on their observed direction of motion. For a better

estimate that eliminates transient fluctuations, one may use the aver-
age velocity computed over a time window. Therefore, our simple
observer algorithm proceeds as follows. First, the observer computes
the average velocity vw

i of the agents, averaged over a time window
of length w,

vw
i = 〈vi · ex〉w. (4)

The observer classifies an agent based on the net direction of
motion during this window, i.e., the sign of vw

i ,

vw
i ≥ 0 : Group 1,

vw
i < 0 : Group 2.

(5)

Figure 2(b) is a visual representation of the algorithm.
For a given window, the number of misclassifications is identi-

fied by comparing the labels of the agents predicted by the observer
to the ground-truth labels (the actual desired directions for the
agents, which are unknown to the observer). For each set of values
for the parameters Nr and s0, we compute the probability of misclas-
sifications (pm), computed over multiple time windows and multiple
independent realizations of the simulation. To estimate the level of
heterogeneity in the system, we use the estimated value of Nr, i.e.,
the fraction of agents classified as Group 2 by the observer.

This simple observer algorithm is the most straightforward
way to classify agents. It assumes that the information necessary
to classify an agent is fully contained in its own motion and does
not explicitly account for its interactions with the surroundings.
The simple observer will serve as a baseline to study the effect of
emergent collective dynamics on classification before we develop
improved classification models.

In a real-world scenario, an observer has to tackle the prob-
lem of sensor noise that may corrupt the observations. However, we
make the simplifying assumption that the observer can observe the
system perfectly without noise; the only unknown is the individual
group identities of the agents, which the observer desires to infer.

Notice that the window-length w is an observer timescale,
independent of any intrinsic timescales of the system. Here, w corre-
sponds to the duration of time for which the observer collects infor-
mation before it has to make a prediction. In our analyses, we used a
window-length w = 50, which varies from 0.5 to 15 times the system
timescale R/s0. A shorter window corresponds to decision-making
with fewer data points, while a larger window size may result in
improved classification performance. The exact window length does
not qualitatively affect the results, and we verified this by repeating
our analysis with several window sizes between 25 and 100.

1. The simple observer mis-identifies minority group

agents

The simple, velocity-based classification approach is most
effective when the mobility is high (s0 is high and ρ is low), and
agents are free to move in their own desired directions [Fig. 2(c),
top right panel]. In general, however, agents will be pushed around
by their neighbors and may not move in their desired directions at
all times, which will lead to misclassifications. This effect is worse
for the minority group—hence, the misclassification probability for
the minority group is higher for smaller group sizes [Fig. 2(c), main
panel]. This effect is even more pronounced in the case of very low
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FIG. 2. Classifying agents with a simple observer: the simple observer algorithm systematically misclassifies minority group agents and underestimates the level of hetero-
geneity. (a) Illustration of the observer framework: the observer observes the positions and velocities of agents in the collective and employs a classifier to classify agents as
Group 1/Group 2. (b) Classification algorithm for the simple observer: For each agent, the observer finds the average x-velocity of the agent within a short time window and
classifies the agent based on whether this velocity is positive or negative. (c) The probability of misclassifying agents pm for the minority (red, closed circles) and majority
(blue, open circles) groups, as a function of the number ratio Nr , for different levels of agent mobility (main: intermediate mobility, ρ = 0.46, s0 = 1, top right: high mobility,
ρ = 0.31, s0 = 2, bottom right: low mobility, ρ = 0.58, s0 = 0.75). pm is higher for lower Nr , denoting poorer classification performance for smaller groups. (d) The esti-
mated value of Nr , which is a measure of estimated heterogeneity, as a function of true Nr , for different levels of agent mobility. Except when mobility is high, simple observer

systematically underestimates N̂r .

mobility (low s0 and high ρ) and low Nr when almost all minor-
ity agents will be pushed in the wrong direction. Until Nr reaches
a critical threshold so that the agents can start to form clusters, all
minority agents will be misclassified.

This effect is also visible in the estimated heterogeneity, N̂r

[Fig. 2(d)]. In general, the simple observer consistently underes-
timates the proportion of minority group agents except when the
mobility is very high. When mobility is low, the observer estimates
zero heterogeneity for small values of Nr; i.e., the observer cannot
even detect the presence of minority agents.

B. Correcting misclassifications with a

neighborhood-based observer

The simple observer algorithm classifies agents based on their
net velocity measured over a time window w. For instance, when
the observed velocity vw

x of a Group 2 agent is positive, it will be
classified as Group 1 incorrectly by the observer. Thus, correcting

a misclassification would require the observer to classify the agent
as belonging to Group 2 even if it exhibits a net movement in the
positive direction. From the perspective of an observer, this is a
counter-intuitive step: the observer has to differentiate agents in
Group 2 from those in Group 1 that happen to move in the same
x-direction. We need to ascertain the conditions under which an
observer should swap the identified group-identity of the agent to
correct a possible misclassification event.

1. An agent’s neighborhood encodes information

about its intrinsic direction

In the absence of interactions, an agent moves in its desired
direction of motion with velocity s0, and classification is a trivial
task. However, an agent’s movement is influenced by both its own
intrinsic motion as well as interaction effects from its neighbors,
which can aid or hinder the motion. For improved classification
performance, an observer needs to decouple the component of an
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agent’s motion due to its intrinsic drive and the component of
motion caused by these interaction effects.

In the current formulation of the classifier, the observer uses
vi as a proxy for the agent’s desired velocity, v0,i. However, in
reality, the observed vi is a combination of the agent’s effort
to move in v0,i and the support or resistance offered by the
neighborhood φi,

vi = v0,i · ex + φi · ex. (6)

See Fig. 3(a) for an illustration. With this definition [Eq. (6)],
the new classification criterion becomes

v0,i · ex = vi − φi ≥ 0 : Group 1,
v0,i · ex = vi − φi < 0 : Group 2,

(7)

where φi = φi · ex. In other words,

vi ≥ φi : Group 1,
vi < φi : Group 2.

(8)

That is, an agent i is classified as Group 1 or Group 2 by com-
paring vi to φi. This means that two agents i and j can be classified
differently even when vi = vj depending on φi and φj.

We now discuss an approach to estimate φi. As mentioned
before, we use information from the local neighborhood to compute
a neighborhood parameter φ̂i, which will serve as a surrogate for φi.

We pause to recap our notations: φi is the (unknown) effect of
the neighborhood on agent motion, and φi is the x-component of φi.

φ̂i is our estimate for φi, and φ̂i is the x-component of φ̂i.
To define φ̂i, we make the following observations and assump-

tions:

(i) an agent’s motion is influenced predominantly by its immediate
neighbors,

(ii) a neighbor can either aid or oppose the intrinsic movement of
the agent, and

(iii) the influence of a neighbor on an agent is dependent on the
relative velocity of the neighbor, i.e., how fast the neighbor is
approaching the position of the agent.

Based on this, we define φ̂i as follows:

φ̂i = µ
〈
(vj · eji) eji

〉
j∈Ni

. (9)

The parameter φ̂i is a vector capturing the net effect of neigh-
bors (in the Voronoi neighborhood Ni) on the focal agent i. Agents
interact as they approach each other; therefore, the neighbor veloc-
ities are projected along the line joining the centers of i and j. The
projected velocity vectors are then averaged to get the net neighbor-
hood effect. µ is a scaling factor that ensures that φ̂i is of the same
scale as vi. See Fig. 3(a) for an illustration.

One can estimate µ using a very simple scaling argument. Con-
sider the case with the focal agent surrounded by six neighbors, in
a regular hexagonal arrangement. In the extreme case, all of these
neighbors are moving in the same direction, with the same veloc-
ity v. In this case,

〈
(vj · eji) eji

〉
j∈Ni

will evaluate to 1
6
(2 + 4 cos π

3
)v

= 2
3
v, giving µ = 3

2
. Although a crude approximation, this value

of µ works well in practice. See Sec. IV for a comparison with an
alternative, data-driven approach to estimating µ.

It is important to note that the neighborhood parameter is
independent of the details of the simulation model. We use relative
velocities of the neighbors as a proxy for inter-agent interactions; in
other words, the neighborhood parameter only depends on the over-
all phenomenology of the collective and not on specific modeling
assumptions.

2. Classifying agents with the neighborhood observer

In addition to computing the movement characteristics of just
the agent vi, the neighborhood observer calculates φi, which is
a characteristic of its neighborhood. As before, we use the time-
window-averaged versions of these quantities.

Figure 3(b) (Multimedia view) illustrates how the neigh-
borhood observer works. The plot shows the time-series of the
(window-averaged) agent velocity vw

i for a Group 2 agent. When
it encounters Group 1 agents in its path, it may get pushed, caus-
ing vw

i to rise above 0. The agent-only observer would then classify
the agent—incorrectly—as Group 1: see blue shaded regions in
the plot. However, the classification threshold for the neighbor-
hood observer is φw

i (blue dashed line in the plot), incorporates
information about the neighborhood of the agent, and can vary
according to how much the agent is being pushed. Hence, the
neighborhood observer is able to correctly classify the agent as
Group 2 even when vw

i > 0; i.e., the agent is moving in the positive
x-direction.

3. The neighborhood observer improves performance

on minority agents

Accounting for neighborhood effects significantly improves
classification performance, especially for the minority group
[Fig. 3(c), main panel]. Even when only a single Group 2 agent is
present, the neighborhood observer can correctly classify the Group
2 agent 60% of the time. On the other hand, since a lone Group
2 agent is prone to getting pushed by Group 1 agents most of
the time, simple observer almost always misclassifies it. There is a
slight increase in the probability of misclassifying the majority group
agents but is small relative to the improvement achieved for the
minority group: the overall probability of misclassification is lower
for the neighborhood observer (see Appendix A and Fig. 6).

Even in the high-mobility scenario, where the performance
of the simple observer is already high, the neighborhood observer
achieves significant improvements. In the low mobility scenario,
where the agents are mostly jammed and there is very little relative
movement, the improvement is relatively minor—see Sec. III C for
a discussion about why this happens.

The neighborhood observer can accurately estimate the level
of heterogeneity across a wide range of parameters, even in cases
where the simple observer underestimates it [Fig. 3(d), main panel].
The heterogeneity estimate suffers when the mobility is very low,
but the estimates are overall better than that of the simple observer.
In particular, the neighborhood observer is able to detect the pres-
ence of Group 2 agents at much smaller values of Nr than the simple
observer.

Here, we considered the probability of misclassification pm

averaged across the duration of the simulation across all realiza-
tions. However, across the duration of the simulation, the agents can
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FIG. 3. Classifying agents with a neighborhood observer: an observer algorithm that accounts for neighborhood effects significantly improves classification performance
and estimates heterogeneity more accurately. (a) The velocity vi of an agent can be decomposed into two components: v0,i , the intrinsic velocity of the agent, and φi , the
influence of neighbors. The neighborhood parameter φ̂i is an estimate of φi using velocities of neighbors. φ̂i for an agent i (deep blue) is determined by the velocities of its

neighbors (pale blue and red). The contribution of neighbor j is ṽj , the component of the velocity vector vj toward i. φ̂i is the mean of ṽj ’s, scaled by an appropriate scaling
factor. (b) Visualizing the working of the neighborhood classifier: The top panel illustrates the working of the simple observer. The red solid line is the observed velocity vwi of
a Group 2 agent from a single realization (averaged over window w). The shading corresponds to the predictions of the simple observer (blue: Group 1, red: Group 2). The
simple observer misclassifies the agent as Group 1 whenever vwi > 0, which is often the case. The box of the right shows a snapshot from the simulation, showing the Group
2 focal agent being pushed by Group 1 agents. The bottom panel illustrates the working of the neighborhood observer for the same agent. The red solid line is the observed
velocity vwi , and the dotted line is the neighborhood parameter φ

w
i . The shading corresponds to the predictions of the neighborhood observer. The neighborhood observer

classifies the agent correctly as Group 2 most of the time. (c) The probability of misclassifying agents pm for the minority (red, filled squares) and majority (blue, open squares)
groups, as a function of the number ratio Nr , for different levels of agent mobility (main: intermediate mobility, ρ = 0.46, s0 = 1; top right: high mobility, ρ = 0.31, s0 = 2;
bottom right: low mobility, ρ = 0.58, s0 = 0.75). The performance curves of the simple observer are shown as dotted lines. The neighborhood observer drastically reduces
misclassifications on the minority group. (d) The estimated value of Nr , which is a measure of estimated heterogeneity, as a function of true Nr , for different levels of agent
mobility. The performance curves of the simple observer are shown as dotted lines. The neighborhood observer estimates heterogeneity better than the simple observer and
can detect the presence of heterogeneity at a lower Nr . Multimedia view: https://doi.org/10.1063/5.0093682.2

self-organize and form clusters or lanes. To understand this behav-
ior, one may look at how pm evolves with time. Although a detailed
study of this aspect is outside the scope of this article, we briefly
explore this in Appendix B.

C. Analysis of the observer algorithms

Figure 4(a) illustrates why the simple, velocity-based
classification approach often fails. The top panel shows the
histograms of the observed horizontal velocities (vi = vi · ex) of

the two groups for a typical scenario (asymmetric, intermediate
mobility). The minority group (Group 2) agents end up being
pushed in the opposite direction frequently. As a result, the veloc-
ity distribution shifts to the right, with the bulk of the distribu-
tion lying on the positive side. As a result, the simple observer,
which classifies agents based on whether the observed velocity
is positive or negative, misclassifies most of the minority group
agents.

The bottom panel of Fig. 4(a) illustrates how the neighborhood
observer gets around this problem. The distribution of vi − φi for the
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FIG. 4. Illustration of how the neighborhood classifier works. (a, top) Example
distribution of individual horizontal velocities vi for Group 1 (blue) and Group 2
(red) agents. A large portion of the distribution for Group 2 (the minority group) lies
on the positive side, leading to misclassifications. (a, bottom) Example distribution
of vi − φi , the classification parameter used by the neighborhood observer. The
distributions are shifted so that the majority of the Group 2 distribution lies on the
negative side. (b) The joint distribution of vi and φi for the two groups of agents.
The classification boundary for the simple observer is the vi = 0 vertical line,
while the classification boundary for the neighborhood observer is the vi = φi

diagonal line.

minority group is more predominantly on the negative side com-
pared to the vi distribution. Therefore, the neighborhood observer
(which classifies agents based on vi ≶ φi, i.e., vi − φ ≶ 0) is able to
classify the minority group agents much more accurately. Notice
that the velocity distribution of the majority group stays predom-
inantly on the positive side, even though it moves closer to the
origin.

The observers can alternatively be viewed as linear classifiers in
the (φi, vi) plane, as illustrated by Fig. 4(b). The figure shows the
joint distributions of φi and vi for the two different groups. The

simple observer classifies agents based on vi and ignores φi alto-
gether; therefore, its decision boundary is the vi = 0 line, i.e., a
vertical line through the origin. Since the bulk of the minority
group distribution lies to the right of this line, misclassifications
will be high. On the other hand, the decision boundary for the
neighborhood observer is the vi = φi line, i.e., a diagonal line with
slope 1. The bulk of the minority group distribution is above this

line and will be classified correctly. Notice that all agents with a
given observed velocity vi will be classified similarly by the simple
observer. On the other hand, the neighborhood observer can distin-
guish between agents with the same observed velocity depending on
where they lie along the φi-axis.

1. Effect of mobility and heterogeneity

The (vi, φi) plane presents an elegant way to observe how
mobility and heterogeneity affect the classification performance of
the two observers, as illustrated in Fig. 5.

The effect of mobility is quite clear: as mobility increases (s0

increases and/or ρ decreases), obstructions and jamming decrease
and the agents move with higher velocities more often. This reflects
as a separation of Group 1 and Group 2 distributions on the vi, φi

plane [Figs. 5(a)–5(c)]. At low mobility, there is a large amount of
overlap between the two distributions, and both classifiers perform
relatively poorly. On the other hand, at high mobility, the distri-
butions are well separated and even the simple observer performs
well.

The effect of heterogeneity on the distributions is perhaps more
interesting. In the symmetric case (Nr = 1/2), there is no bias in
the movement freedom for either group. This means that the dis-
tributions are arranged symmetrically on either sides of the vi = 0
line, with their overlap determined by the level of mobility. As Nr

decreases and the collective becomes more asymmetric, the minority
agents gets pushed more and the mixture velocity (i.e., the aver-
age velocity computed over all the agents) increases in the positive
direction, causing both distributions to shift right. This degrades the
performance of the simple observer.

However, when an agent is being pushed with some veloc-
ity, φ, which is a proxy for the level of “push” on an agent by its
neighbors, also increases proportionately: this means that in the
(vi, φi) plane, the shift happens diagonally along the classification
boundary of the neighborhood observer: the regions of the dis-
tributions that are above and below the classification boundary
stay roughly the same. This is the reason why asymmetry does
not degrade the performance of the neighborhood observer too
much.

IV. DISCUSSION

A. Summary

In this article, we set out to understand how well can we
infer individual properties of agents in a heterogeneous collective
by observing their movement. We used a bidisperse collective as a
context and studied how the classification process of an observer is
connected to the phenomenology of collective motion. We began
with a simple observation/classification technique based on the
measured velocity of the individual agents, independent of their
neighborhood. We found that the simple observer underestimates
the level of heterogeneity of the collective and systematically mis-
classifies the minority group agents more often than the majority
group.

To improve classification, we developed an observer that clas-
sifies an agent based on information not just about itself, but also
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FIG. 5. Effect of mobility and heterogeneity on the distributions and classification performance. (a)–(c) As mobility increases, the agents move more freely, causing the
distributions to become well separated, improving classification performance of both observers. (d)–(f) As asymmetry between the group sizes increases (i.e., Nr decreases),
the distributions shift toward the right, resulting in higher misclassifications for the smaller group by the simple observer. However, the shift is along the diagonal, which ensures
that the performance of the neighborhood observer does not drop significantly.

about its neighbors. Although simple in principle, this neighbor-
hood observer does something quite non-trivial: it distinguishes
between a Group 1 and Group 2 agent even when they are mov-
ing in the same direction with identical velocities. The fact that
the neighborhood observer takes into account the influence of the
neighboring agents for classification helps it to “read the mind” of
the focal agent by distinguishing when it is moving on its own voli-
tion vs when it is being pushed. This resulted in better estimates
of the level of heterogeneity and improved classification for the
minority group.

B. Data-driven approaches to the classification

problem

The (vi, φi) classifier that the neighborhood observer employs
is not data-driven: the classification boundary (which is decided by
µ) is not obtained by a data fit but is instead derived from scale
considerations. This makes our approach applicable in scenarios
where labeled data are not easy to obtain. This also makes our clas-
sifier readily interpretable, as it is inspired by the physics of the
problem. The assumptions the classification algorithm makes about

the underlying governing dynamics are minimal. Specifically, the
neighborhood parameter is computed based on neighbor veloci-
ties only and is independent of specific details of how the agents
interact.

If labeled data (i.e., data where the group memberships of
agents are known) are readily available, we can learn µ in a
data-driven manner by fitting a linear classifier. When a classi-
fier is fit in this manner, it will not be susceptible to unfulfilled
assumptions in computing µ. However, such a data-driven clas-
sifier offered no improvements over the simple linear classifier
(see Appendix C), underscoring the accuracy of the scaling argu-
ment.

An orthogonal approach is to build a purely data-driven
classifier, for example, based on neural networks. One could
build a neural-net classifier that takes as input the positions and
velocities of the focal agent and its neighbors and makes predic-
tions. Given enough labeled data, such classifiers can learn high-
quality, low-dimensional feature representations that can make
effective predictions. To be effective, such neural network classifiers
should be informed and constrained by the physics and inherent
symmetries of the problem. In our case, it means that the neural
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network should respect the rotational and translational invariances
of the system and should be invariant to any permutation of the
agent ordering. Constraints such as these should be built into the
neural network design. There is an emerging body of research in
graph neural networks40,41 and physics-informed deep learning,42,43

which can be explored in this regard. Building neural network
classifiers for collective dynamics and studying their feature repre-
sentations is an exciting research direction.

C. Toward a general inference framework for

heterogeneous collectives

There are several ways in which the classification algorithm can
be improved further. First, notice that the ultimate goal would be to
recover v0,i, for example, by finding φi such that vi − φi = v0,i. Our
estimated neighborhood parameter does not quite achieve this: how-
ever, it gets the sign correctly in general; i.e., sgn(vi − φi) = sgn(v0,i),
which is sufficient for classification.

Recall that the neighborhood parameter for an agent i was
computed based on the mean of the velocities of the Voronoi
neighbors of i. Potential ways to improve this would be to use a
different neighborhood, use a weighted average weighted by the dis-
tance to the neighbor, or use more complicated functions of the
velocity.

One could also use information about the spatial arrangement
of the neighbors of i. For example, it is conceivable that the fore-
aft asymmetry pattern in the neighborhood of i will be different
when i is being pushed vs when i is moving freely. Quantifying these
spatial patterns could be an effective approach to recover intrinsic
motion.

Finally, note that both the observers treat the time win-
dows as independent: when making predictions for a given time
window, the observers do not use information from previously
observed windows. One could conceive an observer that uses his-
torical information and updates beliefs with time, perhaps in a
Bayesian fashion. We do not explore this approach because our
goal is to explore techniques that work in a nearly real-time man-
ner with minimal observations and to understand how instanta-
neous and short-term dynamics in the system affects our ability
to classify agents. Another way to incorporate temporal informa-
tion would be to look for patterns in the higher derivatives (e.g.,
acceleration) of motion of both the focal agent and the neighbor-
hood.

D. Conclusion

It is worth reiterating that the goal of this study is to understand
the ways in which the microscopic properties of a heterogeneous
collective affect the classification performance of an observer that
is only privy to observables, such as agent positions and velocities.
We study this in the context of a model system, which is an ideal-
ized version of a heterogeneous collective in the real world. For this
reason, hunting for the best data-driven classifier to solve this spe-
cific problem may not be very useful; such a classifier will not be
transferable to a real-world collective as real-world collectives can
be poly-disperse and can involve many complex interactions not
included in our model. Hence, our main goal is to understand how
the nonlinear collective dynamics can affect classification. A clear

understanding of this relationship is essential to solve similar prob-
lems in real-world collectives. Our phenomenological approach to
the classification problem is a first step toward hybrid techniques,
where a data-driven approach is combined with domain-specific
understanding of the collective dynamics to build better observer
models.
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APPENDIX A: TOTAL MISCLASSIFICATIONS FOR THE

NEIGHBORHOOD CLASSIFIER

Figure 3 shows the overall misclassification probabilities sep-
arately for the two groups of agents. The neighborhood observer

FIG. 6. Comparing the overall misclassification probability between the two
observers. The overall probability of misclassifying agents, pm as a function of
the number ratio Nr , for different levels of agent mobility (main: intermediate
mobility, ρ = 0.46, s0 = 1, top right: high mobility, ρ = 0.31, s0 = 2, bottom
right: low mobility, ρ = 0.58, s0 = 0.75). The performance curves of the simple
observer are shown as dotted lines. The neighborhood observer reduces overall
misclassifications across a range of Nr and mobility-regimes.
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improves classification performance for the minority group while
slightly degrading the performance for the majority group. There-
fore, it is possible that the neighborhood observer actually increases
the overall misclassification probability, especially for smaller
values of Nr. Figure 6 shows that this is not the case. The
overall probability of misclassification is lower for the neigh-
borhood observer for all values of Nr and across mobility-
regimes—the accuracy loss for the majority group is compensated
by the much greater accuracy improvements for the minority
group.

APPENDIX B: EVOLUTION OF MISCLASSIFICATION

PROBABILITY WITH TIME

In the main article, we studied the probability of
misclassification pm averaged across time and across all realizations.
However, pm may depend on the state of the collective, which varies

FIG. 7. Time-evolution of misclassification probability pm. (a) and (b) show pm as
a function of time for the high-mobility regime (ρ = 0.31, s0 = 2), averaged over
all 100 realizations, for the asymmetric (Nr = 2/21) and symmetric (Nr = 0.5)
cases, respectively. The top plot in each panel shows pm for the minority group
(dashed line: simple observer, solid line: neighborhood observer), and the bot-
tom graph shows the majority group. Agents quickly attain laned configurations,
and the pm rapidly decreases to 0. (c) and (d) show pm as a function of time for
the intermediate mobility regime (ρ = 0.46, s0 = 1). Formation of stable clus-
ters and lanes is more difficult in this regime; hence, there is no quick drop
in pm.

with time. For instance, a well-laned configuration is expected to
have low values of pm for both groups, while a jammed config-
uration will have large pm especially for the minority group. We
know from the dynamics of a bidisperse crowd that the state of
the collective changes with time as agents interact and self-organize
as they move in the crowd (see Sec. II B and Fig. 1, Multime-
dia view). Hence, it is interesting to study how pm changes with
time.

In Fig. 7, we show how pm evolves in time for asymmet-
ric and symmetric crowds with high and intermediate mobilities;
pm is averaged across all the agents of a given group and over
many realizations. When mobility is high, the agents can form clus-
ters or lanes, which facilitate easy movement. Hence, pm quickly
decreases to 0 in this case for both observers in both the asymmet-
ric and symmetric crowds [Figs. 7(a) and 7(b)]. On the other hand,
when mobility is lower, organizing into stable clusters and lanes is
more difficult. Hence, the variations in pm are dominated by local
collisions and interactions and tend to fluctuate more [Figs. 7(c)
and 7(d)].

As observed before [see Sec. III B and Fig. 3(c)], the neighbor-
hood observer achieves a lower pm for the minority group, through-
out time, irrespective of the collective state of the system [top panels
of Figs. 7(a)–7(d)].

APPENDIX C: CLASSIFYING AGENTS WITH A

DATA-DRIVEN CLASSIFIER

In Sec. III B, we used a scaling argument to analytically estimate
µ. Alternatively, if labeled data are available, µ can be estimated in a
data-driven manner by fitting a linear classifier.

Section III B defined the neighborhood classifier with a classi-
fication criterion vi ≶ φi. Let φi = µϕi, where ϕi corresponds to the
unscaled mean from Eq. (9). In this formulation, the classification
boundary (see Sec. III C and Fig. 4) corresponds to a line of slope
1/µ in the (vi, ϕi) plane. With labeled data, one could fit a linear
classifier (e.g., a support vector machine) to the data to obtain the
“optimal” µ for the dataset.

We trained an SVM to distinguish between Group 1 and Group
2 agents in this way. Since we are only interested in learning a
scaling factor µ, we enforce that the intercept of the classifier be
zero. A separate model was fit for each set of parameters (Nr,
s0, and ρ), with data pooled over all realizations and time-points.
Since our goal is to find the theoretically optimal µ, we did not
use separate training and test sets, and performance reported is
from the same dataset used for training: this is an upper bound
for reported accuracy numbers with separate training and test
sets.

Figure 8 compares the performance of the analytically
derived (as in Sec. III B) and data-driven classifiers. The
data-driven approach does not show any significant improve-
ment in classification performance—in terms of classifying
agents as well as estimating heterogeneity, the SVM-based clas-
sifier performs nearly identically as our analytically derived
classifier. This suggests that our estimate of µ is close to
optimal.
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FIG. 8. Comparing the (physics-informed) neighborhood classifier to a data-driven classifier: the physics-informed neighborhood observer performs as good as a data-driven
classifier fine-tuned to the dataset. (a) The probability of misclassifying agents pm for the minority (red, filled squares) and majority (blue, open squares) groups, as a function
of the number ratio Nr , for different levels of agent mobility (main: intermediate mobility, ρ = 0.46, s0 = 1; top right: high mobility, ρ = 0.31, s0 = 2; bottom right: low
mobility, ρ = 0.58, s0 = 0.75). The performance curves of the physics-informed neighborhood observer are shown as dotted lines. There is no significant improvement
with the data-driven classifier. (b) The estimated value of Nr , which is a measure of estimated asymmetry, as a function of true Nr , for different levels of agent mobility. The
performance curves of the (analytically derived) neighbor observer are shown as dotted lines.
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