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Abstract
Given a dataset S of points inR

2, the range closest-pair (RCP) problem aims to prepro-
cess S into a data structure such that when a query range X is specified, the closest-pair
in S∩ X can be reported efficiently. The RCP problem can be viewed as a range-search
version of the classical closest-pair problem, and finds applications inmany areas. Due
to its non-decomposability, the RCP problem is much more challenging than many
traditional range-search problems. This paper revisits the RCP problem, and proposes
new data structures for various query types including quadrants, strips, rectangles,
and halfplanes. Both worst-case and average-case analyses (in the sense that the data
points are drawn uniformly and independently from the unit square) are applied to
these new data structures, which result in new bounds for the RCP problem. Some of
the new bounds significantly improve the previous results, while the others are entirely
new.
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1 Introduction

The closest-pair problem is one of the most fundamental problems in computational
geometry and finds many applications, e.g., collision detection, similarity search, traf-
fic control, etc. In this paper, we study a range-search version of the closest-pair
problem called the range closest-pair (RCP) problem. Let X be a certain collection
of ranges called query space. The RCP problem with query space X (or the X -RCP
problem for short) aims to preprocess a given dataset S of points into a low-space data
structure such that when a query range X ∈ X is specified, the closest-pair in S ∩ X
can be reported efficiently. The motivation for the RCP problem is clear and similar
to that of range search: in many situations, one is interested in local information (i.e.,
local closest-pairs) inside specified ranges rather than global information (i.e., global
closest-pair) of the dataset.

The RCP problem is quite challenging due to a couple of reasons. First, in the RCP
problem, the objects of interest are in fact point-pairs instead of single points, and in a
dataset there is a quadratic number of point-pairs to be dealt with. Moreover, the RCP
problem is non-decomposable in the sense that even if the query range X ∈ X can
be written as X = X1 ∪ X2, the closest-pair in S ∩ X cannot be computed efficiently
from the closest-pairs in S ∩ X1 and S ∩ X2. The non-decomposability makes many
traditional range-search techniques inapplicable to the RCP problem, and thus makes
the problem much more challenging.

The RCP problem in R
2 has been studied in prior work over the last fifteen years,

e.g., [1, 5, 6, 8, 9, 12, 13]. In this paper, we revisit this problem and make signifi-
cant improvements to the existing solutions. Following the existing work, the query
types considered in this paper are orthogonal ranges (specifically, quadrants, strips,
rectangles) and halfplanes.

1.1 Our Contributions, Techniques, and RelatedWork

The closest-pair problem and range search are both classical topics in computational
geometry; see [2, 10] for references. The RCP problem is relatively new. The best
existing bounds in R

2 and our new results are summarized in Table 1 (Space refers to
space cost and Qtime refers to query time), and we give a brief explanation below.

• RelatedWorkTheRCPproblem for orthogonal querieswas studied in [1, 5, 6, 8, 9,
12, 13], where [13] is a preliminary version of this paper. The best known solution
for quadrant queries was given by [6], while [9] gave the best known solution
for strip queries. For (orthogonal) rectangle queries, there are two best known
solutions (in terms of worst-case bounds) given by [6] and [9] respectively. The
above results only considered worst-case performance of the data structures. The
authors of [6] for the first time applied average-case analysis to RCP data structures
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Table 1 Summary of the best existing bounds and our new results for the RCP problem in R
2 (each row

corresponds to an RCP data structure for the corresponding query space)

Query Source Worst-case Average-case

Space Qtime Space Qtime

Quadrant [6] O(n log n) O(log n) – –

Theorem 2.2 O(n) O(log n) O(log2n) O(log log n)

Strip [9] O(n log2 n) O(log n) – –

Theorem 3.3 O(n log n) O(log n) O(n) O(log n)

Rectangle [6] O(n log5 n) O(log2 n) – –

[9] O(n log3 n) O(log3 n) – –

[6] – – O(n log4 n) O(log4 n)

Theorem 4.10 O(n log2n) O(log2n) O(n log n) O(log n)

Halfplane [1] O(n log n) O(n0.5+ε) – –

[1] O(n log2 n) O(n0.75+ε) – –

Theorem 5.3 O(n) O(log n) O(log2 n) O(log log n)

in the model where the data points are drawn independently and uniformly from
the unit square. Unfortunately, they only gave a rectangle RCP data structure with
low average-case preprocessing time, while its average-case space cost and query
time are even higher than the worst-case counterparts of the data structure given
by [9] (in fact, its worst-case space cost is super-quadratic). In fact, in terms of
space cost and query time, no nontrivial average-case bounds were known for any
kind of query before this paper. The RCP problem for halfplane query was studied
in [1]. Two data structures were proposed. The second one, while having higher
space cost and query time than the first one, can be built more efficiently than
the first one (in O(n log2n) time versus O(n2 log2n) time). Both data structures
require (worst-case) super-linear space cost and polynomial query time. The paper
[12] studies an approximate version of the RCP problem in which the answer pair
returned is allowed to be slightly outside the query range.Under this approximation
model, efficient data structures for disk and ball queries were proposed.

• Our Contributions In this paper, we improve all the above results by giving new
RCP data structures for various query types. The improvements can be seen in
Table 1. In terms of worst-case bounds, the highlights are our rectangle RCP data
structure which simultaneously improves the two best known results (given by [6]
and [9]) and our halfplane RCP data structure which is optimal and significantly
improves the bounds in [1]. Furthermore, by applying average-case analysis to our
new data structures, we establish the first nontrivial average-case bounds for all
the query types studied. Our average-case analysis applies to datasets generated
not only in the unit square but also in an arbitrary axes-parallel rectangle. These
average-case bounds demonstrate that our new data structures might have much
better performance in practice than one can expect from the worst-case bounds. In
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addition, all of our newRCP data structures presented in Table 1 can be constructed
in near-linear worst-case time. Specifically, the quadrant, strip, and halfplane RCP
data structures can be built in O(n log2n) time, and the rectangleRCPdata structure
can be built in O(n log7n) time.

• Our TechniquesAn important notion in our techniques is that of a candidate pair,
i.e., a pair of data points that is the answer to some RCP query. Our solutions for
the quadrant and strip RCP problems use the candidate pairs to construct a planar
subdivision and take advantage of point-location techniques to answer queries. The
data structures themselves are simple, and our main technical contribution here
occurs in the average-case analysis of the data structures. The analysis requires a
nontrivial study of the expected number of candidate pairs in a random dataset,
which is of both geometric and combinatorial interest.
Our data structure for the rectangle RCP problem is more complicated; it is con-
structed by combining two simpler data structures, each ofwhich partially achieves
the desired bounds. The high-level framework of the two simpler data structures
is identical: it first “decomposes” a rectangle query into four quadrant queries and
then simplifies the problem via some geometric observations similar to those in
the standard divide-and-conquer algorithm for the classical closest-pair problem.
Also, the analysis of the data structures is technically interesting.
Our solution for the halfplane RCP problem applies the duality technique to map
the candidate pairs to wedges in the dual space and form a planar subdivision,
which allows us to solve the problem by using point-location techniques on the
subdivision, similarly to the approach for the quadrant and strip RCP problems.
However, unlike the quadrant and strip cases, to bound the complexity of the
subdivision here is much more challenging, which requires non-obvious observa-
tions made by properly using the properties of duality and the problem itself. The
average-case bounds of the data structure follow from a technical result bounding
the expected number of candidate pairs.

• Organization Section 1.2 presents the notations and preliminaries that are used
throughout the paper. Our solutions for quadrant, strip, rectangle, and halfplane
queries are presented in Sects. 2, 3, 4, and 5, respectively. In Sect. 6, we conclude
our results and give some open questions for future work. To make the paper more
readable and preserve a high-level view of the main results, some technical proofs
are deferred to Appendix A.

1.2 Notations and Preliminaries

We introduce the notations and preliminaries that are used throughout the paper.

• Query Spaces The following notations denote various query spaces (i.e., collec-
tions of ranges in R

2):Q quadrants, P strips, U 3-sided rectangles,R rectangles,
H halfplanes (quadrants, strips, 3-sided rectangles, rectangles under considera-
tion are all axes-parallel). Define Q↗ = {[x,∞) × [y,∞) : x, y ∈ R} ⊆ Q
as the sub-collection of all northeast quadrants, and define Q↖,Q↘,Q↙ sim-
ilarly. Define Pv = {[x1, x2] × R : x1, x2 ∈ R} ⊆ P as the sub-collection
of all vertical strips, and similarly Ph horizontal strips. If l is a vertical (resp.,
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horizontal) line, an l-anchored strip is a vertical (resp., horizontal) strip con-
taining l; define Pl ⊆ P as the sub-collection of all l-anchored strips. Define
U↓ = {[x1, x2] × (−∞, y] : x1, x2, y ∈ R} ⊆ U as the sub-collection of all
bottom-unbounded rectangles, and define U↑,U←,U→ similarly. If l is a non-
vertical line, denote by l↑ (resp., l↓) the halfplane above (resp., below) l; define
H↑ ⊆ H (resp.,H↓ ⊆ H) as the sub-collection of all such halfplanes.

• Candidate Pairs For a dataset S and query space X , a candidate pair of S with
respect to X refers to a pair of points in S which is the closest-pair in S ∩ X for
some X ∈ X . We denote by Φ(S,X ) the set of the candidate pairs of S with
respect toX . If l is a line, we define Φl(S,X ) ⊆ Φ(S,X ) as the subset consisting
of the candidate pairs that cross l (i.e., whose two points are on opposite sides of l).

• Data Structures For a data structure D, we denote by D(S) the data structure
instance ofD built on the dataset S. The notations Space(D(S)) andQtime(D(S))

denote the space cost and query time (i.e., the maximum time for answering a
query) of D(S), respectively.

• Random Datasets If X is a region in R
2 (or more generally in R

d ), we write
S ∝ Xn to mean that S is a dataset of n random points drawn independently
from the uniform distribution Uni(X) on X . More generally, if X1, . . . , Xn are
regions in R

2 (or more generally in R
d ), we write S ∝ ∏n

i=1 Xi to mean that S
is a dataset of n random points drawn independently from Uni(X1), . . . ,Uni(Xn)

respectively.
• Other Notions For a point a ∈ R

2, we denote by a.x and a.y the x-coordinate
and y-coordinate of a, respectively. For two points a, b ∈ R

d , we use dist(a, b)

to denote the Euclidean distance between a and b, and use [a, b] to denote the
segments connecting a and b (in R

1 this coincides with the notation for a closed
interval). We say I1, . . . , In are vertical (resp., horizontal) aligned segments in
R
2 if there exist r1, . . . , rn, α, β ∈ R such that Ii = {ri } × [α, β] (resp., Ii =

[α, β]×{ri }). The length of a pair φ = (a, b) of points is the length of the segment
[a, b]. For S ⊆ R

2 of size at least 2, the notation κ(S) denotes the closest-pair
distance of S, i.e., the length of the closest-pair in S.

The following result regarding the closest-pair distance of a random dataset will be
used to bound the expected number of candidate pairs with respect to various query
spaces. The proof of this result (and also of several other results in the remaining
sections) can be found in Appendix A.

Lemma 1.1 Let R be a rectangle of size Δ × Δ′ where Δ ≤ Δ′, and A ∝ Rm. Then

E[κ p(A)] = Θ
(
max

{
(Δ′/m2)p, (

√
ΔΔ′/m)p}) for any constant p > 1.

In particular, if R is a segment of length 
, then E[κ p(A)] = Θ((
/m2)p).

2 Quadrant Query

We consider the RCP problem for quadrant queries, i.e., theQ-RCP problem. In order
to solve theQ-RCP problem, it suffices to consider theQ↙-RCP problem. Let S ⊆ R

2
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W1

W2

W4

W3

W5

Fig. 1 A subdivision induced by successively overlaying the quadrants

be a dataset of size n. Suppose Φ(S,Q↙) = {φ1, . . . , φm} where φi = (ai , bi ), and
assume φ1, . . . , φm are sorted in increasing order of their lengths. It was shown in
[6] that m = O(n). We construct a mapping Φ(S,Q↙) → R

2 as φi �→ wi where
wi = (max{ai .x, bi .x},max{ai .y, bi .y}), andobserve that for a query range Q ∈ Q↙,
φi is contained in Q iff wi ∈ Q. Let Wi be the northeast quadrant with vertex wi .
Then we further have wi ∈ Q iff q ∈ Wi where q is the vertex of Q. As such, the
closest-pair in S ∩ Q to be reported is φη for η = min {i : q ∈ Wi }.

We create a planar subdivision Γ , by successively overlaying W1, . . . , Wm (see
Fig. 1). Note that the complexity of Γ is O(m), since overlaying each quadrant creates
at most two vertices of Γ . By the above observation, the answer for Q is φi iff q is
in the cell Wi \ ⋃i−1

j=1 W j . Thus, we can use the optimal planar point-location data
structures (e.g., [4, 7]) to solve the problem in O(m) space with O(logm) query time.
Since m = O(n), we obtain aQ-RCP data structure using O(n) space with O(log n)

query time in worst-case.
Next, we analyze the average-case performance of the above data structure. In fact,

it suffices to bound the expected number of the candidate pairs. Surprisingly, we have
the following poly-logarithmic bound.

Lemma 2.1 For a random dataset S ∝ Rn where R is an axes-parallel rectangle,
E[|Φ(S,Q)|] = O(log2n).

Using the above lemma, we can immediately conclude that our data structure
uses O(log2n) space in average-case. The average-case query time is in fact
O (E[log |Φ(S,Q)|]). Note thatE[log x] ≤ logE[x] for a positive random variable x ,
thus E[log |Φ(S,Q)|] = O(log log n).

Finally, we consider how to build the above data structure efficiently. To this end,
we need an efficient algorithm to overlay quadrants. Let W1, . . . , Wm be m northeast
quadrants, and our goal to overlay them to obtain the subdivision Γ described above.
(We can store Γ as a DCEL structure [3], for example.) We process W1, . . . , Wm in
this order. When processing Wi , we want to compute the cell Wi \ ⋃i−1

j=1 W j . To this
end, we maintain the union U of the quadrants that have been processed. Note that U
is always a staircase shape and its boundary ∂U is an orthogonal chain from top-left to
bottom-right. Therefore, we can use a (balanced) binary search tree T to maintain ∂U ,
where the nodes store the segments of ∂U (which are vertical or horizontal) in the
order they appear on ∂U .

To compute the cell Wi \ ⋃i−1
j=1 W j , we first find all the segments of ∂U that

intersect Wi , denoted by σ1, . . . , σk . Note that σ1, . . . , σk must be consecutive on ∂U ,
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and we can find them by simply searching in the BST T in O(logm + k) time. Once
σ1, . . . , σk are found, the cell Wi \ ⋃i−1

j=1 W j can be directly computed and stored in
the DCEL. After Wi is processed, we have to update ∂U in T . We delete from T the
segments among σ1, . . . , σk that are completely contained in Wi , because they are
no longer edges of ∂U . Besides, among σ1, . . . , σk , there are (at most) two segments
partially contained in Wi ; we need to modify them in T as they get changed when
we insert Wi . Furthermore, there are (at most) two new segments appearing on ∂U
due to the insertion of Wi (which correspond to a portion of ∂Wi ), and we need to
insert them into T . All of the above work can be done in O(k logm) time. Since k
is at most the number of the edges of the cell Wi \ ⋃i−1

j=1 W j and the complexity of
the final subdivision is linear in m, the overall time cost for processing W1, . . . , Wm

is O(m logm).
Using the above algorithm, if we already have the set Φ(S,Q↙) of candidate pairs

in hand, then our RCP data structure can be built in O(n log n) time. Unfortunately, it
is currently not known how to compute the candidate pairs (with respect to quadrants)
efficiently. To handle this issue, we use a result by Abam et al. [1]. Before describing
this result, we need to introduce the notion of spanners and local spanners. Let S ⊆ R

2

be a dataset and t ≥ 1 be a number. A geometric t-spanner (or t-spanner for short) of S
is a setΨ of pairs of points in S such that if we regard the points in S as vertices and the
pairs in Ψ as edges (where the weight of each edge is equal to the Euclidean distance
between the pair of points), the resulting graph GΨ satisfies dGΨ (a, b) ≤ t dist(a, b)

for all a, b ∈ S, where dGΨ (a, b) denotes the shortest-path distance between a and b
in GΨ . Let X be a query space consisting of ranges in R

2. An X -local t-spanner of S
is a setΨ of pairs of points in S such that for every X ∈ X ,ΨX is a t-spanner of S ∩ X ,
where ΨX ⊆ Ψ consists of the pairs in Ψ whose two points are both inside X . Note
that if t < 2, then a t-spanner Ψ of S must contain the closest pair of S1. Therefore,
if t < 2, then an X -local t-spanner Ψ of S must contains all candidate pairs of S with
respect to X , i.e., Φ(S,X ) ⊆ Ψ .

Exploiting the so-called semi-separated pair decomposition (SSPD), Abam et al.
[1] showed that, given a dataset S ⊆ R

2 of size n, one can compute in O(n log2n)

time a Q↙-local t-spanner Ψ of S for some t < 2 such that |Ψ | = O(n log n). As
argued above, we have Φ(S,Q↙) ⊆ Ψ . To build our RCP data structure, instead
of computing the set Φ(S,Q↙) of candidate pairs, we directly use the pairs in Ψ to
create a planar subdivision described above.

Formally, let Ψ = {φ1, . . . , φM } where φ1, . . . , φM are sorted in increasing order
of their lengths, and let W1, . . . , WM be their corresponding northeast quadrants. We
overlay W1, . . . , WM in order, and letΓ ′ be the resulting subdivision.We claim thatΓ ′
is the same as the subdivision Γ constructed using the candidate pairs in Φ(S,Q↙).
SinceΦ(S,Q↙) ⊆ Ψ , for any southwest quadrant Q ∈ Q↙, the closest-pair in S ∩ Q
is contained in Ψ , and in fact is the shortest element in Ψ that is contained in Q. It
follows that the corresponding cell of φ ∈ Ψ in Γ ′ is just the subset of R

2 consisting
of the vertices of all Q ∈ Q↙ such that the closest-pair in S ∩ Q is φ. Therefore,
the cell corresponding to any φ ∈ Ψ \ Φ(S,Q↙) in Γ ′ must be empty, because φ

1 Indeed, if (a, b) is the closest pair of S and (a, b) /∈ Ψ , then dGΨ
(a, b) ≥ 2 dist(a, b) > t dist(a, b),

because the shortest path between a and b in GΨ consists of at least two edges whose weights are at least
dist(a, b).
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is not the closest-pair in any southwest quadrant. Also, the cell corresponding to any
φ ∈ Φ(S,Q↙) in Γ ′ must be the same as the one in Γ . So we have Γ ′ = Γ . Note
that |Ψ | = O(n log n), thus the time for constructing Γ ′ is O(n log2n), which is also
the preprocessing time of our RCP data structure.

Theorem 2.2 There exists a Q-RCP data structure A such that:

– For any S ⊆ R
2 of size n,

Space(A(S)) = O(n) and Qtime(A(S)) = O(log n).

– For a random S ∝ Rn where R is the unit square or more generally an arbitrary
axes-parallel rectangle,

E[Space(A(S))] = O(log2n) and E[Qtime(A(S))] = O(log log n).

Furthermore, the above data structure can be constructed in O(n log2n) worst-case
time.

3 Strip Query

We consider the RCP problem for strip queries, i.e., the P-RCP problem. In order to
solve the P-RCP problem, it suffices to consider the Pv-RCP problem. Let S ⊆ R

2

be a dataset of size n. Suppose Φ(S,Pv) = {φ1, . . . , φm} where φi = (ai , bi ), and
assume φ1, . . . , φm are sorted in increasing order of their lengths. It was shown in
[9] that m = O(n log n). We construct a mapping Φ(S,Pv) → R

2 as φi �→ wi

where wi = (min{ai .x, bi .x},max{ai .x, bi .x}), and observe that for a query range
P = [x1, x2] × R ∈ Pv, φi is contained in P iff wi is in the southeast quadrant
[x1,∞)×(−∞, x2]. Let Wi be the northwest quadrant with vertexwi . Thenwe further
have wi ∈ [x1,∞) × (−∞, x2] iff p ∈ Wi where p = (x1, x2). As such, the closest-
pair in S ∩ P is φη for η = min {i : p ∈ Wi }. Thus, as in Sect. 2, we can successively
overlay W1, . . . , Wm to create a planar subdivision Γ , and use point-location to solve
the problem in O(m) space and O(logm) query time. Since m = O(n log n) here,
we obtain a P-RCP data structure using O(n log n) space with O(log n) query time
in worst-case.

Next, we analyze the average-case performance of our data structure. Again, it
suffices to bound the expected number of the candidate pairs. For later use, we study
here a more general case in which the candidate pairs are considered with respect to
3-sided rectangle queries.

Lemma 3.1 Let S ∝ ∏n
i=1 Ii where I1, . . . , In are distinct vertical (resp., horizontal)

aligned segments sorted from left to right (resp., from bottom to top). Suppose ai ∈ S
is the point drawn on Ii . Then for i, j ∈ {1, . . . , n} with i < j and X ∈ {U↓,U↑}
(resp., X ∈ {U←,U→}),

Pr [(ai , a j ) ∈ Φ(S,X )] = O

(
log ( j − i)

( j − i)2

)

.
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From the above lemma, a direct calculation gives us the following corollary.

Corollary 3.2 For a random dataset S ∝ Rn where R is an axes-parallel rectangle,
E[|Φ(S,U)|] = Θ(n) and E[|Φ(S,P)|] = Θ(n).

Proof Without loss of generality, assume R = [0, 1] × [0,Δ]. Since Φ(S,P) ⊆
Φ(S,U) for any S, it suffices to show E[|Φ(S,P)|] = Ω(n) and E[|Φ(S,U)|] =
O(n). The former is clear, since every pair of x-adjacent or y-adjacent points in S is a
candidate pair with respect toP . The latter can be shown using Lemma 3.1 as follows.
We only need to bound E[|Φ(S,U↓)|]. We first show that if S ∝ ∏n

i=1 Ii where
I1, . . . , In are vertical aligned segments sorted from left to right, thenE[|Φ(S,U↓)|] =
O(n). In fact, this follows directly from Lemma 3.1. Let ai be the random point drawn
on Ii . Then

E[|Φ(S,U↓)|] =
n−1∑

i=1

n∑

j=i+1

Pr [(ai , a j ) ∈ Φ(S,U↓)].

We plug in the bound Pr [(ai , a j ) ∈ Φ(S,U↓)] = O(log( j − i)/( j − i)2) shown
in Lemma 3.1 to the above equation. Noting the fact that

∑∞
t=1 log t/t2 = O(1),

a direct calculation then gives us E[|Φ(S,U↓)|] = O(n). Now assume S ∝ Rn .
Define a random multi-set X = {a.x : a ∈ S}, which consists of the x-coordinates
of the n random points in S. We shall show that for all x1, . . . , xn ∈ [0, 1] such that
x1 < . . . < xn ,

E
[|Φ(S,U↓)|∣∣X = {x1, . . . , xn}] = O(n), (1)

which implies that E[|Φ(S,U↓)|] = O(n), because the random points in S have
distinct x-coordinates with probability 1. Let Ii = xi × [0,Δ] for i ∈ {1, . . . , n},
then I1, . . . , In are vertical aligned segments sorted from left to right. Note that,
under the condition X = {x1, . . . , xn}, the n random points in S can be viewed as
independently drawn from the uniform distributions on I1, . . . , In , respectively. Thus,
(1) follows directly from our previous argument for the case S ∝ ∏n

i=1 Ii . As a result,
E[|Φ(S,U↓)|] = O(n). ��
Using the above result and our previous data structure, we immediately conclude that
the average-case space cost of our P-RCP data structure is O(n). To build this data
structure, we use the same method as in Sect. 2. Abam et al. [1] showed that one can
compute in O(n log2n) time a Pv-local t-spanner Ψ of S for some t < 2 such that
|Ψ | = O(n log n); see Sect. 2 for the definition of local spanners. As argued in Sect. 2,
we have Φ(S,Pv) ⊆ Ψ . We then overlay the corresponding northeast quadrants of
the pairs in Ψ to construct a planar subdivision Γ ′. This can be done in O(n log2n)

using the algorithm in Sect. 2 for overlaying quadrants. Using the same argument
as in Sect. 2, we see that Γ ′ is the same as the subdivision Γ constructed using the
candidate pairs inΦ(S,Pv) and hence can be used to answer RCP queries. Therefore,
the overall preprocessing time of our P-RCP data structure is O(n log2n).
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Theorem 3.3 There exists a P-RCP data structure B such that:

– For any S ⊆ R
2 of size n,

Space(B(S)) = O(n log n) and Qtime(B(S)) = O(log n).

– For a random S ∝ Rn where R is the unit square or more generally an arbitrary
axes-parallel rectangle,

E[Space(B(S))] = O(n) and E[Qtime(B(S))] = O(log n).

Furthermore, the above data structure can be constructed in O(n log2n) worst-case
time.

4 Rectangle Query

We consider the RCP problem for rectangle queries, i.e., theR-RCP problem. Unlike
the data structures presented in the previous sections, our R-RCP data structure is
somewhat complicated, so we give an brief overview below before discussing the
details.

Overview. Interestingly, our final data structure for theR-RCP problem is a combina-
tion of two simplerR-RCP data structures, each ofwhich partially achieves the desired
bounds. Specifically, the first data structure has the desired worst-case space cost and
query time, while the second data structure has the desired average-case space cost
and has an even better (worst-case) query time of O(log n). By properly combining
the two data structures (Sect. 4.4), we obtain our final R-RCP data structure, which
achieves simultaneously the desired worst-case and average-case bounds. Both of the
simpler data structures are based on range trees [3] and our results for quadrant and
strip RCP problems presented in the previous sections.

In what follows, we first describe the common part of the two simplerR-RCP data
structures. Let S ⊆ R

2 be a dataset of size n. The common component of our two data
structures is a standard 2D range tree built on S [3]. The main tree (or primary tree)
T is a range tree storing at its leaves the x-coordinates of the points in S. Each node
u ∈ T corresponds to a subset S(u) of x-consecutive points in S, called the canonical
subset of u. At u, there is an associated secondary tree Tu, which is a range tree whose
leaves store the y-coordinates of the points in S(u). With an abuse of notation, for each
node v ∈ Tu, we still use S(v) to denote the canonical subset of v, which is a subset of
y-consecutive points in S(u). As in [6], for each (non-leaf) primary node u ∈ T , we
fix a vertical line lu such that the points in the canonical subset of the left (resp., right)
child of u are to the left (resp., right) of lu. Similarly, for each (non-leaf) secondary
node v, we fix a horizontal line lv such that the points in the canonical subset of the
left (resp., right) child of v are above (resp., below) lv. Let v ∈ Tu be a secondary
node. Then at v we have two lines lv and lu, which partition R

2 into four quadrants.
We denote by S1(v), . . . , S4(v) the subsets of S(v) contained in these quadrants; see
Fig. 2 for the correspondence.
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S(v)

lu

lv

S3(v) S4(v)

S1(v) S2(v)

Fig. 2 Illustrating the subsets S1(v), . . . , S4(v)

lu

lv
R

R3 R4

R1 R2

Fig. 3 Illustrating the rectangles R1, . . . , R4

In order to solve the problem, we need to store some additional data structures
(called sub-structures) at the nodes of the tree. At each secondary node v, we store
four Q-RCP data structures A(S1(v)), . . . ,A(S4(v)) (Theorem 2.2).

Now let us explain what we can do by using this 2D range tree (with the sub-
structures). Let R = [x1, x2] × [y1, y2] ∈ R be a query rectangle. We first find in T
the splitting node u ∈ T corresponding to the range [x1, x2], which is by definition the
LCA of all the leaves whose corresponding points are in [x1, x2]×R. Then we find in
Tu the splitting node v ∈ Tu corresponding to the range [y1, y2]. If either of the splitting
nodes does not exist or is a leaf node, then |S ∩ R| ≤ 1 and nothing should be reported.
So assume u and v are non-leaf nodes. By the property of splitting node, we have
S ∩ R = S(v)∩ R, and the lines lu and lv both intersect R. Thus, lu and lv decompose
R into four smaller rectangles R1, . . . , R4; see Fig. 3 for the correspondence. By
construction, we have S(v) ∩ Ri = Si (v) ∩ Ri . In order to find the closest-pair in
S ∩ R, we first compute the closest-pair in S ∩ Ri for all i ∈ {1, . . . , 4}. This can
be done by querying the sub-structures stored at v. Indeed, S ∩ Ri = S(v) ∩ Ri =
Si (v) ∩ Ri = Si (v) ∩ Qi , where Qi is the quadrant obtained by removing the two
sides of Ri that coincide with lu and lv. Therefore, we can queryA(Si (v)) with Qi to
find the closest-pair in S ∩ Ri . Once the four closest-pairs are computed, we take the
shortest one (i.e., the one of the smallest length) among them and denote it by φ.

Clearly, φ is not necessarily the closest-pair in S∩ R as the two points in the closest-
pair may belong to different Ri ’s. However, as we will see, with φ in hand, finding the
closest-pair in S ∩ R becomes easier. Suppose lu : x = α and lv : y = β, where x1 ≤
α ≤ x2 and y1 ≤ β ≤ y2. Let δ be the length of φ. We define Pα = [α − δ, α + δ]×R

(resp., Pβ = R × [β − δ, β + δ]) and Rα = R ∩ Pα (resp., Rβ = R ∩ Pβ ); see Fig. 4.
We have the following key observation.

Lemma 4.1 The closest-pair in S ∩ R is the shortest one among {φ, φα, φβ}, where
φα (resp., φβ ) is the closest-pair in S ∩ Rα (resp., S ∩ Rβ ).
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lu

lv

δ
δ

Rβ

lu

lv

δ δ

Rα

Fig. 4 Illustrating the rectangles Rα and Rβ

Proof Letφ∗ = (a∗, b∗) be the closest-pair in S∩R. Sinceφ, φα, φβ are all point-pairs
in S ∩ R, it suffices to show that φ∗ ∈ {φ, φα, φβ}. If φ∗ = φ, we are done. So assume
φ∗ �= φ. Then a∗ and b∗ must be contained in different Ri ’s. It follows that the segment
[a∗, b∗] intersects either lu or lv. Note that the length of φ∗ is at most δ (recall that δ

is the length of φ), which implies |a∗.x − b∗.x | ≤ δ and |a∗.y − b∗.y| ≤ δ. If [a∗, b∗]
intersects lu, then a∗, b∗ ∈ Pα (because |a∗.x − b∗.x | < δ). Thus, a∗, b∗ ∈ Rα

and φ∗ = φα . Similarly, if [a∗, b∗] intersects lv, we have φ∗ = φβ . As a result,
φ∗ ∈ {φ, φα, φβ}. ��
Due to the above lemma, it now suffices to computeφα andφβ . Note that Rα and Rβ are
rectangles, so computing φα and φβ still requires rectangle RCP queries. Fortunately,
there are some additional properties which make it easy to search for the closest-pairs
in S ∩ Rα and S ∩ Rβ . For a set A of points in R

2 and a, b ∈ A, we define the x-gap
(resp., y-gap) between a and b in A as the number of the points in A \ {a, b} whose
x-coordinates (resp., y-coordinates) are in between a.x and b.x (resp., a.y and b.y).

Lemma 4.2 There exists a constant integer k such that the y-gap (resp., x-gap)between
the two points of φα (resp., φβ ) in S ∩ Rα (resp., S ∩ Rβ ) is at most k.

Proof We only need to consider φα . Let k = 100. The reason for this choice will
become clear shortly. Suppose φα = (a, b). We denote by w the left-right width of
Rα , i.e., the distance between the left and right boundaries of Rα . By the construction of
Rα , we havew ≤ 2δ. We consider two cases: |a.y −b.y| ≥ 2w and |a.y −b.y| < 2w.
Suppose |a.y − b.y| ≥ 2w. Assume there are more than k points in (S ∩ Rα) \ {a, b}
whose y-coordinates are in between a.y and b.y. Then by the pigeonhole principle, we
canfind, among these points, twopointsa′ andb′ such that |a′.y−b′.y| ≤ |a.y−b.y|/k.
Since a′, b′ ∈ Rα , we have |a′.x − b′.x | ≤ w ≤ |a.y − b.y|/2. It follows that

dist(a′, b′) ≤ |a′.x − b′.x | + |a′.y − b′.y| < |a.y − b.y| ≤ dist(a, b),

which contradicts the fact that φα is the closest-pair in S ∩ Rα . Next, suppose |a.y −
b.y| < 2w. Then |a.y−b.y| < 4δ. Consider the rectangle R∗ = Rα∩(R×[a.y, b.y]).
Note that (S ∩ R∗) \ {a, b} consists of exactly the points in (S ∩ Rα) \ {a, b} whose
y-coordinates are in between a.y and b.y. Therefore, it suffices to show |S ∩ R∗| ≤ k.
Let R∗

i = R∗ ∩ Ri for i ∈ {1, . . . , 4}. Since R∗
i ⊆ Ri , the pairwise distances of

the points in S ∩ R∗
i are at least δ. Furthermore, the left-right width of each R∗

i is at
most δ and the top-bottom width of each R∗

i is at most |a.y − b.y| (which is smaller
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than 4δ). Therefore, a simple argument using the pigeonhole principle shows that
|S ∩ R∗

i | ≤ 16 < 25 = k/4. As such, |S ∩ R∗| ≤ k. ��
We shall use the above lemma to help compute φα and φβ . At this point, our two data
structures diverge.

4.1 Preliminary: Extreme Point Data Structures

Before presenting our results, we introduce the so-called top/bottom extreme point
(TBEP) and left/right extreme point (LREP) data structures. For a query space X
and a constant integer k, an (X , k)-TBEP (resp. (X , k)-LREP) data structure stores
a given set S of points in R

2 and can report the k topmost/bottommost (resp., left-
most/rightmost) points in S ∩ X for a query range X ∈ X .

Lemma 4.3 Let k be a constant integer. There exists a (Pv, k)-TBEP data structure
Kv such that for any S ⊆ R

2 of size n, Space(Kv(S)) = O(n) and Qtime(Kv(S)) =
O(log n). Furthermore, the above data structure can be constructed in O(n log n)

worst-case time. Symmetrically, there also exists a (Ph, k)-LREP data structure Kh

satisfying the same bounds.

Proof Let S ⊆ R
2 be a dataset of size n. The (Pv, k)-TBEP data structure instance

Kv(S) is a standard 1D range tree T built on the x-coordinates of the points in S. By
the construction of a range tree, each node u ∈ T corresponds to a subset S(u) of
x-consecutive points in S, called the canonical subset of u. The leaves of T one-to-
one correspond to the points in S. At each node u ∈ T , we store the k topmost and k
bottommost points in S(u); we denote the set of these 2k points by K (u). The overall
space cost of the range tree (with the stored points) is clearly O(n), as k is a constant.

To answer a query P = [x1, x2]×R ∈ Pv, we first find the t = O(log n) canonical
nodes u1, . . . ,ut ∈ T corresponding to the range [x1, x2]. This is a standard range-
tree operation, which can be done in O(log n) time. We compute K = ⋃t

i=1 K (ui ) in
O(log n) time. We then use selection to find the k topmost and k bottommost points
in K ; this can be done in O(log n) time since |K | = 2kt = O(log n). These 2k points
are just the k topmost and k bottommost points in S ∩ P .

The above data structure can be easily built in O(n log n) time, because finding
K (u) for each node u ∈ T takes |S(u)| time (via selection). The (Ph, k)-LREP data
structure Kh is constructed in a symmetric way. ��
Lemma 4.4 Let l be a vertical (resp., horizontal) line and k be a constant integer.
There exists a (Pl , k)-TBEP (resp., (Pl , k)-LREP) data structure Kl such that for S ∝∏n

i=1 Ii where I1, . . . , In are distinct vertical (resp., horizontal) aligned segments,
E[Space(Kl(S))] = O(log n) and E[Qtime(Kl(S))] = O(log log n). Furthermore,
the above data structure can be built in O(n log n) worst-case time.

4.2 First Data Structure

We now introduce our first R-RCP data structure, which achieves the desired worst-
case bounds. Let k be the constant integer in Lemma 4.2. In our first data structure,
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besides the 2D range tree presented before, we build additionally two 1D range treesT ′
and T ′′ on S, where T ′ (resp., T ′′) is built on y-coordinates (resp., x-coordinates). For
u′ ∈ T ′ (resp.,u′′ ∈ T ′′),we still use S(u′) (resp., S(u′′)) to denote the canonical subset
ofu′ (resp.,u′′ ∈ T ′′). At each nodeu′ ∈ T ′, we store aP-RCPdata structureB(S(u′))
(Theorem 3.3) and a (Pv, k)-TBEP data structure Kv(S(u′)) (Lemma 4.3). Similarly,
at each node u′′ ∈ T ′′, we store a P-RCP data structure B(S(u′′)) (Theorem 3.3) and
a (Ph, k)-LREP data structure Kh(S(u′′)) (Lemma 4.3).

We now explain how to compute φα and φβ . Suppose Rα = [xα, x ′
α] × [yα, y′

α].
Let Px = [xα, x ′

α] × R and Py = R × [yα, y′
α]. To compute φα , we first find in

T ′ the t = O(log n) canonical nodes u′
1, . . . ,u

′
t ∈ T ′ corresponding to the range

[yα, y′
α]. Then ⋃t

i=1 S(u′
i ) = S ∩ Py , and each S(u′

i ) is a set of y-consecutive
points in S ∩ Py . Furthermore, S ∩ Rα = ⋃t

i=1 S(u′
i ) ∩ Px . We query the sub-

structures B(S(u′
1)), . . . ,B(S(u′

t )) with Px to find the closest-pairs φ1, . . . , φt in
S(v1) ∩ Px , . . . , S(vt ) ∩ Px , respectively. We also query Kv(S(u′

1)), . . . ,Kv(S(u′
t ))

with Px to obtain the k topmost and bottommost points in S(u′
1) ∩ P, . . . , S(u′

t ) ∩ P ,
respectively; we denote by K the set of the 2kt reported points. Then we find the
closest-pair φK in K using the standard divide-and-conquer algorithm.

We claim that φα is the shortest one among {φ1, . . . , φt , φK }. Suppose φα = (a, b).
If the two points of φα are both contained in some S(u′

i ), then clearly φα = φi .
Otherwise, by Lemma 4.2 and the choice of k, the two points of φα must belong to
K and hence φα = φK . It follows that φα ∈ {φ1, . . . , φt , φK }. Furthermore, because
the pairs φ1, . . . , φt , φK are all contained in Rα , φα must be the shortest one among
{φ1, . . . , φt , φK }. Therefore, with φ1, . . . , φt , φK in hand, φα can be easily computed.
The pair φβ is computed symmetrically using T ′′. Finally, taking the shortest one
among {φ, φα, φβ}, the query R can be answered.

The 2D range tree together with the two 1D range trees T ′ and T ′′ forms our first
R-RCP data structure. A straightforward analysis gives us the worst-case performance
of this data structure.

Theorem 4.5 There exists an R-RCP data structure D1 such that for any S ⊆ R
2 of

size n, Space(D1(S)) = O(n log2n) and Qtime(D1(S)) = O(log2n). Furthermore,
the above data structure can be constructed in O(n log4n) worst-case time.

Proof We first analyze the space cost. Let v be a secondary node of the 2D range
tree. By Theorem 2.2, the space cost of the sub-structures stored at v is O(|S(v)|).
Therefore, for a primary node u ∈ T of the 2D range tree, the space cost of Tu
(with the sub-structures) is O (|S(u)| log |S(u)|). As a result, the entire space cost of
the 2D range tree is O(n log2n). Let u′ ∈ T ′ be a node of the 1D range tree T ′.
By Theorem 3.3 and Lemma 4.3, the space cost of the sub-structures stored at u′ is
O (|S(u′)| log |S(u′)|). As such, the entire space cost of T ′ is O(n log2n). For the same
reason, the space cost of T ′′ is O(n log2n), and hence the entire space cost of D1 is
O(n log2n).

Next, we analyze the query time. When answering a query, we need to compute the
pairs φ, φα, φβ in Lemma 4.1. To compute φ, we first find the splitting nodes u ∈ T
and v ∈ Tu. This is done by a top-down walk in T and Tu, which takes O(log n)

time. Then we query the sub-structures A(S1(v)), . . . ,A(S4(v)), which can be done
in O(log n) time by Theorem 2.2. Thus, the time for computing φ is O(log n). To
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computeφα ,wefirst find the t = O(log n) canonical nodesu′
1, . . . ,u

′
t ∈ T ′,which can

be done in O(log n) time. Then we query the sub-structures B(S(u′
1)), . . . ,B(S(u′

t ))

and Kv(S(u′
1)), . . . ,Kv(S(u′

t )) to obtain the pairs φ1, . . . , φt and the set K of 2kt
points. By Theorem 3.3 and Lemma 4.3, this step can be done in O(log2n) time.
Finally, we compute the closest-pair φK in K using the standard divide-and-conquer
algorithm, which takes O(log n log log n) time since |K | = O(log n). Thus, the time
for computing φα is O(log2n), so is the time for computing φβ . As a result, the overall
query time is O(log2n).

Finally, we analyze the preprocessing time. By Theorem 2.2, to build the sub-
structures stored at each secondary node v of the 2D range tree takes
O (|S(v)| log2|S(v)|) time. Therefore, the time for building the 2D range tree is
O(n log4n). By Theorem 3.3 and Lemma 4.3, to build the sub-structures at each
node u of T ′ or T ′′ takes O (|S(u)| log2|S(u)|) time. Therefore, the time for building
the two 1D range trees T ′ and T ′′ is O(n log3n). As a result, the overall preprocessing
time is O(n log4n). ��
Our first data structure itself already achieves the desired worst-case bounds, which
simultaneously improves the results given in [6, 9].

4.3 Second Data Structure

We now introduce our second R-RCP data structure, which has the desired average-
case space cost and an O(log n) query time (even inworst-case). Furthermore, this data
structure can be constructed efficiently in average-case. In our second data structure,
we only use the 2D range tree presented before, but we need some additional sub-
structures stored at each secondary node. Let k be the constant integer in Lemma 4.2.
Define S�(v) = S3(v) ∪ S4(v) (resp., S�(v) = S1(v) ∪ S2(v)) as the subset of S(v)
consisting of the points above (resp., below) lv. Similarly, define S�(v) and S�(v)
as the subsets to the left and right of lu, respectively. Let v ∈ Tu be a secondary
node. Besides A(S1(v)), . . . ,A(S4(v)), we store at v two (Plu , k)-TBEP data struc-
tures Klu(S�(v)),Klu(S�(v)) (Lemma 4.4) and two (Plv , k)-LREP data structures
Klv(S�(v)),Klv(S�(v)) (Lemma 4.4).

Furthermore, we need a new kind of sub-structures called range shortest-segment
(RSS) data structures. For a query space X , an X -RSS data structure stores a given
set of segments in R

2 and can report the shortest segment contained in a query range
X ∈ X . For the case X = U , we have the following RSS data structure.

Lemma 4.6 There exists a U-RSS data structure C such that for any set G of m seg-
ments, Space(C(G)) = O(m2) and Qtime(C(G)) = O(logm). Furthermore, the
above data structure can be built in O(m2 logm) worst-case time.

Proof It suffices to design the U↓-RSS data structure. We first notice the existence of
a Pv-RSS data structure using O(m) space with O(logm) query time, which can be
built in O(m logm) time. Indeed, by applying the method in Sect. 3, we immediately
obtain this data structure (a segment here corresponds to a candidate pair in Sect. 3).

With this Pv-RSS data structure in hand, it is quite straightforward to design the
desired U↓-RSS data structure. Let G = {σ1, . . . , σm} be a set of m segments where
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σi = [ai , bi ]. Define yi = max {ai .y, bi .y} and assume y1 ≤ . . . ≤ ym . Now build
a (balanced) binary search tree with keys y1, . . . , ym . We denote by ui the node
corresponding to yi . At ui , we build a Pv-RSS data structure described above built on
the subset Gi = {σ1, . . . , σi } ⊆ G. The overall space cost is clearly O(m2), and the
time for constructing the data structure is O(m2 logm).

To answer a queryU = [x1, x2]×(−∞, y] ∈ U↓, we first use the binary search tree
to find the maximum yi that is less than or equal to y. This can be done in O(logm)

time. Let P = [x1, x2] × R ∈ Pv. Note that a segment σ ∈ G is contained in U iff
σ ∈ Gi and σ is contained in P . Thus, we can find the desired segment by querying
the Pv-RSS data structure stored at ui with P , which takes O(logm) time. ��

We now define Φ�(v) = Φlu(S�(v),U↓), Φ�(v) = Φlu(S�(v),U↑), Φ�(v) =
Φlv(S�(v),U→), and Φ�(v) = Φlv(S�(v),U←). We can view Φ�(v),Φ�(v),
Φ�(v),Φ�(v) as four sets of segments by identifying each point-pair (a, b) as a
segment [a, b]. Then we apply Lemma 4.6 to build and store at v four U-RSS data
structures C(Φ�(v)), C(Φ�(v)), C(Φ�(v)), C(Φ�(v)).

We now explain how to compute φα and φβ . Let us consider φα . Recall that φα is
the closest-pair in S∩ Rα , i.e., in S(v)∩ Rα . Let P be the lu-anchored strip obtained by
removing the top/bottom bounding line of Rα . If the two points of φα are on opposite
sides of lv, then by Lemma 4.2 its two points must be among the k bottommost points
in S�(v) ∩ P and the k topmost points in S�(v) ∩ P respectively. Using Klu(S�(v))
and Klu(S�(v)), we report these 2k points, and compute the closest-pair among them
by brute-force. If the two points of φα are on the same side of lv, then they are both
contained in either S�(v) or S�(v). So it suffices to compute the closest-pairs in
S�(v) ∩ Rα and S�(v) ∩ Rα . Without loss of generality, we only need to consider
the closest-pair in S�(v) ∩ Rα . We denote by U the 3-sided rectangle obtained by
removing the bottom boundary of Rα , and by Q1 (resp., Q2) the quadrant obtained by
removing the right (resp., left) boundary ofU . We queryA(S1(v))with Q1,A(S2(v))
with Q2, and C(Φ�(v)) with U . Clearly, the shortest one among the three answers
is the closest-pair in S�(v) ∩ Rα . Indeed, the three answers are all point-pairs in
S�(v) ∩ Rα . If the two points of the closest-pair in S�(v) ∩ Rα are both to the left
(resp., right) of lu, A(S1(v)) (resp., A(S2(v))) reports it; otherwise, the closest-pair
crosses lu, and C(Φ�(v)) reports it. Now we see how to compute φα , and φβ can
be computed symmetrically. Finally, taking the shortest one among {φ, φα, φβ}, the
query R can be answered.

A straightforward analysis shows that the overall query time is O(log n) even in
worst-case. The worst-case space cost is not near-linear, as the U-RSS data struc-
ture C may occupy quadratic space by Lemma 4.6. Interestingly, we can show that
the average-case space cost is in fact O(n log n). The crucial thing is to bound the
average-case space of the sub-structures stored at the secondary nodes. The intuition
for bounding the average-case space of the Q-RCP and TBEP/LREP sub-structures
comes directly from the average-case performance of ourQ-RCP data structure (The-
orem 2.2) and TBEP/LREP data structure (Lemma 4.4).

However, to bound the average-case space of the U-RSS sub-structures is much
more difficult. By our construction, the segments stored in these sub-structures are
3-sided candidate pairs that cross a line. As such, we have to study the expected num-
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ber of such candidate pairs in a random dataset. To this end, we recall Lemma 3.1.
Let l be a vertical line, and S ∝ ∏n

i=1 Ii be a random dataset drawn from verti-
cal aligned segments I1, . . . , In as in Lemma 3.1. Suppose we build a U-RSS data
structure C(Φ) on Φ = Φl(S,U↓). Using Lemma 3.1, a direct calculation gives
us E[|Φl(S,U↓)|] = O(log2n). Unfortunately, this is not sufficient for bounding
the average-case space of C(Φ), because E[Space(C(Φ))] = O (E[|Φl(S,U↓)|2])
and in general E[|Φl(S,U↓)|2] �= E

2[|Φl(S,U↓)|]. Therefore, we need a bound for
E[|Φl(S,U↓)|2], which can also be obtained using Lemma 3.1, but requires nontrivial
work.

Lemma 4.7 Let l be a vertical (resp., horizontal) line and S ∝ ∏n
i=1 Ii where

I1, . . . , In are distinct vertical (resp., horizontal) aligned segments. Then for X ∈
{U↓,U↑} (resp.,X ∈ {U←,U→}), E[|Φl(S,X )|] = O(log2n) and E[|Φl(S,X )|2] =
O(log4n).

With the above lemma in hand, we are ready to bound the average-case space cost of
our second data structure. Before this, let us first consider the preprocessing of this
data structure. We are not able to bound the worst-case preprocessing time (as the
worst-case space cost of the data structure is not well-bounded). Therefore, what we
want here is a preprocessing algorithm with near-linear average-case running time.
The 2D range tree itself and itsQ-RCP sub-structures can be built in the sameway as in
our first data structure using O(n log4n) worst time. The TBEP/LREP sub-structures
on each secondary node v can be built in O (|S(v)| log |S(v)|) time by Lemma 4.4;
hence the overall time cost for this part is O(n log3n). It suffices to consider theU-RSS
sub-structures. The difficulty here is how to find efficiently the 3-sided candidate pairs
that cross a line; as long as we have these candidate pairs in hand, the U-RSS data
structure can be built in O(m2 logm) time by Lemma 4.6 (where m is the number of
the pairs).

Lemma 4.8 Let l be a vertical (resp., horizontal) line and X ∈ {U↓,U↑} (resp., X ∈
{U←,U→}). Then there exists an algorithm computing Φl(S,X ) for an input dataset
S ⊆ R

2 which runs in O(n log4n) average-case time for a random S ∝ ∏n
i=1 Ii

where I1, . . . , In are distinct vertical (resp., horizontal) aligned segments. Therefore,
one can construct the U-RSS data structure C(Φl(S,X )) described in Lemma 4.6 in
O(n log4n) average-case time for a random S ∝ ∏n

i=1 Ii .

Proof It suffices to consider the case in which l is a vertical line. SupposeX = U↓. Let
S ⊆ R

2 be a dataset of size n. We compute Φl(S,U↓) as follows. First, we compute
the rectangle candidate pairs Φ(S,R). As observed in [6], Φ(S,R) can be computed
in O(n log n + Δ) time where Δ = |Φ(S,R)|. Note that Φl(S,U↓) ⊆ Φ(S,U↓) ⊆
Φ(S,R).

To further compute Φ(S,U↓) from Φ(S,R), we build an R-RCP data struc-
ture D1(S) as described in Theorem 4.5, which takes O(n log4n) time. For
each φ = (a, b) ∈ Φ(S,R), let Uφ = [min {a.x, b.x},max {a.x, b.x}] ×
(−∞,max {a.y, b.y}] ∈ U↓ be the smallest bottom-unbounded 3-sided rectangle
that contains φ. Clearly, φ ∈ Φl(S,U↓) iff φ crosses l and is the closest-pair in
S ∩ Uφ . Therefore, for each φ ∈ Φ(S,R) that crosses l, we can queryD1(S) with Uφ

(note that an R-RCP data structure can also answer 3-sided rectangle queries) to
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check if φ ∈ Φl(S,U↓). Since the query time of D1(S) is O(log2n), we can com-
pute Φl(S,U↓) in O(Δ log2n) time after D1(S) is built. Therefore, the total time for
computing Φl(S,U↓) is O (n log4n + Δ log2n).

Gupta et al. [6] proved that E[Δ] = O(n log n) when S is generated uniformly
and independently from the unit square. Although S ∝ ∏n

i=1 Ii in our setting, the
same proof actually results in the same bound, i.e., E[Δ] = O(n log n). As such, our
algorithm for computing Φl(S,U↓) takes O(n log4n) average-case time when S ∝∏n

i=1 Ii . To further build the data structure C(Φl(S,X )), we apply Lemma 4.6, which
takes O(m2 logm) time where m = |Φl(S,X )|. Lemma 4.7 shows that E[m2] =
O(log4n), which implies E[m2 logm] = O(log5n) because the maximum possible
value of the random variable m is bounded by O(n2). Therefore, C(Φl(S,X )) can be
constructed in O(n log4n) average-case time when S ∝ ∏n

i=1 Ii , including the time
for computing Φl(S,U↓). ��
Now we are ready to prove the performance of our second data structure.

Theorem 4.9 There exists an R-RCP data structure D2 such that:

– For any S ⊆ R
2 of size n, Qtime(D2(S)) = O(log n).

– For a random S ∝ Rn where R is the unit square or more generally an arbitrary
axes-parallel rectangle, E[Space(D2(S))] = O(n log n).

Furthermore, the above data structure can be constructed in O(n log6n) average-case
time.

4.4 Combining the Two Data Structures

We now combine the two data structures D1 (Theorem 4.5) and D2 (Theorem 4.9)
to obtain a single data structure D that achieves the desired worst-case and average-
case bounds simultaneously (and can be constructed in near-linear time). For a dataset
S ⊆ R

2 of size n, if Space(D2(S)) ≥ n log2n or the time for constructing D2(S)

(using Theorem 4.9) is greater than n log7n, we set D(S) = D1(S), otherwise we set
D(S) = D2(S). The reason for the choice of the thresholds n log2n and n log7n will
be clear shortly (in the proof of Theorem 4.10). The worst-case bounds of D follow
directly, while to see the average-case bounds of D requires a careful analysis using
Markov’s inequality.

Theorem 4.10 There exists an R-RCP data structure D such that:

– For any S ⊆ R
2 of size n,

Space(D(S)) = O(n log2n) and Qtime(D(S)) = O(log2n).

– For a random S ∝ Rn where R is the unit square or more generally an arbitrary
axes-parallel rectangle,

E[Space(D(S))] = O(n log n) and E[Qtime(D(S))] = O(log n).

Furthermore, the above data structure can be constructed in O(n log7n) worst-case
time.
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Proof As mentioned above, our data structure D is obtained by combining D1
(Theorem 4.5) and D2 (Theorem 4.9) as follows. For any S ⊆ R

2 of size n, if
Space(D2(S)) ≥ n log2n or the time for constructing D2(S) (using Theorem 4.9)
is greater than n log7n, we set D(S) = D1(S), otherwise we set D(S) = D2(S). (The
reason for choosing n log7n will be clear at the end of the proof.) We claim thatD has
the desired perfomance.

Wefirst consider the space cost andquery time.Let S ⊆ R
2 be a dataset of sizen. It is

clear from the construction that Space(D(S)) = O(n log2n). Also, Qtime(D(S)) =
O(log2n), since Qtime(D1(S)) = O(log2n) and Qtime(D2(S)) = O(log n). To
analyze the average-case space and query time of D, let S ∝ Rn for an axes-parallel
rectangle R. Define E as the event Space(D2(S)) ≥ n log2n and E ′ as the event that the
time for constructing D2(S) (using Theorem 4.9) is greater than n log7n. Let ¬E and
¬E ′ be the complement events of E and E ′, respectively. Since E[Space(D2(S))] =
O(n log n), we have Pr[E] = O(1/ log n) by Markov’s inequality. Similarly, since
the average-case preprocessing time of D2 is O(n log6n), we also have Pr[E ′] =
O(1/ log n) by Markov’s inequality. Therefore, Pr[E ′′] = O(1/ log n) for E ′′ =
E ∨ E ′.

To bound the average-case space cost, we observe

E[Space(D(S))] = Pr[E ′′] · E[Space(D1(S))| E ′′]
+ Pr[¬E ′′] · E[Space(D2(S))|¬E ′′].

Note that Pr[E ′′] · E[Space(D1(S))| E ′′] = O(n log n), since Space(D1(S)) =
O(n log2n) and Pr[E ′′] = O(1/ log n). Also, Pr[¬E ′′] · E[Space(D2(S))|¬E ′′] ≤
E[Space(D2(S))] = O(n log n). Thus, E[Space(D(S))] = O(n log n). To bound the
average-case query time, let Ti be the worst-case query time of Di built on a dataset
of size n, for i ∈ {1, 2}. Then E[Qtime(D(S))] ≤ Pr[E ′′] · T1 + Pr[¬E ′′] · T2. Since
T1 = O(log2n), T2 = O(log n), Pr[E] = O(1/ log n), we have E[Qtime(D(S))] =
O(log n).

Finally, we consider how to construct D(S) in O(n log7n) time for a given dataset
S ⊆ R

2 of size n. We first try to build D2(S) using the algorithm in Theorem 4.9.
We run the algorithm for n log7n time units. If D2(S) is not successfully constructed
in such amount of time, we terminate the algorithm and build D1(S) in O(n log4n)

time using Theorem 4.5, since we have D(S) = D1(S) in this case. Assume D2(S) is
successfully constructed in n log7n time. We then check if Space(D2(S)) ≤ n log2n.
If so, D(S) = D2(S) and we are done. Otherwise, we have D(S) = D1(S), and thus
we build D1(S) in O(n log4n) time. By the above argument, we can construct D(S)

in O(n log7n) worst-case time. ��

5 Halfplane Query

We consider the RCP problem for halfplane queries, i.e., theH-RCP problem. In order
to solve theH-RCP problem, it suffices to consider theH↑-RCP problem. Let S ⊆ R

2

be the dataset of size n. Before discussing the details, we first give an overview of our
method.
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Fig. 5 Illustrating the upward-open wedge Wi

Overview.Similar towhatwe did for the quadrant and stripRCPproblems,we consider
candidate pairs. It was known [1] that the candidate pairs with respect to the query
spaceH↑ do not cross each other (when regarded as segments), which implies that the
candidate pairs are edges of a planar graph (with vertex set S) and hence Φ(S,H↑) =
O(n). The main difficulty here is to store these candidate pairs in a linear-space data
structure that can answer halfplane queries in logarithmic time. To this end, we use
duality [3] to map each candidate pair in the primal space to a wedge in the dual
space. We then establish a key combinatorial result which shows that the arrangement
obtained by overlaying thewedges in the dual space has a linear complexity. This result
relies heavily on the fact that the candidate pairs are non-crossing. As a byproduct of
this result, we also obtain an optimal halfspace RSS data structure for non-crossing
segments (see Sect. 5.2). To achieve the average-case bounds,we prove that the number
of candidate pairs with respect to halfplane queries is O(log2n) in average-case.

We begin by introducing the standard duality technique [3]. A non-vertical line
l : y = ux + v in R

2 is dual to the point l∗ = (u,−v) and a point p = (s, t) ∈ R
2

is dual to the line p∗ : y = sx − t . A basic property of duality is that p ∈ l↑
(resp., p ∈ l↓) iff l∗ ∈ (p∗)↑ (resp., l∗ ∈ (p∗)↓). To make the exposition cleaner, we
distinguish between primal space and dual space, which are two copies of R

2. The
dataset S and query ranges are assumed to lie in the primal space, while their dual
objects are assumed to lie in the dual space.

Duality allows us to transform theH↑-RCP problem into a point location problem
as follows. Let H = l↑ ∈ H↑ be a query range. The line l bounding H is dual to
the point l∗ in the dual space; for convenience, we also call l∗ the dual point of H .
If we decompose the dual space into “cells” such that the query ranges whose dual
points lie in the same cell have the same answer, then point location techniques can be
applied to solve the problem directly. Note that this decompositionmust be a polygonal
subdivision Γ of R

2, which consists of vertices, straight-line edges, and polygonal
faces (i.e., cells). This is because the cell-boundaries must be defined by the dual lines
of the points in S.

In order to analyze the space cost and query time, we need to study the complexity
|Γ | of Γ . An O(n2) trivial upper bound for |Γ | follows from the fact that the subdivi-
sion formedby then dual lines of the points in S has an O(n2) complexity. Surprisingly,
using additional properties of the problem, we can show that |Γ | = O(n), which is a
key ingredient of our result in this section.
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SupposeΦ(S,H↑) = {φ1, . . . , φm}where φi = (ai , bi ) and φ1, . . . , φm are sorted
in increasing order of their lengths. It was shown in [1] that m = O(n), and the
candidate pairs do not cross each other (when identified as segments), i.e., the segments
[ai , bi ] and [a j , b j ] do not cross for any i �= j . The non-crossing property of the
candidate pairs is important and will be used later for proving Lemma 5.1. With this
in hand, we now consider the subdivision Γ .

Let H = l↑ ∈ H↑ be a query range. By the property of duality, φi is contained in
H iff l∗ ∈ (a∗

i )↑ and l∗ ∈ (b∗
i )↑, i.e., l∗ is in the upward-open wedge Wi generated by

the lines a∗
i and b∗

i (in the dual space); see Fig. 5. As such, the closest-pair in S ∩ H
to be reported is φη for η = min {i : l∗ ∈ Wi }. Therefore, Γ can be constructed by
successively overlaying the wedges W1, . . . , Wm (similarly to what we see in Sect. 2).

Formally, we begin with a trivial subdivision Γ0 of R
2, which consists of only one

face, the entire plane. Suppose Γi−1 is constructed, which has an outer face Fi−1
equal to the complement of

⋃i−1
j=1 W j in R

2. Now we construct a new subdivision Γi

by “inserting” Wi to Γi−1. Specifically, Γi is obtained from Γi−1 by decomposing the
outer face Fi−1 via the wedge Wi ; that is, we decompose Fi−1 into several smaller
faces: one is Fi−1\Wi and the others are the connected components of Fi−1∩Wi . Note
that Fi−1 \ Wi is the complement of

⋃i
j=1 W j , which is connected (as one can easily

verify) and becomes the outer face Fi of Γi . In this way, we construct Γ1, . . . , Γm in
order, and it is clear that Γm = Γ . The linear upper bound for |Γ | follows from the
following technical result.

Lemma 5.1 |Γi | − |Γi−1| = O(1) for i ∈ {1, . . . , m}. In particular, |Γ | = O(m).

Proof Let Fi be the outer face of Γi , and ∂Wi be the boundary of the wedge Wi (which
consists of two rays emanating from the intersection point of a∗

i and b∗
i ). We first note

that, to deduce that |Γi | − |Γi−1| = O(1), it suffices to show that the number of the
connected components of ∂Wi ∩ Fi−1 is constant. This is because every connected
component of ∂Wi ∩ Fi−1 contributes to Γi exactly one new face, a constant number
of new vertices, and a constant number of new edges. Indeed, we only need to check
one branch of ∂Wi (i.e., one of the two rays of ∂Wi ), say the ray contained in a∗

i (we
denote it by r ). We will show that r ∩ Fi−1 has O(1) connected components.

Without loss of generality, we may assume that ai is to the left of bi . Then each
point on r is dual to a line in the primal space, which goes through the point ai with
the segment [ai , bi ] above it. Note that r ∩ Fi−1 = r \⋃i−1

j=1 W j = r \⋃i−1
j=1(r ∩ W j ),

and each r ∩ W j is a connected portion of r . We consider each j ∈ {1, . . . , i − 1} and
analyze the intersection r ∩ W j . Let li be the line through ai and bi . There are three

cases to be considered separately: (1) a j , b j ∈ l↑i , (2) a j , b j ∈ l↓i , or (3) one of a j , b j

is in l↑i \ li (i.e., strictly above li ) while the other is in l↓i \ li (i.e., strictly below li ).

[Case 1] In this case, a j , b j ∈ l↑i . The wedge W j must contain the initial point r0
of r (i.e., the intersection point of a∗

i and b∗
i , which is the dual of the line li ), because

r0 ∈ (a∗
j )

↑ and r0 ∈ (b∗
j )

↑. (See Fig. 6a.)

[Case 2] In this case, a j , b j ∈ l↓i . We claim that either r ∩ W j is empty or it contains
the infinite end of r (i.e., the point at infinity along r ). Imagine that we have a point p
moving along r from r0 to the infinite end of r . Then p is dual to a line in the primal
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Fig. 6 Illustrating the various cases in Lemma 5.1

space rotating clockwise around ai from the line li to the vertical line through ai ; see
Fig. 6b. Note that p ∈ r ∩ W j (in the dual space) only when a j , b j ∈ (p∗)↑ (in the

primal space). But a j , b j ∈ l↓i in this case. When p is moving, the region l↓i ∩ (p∗)↑
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expands. As such, one can easily see that r ∩ W j must contain the infinite end of r if
it is nonempty. (See Fig. 6, c and d.)

[Case 3] In this case, one point of a j , b j is in l↑i \ li while the other is in l↓i \ li .
Thus, the segment [a j , b j ] must intersect the line li . However, as argued before, the
segments [a j , b j ] and [ai , bi ] do not cross. So the intersection point c of [a j , b j ] and
li is either to the left of ai or to the right of bi (recall that ai is assumed to be to the
left of bi ).

If c is to the left of ai , we claim that r ∩ W j is empty. Observe that the dual line of
any point on r is through ai and below bi , meaning that it must be above c (as c is to
the left of ai ). In other words, the dual line of any point on r is above at least one of
a j , b j , and thus any point on r is not contained in the wedge W j , i.e., r ∩ W j is empty.
(See Fig. 6e.)

The most subtle case occurs when c is to the right of bi . In such a case, we consider
the line through ai perpendicular to li , which we denote by l ′i . We first argue that both
a j and b j must be on the same side of l ′i as bi . Since c is to the right of bi , at least one of
a j , b j is on the same side of l ′i as bi . However, we notice that [a j , b j ] cannot intersect
l ′i , otherwise the length of φ j is (strictly) greater than that of φi , contradicting the fact
that j < i (recall that φ1, . . . , φm is sorted in increasing order of their lengths). So the
only possibility is that a j , b j , bi are on the same side of l ′i . Now we further have two
sub-cases.

– l ′i has no dual point (i.e., l ′i is vertical) or its dual point (l ′i )∗ is not on the ray r .
In this case, consider a point p moving along r from r0 to the infinite end of r .
Clearly, when p moves, the region (l ′i )→ ∩ (p∗)↑ expands. Thus, either r ∩ W j is
empty or it contains the infinite end of r . (See Fig. 6, f and g.)

– (l ′i )∗ is on r . Then r ∩ W j may be a connected portion of r containing neither r0
nor the infinite end of r . However, as bi ∈ (l ′i )↑ in this case, we have a j , b j ∈ (l ′i )↑
(recall that a j , b j , bi are on the same side of l ′i ). This implies that r ∩ W j contains
(l ′i )∗. (See Fig. 6h.)

In sum, we conclude that for any j ∈ {1, . . . , i − 1}, the intersection r ∩ W j might be
(i) empty, or (ii) a connected portion of r containing r0, or (iii) a connected portion
of r containing the infinite end of r , or (iv) a connected portion of r containing (l ′i )∗

(if (l ′i )∗ is on r ). As such, the union
⋃i−1

j=1(r ∩ W j ) can have at most three connected
components, among which one contains r0, one contains the infinite end of r , and one
contains (l ′i )∗. Therefore, the complement of

⋃i−1
j=1(r ∩ W j ) in r , i.e., r ∩ Fi−1, has

at most two connected components. This in turn implies that ∂Wi ∩ Fi−1 has only a
constant number of connected components, and hence |Γi | − |Γi−1| = O(1). Finally,
since |Γ0| = O(1) and m = O(n), we immediately have |Γ | = |Γm | = O(m). ��
With the above result in hand, we can build an optimal point-location data structure
for Γ using O(m) space with O(logm) query time to solve the RCP problem. Since
m = O(n), we obtain anH-RCP data structure using O(n) space and O(log n) query
time in worst-case.

Next, we analyze the average-case bounds of the above data structure. In fact, it
suffices to bound the expected number of the candidate pairs. Surprisingly, we have
the following poly-logarithmic bound.
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Lemma 5.2 For a random dataset S ∝ Rn where R is an axes-parallel rectangle,
E[|Φ(S,H)|] = O(log2n).

5.1 Preprocessing

In this section, we consider how to construct the above data structure efficiently. The
key step is to construct the subdivision Γ of the dualR2. Since |Γ | = O(n), once Γ is
constructed, one can build in O(n log n) time the point-location data structure for Γ ,
and hence our H↑-RCP data structure.

Let us first consider an easier task, in whichΦ(S,H↑) is already given beforehand.
In this case, we show that Γ can be constructed in O(n log n) time. As in Sect. 5,
suppose Φ(S,H↑) = {φ1, . . . , φm} where φ1, . . . , φm are sorted in increasing order
of their lengths. Recall that in Sect. 5 we defined the m subdivisions Γ0, . . . , Γm . Our
basic idea for constructingΓ is to begin withΓ0 and iteratively constructΓi fromΓi−1
by inserting the wedge Wi dual to φi . In this process, a crucial thing is to maintain
the outer face Fi (or its boundary). Note that the boundary ∂ Fi of Fi (i.e., the upper
envelope of Fi ) is an x-monotone polygonal chain consisting of segments and two
infinite rays; we call these kinds of chains left-right polylines and call their pieces
fractions. Naturally, a binary search tree can be used to store a left-right polyline; the
keys are its fractions in the left-right order. Therefore, we shall use a (balanced) BST
T to maintain ∂ Fi . That is, at the end of the i-th iteration, we guarantee the left-right
polyline stored in T is ∂ Fi . At each node of T , besides storing the corresponding
fraction, we also store the wedge W j which contributes this fraction.

Suppose we are now at the beginning of the i-th iteration. We have Γi−1 in hand
and T stores ∂ Fi−1. We need to “insert” the wedge Wi to generate Γi from Γi−1, and
update T . To this end, the first step is to compute ∂Wi ∩ Fi−1. Now let us assume in
advance that ∂Wi ∩ Fi−1 is already computed in O(log |T |) time; later we will explain
how to achieve this. With ∂Wi ∩ Fi−1 in hand, to construct Γi is fairly easy. By the
proof of Lemma 5.1, ∂Wi ∩ Fi−1 has O(1) connected components. We consider these
components one-by-one. Let ξ be a component, which is an x-monotone polygonal
chain with endpoints (if any) on ∂ Fi−1 (indeed, ξ consists of at most two pieces as
it is a portion of ∂Wi ). For convenience, assume ξ has a left endpoint u and a right
endpoint v. Then ξ contributes a new (inner) face to Γi , which is the region bounded
by ξ and the portion σ of ∂ Fi−1 between u, v. We then use T to report all the fractions
of ∂ Fi−1 that intersect σ in left-right order, using which the corresponding new face
can be directly constructed. The time cost for reporting the fractions is O(log |T |+ k)

where k is the number of the reported fractions, since they are consecutive in T .
After all the components are considered, we can construct Γi by adding the new

faces to Γi−1 (and adjusting the involved edges/vertices if needed). As there are O(1)
components, the total time cost for constructing Γi from Γi−1 is O(log |T | + Ki ),
where Ki is the total number of the fractions reported from T . But we can charge the
reported fractions to the corresponding new faces, and the fractions charged to each
face are at most as many as its edges. Therefore,

∑m
i=1 Ki = O(m), and this part of

the time cost is amortized O(logm) for each iteration.
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The remaining task is to update the left-right polyline T . At the beginning of the i-th
iteration, T stores ∂ Fi−1, and we need to modify it to ∂ Fi . Clearly, ∂ Fi is obtained by
using the connected components of ∂Wi ∩ Fi−1 to replace the corresponding portions
of ∂ Fi−1. We consider the components of ∂Wi ∩ Fi−1 one-by-one (there are constant
number of components to be considered by the proof of Lemma 5.1). Let ξ be a
component, which must be an x-monotone polygonal chain consisting of at most two
pieces. For convenience, assume ξ has a left endpoint u and a right end point v. It is
clear that u, v ∈ ∂ Fi−1.We need to replace the portion σ of ∂ Fi−1 between u, v with ξ ;
we call this a Replace operation. To achieve this, we first report the fractions of ∂ Fi−1
intersecting σ , by using the approach described above. Suppose the reported fractions
are γ1, . . . , γk sorted in the left-right order. Then u ∈ γ1 and v ∈ γk . Clearly, the
fractions γ2, . . . , γk−1 should be removed, as they disappear after replacing σ with ξ .
This can be done by deleting the corresponding nodes from T via k − 2 BST-deletion
operations. Also, we need to modify γ1 and γk : the portion of γ1 (resp., γk) to the right
(resp., left) of u (resp., v) should be “truncated”. This can be done by directly updating
the information stored in the two corresponding nodes. Finally, ξ should be inserted.
Each piece of ξ becomes a new fraction, for which we create a new node storing the
information of the fraction and insert it into T via a BST-insertion operation.

Now we analyze the time cost of this Replace operation. Let |T | be the size
of T before the operation. The time cost for reporting is O (log |T | + k). Remov-
ing γ2, . . . , γk−1 takes O(k log |T |) time. Modifying γ1, γk and inserting ξ takes
O(log |T |) time (note that ξ has at most two pieces). So the total time of this Replace
operation is O(k log |T |). If k ≤ 2, then the time cost is just O(log |T |). If k > 2,
we observe that there are Ω(k) nodes deleted from T in this Replace operation. Note
that the total number of the nodes deleted from T cannot exceed the total number of
the nodes inserted. Over the m iterations, we have in total O(m) Replace operations,
each of which inserts O(1) nodes into T . Therefore, one can delete at most O(m)

nodes from T in total. It follows that the total time cost for all Replace operations is
O(m logm), which is also the total time cost for updating T . In other words, T can
be updated in amortized O(logm) time for each iteration. As such, the overall time
cost for constructing Γ is O(m logm), and thus O(n log n).

We now explain the missing part of the above algorithm: computing ∂Wi ∩ Fi−1
in O(log |T |) time. Let r be the left ray of ∂Wi and r0 be the initial point of r (i.e.,
the vertex of Wi ). It suffices to compute r ∩ Fi−1. Recall that li is the line through
ai , bi and l ′i is the line through ai perpendicular to li . Assume (l ′i )∗ ∈ r (the case that
(l ′i )∗ /∈ r is in fact easier). The point (l ′i )∗ partitions r into a segment s = [r0, (l ′i )∗] and
a ray r ′ emanating from (l ′i )∗, where r ′ is to the left of s. By the proof of Lemma 5.1,
each wedge W j for j ∈ {1, . . . , i − 1} with W j ∩ r �= ∅ satisfies at least one of the
following: (1) r0 ∈ W j , (2) (l ′i )∗ ∈ W j , (3) W j contains the infinite end of r . Therefore,
r ∩ Fi−1 can have one or two connected components; if it has two components, one
should be contained in r ′ and the other should be contained in s. As such, r ′ contains
at most one left endpoint and one right endpoint of (some component of) r ∩ Fi−1, so
does s. We show that one can find these endpoints by searching in T .

Suppose we want to find the left endpoint z contained in r ′ (assume it truly exists).
Let γ be a fraction of ∂ Fi−1 which is contributed by W j for j ∈ {1, . . . , i − 1}. It is
easy to verify that γ contains z iff γ intersects r ′ and W j contains the infinite end of r .
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Also, γ is to the left of z iff γ ⊆ R and W j contains the infinite end of r , where R is
the region to the left of (l ′i )∗ and above r ′. As such, one can simply search in T to find
the fraction γ containing z in O(log |T |) time, if z truly exists. (If z does not exist,
by searching in T we can verify its non-existence, as we can never find the desired
fraction γ .) The right endpoint contained in r ′ and the left/right endpoints contained in
s can be computed in a similar fashion.With these endpoints in hand, one can compute
r ∩ Fi−1 straightforwardly. The other case that (l ′i )∗ /∈ r is handled similarly and more
easily, as in this case r ∩ Fi−1 has at most one connected component. Therefore,
r ∩ Fi−1 (and thus ∂Wi ∩ Fi−1) can be computed in O(log |T |) time.

Next, we consider how to construct Γ if we are only given the dataset S. Abam et
al. [1] showed that one can compute in O(n log2n) time an H↑-local t-spanner Ψ of
S for some t < 2 such that |Ψ | = O(n log n); see Sect. 2 for the definition of local
spanners. As argued in Sect. 2, we haveΦ(S,H↑) ⊆ Ψ . SupposeΨ = {ψ1, . . . , ψM }
where ψ1, . . . , ψM are sorted in increasing order of their lengths. The m candidate
pairs φ1, . . . , φm ∈ Φ(S,H↑) are among ψ1, . . . , ψM . Let i1 < . . . < im be indices
such that φ1 = ψi1 , . . . , φm = ψim (note that at this point we do not know what
i1, . . . , im are). We shall consider ψ1, . . . , ψM in order.

When considering ψi , we want to verify whether ψi is a candidate pair or not. If
this can be done, the candidate pairs φ1, . . . , φm will be found in order. Whenever a
new candidate pair φk is found, we construct Γk from Γk−1 in O(logm) time by the
approach above.Nowassumeψ1, . . . , ψi−1 are already considered, the candidate pairs
in {ψ1, . . . , ψi−1} are recognized (say they areφ1, . . . , φk−1), andΓk−1 is constructed.
We then consider ψi . We need to see whether ψi is a candidate pair, i.e., whether
ψi = φk . LetW be the correspondingwedge ofψi in the dualR2.Observe thatψi = φk

iff W �
⋃k−1

j=1 W j . Indeed, if ψi = φk , then W = Wk and hence W �
⋃k−1

j=1 W j

(for φk is a candidate pair). Conversely, if W �
⋃k−1

j=1 W j , then their exists some

halfplane H ∈ H↑ such that H contains ψi and does not contain φ1, . . . , φk−1. Then
the closest-pair in S ∩ H cannot be in {ψ1, . . . , ψi−1} but must be in Ψ , hence it is
nothing but ψi .

Based on this observation, we can verify whether ψi = φk as follows. We assume
ψi = φk and try to use it to construct Γk from Γk−1 by our above approach. If our
assumption is correct, then Γk is successfully constructed in O(logm) time. Further-
more, in the process of constructing Γk , our approach allows us to find a point in
W \ ⋃k−1

j=1 W j , which we call witness point. This witness point then evidences the
correctness of our assumption. On the other hand, if our assumption is wrong, the
process can still terminate in O(logm) time, but we can never find such a witness
point because W ⊆ ⋃k−1

j=1 W j . In this case, we just discard ψi and continue to con-
sider ψi+1. After considering all pairs in Ψ , we recognize all the m candidate pairs
and Γ = Γm is constructed. Since m = O(n) and M = |Ψ | = O(n log n), the overall
process takes O(n log2n) time.
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Theorem 5.3 There exists an H-RCP data structure E such that

– For any S ⊆ R
2 of size n,

Space(E(S)) = O(n) and Qtime(E(S)) = O(log n).

– For a random S ∝ Rn where R is the unit square or more generally an arbitrary
axes-parallel rectangle,

E[Space(E(S))] = O(log2n) and E[Qtime(E(S))] = O(log log n).

Furthermore, the above data structure can be constructed in O(n log2n) worst-case
time.

5.2 Application to theH-RSS Problem

Interestingly, our approach for solving theH-RCP problem can also be applied to the
H-RSS problem, and leads to an optimal H-RSS data structure for interior-disjoint
(i.e., non-crossing) segments. (Recall that theH-RSS problem is to build a data struc-
ture for a set of line segments in the plane so that the shortest one contained in a query
halfplane can be reported efficiently.) This by-product is of indepedent interest.

Theorem 5.4 There exists an H-RSS data structure F such that for any set G
of n interior-disjoint (i.e., non-crossing) segments in R

2, Space(F(G)) = O(n),
Qtime(F(G)) = O(log n), and F(G) can be constructed in O(n log n) time.

Proof The data structure is basically identical to the H-RCP data structure given in
Sect. 5. Let σ1, . . . , σn be the interior-disjoint segments in G sorted in increasing
order of their lengths. Suppose Wi is the wedge dual to σi . We successively overlay
the wedges W1, . . . , Wn to create a subdivision Γ of the dual space, as what we do
in Sect. 5 for the candidate pairs. A point-location data structure on Γ is then ourH-
RSS data structure for G. Note that Lemma 5.1 can be applied to show |Γ | = O(n),
because when proving Lemma 5.1 we only used the facts that the candidate pairs do
not cross each other and the wedges are inserted in increasing order of the lengths
of their corresponding candidate pairs (here the segments σ1, . . . , σn are also non-
crossing and sorted in increasing order of their lengths). As such, the space cost of
the data structure is O(n) and the query time is O(log n). In the previous section, we
have shown that if the candidate pairs are already given, our H-RCP data structure
can be built in O(n log n) time. It follows that our H-RSS data structure can be built
in O(n log n) time, as we are directly given the segments in this case. ��

6 Conclusion and FutureWork

In this paper, we revisited the range closest-pair (RCP) problem, which aims to pre-
process a set S of points in R

2 into a data structure such that when a query range X
is specified, the closest-pair in S ∩ X can be reported efficiently. We proposed new

123



28 Discrete & Computational Geometry (2022) 68:1–49

RCP data structures for various query types (including quadrants, strips, rectangles,
and halfplanes). Both worst-case and average-case analyses were applied to these data
structures, resulting in new bounds for the RCP problem. See Table 1 for a comparison
of our new results with the previous work.

We now list some open questions for future study. First, the RCP problem for
other query types is an interesting open question. One important example is the disk
query, which is usually much harder than the rectangle query and halfplane query in
traditional range search. For an easier version, we can focus on the case where the
query disks have a fixed radius, or equivalently, the query ranges are translates of a
fixed disk.

Along this direction, one can also consider translation queries of some shape other
than a disk. For instance, if the query ranges are translates of a fixed rectangle, can we
have more efficient data structures than our rectangle RCP data structure in Sect. 4?
Recently, we have achieved some results in this direction [14].

Also, the RCP problem in higher dimensions is open. To our best knowledge, the
onlyknown result for this is a simple data structure given in [6] constructedby explicitly
storing all the candidate pairs, which only has guaranteed average-case performance.

Finally, one can consider a colored generalization of the RCP search, in which the
given points are colored and we want to compute the closest bichromatic pair of points
contained in a query range. We have studied the colored RCP problem in a very recent
work [11], but only approximate data structures are achieved. It is interesting to see
how to solve the colored RCP problem exactly.

Acknowledgements The authors thank the reviewers for their comments, which have helped improve the
paper.

Appendix

AMissing Proofs

A.1. Proof of Lemma 1.1

Without loss of generality, we can assume R = [0,Δ] × [0,Δ′] where Δ ≤ Δ′. We
first observe some simple facts. Let D be a disc centered at a point in R with radius δ.
Then Area(D ∩ R) ≥ δ2/9 if δ ≤ Δ, and Area(D ∩ R) ≥ δΔ/9 if Δ ≤ δ ≤ Δ′.
Furthermore, we always have Area(D ∩ R) ≤ 4δ2 and Area(D ∩ R) ≤ 2δΔ. With
these facts in hand, we can begin our proof.

[Upper Bound] First, we prove the upper bound for E[κ p(A)]. To this end, we need
to study the distribution of the random variable κ(A). For convenience, we assume m
is even and sufficiently large. We make the following claims.

(a) For any δ ≥ 2Δ, we have Pr [κ(A) ≥ δ] ≤ e−δ/(72Δ′/m2).
(b) For any δ ∈ (0, 2Δ], we have Pr [κ(A) ≥ δ] ≤ e−δ2/(144ΔΔ′/m2).

To prove the claims, suppose the m random points in A are a1, . . . , am . For any δ > 0
and each i ∈ {2, . . . , m}, we define Eδ,i as the event that κ({a1, . . . , ai }) ≥ δ. Note
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that Eδ,i happens only if Eδ,i−1 does, thus for any δ > 0 we can write

Pr [κ(A) ≥ δ] = Pr[Eδ,m] = Pr[Eδ,2] ·
m∏

i=3

Pr [Eδ,i |Eδ,i−1].

We consider the probability Pr [Eδ,i |Eδ,i−1] for i ∈ {3, . . . , m}. Let D1, . . . , Di−1
denote the discs with radii δ/2 centered at a1, . . . , ai−1 respectively, and U =⋃i−1

j=1 Di . If Eδ,i−1 happens, then D1, . . . , Di−1 are disjoint and hence

Area(U ∩ R) =
i−1∑

j=1

Area(D j ∩ R).

Now assume we have a lower bound μ for all Area(D j ∩ R), i.e., Area(D j ∩ R) ≥ μ

for any j ∈ {1, . . . , i −1}. Thenwhen Eδ,i−1 happens, we always haveArea(U ∩R) ≥
(i − 1)μ. This implies

Pr [ai ∈ U ∩ R | Eδ,i−1] ≥ (i − 1)μ

Area(R)
= (i − 1)μ

ΔΔ′ .

Note that Eδ,i happens only if ai /∈ U ∩ R. Therefore,

Pr [Eδ,i |Eδ,i−1] ≤ Pr [ai /∈ U ∩ R | Eδ,i−1]
= 1 − Pr [ai ∈ U ∩ R | Eδ,i−1] ≤ 1 − (i − 1)μ

ΔΔ′ .

For i ≥ m/2 + 1, we have Pr [Eδ,i | Eδ,i−1] ≤ 1 − (mμ)/(2ΔΔ′). Then

Pr [κ(A) ≥ δ] ≤
m∏

i=m/2+1

Pr [Eδ,i | Eδ,i−1] ≤
(

1 − mμ

2ΔΔ′

)m/2

.

Using the fact (1 − x)1/x < e−1 for any x ∈ [0, 1], we deduce

Pr [κ(A) ≥ δ] ≤
(

1 − mμ

2ΔΔ′

)m/2

=
(

1 − mμ

2ΔΔ′

)(2ΔΔ′/mμ)·(m2μ/4ΔΔ′)
≤ em2μ/(4ΔΔ′).

If δ ≥ 2Δ, then Area(D j ∩ R) ≥ δΔ/18 for any j (as argued at the beginning of the
proof), so we can set μ = δΔ/18. The above inequality directly implies the claim (a).
If δ ∈ (0, 2Δ], then Area(D j ∩ R) ≥ δ2/36 for any j (as argued at the beginning
of the proof), so we can set μ = δ2/36. The above inequality directly implies the
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claim (b). With the two claims in hand, we now prove the lemma. We shall use the
formula

E[κ p(A)] =
∫ ∞

0
Pr [κ p(A) ≥ t] dt .

We consider two cases: Δ′/m2 ≥ √
ΔΔ′/m and Δ′/m2 <

√
ΔΔ′/m. Assume

Δ′/m2 ≥ √
ΔΔ′/m, i.e., Δ ≤ Δ′/m2. In this case, what we want is E[κ p(A)] =

O((Δ′/m2)p) for any constant p ≥ 1. Let α = 72Δ′/m2. Then for any constant
p ≥ 1, we can write

E[κ p(A)] =
∫ ∞

0
Pr [κ p(A) ≥ t] dt ≤ α p +

∫ ∞

α p
Pr [κ p(A) ≥ t] dt .

Set q = 1/p. For t ≥ α p, we have tq ≥ α > 2Δ′/m2 ≥ 2Δ. Therefore, by applying
the claim (a) above we have

Pr [κ p(A) ≥ t] = Pr [κ(A) ≥ tq ] ≤ e−tq/α = e−(t/α p)q
.

It follows that

E[κ p(A)] ≤ α p +
∫ ∞

α p
e−(t/α p)q

dt = α p + α p
∫ ∞

1
e−tq

dt .

The integral
∫ ∞
1 e−tq

dt converges, thus E[κ p(A)] = O(α p) = O((Δ′/m2)p).
Next, assume Δ′/m2 <

√
ΔΔ′/m, i.e., Δ > Δ′/m2. In this case, what we want

is E[κ p(A)] = O((
√

ΔΔ′/m)p) for any constant p ≥ 1. We first claim that

∫ ∞

(2Δ)p
Pr [κ p(A) ≥ t] dt = O((

√
ΔΔ′/m)p). (2)

Again, let α = 72Δ′/m2. By applying the claim (a) above, we have

∫ ∞

(2Δ)p
Pr [κ p(A) ≥ t] dt ≤

∫ ∞

(2Δ)p
e−(t/α p)q

dt,

where q = 1/p. Since Δ > Δ′/m2, we further deduce

∫ ∞

(2Δ)p
e−(t/α p)q

dt ≤
∫ ∞

(α/36)p
e−(t/α p)q

dt = α p
∫ ∞

(1/36)p
e−tq

dt = O(α p).

By the assumption Δ′/m2 <
√

ΔΔ′/m, we have α = O(
√

ΔΔ′/m), thus (2) holds.
With this in hand, we bound E[κ p(A)] as follows. Let β = 12

√
ΔΔ′/m. If β ≥ 2Δ,
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then

E[κ p(A)] ≤ β p +
∫ ∞

β p
Pr [κ p(A) ≥ t] dt ≤ β p +

∫ ∞

(2Δ)p
Pr [κ p(A) ≥ t] dt

= O((
√

ΔΔ′/m)p).

The rightmost equality above follows from (2). If β ≤ 2Δ, then

E[κ p(A)] ≤ β p +
∫ (2Δ)p

β p
Pr [κ p(A) ≥ t] dt +

∫ ∞

(2Δ)p
Pr [κ p(A) ≥ t] dt .

It suffices to show
∫ (2Δ)p

β p Pr [κ p(A) ≥ t] dt = O((
√

ΔΔ′/m)p). By the claim (b)
above,

∫ (2Δ)p

β p
Pr [κ p(A) ≥ t] dt =

∫ (2Δ)p

β p
Pr [κ(A) ≥ tq ] dt ≤

∫ (2Δ)p

β p
e−(t/β p)2q

dt .

Furthermore, we have

∫ (2Δ)p

β p
e−(t/β p)2q

dt≤
∫ ∞

β p
e−(t/β p)2q

dt = β p
∫ ∞

1
e−t2q

dt .

Since the integral
∫ ∞
1 e−t2q

dt converges,
∫ (2Δ)p

β p Pr [κ p(A)≥t] dt=O((
√

ΔΔ′/m)p).

As such, E[κ p(A)] = O((
√

ΔΔ′/m)p). This proves the upper bound for E[κ p(A)].
[Lower Bound] To prove the lower bound for E[κ p(A)] is much easier. It suf-
fices to show that E[κ p(A)] = Ω((Δ′/m2)p) and E[κ p(A)] = Ω((

√
ΔΔ′/m)p).

Let i, j ∈ {1, . . . , m} such that i �= j . Set δ1 = Δ′/(2m2). We observe that
Pr [dist(ai , a j ) ≤ δ1] ≤ 1/m2. Indeed, if D is the disc centered at ai with radius δ1,
then we always have Area(D ∩ R) ≤ 2δ1Δ = ΔΔ′/m2 (as argued at the beginning
of the proof), and hence

Pr [dist(ai , a j ) ≤ δ1] = Pr [a j ∈ D ∩ R] ≤ ΔΔ′/m2

Area(R)
= 1

m2 .

By union bound, we have

Pr [κ(A) ≤ δ1] ≤
(

m

2

)

· 1

m2 <
1

2
.

Thus, Pr [κ(A) ≤ δ1] ≥ 1/2 and E[κ p(A)] ≥ δ
p
1 /2 = Ω((Δ′/m2)p). Similarly, we

can show E[κ p(A)] = Ω((
√

ΔΔ′/m)p). Set δ2 = √
ΔΔ′/(4m). We again observe

that Pr [dist(ai , a j ) ≤ δ2] ≤ 1/m2 for any distinct i, j ∈ {1, . . . , m}. Indeed, if D is
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the disc centered at ai with radius δ2, then we always have Area(D ∩ R) ≤ 4δ22 =
ΔΔ′/m2 (as argued at the beginning of the proof), and hence

Pr [dist(ai , a j ) ≤ δ2] = Pr [a j ∈ D ∩ R] ≤ ΔΔ′/m2

Area(R)
= 1

m2 .

Applying the same argument as above, we can deduce Pr [κ(A) ≤ δ2] ≥ 1/2, which
implies that E[κ p(A)] ≥ δ

p
2 /2 = Ω((

√
ΔΔ′/m)p). This proves the lower bound for

E[κ p(A)].
The above proof straightforwardly applies to the special case in which R is a

segment.

A.2 Proof of Lemma 2.1

Without loss of generality, assume R = [0, 1] × [0,Δ]. It suffices to show that
E[|Φ(S,Q↙)|] = O(log2n). Suppose the n random points in S are a1, . . . , an . Let
Ei, j be the event (ai , a j ) ∈ Φ(S,Q↙), then by the linearity of expectation,

E[|Φ(S,Q↙)|] =
n−1∑

i=1

n∑

j=i+1

Pr[Ei, j ].

Since a1, . . . , an play the same roles here, the probabilities on the right-hand
side of the above equation should be the same and therefore E[|Φ(S,Q↙)|] =
O(n2 · Pr[E1,2]). In order to bound Pr[E1,2], we introduce some random variables.
Let xmax = max {a1.x, a2.x}, ymax = max {a1.y, a2.y}, xmin = min {a1.x, a2.x},
ymin = min {a1.y, a2.y}. The quadrant Q = (−∞, xmax] × (−∞, ymax] is the mini-
mal southwest quadrant containing both a1 and a2, and clearly E1,2 happens iff (a1, a2)
is the closest-pair in S ∩ Q. Define Λ = {i ≥ 3 : ai ∈ Q}, which is a random subset
of {3, . . . , n}, i.e., a random variable taking value from the power set of {3, . . . , n}.
We achieve the bound for Pr[E1,2] through three steps.

[Step 1] Let us first fix the values of xmax, ymax,Λ, and consider the corresponding
conditional probability of E1,2. Formally, we claim that, for all x̃ ∈ (0, 1], all ỹ ∈
(0,Δ], and all nonempty J ⊆ {3, . . . , n},

Pr
[
E1,2 |(xmax = x̃) ∧ (ymax = ỹ) ∧ (Λ = J )

] = O(|J |−2). (3)

For convenience, we use Cx̃,ỹ,J to denote the condition in the above conditional
probability. Assume |J | = m. Let δx = xmax − xmin and δy = ymax − ymin.
Note that under the condition Cx̃,ỹ,J , E1,2 happens only if δx ≤ κ(SJ ) and
δy ≤ κ(SJ ) where SJ = {a j : j ∈ J }. Indeed, if δx > κ(SJ ) or δy > κ(SJ ),
then dist(a1, a2) > κ(SJ ), which implies E1,2 does not happen because all the ran-
dom points in SJ are contained in Q under the condition Cx̃,ỹ,J . Therefore, it suffices
to bound Pr [(δx ≤ κ(SJ )) ∧ (δy ≤ κ(SJ )) |Cx̃,ỹ,J ]. Note that under the condition
Cx̃,ỹ,J , Q is just (−∞, x̃] × (−∞, ỹ]. Thus the condition Cx̃,ỹ,J is equivalent to
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saying that the maximum of the x-coordinates (resp., y-coordinates) of a1, a2 is x̃
(resp., ỹ), all a j for j ∈ J are contained in the rectangle R′ = [0, x̃] × [0, ỹ], and all
a j for j ∈ J for j ∈ {3, . . . , n} \ J are in R \ R′. As such, one can easily verify that,
under the condition Cx̃,ỹ,J , the distribution of the random number δx (resp., δy) is the
uniform distribution on the interval [0, x̃] (resp., [0, ỹ]), and the distributions of the
m random points in SJ are the uniform distribution on R′; furthermore, these random
numbers/points are independent of each other. This says, if we consider a new random
experiment in which we independently generate two random numbers δ′

x , δ
′
y from the

uniform distributions on [0, x̃], [0, ỹ] respectively (which correspond to δx , δy) and a
random dataset S′ ∝ (R′)m (which corresponds to SJ ), then we have

Pr [(δ′
x ≤ κ(S′)) ∧ (δ′

y ≤ κ(S′))] = Pr [(δx ≤ κ(SJ )) ∧ (δy ≤ κ(SJ )) |Cx̃,ỹ,J ].

So it suffices to bound Pr [(δ′
x ≤ κ(S′)) ∧ (δ′

y ≤ κ(S′))] in the new experiment; we
denote by λ this probability. We apply the formula

λ =
∫ ∞

0
p(t) · Pr [(δ′

x ≤ t) ∧ (δ′
y ≤ t)] dt =

∫ ∞

0
p(t) · Pr [δ′

x ≤ t] · Pr [δ′
y ≤ t] dt,

where p( · ) is the probability distribution function of κ(S′). Since δ′
x (resp., δ′

y)
is drawn uniformly on the interval [0, x̃] (resp., [0, ỹ]), we have Pr [δ′

x ≤ t] =
min {t/x̃, 1} (resp., Pr [δ′

y ≤ t] = min {t/ỹ, 1}).Without loss of generality, we assume
x̃ ≤ ỹ. Then we have

Pr [δ′
x ≤ t] · Pr [δ′

y ≤ t] = min

{
t2

x̃ ỹ
,

t

ỹ
, 1

}

≤ min

{
t2

x̃ ỹ
,

t

ỹ

}

.

It follows that

λ ≤
∫ ∞

0
p(t) · min

{
t2

x̃ ỹ
,

t

ỹ

}

dt ≤ min

{∫ ∞

0

p(t)t2

x̃ ỹ
dt,

∫ ∞

0

p(t)t

ỹ
dt

}

.

Noting the fact that
∫ ∞
0 p(t)t2 dt = E[κ2(S′)] and ∫ ∞

0 p(t)t dt = E[κ(S′)], we have

λ ≤ min

{
E[κ2(S′)]

x̃ ỹ
,

E[κ(S′)]
ỹ

}

.

Since x̃≤ỹ byassumption,Lemma1.1 implies thatE[κ(S′)]=O(max {√x̃ ỹ/m, ỹ/m2})
and E[κ2(S′)] = O(max {x̃ ỹ/m2, ỹ2/m4}). If √

x̃ ỹ/m ≤ ỹ/m2, then E[κ(S′)]/ỹ =
O(1/m2), otherwise E[κ2(S′)]/(x̃ ỹ) = O(1/m2). In either of the two cases, we have
λ = O(1/m2). Therefore, we obtain (3). For an arbitrary nonempty J ⊆ {3, . . . , n},
since (3) holds for all x̃ ∈ (0, 1] and ỹ ∈ (0,Δ], we can remove the conditions
xmax = x̃ and ymax = ỹ from (3) to deduce Pr [E1,2 |Λ = J ] = O(1/|J |2) (note
that although we miss the case x̃ = 0 or ỹ = 0, it does not matter since the
events xmax = 0 and ymax = 0 happen with probability 0). This further implies
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that Pr [E1,2 ||Λ| = m] = O(1/m2) for all m ∈ {1, . . . , n − 2}. For m = 0, we have
Pr [E1,2 ||Λ| = m] = 1.

[Step 2] In order to apply the result achieved in Step 1 to bound Pr[E1,2], we
need to bound Pr [|Λ| = m] for m = {0, . . . , n − 2}. This is a purely combinato-
rial problem, because the random variable |Λ| only depends on the orderings of the
x-coordinates and y-coordinates of a1, . . . , an . The ordering of the x-coordinates (x-
ordering for short) of a1, . . . , an can be represented as a permutation of {a1, . . . , an};
so is the y-ordering. Thus, in terms of the ordering of coordinates, there are (n!)2
different configurations of S, each of which can be represented by a pair (π, π ′) of
permutations of {a1, . . . , an} where π (resp., π ′) represents the x-ordering (resp.,
y-ordering) of a1, . . . , an ; that is, if π = (ai0 , . . . , ain ) and π ′ = (ai ′0 , . . . , ai ′n ),
then ai0 .x < . . . < ain .x and ai ′0 .y < . . . < ai ′n .y (we can ignore the degenerate
case in which two random points have the same x-coordinates or y-coordinates,
because the random points in S have distinct coordinates with probability 1). Note
that every configuration occurs with the same probability 1/(n!)2. If S has the con-
figuration (π, π ′), then Λ is just the subset of {3, . . . , n} consisting of all i such that
rkπ (ai ) ≤ max {rkπ (a1), rkπ (a2)} and rkπ ′(ai ) ≤ max {rkπ ′(a1), rkπ ′(a2)}, where
the function rk computes the rank of an element in a permutation (i.e., the position
of the element in the permutation). Therefore, we can pass to a new random experi-
ment in whichwe generate independently and uniformly the two permutationsπ, π ′ of
{a1, . . . , an} (i.e., uniformly generate a configuration of S), and study Pr [|Λ| = m] for
m ∈ {0, . . . , n−2} in the newexperiment. Let ri = rkπ (ai ). Fixingm ∈ {0, . . . , n−2},
we have the formula

Pr [|Λ| = m] =
n∑

i=2

Pr [max {r1, r2} = i] · Pr [|Λ| = m |max {r1, r2} = i]. (4)

We first compute Pr [max {r1, r2} = i]. By an easy counting argument, we see that,
among the n! permutations of {a1, . . . , an}, there are exactly 2(i − 1)(n − 2)! permu-
tations in which the maximum of the ranks of a1 and a2 is i . Therefore,

Pr [max {r1, r2} = i] = 2(i − 1)(n − 2)!
n! = O

(
i

n2

)

.

We then consider Pr [|Λ| = m |max {r1, r2} = i]. If i < m + 2, the probability is 0,
because |Λ ∪ {1, 2}| ≤ max {r1, r2} by definition. So assume i ≥ m + 2. Suppose
the permutation π has already been generated and satisfies max {r1, r2} = i . Let
A = {a j : r j ≤ i}. Note that |A| = i and a1, a2 ∈ A. Now we randomly generate
the permutation π ′ and observe the probability of |Λ| = m. Clearly, |Λ| = m iff
max {rkπ ′|A(a1), rkπ ′|A(a2)} = m + 2, where π ′|A is the permutation of A induced
by π ′ (i.e., the permutation obtained by removing the points in S \ A from π ′). Using
the same counting argument as above, we have

Pr [max {rkπ ′|A(a1), rkπ ′|A(a2)} = m + 2] = O

(
m + 1

i2

)

.
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Therefore, Pr [|Λ| = m |max {r1, r2} = i] = O((m +1)/i2). Plugging in these results
to (4), a direct calculation gives us Pr [|Λ| = m] = O((m + 1) log n/n2).

[Step 3] Using the results achieved in the previous steps, to bound Pr[E1,2] is quite
straightforward. We apply the formula

Pr[E1,2] =
n−2∑

m=0

Pr [|Λ| = m] · Pr [E1,2 ||Λ| = m].

We use the result achieved in Step 1 to bound Pr [E1,2 | |Λ| = m] and the result
achieved inStep 2 to boundPr [|Λ| = m]. Then a direct calculation gives us Pr[E1,2] =
O(log2n/n2). As such, E[|Φ(S,Q↙)|] = O(log2n), and hence E[|Φ(S,Q)|] =
O(log2n).

A.3 Proof of Lemma 3.1

It suffices to consider the case in which I1, . . . , In are vertical aligned segments and
X = U↓. Without loss of generality, we may assume Ii = xi × [0, 1], x1 < . . . < xn

are real numbers. Fix i, j ∈ {1, . . . , n} such that i < j . We first define some random
variables. Let yk = ak .y for all k ∈ {1, . . . , n}. Define ymax = max {yi , y j } and ymin =
min {yi , y j }. The 3-sided rectangleU = [xi , x j ]×(−∞, ymax] is theminimal bottom-
unbounded rectangle containing both ai and a j , and clearly (ai , a j ) ∈ Φ(S,U↓) iff
(ai , a j ) is the closest-pair in S ∩ U . Define Λ = {k : i < k < j and ak ∈ U }, which
is a random subset of {i + 1, . . . , j − 1}. We bound Pr [(ai , a j ) ∈ Φ(S,U↓)] through
three steps.

[Step 1] Let us first fix the values of ymax and Λ, and consider the corresponding
conditional probability of the event (ai , a j ) ∈ Φ(S,U↓). Formally, we claim that, for
all ỹ ∈ (0, 1] and all nonempty K ⊆ {i + 1, . . . , j − 1},

Pr [(ai , a j ) ∈ Φ(S,U↓) |(ymax = ỹ) ∧ (Λ = K )] = O

(
1

|K |2
)

. (5)

For convenience, we use Cỹ,K to denote the condition in the above conditional proba-
bility. Assume |K | = m. Let δ = ymax − ymin and YK = {yk : k ∈ K }. We first notice
that, under the condition Cỹ,K , (ai , a j ) ∈ Φ(S,U↓) only if δ ≤ κ(YK ). Indeed, if
δ > κ(YK ) = |yi ′ − y j ′ | for some distinct i ′, j ′ ∈ K , then dist(ai ′ , a j ′) < dist(ai , a j )

since |xi − x j | ≥ |xi ′ − x j ′ |, which implies (ai , a j ) /∈ Φ(S,U↓). Therefore, it suf-
fices to bound Pr [δ ≤ κ(YK ) |Cỹ,K ]. Note that under the condition Cỹ,K , U is just
[xi , x j ]×(−∞, ỹ]. Thus the conditionCỹ,K is equivalent to saying that the maximum
of yi , y j is ỹ, all yk for k ∈ K are in [0, ỹ], and all yk for k ∈ {i+1, . . . , j−1}\K are in
(ỹ, 1]. As such, one can easily verify that, under the conditionCỹ,K , the distribution of
δ is the uniform distribution on [0, ỹ], and the distributions of the m random numbers
in YK are also the uniform distribution on [0, ỹ]; furthermore, these random numbers
are independent of each other. This says, if we consider a new random experiment
in which we independently generate a random number δ′ from the uniform distribu-
tion on [0, ỹ] (which corresponds to δ) and a random dataset Y ′ ∝ [0, ỹ]m (which
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corresponds to YK ), then we have

Pr [δ′ ≤ κ(Y ′)] = Pr [δ ≤ κ(YK )|Cỹ,K ].

So it suffices to bound Pr [δ′ ≤ κ(Y ′)] in the new experiment. We apply the formula

Pr [δ′ ≤ κ(Y ′)] =
∫ ỹ

0
p(t) · Pr [δ′ ≤ t] dt,

where p( · ) is the probability distribution function of κ(Y ′). Since δ′ is drawn from
the uniform distribution on [0, ỹ], Pr [δ′ ≤ t] = t/ỹ for t ∈ [0, ỹ]. Thus,

Pr [δ′ ≤ κ(Y ′)] = 1

ỹ

∫ ỹ

0
p(t)t dt = E[κ(Y ′)]

ỹ
.

By Lemma 1.1 (segment case), E[κ(Y ′)] = ỹ/m2. This implies Pr [δ′ ≤ κ(Y ′)] =
O(1/m2), which proves (5). For an arbitrary nonempty K ⊆ {i + 1, . . . , j − 1},
since (5) holds for all ỹ ∈ (0, 1], we can remove the condition ymax = ỹ from
(5) to deduce Pr [(ai , a j ) ∈ Φ(S,U↓) |Λ = K ] = O(1/|K |2). This further implies
Pr [(ai , a j ) ∈ Φ(S,U↓) | |Λ| = m] = O(1/m2) for all m = {1, . . . , j − i − 1}. For
m = 0, we have Pr [(ai , a j ) ∈ Φ(S,U↓) | |Λ| = m] = 1.

[Step 2] In order to apply the result achieved in Step 1 to bound the unconditional
probability of (ai , a j ) ∈ Φ(S,U↓), we need to bound Pr [|Λ| = m] for all m ∈
{0, . . . , j − i − 1}. This is a combinatorial problem, because the random variable |Λ|
only depends on the ordering of yi , . . . , y j . There are ( j − i + 1)! possible orderings,
each of which can be represented by a permutation of {yi , . . . , y j }. Every ordering
occurs with the same probability 1/( j − i + 1)!. For a permutation π of {yi , . . . , y j },
we write λπ = max {rkπ (yi ), rkπ (y j )}, where the function rk computes the rank of
an element in a permutation. Clearly, if the ordering is π , then |Λ| = λπ − 2. As
such, we can pass to a new random experiment in which we generate uniformly a
permutation π of {yi , . . . , y j } and study Pr [|Λ| = m] for m ∈ {0, . . . , j − i − 1}
in this new experiment. Fixing m ∈ {0, . . . , j − i − 1}, it follows that |Λ| = m iff
λπ = m + 2. By an easy counting argument, we see that, among the ( j − i + 1)!
permutations of {yi , . . . , y j }, there are exactly 2(m + 1)( j − i − 1)! permutations in
which the maximum of the ranks of yi and y j is m + 2. Therefore,

Pr [|Λ| = m] = Pr [λπ = m + 2] = 2(m + 1)( j − i − 1)!
( j − i + 1)! = O

(
m + 1

( j − i)2

)

.

[Step 3] Using the results achieved in the previous steps, the lemma can be readily
proved. We apply the formula

Pr [(ai , a j ) ∈ Φ(S,U↓)]=
j−i−1∑

m=0

Pr [|Λ|=m] · Pr [(ai , a j ) ∈ Φ(S,U↓) | |Λ| = m].

(6)
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We use the result achieved in Step 1 to bound Pr [(ai , a j ) ∈ Φ(S,U↓) | |Λ| = m] and
the result achieved in Step 2 to bound Pr [|Λ| = m]. Then a direct calculation gives
us Pr [(ai , a j ) ∈ Φ(S,U↓)] = O(log( j − i)/( j − i)2).

A.4 Proof of Lemma 4.4

It suffices to consider the case in which l is a vertical line. Also, we may assume the
equation of l is x = 0, without loss of generality. Then Pl ⊆ Pv, so a (Pv, k)-TBEP
data structure is naturally a (Pl , k)-TBEP data structure. In a dataset S ⊆ R

2, we say
a point a ∈ S is a candidate point if a is one of the k topmost/bottommost points
in S ∩ P for some P ∈ Pl . We denote by Ψ (S) the subset of S consisting of all
candidate points in S. Note that for any P ∈ Pl , the k topmost/bottommost points in
S ∩ P are just the k topmost/bottommost points in Ψ (S) ∩ P . As such, answering a
(Pl , k)-TBEP query on S is equivalent to answering a (Pl , k)-TBEP query on Ψ (S).

Therefore,we can define our (Pl , k)-TBEPdata structureKl asKl(S) = Kv(Ψ (S)),
where Kv is the (Pv, k)-TBEP data structure defined in Lemma 4.3. Now let S ∝∏n

i=1 Ii where I1, . . . , In are distinct vertical aligned segments. Assume I1, . . . , In

are sorted from left to right, in which I1, . . . , It are to the left of l and It+1, . . . , In

are to the right of l. Denote by ai ∈ S the random point drawn on Ii . We claim that
E[|Ψ (S)|] = O(log n). Let i ∈ {1, . . . , t}. We first notice that ai ∈ Ψ (S) iff ai

is one of the k topmost/bottommost points among ai , . . . , at . Indeed, any P ∈ Pl

with ai ∈ P contains ai , . . . , at . Therefore, if ai ∈ Ψ (S), then it must be one of
the k topmost/bottommost points among ai , . . . , at . Conversely, if ai is one of the k
topmost/bottommost points among ai , . . . , at , then ai ∈ Ψ (S) because it is one of the
k topmost/bottommost points in S ∩ P for P = [ai .x, 0] × R ∈ Pl .

Since the randompoints are generated independently, the probability thatai is one of
the k topmost/bottommost points among ai , . . . , at is exactly min {2k/(t − i + 1), 1}.
As such, Pr [ai ∈ Ψ (S)] ≤ 2k/(t − i + 1). Using the same argument, we see that for
i ∈ {t + 1, . . . , n}, Pr [ai ∈ Ψ (S)] ≤ 2k/(i − t). Now

E[|Ψ (S)|] =
n∑

i=1

Pr [ai ∈ Ψ (S)] ≤
t∑

i=1

2k

t − i + 1
+

n∑

i=t+1

2k

t − i
= O(k log n).

Since k is a constant, we have E[|Ψ (S)|] = O(log n). Thus,

E[Space(Kl(S))] = E[Space(Kv(Ψ (S)))] = E[|Ψ (S)|] = O(log n).

Also, E[Qtime(Kl(S))] = E[Qtime(Kv(Ψ (S)))] = O(E[log |Ψ (S)|]). Note that
E[log x] ≤ logE[x] for a randomvariable x , henceE[Qtime(Kl(S))] = O(log log n).
To build this data structure, we only need to compute Ψ (S) and construct Kv(Ψ (S)).
The latter can be done in O(n log n) time by Lemma 4.3. To compute Ψ (S) is also
easy. By our above observation, for i ∈ {1, . . . , t}, ai ∈ Ψ (S) iff ai is one of the k
topmost/bottommost points among ai , . . . , at . Therefore, we only need to scan from
at to a1 and maintain the k topmost/bottommost points among ai , . . . , at when we
reach ai . In this way, we can determine whether ai ∈ Ψ (S) for all i ∈ {1, . . . , t} in
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O(t) time, since k is a constant. Similarly, we can know which points of at+1, . . . , an

are in Ψ (S) in O(n − t) time. It follows that Ψ (S) can be computed in O(n) time.

A.5 Proof of Lemma 4.7

It suffices to consider the case in which I1, . . . , In are vertical aligned segments and
X = U↓. Without loss of generality, assume Ii = xi × [0, 1] where x1 < . . . < xn

are real numbers. We denote by ai ∈ S the random point drawn on Ii . Also, suppose
a1, . . . , at are to the left of l, while at+1, . . . , an are to the right of l. Let Ei, j be the
event that (ai , a j ) ∈ Φ(A,U↓). Then we have the equation

E[|Φl(S,U↓)|] =
t∑

i=1

n∑

j=t+1

Pr[Ei, j ].

By applying Lemma 3.1 and the fact

t∑

i=1

n∑

j=t+1

log( j − i)

( j − i)2
≤

n∑

p=1

p · log p

p2
= O(log2n),

we have E[|Φl(S,U↓)|] = O(log2n).
To prove E[|Φl(S,U↓)|2] = O(log4n) is much more difficult. Define Ψ =

Φ2
l (S,U↓), i.e., the Cartesian product of two copies of Φl(S,U↓). Then |Ψ | =

|Φl(S,U↓)|2. So it suffices to bound E[|Ψ |]. Clearly, for i, i ′ ∈ {1, . . . , t} and
j, j ′ ∈ {t + 1, . . . , n}, ((ai , a j ), (ai ′ , a j ′)) ∈ Ψ iff Ei, j ∧ Ei ′, j ′ . Therefore, we have

E[|Ψ |] =
t∑

i=1

n∑

j=t+1

t∑

i ′=1

n∑

j ′=t+1

Pr [Ei, j ∧ Ei ′, j ′ ]. (7)

However, Pr [Ei, j ∧ Ei ′, j ′ ] �= Pr[Ei, j ] · Pr[Ei ′, j ′ ] in general, as the events Ei, j and
Ei ′, j ′ are not independent. We investigate Pr [Ei, j ∧ Ei ′, j ′ ] by considering various
cases.

[Case 1] We first consider the easiest case in which i = i ′ and j = j ′. In this case,
Pr [Ei, j ∧ Ei ′, j ′ ] = Pr[Ei, j ] = O(log( j − i)/( j − i)2) by Lemma 3.1. Then the sum
of the terms Pr [Ei, j ∧ Ei ′, j ′ ] satisfying i = i ′ and j = j ′ is O(log2n).

[Case 2] We then consider the case in which i �= i ′ and j �= j ′. Let δ = j − i and
δ′ = j ′−i ′. In this case, we claim that Pr [Ei, j ∧ Ei ′, j ′ ] = O((log δ log δ′)/(δδ′)2). To
prove this, wemay assume that δ′ is sufficiently large, say δ′ ≥ 5. Indeed, when δ′ < 5,
what we want is Pr [Ei, j ∧ Ei ′, j ′ ] = O(log δ/δ2), which is true as Pr [Ei, j ∧ Ei ′, j ′ ] ≤
Pr[Ei, j ] = O(log δ/δ2). For the same reason, we may also assume δ ≥ 5. Let S0
(resp., S1) be the subsets of S consisting of ai , a j (resp., ai ′ , a j ′ ) and all the random
points in S\{ai , a j , ai ′ , a j ′ }with even indices (resp., odd indices). Clearly, S = S0∪S1
and S0 ∩ S1 = ∅. Define F0 (resp., F1) as the event (ai , a j ) ∈ Φ(S0,U↓) (resp.,
(ai ′ , a j ′) ∈ Φ(S1,U↓)). Since S0 and S1 are subsets of S, Ei, j (resp., Ei ′, j ′) happens
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only if F0 (resp., F1) happens. Besides, F0 and F1 are independent events, because
S0 ∩ S1 = ∅. Thus,

Pr [Ei, j ∧ Ei ′, j ′ ] ≤ Pr [F0 ∧ F1] = Pr[F0] · Pr[F1].

To bound Pr[F0] and Pr[F1], we use Lemma 3.1 again. By construction, there
are Θ(δ) points in S0 whose x-coordinates are in [ai .x, a j .x] (recall the assump-
tion δ ≥ 5). Therefore, we have Pr[F0] = O(log δ/δ2) by Lemma 3.1. Similarly,
Pr[F1] = O(log δ′/(δ′)2). Using the above inequality, we have Pr [Ei, j ∧ Ei ′, j ′ ] =
O((log δ log δ′)/(δδ′)2). The sum of the terms Pr [Ei, j ∧ Ei ′, j ′ ] satisfying i �= i ′ and
j �= j ′ is O(log4n), as one can easily verify.

[Case 3] The most subtle case is that i = i ′ and j �= j ′, or symmetrically i �= i ′ and
j = j ′. Assume i = i ′ and j > j ′. Let δ = j − i and δ′ = j ′ − i . We claim that
Pr [Ei, j ∧ Ei, j ′ ] = O(log δ/(δ2δ′)). Again, we may assume δ and δ′ are sufficiently
large, say δ > δ′ ≥ 5. Let S0 (resp., S1) be the subsets of S consisting of ai , a j (resp.,
ai , a j ′ ) and all the random points in S \ {ai , a j , a j ′ } with even indices (resp., odd
indices). Clearly, S = S0 ∪ S1 and S0 ∩ S1 = {ai }. Define F0 (resp., F1) as the event
(ai , a j ) ∈ Φ(S0,U↓) (resp., (ai , a j ′) ∈ Φ(S1,U↓)). As in Case 2, we have

Pr [Ei, j ∧ Ei, j ′ ] ≤ Pr [F0 ∧ F1].

However, Pr [F0 ∧ F1] �= Pr[F0] · Pr[F1] in general, because F0 and F1 are not
independent (both of them depends on ai .y). To handle this issue, we observe that

Pr [F0 ∧ F1] =
∫ 1

0
Pr [F0 ∧ F1 |ai .y = t] dt,

since the distribution of ai .y is the uniform distribution on [0, 1]. Note that under the
condition ai .y = t , F0 and F1 are in fact independent. Indeed, when ai .y is fixed, F0
(resp., F1) only depends on the y-coordinates of the random points in S0 \ {ai } (resp.,
S1 \ {ai }). Therefore, we can write

Pr [F0 ∧ F1] =
∫ 1

0
Pr [F0 |ai .y = t] · Pr [F1 |ai .y = t] dt,

We first consider Pr [F1 |ai .y = t] for a fixed t ∈ [0, 1]. Let S′
1 = S1 ∩ {ai , . . . , a j ′ },

i.e., S′
1 is the subset of S1 consisting of all the points whose x-coordinates are in

[xi , x j ′ ]. We notice that F1 happens only if a j ′ is y-adjacent to ai in S′
1, i.e., there

is no other point whose y-coordinate is in between ai .y and a j ′ .y. Indeed, if there
exists a ∈ S′

1 \ {ai , a j ′ } such that a.y is in between ai .y and a j ′ .y, then dist(ai , a) <

dist(ai , a j ′) and a is in the minimal bottom-unbounded 3-sided rectangle containing
ai , a j ′ , which implies F1 does not happen.

We claim that, under the condition ai .y = t , the probability that a j ′ is y-adjacent
to ai in S′

1 is O(1/δ′). The y-coordinates of the random points in S′
1 \ {ai } are inde-

pendently drawn from the uniform distribution on [0, 1], so every point in S′
1 \ {ai }

has the same probability (say p) to be y-adjacent to ai . Let r be the number of
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the points in S′
1 \ {ai } that are y-adjacent to ai , which is a random variable. Then

E[r ] = p · |S′
1 \ {ai }|. But we always have r ≤ 2, since there can be at most two points

y-adjacent to ai . In particular,E[r ] ≤ 2 and p = O(1/|S′
1\{ai }|). By construction, we

have |S′
1 \ {ai }| = Θ(δ′) (recall the assumption δ′ ≥ 5). It follows that p = O(1/δ′),

i.e., the probability that a j ′ is y-adjacent to ai in S′
1 is O(1/δ′). Using our previous

argument, we have Pr [F1 |ai .y = t] = O(1/δ′). Therefore,

Pr [F0 ∧ F1] = O(1/δ′) ·
∫ 1

0
Pr [F0 |ai .y = t] dt .

Note that
∫ 1
0 Pr [F0 |ai .y = t] dt = Pr[F0]. By construction, there are Θ(δ) points in

S0 whose x-coordinates are in between ai .x and a j .x (recall the assumption δ ≥ 5).
Thus, Lemma 3.1 implies Pr[F0] = O(log δ/δ2). Plugging in this to the equation
above, we have Pr [F0 ∧ F1] = O (log δ/(δ2δ′)). As a result, Pr [Ei, j ∧ Ei, j ′ ] =
O(log δ/(δ2δ′)). The sum of the terms Pr [Ei, j ∧ Ei ′, j ′ ] satisfying i = i ′ and j > j ′
is O(log3n), as one can easily verify. For the same reason, the terms satisfying i = i ′
and j < j ′ also sum up to O(log3n). The symmetric case that i �= i ′ and j = j ′ is
handled in the same fashion.

Combining all the cases, we conclude that E[|Φl(S,U↓)|2] = E[|Ψ |] = O(log4n).

A.6 Proof of Theorem 4.9

The R-RCP data structure D2 is described in Sect. 4.3.

[QueryTime] Wefirst analyze the (worst-case) query time.When answering a query,
we first find the splitting nodes u and v in the 2D range tree. As argued in the proof
of Theorem 4.5, this can be done in O(log n) time. Then we query the sub-structures
stored at v to compute φ, φα, φβ . Note that all the sub-structures have O(log n) query
time and we only need constant number of queries. Therefore, this step takes O(log n)

time, and hence the overall query time is also O(log n).

[Average-Case Space Cost and Preprocessing Time] We now analyze the average-
case space cost and preprocessing time ofD2. Let R be an axes-parallel rectangle and
S ∝ Rn . We denote by a1, . . . , an the n random points in S. The data structure
instance D2(S) is essentially a 2D range tree built on S with some sub-structures
stored at secondary nodes. Note that a 2D range tree built on a set of n points in R

2

has a fixed tree structure independent of the locations of the points. This says, while
D2(S) is a random data structure instance depending on the random dataset S, the 2D
range tree in D2(S) has a deterministic structure. As such, we can view D2(S) as a
fixed 2D range tree with random sub-structures. Let T denote the primary tree of this
2D range tree and Tu denote the secondary tree at the node u ∈ T , as in Sect. 4. To
bound E[Space(D2(S))] and the expected time for constructing D2(S), it suffices to
bound the expected space and preprocessing time of the sub-structures stored at each
secondary node.

For convenience of exposition,we introduce somenotations. Letu ∈ T be a primary
node. Suppose the n leaves of T are lf1, . . . , lfn sorted from left to right. Then the
leaves in the subtree rooted at u must be lfα, . . . , lfβ for some α, β ∈ {1, . . . , n}
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with α ≤ β We then write range(u) = [α :β] and size(u) = β − α + 1. Due to
the construction of a 2D range tree, we always have |S(u)| = size(u) no matter
what the random dataset S is. Furthermore, if range(u) = [α :β], then S(u) contains
exactly the points in S with x-ranks α, . . . , β (we say a point has x-rank i in S if
it is the i-th leftmost point in S). Let v ∈ Tu be a secondary node. We can define
range(v) and size(v) in the same way as above (just by replacing T with Tu). Also,
we always have |S(v)| = size(v). If range(v) = [α :β], then S(v) contains exactly
the points in S(u) with y-ranks α, . . . , β (we say a point has y-rank i in S(u) if
it is the i-th bottommost point in S(u)). In what follows, we fix a secondary node
v ∈ Tu and analyze the sub-structures stored at v. Let u′ (resp., v′) denote the left
child of u (resp., v). Suppose range(u) = [α :β], range(u′) = [α :β ′] (where β ′ < β),
range(v) = [γ :ξ ], range(v′) = [γ :ξ ′] (where ξ ′ < ξ ).

We want to use Theorem 2.2 and Lemmas 4.4 and 4.7 to bound the average-case
space cost of the Q-RCP, TBEP/LREP, U-RSS sub-structures, respectively. For the
preprocessing time, Theorem 2.2 and Lemma 4.4 already guarantee that the Q-RCP
and TBEP/LREP sub-structures can be built efficiently even in worst-case, and we
want to use Lemma 4.8 to bound the average-case time for building the U-RSS sub-
structures. However, before doing this, there is a crucial issue to be handled. Recall that
in Theorem 2.2, Lemmas 4.4, 4.7, and 4.8, we assume the random dataset is generated
either from the uniformdistribution on a rectangle (S ∝ Rn) or from the uniformdistri-
butions on a set of aligned segments (S ∝ ∏n

i=1 Ii ). Unfortunately, here the underlying
datasets of the sub-structures are S1(v), . . . , S4(v) and S�(v), S�(v), S�(v), S�(v);
these random point-sets are neither (independently and uniformly) generated from a
rectangle nor generated from aligned segments. For instance, we cannot directly use
Theorem 2.2 to deduce E[Space(A(S1(v)))] = O(log2|S1(v)|), since S1(v) is not
uniformly generated from a rectangle, and even its size |S1(v)| is not a fixed number
(|S1(v)| varies with S). The main focus of the rest of this proof is to handle this issue.

We first consider S1(v). Note that S1(v) = S(u′) ∩ S(v′) by definition. We want
to bound E[Space(A(S1(v)))]. Our basic idea is the following: reducing this expec-
tation to conditional expectations in which S1(v) can be viewed as uniformly and
independently generated from an axes-parallel rectangle so that Theorem 2.2 applies.
To this end, let Λ = {i : ai ∈ S1(v)}, which is a random subset of [n] = {1, . . . , n},
i.e., a random variable taking value from the power set of [n]. A configuration refers
to a pair (J , f ) where J ⊆ [n] and f : [n] \ J → R is a coordinate-wise injective
function, i.e., f (i) and f (i ′) have distinct x-coordinates and y-coordinates if i �= i ′.
For a configuration (J , f ), we define a corresponding event E J , f as

E J , f =
⎛

⎝
∧

i∈[n]\J

(ai = f (i))

⎞

⎠ ∧ (Λ = J ).

We say (J , f ) is a legal configuration if E J , f is a possible event. We shall show
that, if (J , f ) is a legal configuration, then under the condition E J , f , the |J | random
points in {a j : j ∈ J } can be viewed as independently drawn from the uniform
distribution on an axes-parallel rectangle. Suppose (J , f ) is a legal configuration. Let
F = { f (i) : i ∈ [n] \ J }, and F ′ ⊆ F be the subset consisting of the points with
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x-ranks α, . . . , β − |J | in F . Define x1 as the x-coordinate of the (α − 1)-th leftmost
point in F , x2 as the x-coordinate of the (n − β ′)-th rightmost point in F , y1 as the
y-coordinate of the (γ − 1)-th bottommost point in F ′, y2 as the y-coordinate of the
(size(u) − ξ ′)-th topmost point in F ′. Set R′ = [x1, x2] × [y1, y2].

We claim that E J , f happens iff ai = f (i) for all i ∈ [n] \ J and a j ∈ R′ for all
j ∈ J . Since (J , f ) is a legal configuration, there exists at least one instance of S
making E J , f happen. Let S∗ : {ai = a∗

i }i∈[n] be such an instance, where a∗
i ∈ R

indicates the location of ai in the instance S∗. Then a∗
i = f (i) for all i ∈ [n] \ J ,

hence {a∗
1 , . . . , a∗

n } = F ∪ {a∗
j : j ∈ J }. Since the points in {a∗

j : j ∈ J } belong to
S(u′) (for S∗ makes Λ = J ), the α − 1 leftmost points in F ∪ {a∗

j : j ∈ J } (which
correspond to the points in S to the left of S(u′)) must be contained in F , and hence
they are just the α − 1 leftmost points in F (which we denote by F1). This implies
a∗

j .x ≥ x1 for all j ∈ J . Similarly, the n − β ′ rightmost points in F ∪ {a∗
j : j ∈ J }

(which correspond to the points in S to the right of S(u′)) must be the n −β rightmost
points in F (which we denote by F2). This implies a∗

j .x ≤ x2 for all j ∈ J . Clearly,
the points corresponding to S(u) are exactly those in F ′ ∪ {a∗

j : j ∈ J }. Since the
points in {a∗

j : j ∈ J } belong to S(v′) (for S∗ makes Λ = J ), the γ − 1 bottommost
points in F ′ ∪ {a∗

j : j ∈ J } (which correspond to the points in S(u) below S(v′)) must
be contained in F ′, and hence they are just the γ − 1 bottommost points in F ′ (which
we denote by F ′

1). This implies a∗
j .y ≥ y1 for all j ∈ J . Similarly, the size(u) − ξ ′

topmost points in F ′ ∪ {a∗
j : j ∈ J } (which correspond to the points in S(u) above

S(v′)) must be the size(u) − ξ ′ topmost points in F ′ (which we denote by F ′
2). This

implies a∗
j .y ≤ y2 for all j ∈ J . Now we already see a∗

j ∈ R′ for all j ∈ J . It follows
that E J , f happens only if ai = f (i) for all i ∈ [n] \ J and a j ∈ R′ for all j ∈ J .

Furthermore, we note that F1 ∪ F2 ∪ F ′
1 ∪ F ′

2 corresponds to S \ S1(v). Since S∗
makes Λ = J , we must have F = F1 ∪ F2 ∪ F ′

1 ∪ F ′
2 (this argument relies on the

existence of such an instance S∗ making E J , f happen, i.e., it may fail if (J , f ) is not a
legal configuration). We then use this fact to show the “if” part. Let S∗ : {ai = a∗

i }i∈[n]
be an instance of S satisfying a∗

i = f (i) for all i ∈ [n] \ J and a∗
j ∈ R′ for all j ∈ J .

Then {a∗
1 , . . . , a∗

n } = F ∪ {a∗
j : j ∈ J }. We look at the subsets F1, F2, F ′

1, F ′
2 of F .

Since a∗
j .x ∈ [x1, x2] for all j ∈ J , F1 (resp., F2) contains exactly the α − 1 leftmost

points (resp., n − β ′ rightmost points) in F ∪ {a∗
j : j ∈ J }, which correspond to the

points to the left (resp., right) of S(u′). Similarly, since a∗
j .y ∈ [y1, y2] for all j ∈ J ,

F ′
1 (resp., F ′

2) contains exactly the γ −1 bottommost points (resp., size(u)−ξ ′ topmost
points) in F ′ ∪ {a∗

j : j ∈ J }, which correspond to the points in S(u) below (resp.,
above) S(v). Then F = F1 ∪ F2 ∪ F ′

1 ∪ F ′
2 corresponds to S \ S1(v). The remaining

points, which correspond to S1(v), are exactly those in {a∗
j : j ∈ J }. Therefore,

Λ = J and S∗ makes E J , f happen. Now we see that E J , f happens iff ai = f (i) for
all i ∈ [n] \ J and a j ∈ R′ for all j ∈ J , i.e.,

E J , f =
⎛

⎝
∧

i∈[n]\J

(ai = f (i))

⎞

⎠ ∧
⎛

⎝
∧

j∈J

(a j ∈ R′)

⎞

⎠ .
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As such, under the condition E J , f , the random points in SJ = {a j : j ∈ J } can
be viewed as independently drawn from the uniform distribution on R′. Applying
Theorem 2.2, we have

E[Space(A(S1(v))) | E J , f ] = E[Space(A(SJ )) | E J , f ] = O(log2|J |).

Noting that |J | ≤ size(v′) ≤ size(v) if (J , f ) is a legal configuration, we can deduce

E[Space(A(S1(v))) | E J , f ] = O(log2size(v)) for any E J , f ∈ E, (8)

where E = {E J , f : (J , f ) is a legal configuration}. Using this result, we further
show that E[Space(A(S1(v)))] = O(log2size(v)). Clearly, E is a collection of mutu-
ally disjoint (or mutually exclusive) events. Furthermore, we notice that whenever
a1, . . . , an have distinct x-coordinates and y-coordinates, some E J , f ∈ E happens.
That says, E is a collection of almost collectively exhaustive events in the sense that
with probability 1 some E J , f ∈ E happens. Since the events in E are mutually disjoint
and almost collectively exhaustive, E[Space(A(S1(v)))] = O(log2size(v)) follows
directly from the law of total expectation and (8). Clearly, the same idea applies to
bound E[Space(A(Si (v)))] for all i ∈ {1, . . . , 4}. For the preprocessing time, Theo-
rem 2.2 shows thatA(Si (v)) can be built in O(size(v) log2size(v)) time even in worst
case.

Next, we consider S�(v). We want to bound E[Space(Klu(S�(v)))] and
E[Space(C(Φ�(v)))] where Φ�(v) = Φlu(S�(v),U↓) by definition. The idea is
totally the same as in the last paragraph: reducing to conditional expectations in which
S�(v) can be viewed as independently generated from a set of (vertical) aligned seg-
ments so that Lemmas 4.4 and 4.7 apply. We change the definition of Λ in the last
paragraph to Λ = {i : ai ∈ S�(v)}, and again define

E J , f =
⎛

⎝
∧

i∈[n]\J

(ai = f (i))

⎞

⎠ ∧ (Λ = J ),

based on the newdefinition ofΛ. Aswe see in the last paragraph, it suffices to bound the
conditional expectations E[Space(Klu(S�(v))) | E J , f ], E[Space(C(Φ�(v))) | E J , f ]
for all legal configuration (J , f ). Suppose (J , f ) is a legal configuration. Let F =
{ f (i) : i ∈ [n] \ J }, and F ′ ⊆ F be the subset consisting of the points with x-ranks
α, . . . , β−|J | in F . Define x1 as the x-coordinate of the (α−1)-th leftmost point in F ,
x2 as the x-coordinate of the (n −β)-th rightmost point in F , y1 as the y-coordinate of
the (γ − 1)-th bottommost point in F ′, y2 as the y-coordinate of the (size(u) − ξ ′)-th
topmost point in F ′. Set R′ = [x1, x2] × [y1, y2]. Using the same argument as in the
last paragraph, one can easily verify that E J , f happens iff ai = f (i) for all i ∈ [n] \ J
and a j ∈ R′ for all j ∈ J . For an injective function g : J → (x1, x2), we further
define

123



44 Discrete & Computational Geometry (2022) 68:1–49

E J , f ,g = E J , f ∧
⎛

⎝
∧

j∈J

(a j .x = g( j))

⎞

⎠ .

Now E J , f ,g happens iff ai = f (i) for all i ∈ [n] \ J and a j ∈ {g( j)} × [y1, y2]
for all j ∈ J . Thus, under E J , f ,g , the |J | random points in SJ = {a j : j ∈ J }
can be viewed as independently drawn from the |J | vertical aligned segments in
{{g( j)} × [y1, y2] : j ∈ J }. To apply Lemmas 4.4 and 4.7, we still need to consider
one thing: the line lu. The line lu is a random vertical line depending on S. However,
we notice that under E J , f ,g , lu is fixed. Indeed, under E J , f ,g , S(u) corresponds to
F ′ ∪{a j : j ∈ J }. Thus, the x-coordinates of the points in S(u) are fixed under E J , f ,g ,
and hence lu is fixed. As such, we are able to apply Lemma 4.4 to deduce

E[Space(Klu(S�(v))) | E J , f ,g] = E[Space(Klu(SJ )) | E J , f ,g]
= O(log |J |) = O(log size(v)),

and apply Lemma 4.7 to deduce

E[Space(C(Φ�(v))) | E J , f ,g] = E[|Φlu(SJ ,U↓)|2] = O(log4|J |) = O(log4size(v)).

Note that, if E J , f happens, then with probability 1 some E J , f ,g happens. There-
fore, the collection E = {E J , f ,g}, which consists of all E J , f ,g where (J , f ) is a legal
configuration and g : J → (x1, x2) is an injective functionwith range (x1, x2) depend-
ing on (J , f ), is a collection of mutually disjoint and almost collectively exhaustive
events. By the lawof total expectation,we immediately haveE[Space(Klu(S�(v)))] =
O (log size(v)) and E[Space(C(Φ�(v)))] = O(log2size(v)).

For the preprocessing time, Lemma 4.4 shows that Klu(S�(v)) can be constructed
in O(size(v) log2size(v)) time even in worst-case. By applying Lemma 4.8 and our
above argument, the expected time for constructing C(Φ�(v)) under each event E J , f ,g

is O(size(v) log4size(v)). As before, using the law of total expectation, we then con-
clude that the expected time for constructing C(Φ�(v)) is O(size(v) log4size(v)). The
expected space cost and preprocessing time of the sub-structures built on S�(v) can
be bounded using the same argument. Also, one can handle S�(v) and S�(v) in a
similar way. The only difference is that, in the event E J , f ,g , the g function should
indicate the y-coordinates of the points in {a j : j ∈ J } instead of the x-coordinates.

Once we know that the expected space cost of all the sub-structures stored at v is
poly-logarithmic in size(v), we can deduce that the expected space cost of each sec-
ondary treeTu (with the sub-structures) is O(size(u)).As a result,E[Space(D2(S))] =
O(n log n). Also, we know that we can construct the sub-structures stored at v in
O (size(v) log4size(v)) average-case time. Therefore, each secondary tree Tu (with
the sub-structures) can be constructed in O (size(u) log5size(u)) average-case time
and the entire data structure D2(S) can be constructed in O(n log6n) average-case
time.
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A.7 Proof of Lemma 5.2

Without loss of generality, assume R = [0, 1] × [0,Δ]. It suffices to show that
E[|Φ(S,H↓)|] = O(log2n). This can be further reduced to showingE[|Φ(S,H′)|] =
O(log2n) where

H′ = {l↓ : l is a non-vertical line whose slope is non-positive} ⊆ H↓.

Suppose the n random points in S are a1, . . . , an . Let Ei, j be the event that (ai , a j ) ∈
Φ(S,H′), and observe

E[|Φ(S,H′)|] =
n−1∑

i=1

n∑

j=i+1

Pr[Ei, j ].

Note that all Pr[Ei, j ] in the above equation are the same, which impliesE[|Φ(S,H′)|]
= O(n2 ·Pr[E1,2]). Thus, it suffices to bound Pr[E1,2]. As in the proof of Lemma 2.1,
we define random variables xmax = max {a1.x, a2.x}, ymax = max {a1.y, a2.y},
xmin = min {a1.x, a2.x}, ymin = min {a1.y, a2.y}, Q = (−∞, xmax] × (−∞, ymax],
and Λ = {i ≥ 3 : ai ∈ Q}. We also define Q′ = (−∞, xmax/2] × (−∞, ymax/2] and
Λ′ = {i ≥ 3 : ai ∈ Q′}. We achieve the bound for Pr[E1,2] through four steps.

[Step 1] We begin with establishing the following key observation: for any H ∈ H′,
a1, a2 ∈ H implies Q′ ⊆ H . To see this, let H ∈ H′ and assume a1, a2 ∈ H . If
{a1, a2} = {(xmin, ymin), (xmax, ymax)}, then H contains the point (xmax, ymax). This
implies that H contains the point (xmax/2, ymax/2) and hence contains Q′, because
H = l↓ for a line l of non-positive slope. If {a1, a2} = {(xmin, ymax), (xmax, ymin)},
then H contains the 5-polygon P whose vertices are (0, 0), (xmax, 0), (xmax, ymin),
(xmin, ymax), (0, ymax). Note that P contains the point (xmax/2, ymax/2), which implies
that H also contains the point (xmax/2, ymax/2) and hence contains Q′.
[Step 2] Based on the observation in Step 1, we prove a result which is similar to (3)
in the proof of Lemma 2.1. We claim that for all x̃ ∈ (0, 1], all ỹ ∈ (0,Δ], and all
nonempty J ′ ⊆ {3, . . . , n},

Pr
[
E1,2 |(xmax = x̃) ∧ (ymax = ỹ) ∧ (Λ′ = J ′)

] = O(|J ′|−2). (9)

The argument for proving this is similar to that for proving (3). We use C ′
x̃,ỹ,J ′ to

denote the condition in the above conditional probability. Assume |J ′| = k. Let
δx = xmax − xmin and δy = ymax − ymin. Since any halfplane H ∈ H′ containing
a1, a2 must contain Q′, E1,2 happens only if δx ≤ κ(SJ ′) and δy ≤ κ(SJ ′), where
SJ ′ = {a j : j ∈ J ′}. So it suffices to bound

Pr
[
(δx ≤ κ(SJ ′)) ∧ (δy ≤ κ(SJ ′)) |C ′

x̃,ỹ,J ′
]
.

Under the condition C ′
x̃,ỹ,J ′ , Q′ is just (−∞, x̃/2] × (−∞, ỹ/2]. Thus the condi-

tion C ′
x̃,ỹ,J ′ is equivalent to saying that the maximum of the x-coordinates (resp.,
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y-coordinates) of a1, a2 is x̃ (resp., ỹ), all a j for j ∈ J ′ are contained in the rectangle
R′ = [0, x̃/2] × [0, ỹ/2], and all a j for j ∈ {3, . . . , n} \ J ′ are contained in R \ R′.
As such, one can easily verify that, under the condition C ′

x̃,ỹ,J ′ , the distribution of the
random number δx (resp., δy) is the uniform distribution on the interval [0, x̃] (resp.,
[0, ỹ]) and the distributions of the k random points in SJ ′ are the uniform distribution
on R′; furthermore, these random numbers/points are independent of each other. This
says, if we consider a new random experiment inwhichwe independently generate two
random numbers δ′

x , δ
′
y from the uniform distributions on [0, x̃], [0, ỹ] respectively

(which correspond to δx , δy) and a random dataset S′ ∝ (R′)k (which corresponds
to SJ ′ ), then we have

Pr [(δ′
x ≤ κ(S′)) ∧ (δ′

y ≤ κ(S′))] = Pr
[
(δx ≤ κ(SJ ′)) ∧ (δy ≤ κ(SJ ′))|C ′

x̃,ỹ,J ′
]
.

So it suffices to bound Pr [(δ′
x ≤ κ(S′)) ∧ (δ′

y ≤ κ(S′))] in the new experiment; we
denote by λ this probability. We apply the formula

λ =
∫ ∞

0
p(t) · Pr [(δ′

x ≤ t) ∧ (δ′
y ≤ t)] dt =

∫ ∞

0
p(t) · Pr [δ′

x ≤ t] · Pr [δ′
y ≤ t] dt,

where p( · ) is the probability distribution function of κ(S′). Since δ′
x (resp., δ′

y)
is uniformly drawn from the interval [0, x̃] (resp., [0, ỹ]), we have Pr [δ′

x ≤ t] =
min {t/x̃, 1} (resp., Pr [δ′

y ≤ t] = min {t/ỹ, 1}).Without loss of generality, we assume
x̃ ≤ ỹ. Then we have

Pr [δ′
x ≤ t] · Pr [δ′

y ≤ t] = min

{
t2

x̃ ỹ
,

t

ỹ
, 1

}

≤ min

{
t2

x̃ ỹ
,

t

ỹ

}

.

It follows that

λ ≤
∫ ∞

0
p(t) · min

{
t2

x̃ ỹ
,

t

ỹ

}

dt = min

{∫ ∞

0

p(t)t2

x̃ ỹ
dt,

∫ ∞

0

p(t)t

ỹ
dt

}

.

Noting the fact that
∫ ∞
0 p(t)t2 dt = E[κ2(S′)] and ∫ ∞

0 p(t)t dt = E[κ(S′)], we have

λ ≤ min

{
E[κ2(S′)]

x̃ ỹ
,

E[κ(S′)]
ỹ

}

.

Since x̃ ≤ ỹ by assumption, Lemma 1.1 implies E[κ(S′)]=O (max {√x̃ ỹ/k, ỹ/k2})
and E[κ2(S′)] = O (max {x̃ ỹ/k2, ỹ2/k4}). If √

x̃ ỹ/k ≤ ỹ/k2, then E[κ(S′)]/ỹ =
O(1/k2), otherwise E[κ2(S′)]/(x̃ ỹ) = O(1/k2). In either of the two cases, we have
λ = O(1/k2). Therefore, we obtain (9). For an arbitrary nonempty J ′ ⊆ {3, . . . , n},
since (9) holds for all x̃ ∈ (0, 1] and ỹ ∈ (0,Δ], we can remove the conditions
xmax = x̃ and ymax = ỹ from (9) to deduce Pr [E1,2 |Λ′ = J ′] = O(|J ′|−2) (note
that although we miss the case x̃ = 0 or ỹ = 0 for (9), it does not matter since
the events xmax = 0 and ymax = 0 happen with probability 0). This further implies
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that Pr [E1,2 | |Λ′| = k] = O(1/k2) for all k ∈ {1, . . . , n − 2}. For k = 0, we have
Pr [E1,2 | |Λ′| = k] = 1.

[Step 3] Let m be a sufficiently large integer, and m′ = �m/8�. Our goal in this step
is to bound Pr [|Λ′| ≤ m′ | |Λ| = m]. Again, we reduce to conditional probability. We
claim that for all x̃ ∈ (0, 1], all ỹ ∈ (0,Δ], and all J ⊆ {3, . . . , n} with |J | = m,

Pr
[|Λ′| ≤ m′ |(xmax = x̃) ∧ (ymax = ỹ) ∧ (Λ = J )] ≤ e−m/32. (10)

We use Cx̃,ỹ,J to denote the condition in the above conditional probability. Under the
condition Cx̃,ỹ,J , Q = (−∞, x̃] × (−∞, ỹ] and Q′ = (−∞, x̃/2] × (−∞, ỹ/2].
Since Λ′ ⊆ Λ by definition, we have, under the condition Cx̃,ỹ,J ,

|Λ′| =
∑

j∈J

1a j ∈Q′ , where 1a j ∈Q′ =
{
1 a j ∈ Q′

0 a j /∈ Q′ is the indicator function.

As we have seen when proving (3) in the proof of Lemma 2.1, under the condition
Cx̃,ỹ,J , the m random points in SJ can be viewed as independently drawn from the
uniform distribution on the rectangle [0, x̃] × [0, ỹ]. Note that a random point drawn
from the uniform distribution on [0, x̃] × [0, ỹ] has probability 1/4 to be contained
in Q′. Therefore, under the condition Cx̃,ỹ,J , {1a j ∈Q′ : j ∈ J } is a set of i.i.d.
random variables each of which equals 1 with probability 1/4 and equals 0 with
probability 3/4. It follows that E[|Λ′| |Cx̃,ỹ,J ] = m/4. By Hoeffding’s inequality, we

have Pr [m/4 − |Λ| ≥ m/8 |Cx̃,ỹ,J ] ≤ e−2(m/8)2/m = e−m/32, which implies (10).
Since (10) holds for all x̃ ∈ (0, 1], all ỹ ∈ (0,Δ], and all J ⊆ {3, . . . , n} with
|J | = m, we can deduce that Pr [|Λ′| ≤ m′ | |Λ| = m] ≤ e−m/32.

[Step 4] Finally, we try to bound Pr[E1,2] using the results obtained in the previous
steps. We apply the formula

Pr[E1,2] =
n−2∑

k=0

Pr [|Λ′| = k] · Pr [E1,2 | |Λ′| = k].

Since

Pr [|Λ′| = k] =
n−2∑

m=k

Pr [|Λ| = m] · Pr [|Λ′| = k | |Λ| = m],

we further deduce

Pr[E1,2] =
n−2∑

m=0

(

Pr [|Λ| = m] ·
m∑

k=0

gm,k

)

. (11)

where gm,k = Pr [E1,2 | |Λ′| = k]·Pr [|Λ′| = k | |Λ| = m].Weclaim that
∑m

k=0 gm,k =
O(1/m2) for all m ∈ {1, . . . , n − 2}. To prove this, we may assume i is sufficiently
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large. Set m′ = �m/8�. Using the result of Step 3, we can deduce that

m′
∑

k=0

gm,k ≤
m′
∑

k=0

Pr [|Λ′| = k | |Λ| = m] = Pr [|Λ′| ≤ m′ | |Λ| = m] ≤ e−m/32.

On the other hand, by the choice of m′ and the result of Step 2, Pr [E1,2 | |Λ′| = k] =
O(1/m2) for all k ∈ {m′ + 1, . . . , m}. As such, we have

m∑

k=m′+1

gm,k =
m∑

k=m′+1

O(m−2) · Pr [|Λ′| = k | |Λ| = m] = O(m−2).

It follows that

m∑

k=0

gm,k =
m′
∑

k=0

gm,k +
m∑

k=m′+1

gm,k ≤ e−m/32 + O(m−2) = O(m−2).

For m = 0, we have the trivial bound
∑m

k=0 gm,k = gm,0 ≤ 1. Thanks to (11) and the
bounds for

∑m
k=0 gm,k , the only thing remaining for bounding Pr[E1,2] is to bound

Pr [|Λ| = m]. Recall that, in the proof of Lemma 2.1, we have shown Pr [|Λ| = m] =
O((m + 1) log n/n2) for all m ∈ {0, . . . , n − 2}. Plugging in this and the bounds for∑m

k=0 gm,k to (11), a direct calculation gives us Pr[E1,2] = O(log2n/n2). As such,
E[|Φ(S,H′)|] = O(log2n) and thus E[|Φ(S,H)|] = O(log2n).
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