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ABSTRACT
Polarization transfers are crucial building blocks in magnetic resonance experiments, i.e., they can be used to polarize insensitive nuclei and
correlate nuclear spins in multidimensional nuclear magnetic resonance (NMR) spectroscopy. The polarization can be transferred either
across different nuclear spin species or from electron spins to the relatively low-polarized nuclear spins. The former route occurring in solid-
state NMR can be performed via cross polarization (CP), while the latter route is known as dynamic nuclear polarization (DNP). Despite
having different operating conditions, we opinionate that both mechanisms are theoretically similar processes in ideal conditions, i.e., the
electron is merely another spin-1/2 particle with a much higher gyromagnetic ratio. Here, we show that the CP and DNP processes can be
described using a unified theory based on average Hamiltonian theory combined with fictitious operators. The intuitive and unified approach
has allowed new insights into the cross-effect DNP mechanism, leading to better design of DNP polarizing agents and extending the appli-
cations beyond just hyperpolarization. We explore the possibility of exploiting theoretically predicted DNP transients for electron–nucleus
distance measurements—such as routine dipolar-recoupling experiments in solid-state NMR.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0092265

I. INTRODUCTION

Polarization-transfer experiments play crucial roles in magnetic
resonance spectroscopy. Not only do they enhance the sensitivity
of the insensitive nuclei, but also allow distance measurement
and, hence, structure determination in the system of interest. Two
examples of such experiments are cross polarization (CP),1 which
facilitates polarization transfer via a spin-locking technique in solid-
state nuclear magnetic resonance (NMR), and dynamic nuclear
polarization (DNP), which enables the transfer from unpaired elec-
trons to nuclei mediated by strategic microwave (μw) irradiation.2,3

The CP mechanism was first theoretically explained using a spin-
thermodynamic approach,1 which predicts an exponential time
dependence of nuclear polarization during the buildup. However,
the semi-classical treatment was then shown to be inconsistent
with the observation of transient oscillations in a ferrocene single

crystal—a phenomenon that was accurately described using the
product-operator formalism that adopts a quantum-mechanical
approach.4,5 Transient oscillation was exploited in many NMR
experiments to measure the distance between nuclear spins
accurately.6–8

Although an analytical theory has long been developed for
explaining DNP mechanisms, in particular, solid effect (SE) and
cross effect (CE),9–11 they are primarily adapted for cases when
energy-level transitions are saturated with low-power continuous-
wave (CW) microwaves. In such situations, perturbation theory is
applied to theoretically describe the nuclear polarizations during
DNP.12–15 Nevertheless, we expect such a treatment to be less appro-
priate when strong μw powers are applied. For instance, it might
fail to describe transient oscillations, a common phenomenon in
many polarization-transfer experiments, due to poor convergence to
exact numerical solutions.4 Therefore, there is a need to review the

J. Chem. Phys. 156, 244109 (2022); doi: 10.1063/5.0092265 156, 244109-1

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0092265
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0092265
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0092265&domain=pdf&date_stamp=2022-June-24
https://doi.org/10.1063/5.0092265
https://orcid.org/0000-0003-1566-5454
https://orcid.org/0000-0002-2964-3195
https://orcid.org/0000-0002-2073-2343
https://orcid.org/0000-0002-1901-9073
https://orcid.org/0000-0002-3094-3398
mailto:kong-ooi.tan@ens.psl.eu
https://doi.org/10.1063/5.0092265


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 1. Schematic diagrams of (a) cross-polarization (CP), (b) NOVEL, (c) solid
effect (SE), and (d) cross-effect (CE) pulse sequences and matching conditions.
Note that the delay d = 0 in conventional CW DNP experiments. For pulsed DNP
settings, which are relevant for many experiments discussed in this work (vide
infra), τp + d would ideally be set to ∼1.3 T1e, and the repetition loop n will be
optimized to attain optimal transfer.

DNP theory that applies to high-power μw conditions. Microwave
instrumentation has been rapidly developing since the commer-
cialization of magic-angle spinning (MAS) DNP and dissolution
DNP (D-DNP) spectrometers.16–18 With this rapid progress, high-
field pulsed DNP spectroscopy19 may become available in the near
future.

In this work, we show that CP, NOVEL (Nuclear spin Ori-
entation Via Electron spin Locking), SE, and CE (Fig. 1) can be
explained with an analytical theory based on average Hamiltonian
theory (AHT) combined with fictitious operators in subspaces.20–23

We opinionate that DNP and CP are fundamentally similar pro-
cesses in terms of spin physics in an ideal situation, i.e., the relax-
ation rates are negligible, and that both processes can be described
using a unified theoretical framework. The exact analytical results
obtained from the unified theory will shed new light on the CE
mechanism, which could help design better DNP polarizing agents,
and further extend DNP applications beyond hyperpolarization,
i.e., measuring electron–nucleus correlations, distances, and relative
orientations for structure determination in biological molecules or
materials.

II. THEORY
A. Cross polarization (CP)

We begin by first writing down the Hamiltonian of a two-spin
IS system in the double rotating frame (rf),

ĤCP = 2dISŜz Îz + ω1SŜx + ω1I Îx, (1)

where ω1S and ω1I are the nutation frequencies of the S and I
spin along the x axes, respectively; dIS denotes the dipolar coupling
between the two spins. The frame is then rotated with a propagator
Û t = exp(−i(πŜy + πÎy)/2) so that the z axis is now defined along
with the rf fields and the initial spin-locked density operator ρ̂(0)
(vide infra),

Ĥt = Û−1
t ĤCPÛ t = 2dISŜx Îx + ω1SŜz + ω1I Îz (2)

followed by another interaction-frame transformation using
Û1(t) = exp(−i(ω1SŜz + ω1I Îz)t),

̂̃H(t) = Û−1
1 (t)ĤtÛ1(t) − (ω1SŜz + ω1I Îz)

= dIS(Ŝx Îx + Ŝy Îy) cos(ω1S − ω1I)t

+ dIS(Ŝx Îy − Ŝy Îx) sin(ω1S − ω1I)t

+ dIS(Ŝx Îx − Ŝy Îy) cos(ω1S + ω1I)t

− dIS(Ŝx Îy + Ŝy Îx) sin(ω1S + ω1I)t. (3)

Then, ̂̃H(t) becomes time-independent if we apply ω1S = ω1I
(Hartmann–Hahn condition) and AHT in the second step,

̂̃H(t) = dIS[(Ŝx Îx + Ŝy Îy) + (Ŝx Îx − Ŝy Îy) cos 2ω1It

− (Ŝx Îy + Ŝy Îx) sin 2ω1It], (4)

̂H = ω1I

π ∫
π/ω1I

0

̂̃H(t)dt = dIS(Ŝx Îx + Ŝy Îy). (5)

Note that the AHT treatment is valid if the chosen cycle time
(τc = π/ω1I) is short compared to ∼2π/dIS. After that, the evolu-
tion of the initial density operator, ρ̂(0) = Ŝz, in the spin-locked
frame under ̂H [Eq. (5)] can be computed using the Liouville–von
Neumann (LvN) equation,

ρ̂(t) = ÛCPρ̂(0)Û−1
CP

= Ŝz cos2
(ωCPt) + Îz sin2

(ωCPt) + (Ŝx Îy − Ŝy Îx) sin(2ωCPt),
(6)

where ωCP = dIS/2 and ÛCP = exp(−îHt) . It is evident that the first
two terms in Eq. (6) show that the polarization has been transferred
from Ŝz to Îz; the transfer was mediated by ŜΔ

x = Ŝx Îx + Ŝy Îy, a famil-
iar fictitious spin-1/2 operator in the zero-quantum (ZQ) subspace.5
By realizing other fictitious operators—including those in the ZQ
and double-quantum (DQ) subspaces—and their commutator rela-
tions (see Subsection 3 of Appendix), one can describe the transfer
in a more compact form as follows:

Ŝz = ŜΣ
z + ŜΔ

z
2ωCP ŜΔ

x
ÐÐÐÐ→ ŜΣ

z + ŜΔ
z cos(2ωCPt)

− ŜΔ
y sin(2ωCPt)→ ŜΣ

z − ŜΔ
z = Îz if t = π/(2ωCP). (7)

Thus, we have exemplified here that using the fictitious operators
in AHT offers a simple yet insightful approach to understanding
CP. Note that the realization and identification of these fictitious
operators in the subspaces are important elements to describe DNP
processes (vide infra).

B. NOVEL
NOVEL is often referred to as the CP-equivalent sequence in

DNP due to their similar matching conditions,20,24 i.e., the electron
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Rabi field, ω1S, during spin-lock is set to match the nuclear Larmor
frequency, ω0I in NOVEL [Fig. 1(b)]. The Hamiltonian of a
two-spin electron–nucleus system during the spin-lock in the
electron-rotating-frame is given by

ĤNOVEL = −ω0I Îz + AzzŜz Îz + AzxŜz Îx + AzyŜz Îy + ω1SŜx, (8)

where Azz and Azx(y) are the secular and pseudo-secular components
of the hyperfine interaction. Then, a tilted-frame transformation
using Ûs = exp(−iφÎz) and φ = tan−1

(Azy/Azx) is performed along
Îz to obtain

Ĥs = Û−1
s ĤNOVELÛs = −ω0I Îz + AzzŜz Îz + BzxŜz Îx + ω1SŜx, (9)

where Bzx =
√

A2
zx + A2

zy. Following a similar treatment shown in CP
(Sec. II A), a propagator Û t = exp(−iπŜy/2) is applied to set the
electron z axis along the μw spin-lock field,

Ĥt = Û−1
t ĤsÛ t = ω1SŜz − ω0I Îz − AzzŜx Îz − BzxŜx Îx (10)

followed by another interaction-frame transformation using
Û1 = exp(−i(ω1SŜz − ω0I Îz)t) ,

̂̃H(t) = Û−1
1 (t)ĤtÛ1(t) − (ω1SŜz − ω0I Îz)

= −Azz(cos ω1StŜx − sin ω1StŜy)Îz

− Bzx(cos ω1StŜx − sin ω1StŜy)

× (cos ω0ItÎx + sin ω0ItÎy). (11)

Similarly, ̂̃H(t) becomes time-independent if one sets ω1S = ±ω0I
and applies AHT in the second step,

̂̃H(t) = −Bzx

2
(Ŝx Îx ∓ Ŝy Îy) −

Bzx

2
[(Ŝx Îx ± Ŝy Îy) cos 2ω0It

+ (Ŝx Îy ∓ Ŝy Îx) sin 2ω0It]

− Azz(cos ω0IŜx Îz ∓ sin ω0ItŜy Îz), (12)

̂H = ω0I

2π ∫
2π/ω0I

0

̂̃H(t)dt

=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

−
Bzx

2
(Ŝx Îx + Ŝy Îy) if ω1S = −ω0I(ZQ),

−
Bzx

2
(Ŝx Îx − Ŝy Îy) if ω1S = ω0I(DQ).

(13)

Note that the AHT treatment is valid if ω0I ≫ Azz, Bzx, which is
true for most DNP experiments at high fields. Furthermore, one
can obtain ZQ (DQ) effective Hamiltonian if the electron Rabi
field is parallel (antiparallel) to the spin-locked electron spin. Then,
similar to the treatment in CP, the initial density operator ρ̂(0)
= Ŝz evolves under either the ZQ or DQ effective Hamiltonian to
become

ρ̂ ZQ
(t) = Ŝz cos2

(ωNOVELt) + Îz sin2
(ωNOVELt)

+ sin(2ωNOVELt)(Ŝy Îx − Ŝx Îy), (14)

ρ̂ DQ
(t) = Ŝz cos2

(ωNOVELt) − Îz sin2
(ωNOVELt)

+ sin(2ωNOVELt)(Ŝy Îx + Ŝx Îy), (15)

where ωNOVEL = Bzx/4 denotes the NOVEL buildup rate and
that the DQ transfer has an opposite sign relative to the ZQ case.
Although the sin2

(ωNOVELt) term [Eq. (14)] implies transient oscil-
lations as in CP, such effects are not easily observed in experiments.
This is because most state-of-the-art DNP experiments observe only
bulk 1H instead of an isolated 1H spin, and nuclear spin diffusion
dampens such transients. Although there have been a few reports
of such transient-like features in the literature, they are mostly
performed on single crystals, or the experiments were not optimized
for such purposes.25–28 Encouraged by these early findings, we
envision that our theoretical framework here could motivate some
new experimental efforts in observing these transients at high
fields, realizing electron–nucleus distance measurement using
DNP.

C. Solid effect (SE)
There are several theoretical approaches that can analyze the

SE in the literature.12,13,29,30 One could apply perturbation theory
to determine the degree of state mixing between the Zeeman eigen-
states, and this method is best suited if the electron nutation fre-
quency, ω1S, is small relative to the electron relaxation rate T−1

1e .
Here, we will show an approach similar to the framework shown by
Jain et al.,27 where AHT and the product-operator formalism were
used. We begin with a similar Hamiltonian to that in Eq. (8) except
for an inclusion of an electron offset term, ΩŜz,

ĤSE = ΩŜz − ω0I Îz + AzzŜz Îz + AzxŜz Îx + AzyŜz Îy + ω1SŜx. (16)

Additionally, we show the matrix representation of the Hamiltonian
[Eq. (16)] using the Zeeman eigenbases ∣αα⟩, ∣αβ⟩, ∣βα⟩, and ∣ββ⟩ for
an electron–nucleus system ∣en⟩,

ĤSE ≡
1
4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Azz − 2ω0I + 2Ω

Azx − iAzy

2ω1s

0

Azx − iAzy

−Azz + 2ω0I + 2Ω

0

2ω1s

2ω1s

0

−Azz − 2ω0I − 2Ω

−Azx − iAzy

0

2ω1s

−Azx + iAzy

Azz + 2ω0I − 2Ω

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (17)
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Here, we emphasize the importance of recognizing the SE matrix
representation because it will be used later to derive the CE-DNP
matching condition. Next, we simplify the Hamiltonian by intro-
ducing the pseudo-secular term BzxŜz Îx [see Eq. (9)] and apply
a propagator Û t = exp(−iθ Ŝy) with θ = tan−1

(ω1S/Ω), so that the

electron z axis is aligned along the effective field ωeff =
√

ω2
1s +Ω2,

ĤSE = ωeff cos θ Ŝz − ω0I Îz + AzzŜz Îz + BzxŜz Îx + ωeff sin θ Ŝx

Ĥt = Û−1
t ĤSEÛ t (18)

= ωeffŜz − ω0I Îz + (Azz Îz + Bzx Îx)(cos θ Ŝz − sin θ Ŝx).

Note that the initial density operator is now ρ(0) = cos θ Ŝz
− sin θ Ŝx following a similar frame transformation. Then, we per-
form another interaction-frame transformation on Eq. (18) using
Û1 = exp(−i(ωeffŜz − ω0I Îz)t),

̂̃H(t) = Û−1
1 (t)ĤtÛ1(t) − (ωeffŜz − ω0I Îz)

= (Azz Îz + Bzx(Îx cos ω0It + Îy sin ω0It))

× (cos θ Ŝz − sin θ(Ŝx cos ωefft − Ŝy sin ωefft)). (19)

Similarly, the Hamiltonian ̂̃H(t) becomes time-independent if
ωeff = ±ω0I (see Subsection 1 of Appendix) and AHT is applied with
the condition ω0I ≫ Azz sin θ, Bzx cos θ,

̂̃H(t) = Azz cos θ Ŝz Îz

−
Bzx sin θ

2
[(Ŝx Îx ∓ Ŝy Îy) + (Ŝx Îx ± Ŝy Îy) cos 2ω0It

+ (Ŝx Îy ∓ Ŝy Îx) sin 2ω0It]

− Azz sin θ(Ŝx Îz cos ω0It ∓ Ŝy Îz sin ω0It)

+ Bzx cos θ(Ŝz Îx cos ω0It + Ŝz Îy sin ω0It), (20)

̂H = ω0I

2π ∫
2π/ω0I

0

̂̃H(t)dt

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−
Bzx sin θ

2
(Ŝx Îx + Ŝy Îy) + AzzŜz Îz cos θ if ωeff = −ω0I,

−
Bzx sin θ

2
(Ŝx Îx − Ŝy Îy) + AzzŜz Îz cos θ if ωeff = +ω0I,

(21)

where ZQ and DQ fictitious spin-1/2 operators are again obtained
[see Eqs. (5) and (13)]. Although there is now an extra AzzŜz Îz term
in Eq. (21) compared to the CP and NOVEL cases, its effect can be
safely ignored because the Ŝz Îz operator represents an identity oper-
ator in the ZQ/DQ subspaces; it commutes with all operators. This
is evident by inspecting the matrix representation of Eq. (21) for the
case of ωeff = −ω0I (ZQ condition),

̂HZQ ≡
1
4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Azz cos θ

0

0

0

0

−Azz cos θ

−Bzx sin θ

0

0

−Bzx sin θ

−Azz cos θ

0

0

0

0

Azz cos θ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(22)

Following from Eq. (21), the initial density operator along the effec-
tive field ρ(0) = Ŝz will evolve under the ZQ/DQ Hamiltonian to
become

ρ̂ ZQ
(t) = Ŝz cos2

(ωSEt) + Îz sin2
(ωSEt)

+(Ŝy Îx − Ŝx Îy) sin(2ωSEt),
ρ̂ DQ
(t) = Ŝz cos2

(ωSEt) − Îz sin2
(ωSEt)

+(Ŝy Îx + Ŝx Îy) sin(2ωSEt),

(23)

where the SE buildup rate is ωSE = Bzx sin θ/4. Since the results
were obtained using a generalized expression with minimal assump-
tions, the weak μw irradiation case (ω1s ≪ ω0I) should converge
to the same results shown in the literature.13 Hence, the matching
conditions are

ωeff =

√

ω2
1s +Ω2 = ±ω0I for general cases

⇒ Ω ∼ ±ω0I for weak μw cases, (24)

and the initial nuclei polarization buildup [from Eq. (23)] is given by
⟨ρ̂(t ≪ 1)∣Îz⟩∝ sin2

(ωSEt) ∼ ωSE
2t2, where ωSE

2
= (Bzxω1s/4ω0I)

2.
We have derived the well-known SE matching conditions
Ω ∼ ±ω0I, and the Îz(t ≪ 1)∝ ω0I

−2 dependence yields the well-
known observation that the enhancement factor scales by a factor of
∼ ω0I

−2—which is true if the Rabi field ω1s, relaxation rates, and all
other factors remain constant when the B0 field increases.30

D. Cross effect (CE)
The CE was first discovered when the DNP field profile showed

changes when higher radical concentrations were used.10,11 The
effect was then exploited by tethering two monomeric nitroxide rad-
icals to form a biradical.31–33 The underlying CE mechanism was
explained theoretically using perturbation theory for the static and
MAS cases.12,34–37 In the theoretical analyses, the perturbation treat-
ment was applied twice because there is no off-diagonal term that
directly connects the two degenerate energy eigenstates. Such suc-
cessive perturbative treatment might lose important insights because
some terms are discarded in each perturbative step. We will now
revisit the CE theory in the static case and demonstrate that new
insights are obtained using the unified theory.

A generic lab-frame Hamiltonian for a two-electron-one-
nucleus system is given by

Ĥ = d(3Ŝ1zŜ2z − Ŝ1 ⋅ Ŝ2) − 2JŜ1 ⋅ Ŝ2 + A(1)zz Ŝ1z Îz

+ A(1)zx Ŝ1z Îx + A(1)zy Ŝ1z Îy

+ A(2)zz Ŝ2z Îz + A(2)zx Ŝ2z Îx + A(2)zy Ŝ2z Îy

+ ω0S1Ŝ1z + ω0S2Ŝ2z − ω0I Îz, (25)

where d and J represent the dipolar coupling and the exchange inter-
action between the two electrons, respectively. Note that the A(n)zz

component is secular, while the A(n)zx and A(n)zy components are not.
The index n labels the hyperfine interaction between the electron
and the first or second nucleus (n = 1 or 2). ω0I(S) denotes the Larmor
frequency of the nucleus (electrons). Note that the usual tilted-frame
transformation along Îz to remove Ŝz Îy cannot be done here for
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both electron-nuclear spin pairs unless one assumes that the sizes
and signs of A(n)zy /A

(n)
zx are the same for both electron–nucleus pairs

(n = 1 or 2).
By inspecting the matrix representation of the Hamiltonian

[Eq. (25)] excluding the μw field, it is clear that the full Hamiltonian

is block diagonal with one central 4 × 4 block (Fig. 2) and two
2 × 2 blocks. We call the central 4 × 4 block the CE subspace, which
will be our focus because the other two blocks are relevant only for
NMR transitions. The matrix representation of the CE subspace can
be rewritten in a more compact form to become

Ĥ CE
≡

J − d
2

Ê + 1
4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ΔAzz − 2ω0I + 2Δω

ΔAzx + iΔAzy

−2(2J + d)

0

ΔAzx − iΔAzy

−ΔAzz + 2ω0I + 2Δω

0

−2(2J + d)

−2(2J + d)

0

−ΔAzz − 2ω0I − 2Δω

−ΔAzx − iΔAzy

0

−2(2J + d)

−ΔAzx + iΔAzy

ΔAzz + 2ω0I − 2Δω

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (26)

where Δω = ω0S1 − ω0S2, ΔAzz = A(1)zz − A(2)zz , ΔAzx = A(1)zx − A(2)zx ,
and ΔAzy = A(1)zy − A(2)zy . Note that Ê is the identity operator, which
commutes with all other operators, and, hence, negligible. At this
point, we can directly quote the matching conditions and the effec-
tive Hamiltonian for the CE because the Ĥ CE matrix [Eq. (26)] is
mathematically identical to the ĤSE matrix [Eq. (17)] except for
the definition of the symbols. For instance, Ω, ω1S, Azz, Azx, and
Azy in SE are now analogous to Δω, −(2J + d), ΔAzz, ΔAzx, and
ΔAzy, respectively, in CE. Thus, we can define new fictitious spin-1/2
operators for this CE subspace and rewrite Eq. (27) as follows:

Ĥ CE
=

J − d
2

Ê + ΔωŜCE
z − ω0I ÎCE

z + ΔAzzŜCE
z ÎCE

z

+ ΔAzxŜCE
z ÎCE

x + ΔAzyŜCE
z ÎCE

y − (2J + d)ŜCE
x , (27)

where the eigenstates of the fictitious operator ŜCE
z are ∣αeβe⟩ and

∣βeαe⟩. By ensuring that the AHT assumption made in Eq. (21)

remains valid here, the SE results and matching conditions can be
directly adapted for the CE case,

ω0I = ±

√

(2J + d)2
+ Δω2,

∼ ± Δω if ∣2J + d∣≪ ∣Δω∣. (28)

Similarly, the buildup rate is

ωCE =
ΔBzx(2J + d)

4ω0I
, (29)

where ΔBzx =
√

ΔA2
zx + ΔA2

zy, which can be regarded as the
Pythagorean sum of the size differences between the two pseudo-
secular hyperfine interactions. We call this term the differential
hyperfine interaction. Then, by directly adapting the results from
SE [Eq. (23)], one can express that the polarization is transferred
from ŜCE

z to ÎCE
z via the fictitious operator ŜΔ,CE

x in the CE-ZQ double

subspace, i.e., ŜCE
z

2ωCE ŜΔ,CE
x

ÐÐÐÐÐ→ ÎCE
z [see Eq. (7)]. The CE transfer

FIG. 2. Matrix representation of the Hamiltonian that describes the two-electron-one-nucleus spin system, where the CE subspace comprises the middle 4 × 4 eigenbases
{∣αeβeαn⟩, ∣αeβeβn⟩, ∣βeαeαn⟩, ∣βeαeβn⟩}. Note that Σω± = 2(ω0S1 + ω0S2 ± ω0I) and Δω± = (ω0S1 − ω0S2 ± ω0I) . The unfilled matrix elements are zero.
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mechanism has been analytically derived with minimal efforts and
assumptions.

Note that the buildup rate ωCE [Eq. (29)] derived here is
similar to those shown in the literature,12,34,35,38 except on the sig-
nificance of ΔBzx

3,38,39 in mediating DNP, and that the CE buildup
curve should also exhibit a familiar transient oscillation just like
other polarization-transfer sequences discussed earlier. We empha-
size that the description refers only to the static case. For MAS, where
the energy levels cross one another, and the matching conditions
are adiabatically swept, one would expect an exponential buildup
behavior—as correctly predicted by the level anti-crossing (LAC)
framework and Landau–Zener equation.12,40

Although the source of polarization ŜCE
z is negligible at ther-

mal equilibrium, it can be enlarged by saturating either electron.
For example, if the first electron is saturated via microwaves at
ωμw = ω0S1 [exciting both ∣βeβe⟩↔ ∣αeβe⟩ and ∣βeαe⟩↔ ∣αeαe⟩ tran-
sitions], this will indirectly create a population difference between
the ∣αeβe⟩ and ∣βeαe⟩ states—this prepares a non-zero ŜCE

z . Again,
we emphasize that it is the difference between the two electron
spin polarizations, rather than the absolute electron polarization,
that is responsible for mediating CE DNP. Hence, we expect CE
DNP to be more efficient if the two electrons have very different T1
values,41,42 with the slower-relaxing electron being saturated prior
to the CE matching condition [Eq. (28)]. This is to say that the CE
mechanism is a two-step process, where the first step requires the
two-electron polarization difference resulting from μw to saturate
an electron or other approaches, and the second step involves a pas-
sive three-spin flip process that does not require active perturbations
including μw irradiation. Thus, these two processes do not need to
occur simultaneously, and this unique feature was exemplified in
the MAS case, where the saturation and polarization steps occur at
different rotor angles. Following this idea, a Gedankenexperiment,
where CE DNP can be mediated by generating polarization differ-
ence between two electrons with selective optical pumping (without
microwave irradiation), was proposed recently.43 This is technically
possible because microwave irradiation is not required to facili-
tate CE DNP [see CE Hamiltonian in Eq. (27)]. In principle, the
derived CE Hamiltonian would be different if strong microwaves are
present. Nevertheless, this kind of CE DNP might be practically real-
ized if pulsed microwave devices that can flexibly turn on or off the
microwaves become available in the future. Besides CE, we also note
that the fictitious operator formalism on a three-spin system was also
applied to understanding chemically induced DNP.44

In summary, we realize that the matrix representation of the
CE Hamiltonian is mathematically similar to the SE Hamiltonian.
This allows us to directly adopt the SE results for CE with minimal

approximations. We will later show how the position of the 1H
nuclei in a biradical and the differential hyperfine interaction ΔBzx
could affect the CE DNP performance (Sec. III C).

III. RESULTS AND DISCUSSION
We have analyzed and concluded that CP, NOVEL, SE, and CE

could be described using a unified theoretical framework, yielding
the effective Hamiltonians, matching conditions, buildup rates, etc.
(Table I). Next, we will analyze the situation in which the match-
ing conditions are not exactly fulfilled, i.e., a slight mismatch is
present.

A. Treating mismatch in DNP matching condition
Note that we have only derived the effective Hamiltonians and

buildup rates for which the DNP matching conditions are perfectly
satisfied. In practical situations, each electron spin packet might
experience a different effective field ωeff(Ω, ω1S) due to μw field
(ω1S) inhomogeneity or g-anisotropy/offset frequencies (Ω) . Con-
sequently, only a fraction of electron spins fulfills the matching
conditions, and the remaining spins experience mismatches in vary-
ing magnitudes, which will be analyzed here. First, we will consider
the SE case in which a mismatch frequency δSE ≠ 0 is present,

δSE = ωeff + ω0I(ZQ) or δSE = ωeff − ω0I(DQ). (30)

Then, we perform an interaction-frame transformation on Eq. (18)
with the propagator Û1′ = exp(−i(ωeffŜz − ω0I Îz − δSEŜz)t) ,

̂̃H ′
= Û−1

1′ (t)ĤtÛ1′(t) − ωeffŜz + ω0I Îz + δSEŜΣ
z + δSEŜΔ

z

= Azz cos θ Ŝz Îz + δSEŜΣ
z + δSEŜΔ

z

−
Bzx sin θ

2
[(Ŝx Îx − Ŝy Îy) cos((ωeff − δSE − ω0I)t)

− (Ŝx Îy + Ŝy Îx) sin((ωeff − δSE − ω0I)t)]

−
Bzx sin θ

2
[(Ŝx Îx + Ŝy Îy) cos((ωeff − δSE + ω0I)t)

+ (Ŝx Îy − Ŝy Îx) sin((ωeff − δSE + ω0I)t)]

− Azz sin θ(Ŝx Îz cos(ωeff − δSE)t − Ŝy Îz sin(ωeff − δSE)t)

+ Bzx cos θ(Ŝz Îx cos ω0It + Ŝz Îy sin ω0It), (31)

where we have used the fictitious operator ŜΣ
z = (Ŝz + Îz)/2 and

ŜΔ
z = (Ŝz − Îz)/2 (see Subsection 3 of Appendix). If Azz, Bzx ≪ ω0I,

we can apply AHT and obtain

̂H ′
=

ωeff − δSE

2π ∫

2π/(ωeff−δSE)

0

̂̃H ′
(t)dt

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−
Bzx sin θ

2
(Ŝx Îx + Ŝy Îy) + δSEŜΣ

z + δSEŜΔ
z + Azz cos θ Ŝz Îz if ωeff − δSE + ω0I = 0

−
Bzx sin θ

2
(Ŝx Îx − Ŝy Îy) + δSEŜΣ

z + δSEŜΔ
z + Azz cos θ Ŝz Îz if ωeff − δSE − ω0I = 0

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−
Bzx sin θ

2
ŜΔ

x + δSEŜΣ
z + δSEŜΔ

z + Azz cos θ Ŝz Îz if ωeff − δSE + ω0I = 0,

−
Bzx sin θ

2
ŜΣ

x + δSEŜΣ
z + δSEŜΔ

z + Azz cos θ Ŝz Îz if ωeff − δSE − ω0I = 0.
(32)
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Then, the evolution of ρ′(t) can be computed using the LvN equation with ρ(0) = Ŝz = ŜΣ
z + ŜΔ

z ,

ρ̂ ′(t) =
⎧⎪⎪
⎨
⎪⎪⎩

Ŝz(1 − cos2 ζSE sin2 ω′SEt) + Îz cos2 ζSE sin2 ω′SEt − ŜΔ
x sin 2ζSE sin2 ω′SEt + ŜΔ

y cos ζSE sin 2ω′SEt,
Ŝz(1 − cos2 ζSE sin2 ω′SEt) − Îz cos2 ζSE sin2 ω′SEt − ŜΣ

x sin 2ζSE sin2 ω′SEt + ŜΣ
y cos ζSE sin 2ω′SEt,

(33)

where ζSE = tan−1
(δSE/(2ωSE)) ,

ω′SE =

√

ω2
SE(Ω) + (δSE/2)2

=

¿
Á
ÁÀ B2

zxω2
1S

16(ω2
1s +Ω2)

+
δ2

SE
4

, (34)

and ωSE(Ω) = Bzxω1S/(4ωeff(Ω)) . Note that the new buildup rate
ω′SE is apparently faster when a mismatch is present, albeit that the
maximum polarization is lower by a factor of cos2 ζSE. This phe-
nomenon is mathematically analogous to the situation in which an
off-resonance π pulse was applied to a spin, i.e., the polarization
cannot be fully inverted despite experiencing a larger effective field.
The mismatch is now treated as offsets in the ZQ and DQ ficti-
tious spin-1/2 subspaces. Similarly, we can extend the theorem for
the CE case by introducing mismatch δCE = ωeff,CE ± ω0I, leading

to ω′CE =

√

ω2
CE(ΔBzx, d) + (δCE/2)2 and ζCE = tan−1

(δCE/(2ωCE))

[vide infra, see Fig. 7(c)].

B. Theoretical results and numerical simulations
To verify the theoretical results, we compare the evolution of

density operators using the effective Hamiltonians (Table I) with
numerically simulated results from Spinach.45 For easier analysis,
relaxation effects and g-anisotropy are not included at this stage,
and other parameters are listed in Table II. The field strengths for
the SE and CE were chosen to be 5 T, but we restricted NOVEL
to 0.35 T because it is not yet feasible to perform this experiment
at higher fields. Note that the μw irradiation is employed through-
out the sequence for NOVEL and SE. For CE, ideal μw pulses were
applied only in the beginning to prepare the electron polarization
difference and subsequently “turned off.”

The results of numerical simulations agree with the theoreti-
cal predictions exceptionally well (Fig. 3) in all three DNP cases.
In particular, the theoretically derived DNP buildup rates (ωNOVEL
= Bzx/4, ωSE = Bzxω1S/4ω0I, and ωCE = ΔBzx(2J + d)/4ω0I) for dif-
ferent electron–nucleus distances are verified to be correct. Note
that a near 100% (ε ∼ 658) polarization transfer is possible for
single crystals in NOVEL [Fig. 3(a)], but the SE [Fig. 3(b)] has
a marginally lower enhancement due to a small projection loss
between Ŝ1z and the direction of the effective field ωeff. As in a typical
CE DNP experiment, if we saturate the second electron [ρ(0) = Ŝ1z],
only ∼50% transfer (ε ∼ 329) can be obtained [Fig. 3(c)]. How-
ever, if the polarization of the second electron is inverted with a
π pulse using a pulsed microwave source, i.e., to prepare an ini-
tial state of ρ(0) = Ŝ1z − Ŝ2z = ŜCE

z , a ∼100% transfer can be achieved
again. Thus, we demonstrated that the fictitious operator (ŜCE

z )
used in our unified theory has shown a new and intuitive insight
in this pulsed cross-effect experiment.46 We would like to clar-
ify that most contemporary CE DNP experiments are performed
under MAS conditions with (CW) gyrotron, where microwave

irradiation is turned on throughout the experiments. In such situ-
ations, the presence of various types of adiabatic rotor events has
allowed enhancement ε larger than 329.47

For powdered samples, the maximum transient polarization is
ε ∼ 482 [Figs. 3(d) and 3(e)] in SE and NOVEL, which corresponds
to a transfer efficiency of 482/658 ∼ 73%—a known benchmark
value obtainable by γ-encoded sequences including CP.48–51 This
can be inferred from Eqs. (13) and (21), where the Hamiltonians
(or Bzx =

√
A2

zx + A2
zy) are γ-independent, despite the fact that Azx

and Azy depend on γ. Again, it is clear that some developed con-
cepts that existed in the well-familiarized conventional solid-state
NMR (ssNMR) techniques can be directly adapted for DNP cases
and perhaps shed new light on analyzing the existing DNP sequence.
For instance, one can evaluate the robustness of a pulse sequence
by inspecting if the effective Hamiltonian of a pulse sequence is
γ-encoded. Similarly, we envision such an evaluation strategy can
be better exploited when developing new DNP sequences, especially
when the high-frequency pulsed microwave technology becomes
available in the future.19 The CE performance on powdered sam-
ples [Fig. 3(f)] is much weaker than the performance of SE and
NOVEL because only a small fraction of the crystallites satisfies
the orientation-dependent d(α, β, γ) in the CE matching condition
[Eq. (28)].

Next, g-anisotropy is included in the simulations to resemble
actual DNP experiments. The buildup curves for several crystal-
lites with different SE matching conditions and three different
e–1H spin systems [Fig. 4(a)] were examined. All three systems
have the same spin interactions except the e–1H Euler angles rela-
tive to the g-tensor and show different frequency profiles (Fig. S4,
supplementary material). The simulated curves fit the calculated
results from the unified theory well—if the mismatched situations
are also considered [Eq. (33)]. In other words, the calculated curves
[Figs. 4(b)–4(d)] were not performed using a single crystal, but an
entire powder spectrum that includes crystallites that do not exactly
satisfy the matching conditions (see the supplementary material).
This can be done mainly because the radical has narrow lines, i.e.,
either DQ or ZQ condition (not both) is calculated here. Besides, it
is evident that the buildup profiles are sensitive to the e–1H Euler
angles, which imply that it is theoretically possible to determine the
full e–1H dipolar coupling tensor from DNP.

Nevertheless, it could be challenging to demonstrate these
effects in actual experiments due to several practical reasons. First,
the profiles of the actual buildup curves will depend on several para-
meters, including relaxation rates (Fig. S3, supplementary material)
and microwave powers. In principle, one would require a pulsed
high-power microwave device to facilitate faster DNP buildup
curves, as implied by ωSE ∝ ω1S in Table I. However, such a tech-
nology is not yet available at high fields. Second, the presence of
abundant 1H spins in the vicinity could dampen the buildup curves
due to spin diffusion, complicating the distance analysis. Hence, we
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Ŝ y
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Î y
)
+

ΔA
zz
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Ŝ z
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TABLE II. Parameters used in theoretical analyses and numerical simulations. The
PAS-to-lab frame Euler angles are (60○, 45○, 36○) .

NOVEL SE CE

Magnetic field
B0 (T) 0.35 5 5

g factor 2.003 2.003 ge1 = 2.003 000
ge2 is 2.006 041

Coordinate (PAS)

1H (0, 0, 0) 1H (0, 0, 0) 1H (0, 0, 0)

e (0, 0, reH) e (0, 0, reH) e1 (0, 0, re1H)
e2 0.8re1H

(sin 135○, 0, cos 135○)

Microwave Rabi
field ω1S ω0I 4 MHz no μw

ρ̂(0) Ŝ1z Ŝ1z
Saturated: Ŝ1z

Inverted: Ŝ1z − Ŝ2z

believe that such techniques will be more suitably applied to an
isolated two-spin system, i.e., direct electron-19F/31P/13C DNP in
samples where unpaired electrons are naturally present or strategi-
cally placed (metalloproteins or paramagnetic dopants in materials).
If experimentally proven, the technique could have important appli-
cations on paramagnetic biomolecules or materials. Although the
determination of hyperfine interactions using DNP NMR is less sen-
sitive than the well-developed EPR techniques (ENDOR, ESEEM,
HYSCORE, etc.),52,53 we expect the additional NMR chemical-shift
dimension in DNP NMR experiments could help distinguish differ-
ent chemical sites. Besides, one could also further determine the spin
coupling network via CP to farther NMR-active nuclei and perform
routine multidimensional NMR experiments.

C. The effect of J , d , and ΔBzx on the CE-DNP
enhancement

It is known in the literature that the e–e interactions—exchange
interaction, J, and dipolar coupling, d—play crucial roles in affect-
ing CE DNP performance.54–56 In particular, Equbal et al. noted
from numerically simulated results that the CE radicals should have
J/d > 1.25 for an efficient MAS DNP transfer.40,57 We show that
the phenomenological finding can be explained by inspecting the
orientation-dependent buildup rate ωCE(α, β, γ)∝ (2J + d(α, β, γ))
[Eq. (29)], where α, β, and γ are the relative Euler angles between the
crystal and the lab frame. Thus, it is evident that the ωCE(α, β, γ)
expression requires ∣2J + d(α, β, γ)∣ > 0 so that all crystallites have
non-zero buildup rates even if the CE matching conditions are
fulfilled, i.e.,

∣2J + d(α, β, γ)∣ > 0,
either 2J + dee > 0→ J/dee < −1/2
or 2J − dee/2 < 0→ J/dee > 1/4,

(35)

where

d =
1
2

dee(1 − 3 cos2 β) and dee = μ0γ2
e h̵/4πr3

ee.
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FIG. 3. Plots of 1H enhancement calculated by theory (line) and numerical simulations for (a) and (d) NOVEL, (b) and (e) SE, and (c) and (f) CE on (a)–(c) single-crystal or
(d)–(f) powdered samples. DNP with different e–1H distances 4.3, 5.5, and 6.5 Å is examined in NOVEL and SE. Two different initial states are considered in CE (c) and (f):
saturated second electron spin ρ(0) = Ŝ1z (red) and inverted second electron spin, ρ(0) = Ŝ1z − Ŝ2z = ŜCE

z (violet). The two e–1H distances are 10 and 8 Å, respectively.
The e–1H angle is 135○. The powder averages were performed using the two-angle Lebedev grids with rank 131 provided in Spinach.

Hence, enforcing ∣J/dee∣ > 1/2 would ensure that no crystallite will
have an instantaneous ωCE = 0 for any orientation in a rotor period.
Moreover, having ∣J/dee∣≫ 1/2 would guarantee that the buildup
rate ωCE is moderately higher than a certain threshold, thereby yield-
ing a faster and more efficient DNP transfer. Additionally, it was
reported that a high ∣J/dee∣ ratio would also help maintain a large adi-
abaticity of the electron–electron rotor event, which helped maintain
a large difference in electron polarization for efficient DNP.38,40,57

Nevertheless, the ∣J/dee∣ ratio cannot be increased indefinitely, or
else it might have a deleterious effect. For instance, the simplified CE
condition ω0I ∼ ±Δω is no longer applicable for the strong J case, and

the full CE matching condition ω0I = ±

√

(2J + d)2
+ Δω2 [Eq. (28)]

dictates that the CE condition can never be fulfilled if (2J + d) > ω0I.
We will not discuss this further here as the actual CE MAS DNP sce-
nario will be more complex when g-anisotropy is considered, and it
is beyond the scope of this work. Nevertheless, we emphasize that
the derived matching conditions and buildup rates remain valid for
static and MAS cases.

It is known in the literature that the nature of the 1H nuclei
close to the electron plays a significant role in DNP. For instance,
there exists a sweet spot in which the e–1H distance should be short
for efficient DNP contact/transfer but larger than the spin diffusion
barrier so that the polarization can be distributed across the bulk

sample. Recent literature has reported that the size of this sweet spot
is ∼3–6 Å away from the radical.58–60 Although our unified theory
and a simple three-spin model here will not be sufficient to treat
the spin diffusion barrier issue, we plan to analyze the role of the
differential hyperfine interaction, ΔBzx, in mediating CE DNP.

We set up an e1–e2–1H three-spin system in which the two
electrons are separated by 2r0 = 12 Å, and the 1H nucleus is on a
spherical shell with a radius R = 30 Å away from the origin (Fig. 5).
For this study, the two electrons are fixed in position, but the angles
(θ, ϕ) will be varied. Figure 6 shows the simulated ε [Fig. 6(a)] and
calculated ΔBzx [Fig. 6(b)] for various 1H’s locations on the R = 30 Å
shell (or different θ and ϕ angles). The two profiles are very simi-
lar and imply a correlation between ε and ΔBzx. To corroborate the
results, the data from these two plots are sampled and replotted in
Fig. 6(c), showing the relation of ε against ΔBzx, which shows clearly
that high ΔBzx values yield high ε, and the converse is also true. These
findings confirm the ωCE ∝ ΔBzx relation [Eq. (29)] derived from
our unified theory.

Moreover, it is intriguing that there are some blind spots with
minimum ε in the z = 0 plane (equator) and some local spots
[see red arrows in Fig. 6(b)]. To further understand this phe-
nomenon, we will first write down the expressions of ΔBzx and A(i)zx,y
in this spin system,
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FIG. 4. (a) The calculated electron EPR
line shape of the e–1H system with
g-tensor (gx = 2.0046, gy = 2.0038,
gz = 2.0030) and μw frequency 9 GHz.
The buildup curves in (b) and (c) corre-
spond to different μw central frequencies
and matching positions labeled in (a).
The relative Euler angles between the
e–1H dipolar couplings and the g-tensor
are (0, 10○, 0), (0, 50○, 0), (0○, 90○, 0)
for (b)–(d). The e–1H distance is 4.3 Å.

FIG. 5. A three-spin e1–e2–1H model with the coordinates of the spins given by
r̃e1 = (0, r0, 0) , r̃e2 = (0,−r0, 0) , r̃1H = R( sin θ cos ϕ, sin θ sin ϕ, cos θ); the
distances are r0 = 6 Å and R = 30 Å. The two electrons (blue spheres) have fixed
positions, while the angles θ and ϕ of the 1H atom (red sphere) are varied. Other
spin parameters include ge1 = 2.0000, ge2 = 2.0030 (isotropic) satisfying the CE
matching condition, J = 0 Hz, T1e = 1 ms, T2e = 5 μs, B0 = 5 T, and a microwave
of ω1S/2π = 4 MHz is applied on e1.

ΔBzx =

√

(A(1)zx − A(2)zx )
2
+ (A(1)zy − A(2)zy )

2
,

A(i)zx = −
3
2

di sin 2θi cos ϕi,

A(i)zy = −
3
2

di sin 2θi sin ϕi,

(36)

where di = μ0γeγI h̵/4πr3
eiH is the electron–nucleus dipolar coupling,

θi is the angle between the dipole and the external B0 field, and ϕi
is the azimuth angle. Two solutions are obtained by setting ΔBzx = 0
[Eq. (35)]: (1) A(1)zx = A(2)zx = A(1)zy = A(2)zy = 0 or (2) A(1)zx = A(2)zx and
A(1)zy = A(2)zy . Indeed, the solution of the first case is θ = π/2 (or z = 0
equator). By solving the second case,

ΔBzx = 0

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

R sin θ + r0

(R2 + 2Rr0 sin θ + r2
0)

5/2 =
R sin θ − r0

(R2 − 2Rr0 sin θ + r2
0)

5/2

cos ϕ = 0,
(37)

one obtains the positions of the 1H atoms are (0, ±14.06, ±26.50) Å
or θ = 27.9○ [Fig. 6(b)], which are as expected. This is interest-
ing because, in the SE DNP case, the ε = 0 blind spot would be at
the magic angle θ = 54.7○, where the dipolar coupling is also zero.
However, our unified theory has successfully revealed that this is
not the case in the CE, and the blind spots are in the regions where
the two hyperfine fields are exactly equal (or differential hyperfine
interaction ΔBzx = 0)—a phenomenon that has not yet been dis-
cussed in the literature.
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FIG. 6. (a) Simulated CE-DNP enhancement ε and (b) calculated ΔBzx for single crystals on a three-spin system shown in Fig. 5. (b) The ΔBzx = 0 and maximum ΔBzx

regions are labeled by red arrows and red crosses, respectively. (c) Plot of ε against ΔBzx using resampled data from (a) and (b).

FIG. 7. (a) Simulated CE-DNP enhancement ε, (b) calculated ΔBzx and (c) ω′CE cos2 ζCE for powders on a three-spin system shown in Fig. 5(c). The maximum enhancement
and ω′CE cos2 ζCE regions are labeled by red crosses.
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For powdered samples, the general features exhibited by the
simulated ε [Fig. 7(a)] and powder-averaged ⟨ΔBzx⟩ [Fig. 7(b)] are
similar, i.e., the high ε regions are well reflected by the high cal-
culated ⟨ΔBzx⟩ values. However, some differences are also noted:
(1) there are starker contrasts between the annular rings [red
crosses in Fig. 7(a)] and (2) the asymmetry between the two
z-hemispheres is not observed in the ⟨ΔBzx⟩ plot [Fig. 7(b)]. To
address issue (1), we incorporated the effects of CE mismatches
due to the orientation-dependent dipolar couplings (see Sec. III A)
and calculated ⟨ω′CE cos2 ζCE⟩. The resulting ⟨ω′CE cos2 ζCE⟩ plot
[Fig. 7(c)] for the powder subset shows a much better agreement
with simulated ε. The strength of the unified theoretical framework
allowing direct adaptation of the SE scenario for CE is again exem-
plified here. For issue (2), the ε asymmetry between the +y and
−y hemispheres [Figs. 6(a) and 7(a)] can be explained by the size
of the exchange interaction J (Subsection 2 of Appendix), selec-
tive excitation on one of the two electrons, and relaxation effects.
As the issue is multifaceted and complex, we will not discuss it
further.

We have demonstrated here that our unified theory has shed
new light on the role of differential hyperfine interaction ΔBzx (or the
position of nearest 1H) in dictating the CE-DNP performance. These
findings could be exploited to design more efficient biradicals by
avoiding these zero-enhancement blind spots—either by optimizing
the linkers or deuterating the 1H’s in those regions.

IV. CONCLUSION
We have provided an analytical description for CP, NOVEL,

SE, and CE mechanisms using the same unified theoretical frame-
work. Not only the use of fictitious spin-1/2 operators combined
with average Hamiltonian theory provides an easy-to-understand
and intuitive explanation for the polarization-transfer mechanisms,

but it also sheds new light on fundamental DNP mechanisms. For
instance, we show that the DNP buildup curves should also feature
transient oscillations, which could be exploited to extract crucial
structural information in metal-doped paramagnetic biomolecules
or materials, i.e., we would like to extend the DNP applications
beyond just hyperpolarization. Moreover, the realization that SE and
NOVEL have γ-independent DNP performances and that an
inverted electron polarization could generate higher DNP enhance-
ment than a simple saturation scheme in CE could motivate further
development of new (pulsed) DNP sequences in the future. Besides
that, our theory sheds light on the roles of exchange interaction (J)
and ΔBzx in CE. In particular, the CE matching conditions helped
explain the phenomenological finding of a good J/D ratio for effi-
cient CE in the literature. Moreover, the theory also highlighted the
importance of the differential hyperfine interaction ΔBzx, which is
directly correlated with the CE enhancement factors. These results
can potentially be exploited for designing more efficient biradicals.
Additionally, although our study here is performed only on the static
case, our unified theory remains valid and can be extended for the
MAS case if needed. Finally, we hope that our presented findings
here could stimulate an experimental effort in verifying our theory
and numerical results—when high-power pulsed microwave devices
at high fields become available in the future.

SUPPLEMENTARY MATERIAL

See the supplementary material for MATLAB scripts used for
performing SPINACH numerical simulations.
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APPENDIX: FURTHER THEORETICAL DETAILS AND
SIMULATIONS
1. Matching conditions

The simplified form of the Hamiltonian in the interaction
frame for NOVEL [Eq. (11)] is given by

̂̃H(t) = −Bzx

2
[(Ŝx Îx − Ŝy Îy) cos(ω1S − ω0I)t

− (Ŝx Îy + Ŝy Îx) sin(ω1S − ω0I)t]

−
Bzx

2
[(Ŝx Îx + Ŝy Îy) cos(ω1S + ω0I)t

+ (Ŝx Îy − Ŝy Îx) sin(ω1S + ω0I)t]

− Azz(cos ω1SŜx Îz − sin ω1StŜy Îz), (A1)

and for SE [Eq. (19)],
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TABLE III. Definition of fictitious spin-1/2 operators. Note that the operators obey the following commutation rules: [ŜΔ
x , ŜΔ

y ]
= iŜΔ

z , [ŜΣ
x , ŜΣ

y ] = iŜΣ
z , and [ŜΔ

x,y,z, ŜΣ
x,y,z] = 0.

Single-spin operators 1
2(Ŝz + Îz)

1
2(Ŝz − Îz) Ŝx Îy + Ŝx Îy Ŝy Îx − Ŝx Îy Ŝx Îx − Ŝy Îy Ŝx Îx + Ŝy Îy

Fictitious operators ŜΣ
z ŜΔ

z ŜΣ
y ŜΔ

y ŜΣ
x ŜΔ

x

FIG. 10. Simulated buildup curves of
SE with various T2e values on a pow-
dered e–1H system. The e–1H distance
is 4.3 Å, T1e = 1 ms, T1n = 13 s,
T2n = 1 ms, B0 = 5 T, the isotropic g
value is 2.0038, and g-anisotropy is not
considered. The transient oscillations are
observable only when T2e > 10 μs. Note
the maximum transients occur around
the same time (∼50 μs) even though
their T2 values are different.

FIG. 11. The frequency profiles of an
electron–proton system with different
hyperfine vectors in PAS. The para-
meters of the system are the same as
those used in Figs. 4(b)–4(d).
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̂̃H(t) = Azz cos θ Ŝz Îz −
Bzx sin θ

2
[(Ŝx Îx − Ŝy Îy) cos(ωeff − ω0I)t − (Ŝx Îy + Ŝy Îx) sin(ωeff − ω0I)t]

−
Bzx sin θ

2
[(Ŝx Îx + Ŝy Îy) cos(ωeff + ω0I)t

+ (Ŝx Îy − Ŝy Îx) sin(ωeff + ω0I)t]

− Azz sin θ(Ŝx Îz cos ωefft − Ŝy Îz sin ωefft)

+ Bzx cos θ(Ŝz Îx cos ω0It + Ŝz Îy sin ω0It). (A2)

It is evident that the matching conditions are ω1S = ±ω0I and ωeff
= ±ω0I for NOVEL and SE cases, respectively.

2. Further examples of plots showing asymmetry
in enhancement

Figures 8 and 9 show conditions and parameters that affect the
asymmetry in CE-DNP performance.

3. Definition of fictitious spin-1/2 operators
Definition of fictitious spin-1/2 operators (Table III).

4. SE buildup curves on an e–1H spin system
Figure 10 shows simulated buildup curves of SE with various

T2e values on a powdered e–1H system.

5. Frequency profiles of electron–proton system
(powdered)

Figure 11 shows the frequency profiles of an electron–proton
system with different hyperfine interactions.
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