
Computers and Mathematics with Applications 117 (2022) 312–325

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

www.elsevier.com/locate/camwa

Goal-oriented a posteriori error estimation for the biharmonic problem 

based on an equilibrated moment tensor

Gouranga Mallik

Department of Mathematics, Indian Institute of Science, Bangalore 560012, India

A R T I C L E I N F O A B S T R A C T

Keywords:

Quantity of interest

A posteriori error estimate

Guaranteed bound

Equilibrated moment tensor

Unified framework

Adaptivity

In this article, we discuss goal-oriented a posteriori error estimation for the biharmonic plate bending problem. 
The error for a numerical approximation of a goal functional is represented by several computable estimators. 
One of these estimators is obtained using the dual-weighted residual method, which takes advantage of an 
equilibrated moment tensor. Then, an abstract unified framework for the goal-oriented a posteriori error 
estimation is derived based on the equilibrated moment tensor and the potential reconstruction that provides 
a guaranteed upper bound for the error of a numerical approximation for the goal functional. In particular, 𝐶0

interior penalty and discontinuous Galerkin finite element methods are employed for the practical realisation of 
the estimators. Numerical experiments are performed to illustrate the effectivity of the estimators.
1. Introduction

Adjoint-based goal-oriented a posteriori error estimation is an effi-

cient tool for the numerical approximation of many engineering prob-

lems as it provides relevant information about the error in a quantity of 
interest rather than the error estimation derived in some norm or semi-

norm. Goal-oriented a posteriori error estimation was initially proposed 
by Becker and Rannacher [3] and Prudhomme and Oden [34,32] using 
the dual-weighted residual (DWR) method (see [21,2,11,30] for subse-

quent works). Some of the popular approaches on the goal-oriented a 
posteriori error estimation are the multi-objective goal functional er-

ror estimation of [39,17,25], the constitutive relation error (CRE) of 
[26,28,37,35,36], the enhanced least-squares finite element methods of 
[13], the combination of DWR, and the equilibrated flux of [31], the 
guaranteed bounds based on the equilibrated flux of [29,1].

Traditionally, an a posteriori error analysis hinges upon the compu-

tation of the residual [2]

𝑎(𝑢− 𝑢ℎ, 𝑣) = 𝑙(𝑣) − 𝑎(𝑢ℎ, 𝑣) =∶ 𝜌(𝑢ℎ)(𝑣)

for some bilinear form 𝑎(∙, ∙) and linear form 𝑙 associated with elliptic 
partial differential equations (PDEs) with 𝑢 and 𝑢ℎ being its weak and 
Galerkin solutions, and 𝑣 being a test function. By incorporating a goal-

functional 𝑄 in a dual problem 𝑎(𝑣, 𝑧) =𝑄(𝑣) for all test functions 𝑣, and 
using Galerkin orthogonality, we have

𝑄(𝑢− 𝑢ℎ) = 𝑎(𝑢− 𝑢ℎ, 𝑧) = 𝑎(𝑢− 𝑢ℎ, 𝑧− 𝑣ℎ) = 𝜌(𝑢ℎ)(𝑧− 𝑣ℎ)

E-mail address: gourangam@iisc.ac.in.

for all discrete functions 𝑣ℎ. This approach involves the computation 
of an estimator weighted with the solution related to the dual prob-

lem. For the computational purpose, a suitable residual-based estimator 
can be chosen for the primal problem, and the dual-problem solution 𝑧
can be replaced by a discrete solution obtained in some finer discretiza-

tion space. However, in most cases, the estimators involve unknown 
constants; hence they do not provide a guaranteed a posteriori error 
bound. In order to obtain a guaranteed a posteriori estimator, one of-

ten incorporates the equilibrated flux (see [29,28]). Much research has 
been conducted regarding the goal-oriented a posteriori estimation for 
second-order PDEs. However, to the author’s knowledge, there are very 
few results (except [22]) on the goal-oriented a posteriori error estima-

tion for fourth-order PDEs. An ℎ𝑝-discontinuous Galerkin DWR-based 
goal error estimation has been proposed by [22] for the biharmonic 
problem and applied to describe the displacement of a thin and isotropic 
homogeneous plate and the stream function formulation of the Stokes 
fluid problem that describes the flow of a viscous fluid around a flat 
plate.

The article’s main purpose is to develop a unified framework for 
goal-oriented a posteriori error estimation for a model linear bihar-

monic problem. We consider goal functional of the form 𝑄(𝑢) = (𝑓, 𝑢)
for a weight function 𝑓 ∈ 𝐿2(Ω). In practical applications, this can be 
applied to approximate the goal functional governed by mean deflec-

tion around a specified zone and point deflection at some point (in a 
regularized form). This framework is applied (but not limited) to 𝐶0 in-

terior penalty and discontinuous Galerkin finite element methods. We 
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also establish a goal estimator that combines the DWR approach and the 
equilibrated moment tensor for the primal and dual problems. Finally, a 
unified guaranteed a posteriori error estimation is established through 
the potential reconstruction and the equilibrated moment tensor, which 
is significantly different from the DWR method of [22].

The organization of the paper is as follows. In Section 2, we de-

fine some notations and present some preliminary results. In Section 3, 
we introduce a model problem and state some useful results. In Sec-

tion 4, we establish some a posteriori error estimates for the goal 
functional. In Section 5, we consider finite element discretization for 
the approximation of solution and address some applications of the ab-

stract framework. Finally, in Section 6, we perform some numerical 
tests to substantiate the theoretical results.

2. Setting

Let Ω ⊂ ℝ2 be a bounded polygonal domain with the boundary 𝜕Ω. 
Throughout the paper, standard notations on Lebesgue and Sobolev 
spaces and their norms are employed. We denote the 𝐿2 scalar or vec-

tor inner product by (∙, ∙). The standard semi-norm and norm on 𝐻𝑠(Ω)
(resp. 𝑊 𝑠,𝑝(Ω)) for 𝑠 > 0 are denoted by | ∙ |𝑠 and ‖ ∙ ‖𝑠 (resp. | ∙ |𝑠,𝑝 and ‖ ∙ ‖𝑠,𝑝). We refer 𝐻−𝑚(Ω) to be the dual space of 𝐻𝑚

0 (Ω) with ⟨∙, ∙⟩𝑚
denoting the duality product and for 𝑚 = 2 we often denote the dual-

ity product simply by ⟨∙, ∙⟩. Further, let 𝑯(div , Ω) be the Hilbert space 
of vector fields 𝒒 ∈ [𝐿2(Ω)]2 such that ∇⋅𝒒 ∈ 𝐿2(Ω). Any matrix valued 
function in [𝐿2(Ω)]2×2 is denoted by 𝒒 = (𝑞𝑖𝑗 )2𝑖,𝑗=1 and the inner-product 

reads (𝒑, 𝒒) = ∫Ω 𝒑 ∶ 𝒒 dx, where 𝒑 ∶ 𝒒 =∑2
𝑖,𝑗=1 𝑝𝑖𝑗𝑞𝑖𝑗 . Moreover, we intro-

duce the Hilbert space

𝑯 ∶=
{
𝒒 ∈𝑯(div ,Ω)2 ∶ ∇⋅𝒒 ∈𝑯(div ,Ω)

}
.

Finally, we refer to 𝐷2𝑣 ∶= (𝜕2𝑣∕𝜕𝑥𝑖𝜕𝑥𝑗 )2𝑖,𝑗=1 as the matrix of second or-

der partial derivatives of a function 𝑣 ∈𝐻2(Ω). The set of all symmetric 
2 × 2 matrix valued functions is denoted by [𝐿2(Ω)]2×2sym.

Let ℎ be a shape-regular [4] triangulation of Ω into closed triangles. 
The set of all internal vertices (resp. boundary vertices) and interior 
edges (resp. boundary edges) of the triangulation ℎ are denoted by 
ℎ(Ω) (resp. ℎ(𝜕Ω)) and ℎ(Ω) (resp. ℎ(𝜕Ω)). Define a piecewise con-

stant mesh function ℎℎ (𝑥) = ℎ𝐾 = diam(𝐾) for all 𝑥 ∈ 𝐾 , 𝐾 ∈ ℎ, and 
set ℎ ∶= max𝐾∈ℎ ℎ𝐾 . Also define a piecewise constant edge-function on 
ℎ ∶= ℎ(Ω) ∪ ℎ(𝜕Ω) by ℎℎ |𝑒 = ℎ𝑒 = diam(𝑒) for any 𝑒 ∈ ℎ. The set of 
all edges of 𝐾 is denoted by ℎ(𝐾). Note that for a shape-regular fam-

ily, there exists a positive constant 𝐶 independent of ℎ such that any 
𝐾 ∈ ℎ and any 𝑒 ∈ ℎ(𝐾) satisfy 𝐶ℎ𝐾 ≤ ℎ𝑒 ≤ ℎ𝐾 . Let ℙ𝑘(𝐾) denote the 
set of all polynomials of degree less than or equal to 𝑘 and

ℙ𝑘(ℎ) ∶= {𝜑 ∈𝐿2(Ω) ∶ ∀𝐾 ∈ ℎ,𝜑|𝐾 ∈ ℙ𝑘(𝐾)
}
.

The 𝐿2(Ω) projection onto ℙ𝑘(ℎ) is denoted by Π𝑘. For a non-negative 
integer 𝑠, define the broken Sobolev space for the subdivision ℎ as

𝐻𝑠(ℎ) = {𝜑 ∈𝐿2(Ω) ∶ 𝜑|𝐾 ∈𝐻𝑠(𝐾) ∀𝐾 ∈ ℎ} ,
with the broken Sobolev semi-norm | ∙ |𝐻𝑠(ℎ) and norm ‖ ∙ ‖𝐻𝑠(ℎ) de-

fined by

|𝜑|𝐻𝑠(ℎ) =
( ∑

𝐾∈ℎ
|𝜑|2

𝐻𝑠(𝐾)

)1∕2
and ‖𝜑‖𝐻𝑠(ℎ) =

( ∑
𝐾∈ℎ

‖𝜑‖2
𝐻𝑠(𝐾)

)1∕2
.

Define the jump [[𝜑]]𝑒 = 𝜑|𝐾+
− 𝜑|𝐾−

and the average {{𝜑}}𝑒 =
1
2

(
𝜑|𝐾+

+
𝜑|𝐾−

)
across the interior edge 𝑒 of 𝜑 ∈𝐻1(ℎ) of the adjacent triangles 

𝐾+ and 𝐾−. Extend the definition of the jump and the average to an 
edge lying on the boundary by [[𝜑]]𝑒 = 𝜑|𝑒 and {{𝜑}}𝑒 = 𝜑|𝑒 when 𝑒 be-

longs to the set of boundary edges ℎ(𝜕Ω). For any vector function, the 
jump and the average are understood componentwise.
313
There exist real numbers 𝐶tr and 𝐶tr,c independent of ℎ such that the 
following discrete and continuous trace inequalities hold for all 𝐾 ∈ ℎ
and 𝑒 ∈ ℎ (see [16, Lemma 1.46 and 1.49])

‖𝑣‖𝑒 ≤ 𝐶trℎ
−1∕2
𝑒 ‖𝑣‖𝐾 ∀𝑣 ∈ ℙ𝑘(𝐾),

‖𝑣‖𝜕𝐾 ≤ 𝐶tr,c(ℎ−1𝐾 ‖𝑣‖2𝑇 + ℎ𝐾‖∇𝑣‖2
𝐾
)1∕2 ∀𝑣 ∈𝐻1(𝐾).

The positive constants 𝐶 appearing in the inequalities denote 
generic constants that do not depend on mesh-size. The notation 𝑎 ≲ 𝑏

means that there exists a generic constant 𝐶 independent of the mesh 
parameters such that 𝑎 ≤ 𝐶𝑏.

3. Model problem

In this article, we are interested in the goal-oriented a posteriori 
error estimations for a general linear fourth-order boundary-value prob-

lem, but the results can be extended to more general situations. For 
simplicity of presentation, we restrict ourselves to a simple model prob-

lem. Consider the biharmonic equation with the clamped boundary 
conditions

Δ2𝑢 = 𝑓 in Ω, (3.1a)

𝑢 = 0 = 𝜕𝑢

𝜕𝜈
on 𝜕Ω, (3.1b)

where Δ2𝑢 = Δ(Δ𝑢) and the source term 𝑓 . Define 𝑉 ∶= 𝐻2
0 (Ω). The 

weak formulation of (3.1) is given by: for 𝑓 ∈𝐻−2(Ω), find 𝑢 ∈ 𝑉 such 
that

(𝐷2𝑢,𝐷2𝑣) = ⟨𝑓, 𝑣⟩ ∀ 𝑣 ∈ 𝑉 . (3.2)

In this article, we are interested in the following goal functional

𝑄(𝑢) = (𝑓 , 𝑢) (3.3)

for a chosen weight function 𝑓 ∈ 𝐿2(Ω). We analyse the above goal 
functional by a dual problem of (3.1) that consists of finding 𝑢̃ ∶ Ω →ℝ
such that

Δ2𝑢̃ = 𝑓 in Ω, (3.4a)

𝑢̃ = 0 = 𝜕𝑢̃

𝜕𝜈
on 𝜕Ω. (3.4b)

The weak formulation seeks 𝑢̃ ∈ 𝑉 such that

(𝐷2𝑢̃,𝐷2𝑣) = (𝑓, 𝑣) ∀ 𝑣 ∈ 𝑉 . (3.5)

The existence and uniqueness of the weak solution of the primal and 
the dual problems (3.2) and (3.5) follow from the Riesz representation 
theorem.

We state two definitions that are essential for establishing some a 
posteriori error estimations for the numerical approximation of the goal 
functional 𝑄 of (3.3).

Definition 3.1 (Potential reconstruction). Any function 𝑠ℎ (resp. 𝑠̃ℎ) con-

structed from 𝑢ℎ (resp. 𝑢̃ℎ) which satisfies

𝑠ℎ ∈𝐻2
0 (Ω) ∩𝐶1(Ω̄) (resp. 𝑠̃ℎ ∈𝐻2

0 (Ω) ∩𝐶1(Ω̄)) (3.6)

is called a potential reconstruction.

Throughout the article, we understand the divdiv operator in the 
distributional sense, i.e., for 𝜏 ∈ [𝐿2(Ω)]2×2sym

⟨divdiv 𝜏,𝑤⟩ = ∫ 𝜏 ∶𝐷2𝑤dx, ∀𝑤 ∈𝐻2
0 (Ω).
Ω
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Definition 3.2 (Equilibrated moment tensor). Let 𝑓ℎ ∈ 𝐻−2(Ω) (resp. 
𝑓ℎ ∈𝐻−2(Ω)). Any matrix valued function 𝝈eq

ℎ
∈ [𝐿2(Ω)]2×2sym (resp. 𝝈̃eq

ℎ
∈

[𝐿2(Ω)]2×2sym) which satisfies

⟨divdiv𝝈eq
ℎ
,𝑤⟩ = ⟨𝑓ℎ,𝑤⟩ ∀𝑤 ∈𝐻2

0 (Ω) (3.7a)

(resp. ⟨divdiv 𝝈̃eq
ℎ
,𝑤⟩ = ⟨𝑓ℎ,𝑤⟩ ∀𝑤 ∈𝐻2

0 (Ω)) (3.7b)

is called an equilibrated moment tensor.

The construction of the potential reconstruction of Definition 3.1 can 
be found in [7,14,8,20], and the equilibrated moment tensor of Defini-

tion 3.2 can be found in [5,6]. We briefly describe their constructions in 
Section 5. We state the following Prager–Synge type [33] energy prin-

ciple and refer to [5, Theorem 3.2] and [6, Theorem 3.1] for the proof.

Lemma 3.3 (Two-energies principle for the biharmonic equation). Let 𝑓ℎ ∈
𝐻−2(Ω) and 𝑢̂ ∈𝐻2

0 (Ω) be the solution of the biharmonic equation

(𝐷2𝑢̂,𝐷2𝑤) = ⟨𝑓ℎ,𝑤⟩ ∀𝑤 ∈𝐻2
0 (Ω).

For 𝑣 ∈𝐻2
0 (Ω), the tensor 𝝈eq

ℎ
∈ [𝐿2(Ω)]2×2sym defined in Definition 3.2 satisfies 

[33,6]

‖𝐷2(𝑢̂− 𝑣)‖2 + ‖𝐷2𝑢̂− 𝝈eq
ℎ
‖2 = ‖𝐷2𝑣− 𝝈eq

ℎ
‖2.

Moreover, let 𝑢 ∈ 𝐻2
0 (Ω) (resp. 𝑢̃ ∈ 𝐻2

0 (Ω)) be the solution of (3.2) (resp. 
(3.5)). Then for any 𝑣 ∈𝐻2

0 (Ω) (resp. 𝑣̃∈𝐻2
0 (Ω)), the following also holds

‖𝐷2(𝑢− 𝑣)‖2 + ‖𝐷2𝑢− 𝝈eq
ℎ
‖2 = ‖𝐷2𝑣− 𝝈eq

ℎ
‖2 + 2⟨𝑓 − 𝑓ℎ, 𝑢− 𝑣⟩.

(resp. ‖𝐷2(𝑢̃− 𝑣̃)‖2 + ‖𝐷2𝑢̃− 𝝈̃eq
ℎ
‖2 = ‖𝐷2𝑣̃− 𝝈̃eq

ℎ
‖2 + 2⟨𝑓 − 𝑓ℎ, 𝑢̃− 𝑣̃⟩.)

(3.8)

4. Goal-oriented error estimates

In this section, we present some approximations for the goal func-

tional. Then the goal error is decomposed into computable estimators. 
Choosing 𝑣 = 𝑢 in (3.5) and 𝑣 = 𝑢̃ in (3.2), the following primal-dual 
equivalence relation holds

𝑄(𝑢) = (𝑓 , 𝑢) = (𝐷2𝑢̃,𝐷2𝑢) = (𝐷2𝑢,𝐷2𝑢̃) = ⟨𝑓, 𝑢̃⟩. (4.1)

The goal functional is approximated in the following subsections, 
and some error representations are presented.

4.1. Some residual type goal error estimations

In this subsection, the goal error is represented by an estimator and 
a remainder term. For any edge 𝑒 ∈ ℎ, the outward unit normal across 
the edge is denoted by 𝒏𝑒 and unit tangent along the edge is denoted by 
𝝉𝑒. Define 𝜕𝑛𝑣 ∶= ∇𝑣⋅𝒏𝑒, 𝐷2

𝑛𝑛𝑣 ∶= 𝒏𝑇𝑒 𝐷2𝑣𝒏𝑒 and 𝜎eq
ℎ,𝑛𝑛

∶= 𝒏𝑇𝑒 𝝈
eq
ℎ
𝒏𝑒, 𝜎

eq
ℎ,𝑛𝜏

∶=

𝝉𝑇𝑒 𝝈
eq
ℎ
𝒏𝑒.

Theorem 4.1 (Error representation of the goal functional). Let 𝑢 and 𝑢̃ ∈
𝐻2

0 (Ω) respectively be the solutions of (3.1) and (3.4). Let 𝑢ℎ and 𝑢̃ℎ ∈
ℙ𝑘(ℎ) respectively be arbitrary piecewise polynomial approximations for 𝑢
and 𝑢̃. Let 𝑠̃ℎ be the potential reconstructions of Definition 3.1, and 𝝈eq

ℎ
and 

𝝈̃eq
ℎ

be the equilibrated moment tensors of Definition 3.2 constructed from 
𝑢ℎ and 𝑢̃ℎ respectively. Then the goal error is expressed as

𝑄(𝑢) −𝑄(𝑢ℎ) = 𝜂res
ℎ,goal(𝑢ℎ, 𝑢̃ℎ;𝝈

eq
ℎ
, 𝝈̃eq

ℎ
) +res

ℎ,rem(𝑢, 𝑢̃, 𝑓 ;𝑢ℎ, 𝑢̃ℎ), (4.2)

where the estimator is given by
314
𝜂res
ℎ,goal(𝑢ℎ, 𝑢̃ℎ;𝝈

eq
ℎ
, 𝝈̃eq

ℎ
) ∶= ⟨𝑓, 𝑠̃ℎ⟩− ∑

𝐾∈ℎ ∫𝐾
𝝈eq
ℎ
∶𝐷2𝑠̃ℎ dx

+
∑
𝐾∈ℎ ∫𝐾

(𝝈eq
ℎ
−𝐷2𝑢ℎ) ∶ 𝝈̃eq

ℎ
dx

+
∑
𝑒∈ℎ ∫𝑒

[[
𝜕𝜏𝑢ℎ

]]
𝑒
𝜎̃
eq
ℎ,𝑛𝜏

ds +
∑
𝑒∈ℎ ∫𝑒

[[
𝜕𝑛𝑢ℎ

]]
𝑒
𝜎̃
eq
ℎ,𝑛𝑛

ds

+
∑
𝑒∈ℎ ∫𝑒

[[
𝑢ℎ
]]
𝑒
div 𝝈̃eq

ℎ
⋅𝒏𝑒 ds, (4.3)

with remainder term

res
ℎ,rem(𝑢, 𝑢̃, 𝑓 ;𝑢ℎ, 𝑢̃ℎ) ∶

= ⟨𝑓 − divdiv𝝈eq
ℎ
, 𝑢̃− 𝑠̃ℎ⟩+ ∑

𝐾∈ℎ ∫𝐾
(𝝈eq

ℎ
−𝐷2𝑢ℎ) ∶ (𝐷2𝑢̃− 𝝈̃eq

ℎ
) dx

+
∑
𝑒∈ℎ ∫𝑒

[[
𝜕𝜏𝑢ℎ

]]
𝑒
(𝐷2

𝑛𝜏 𝑢̃− 𝜎̃
eq
ℎ,𝑛𝜏

) ds +
∑
𝑒∈ℎ ∫𝑒

[[
𝜕𝑛𝑢ℎ

]]
𝑒
(𝐷2

𝑛𝑛𝑢̃− 𝜎̃
eq
ℎ,𝑛𝑛

) ds

+
∑
𝑒∈ℎ ∫𝑒

[[
𝑢ℎ
]]
𝑒
(div (𝐷2𝑢̃) − div 𝝈̃eq

ℎ
)⋅𝒏𝑒 ds. (4.4)

Proof. The primal-dual equivalence relation (4.1) and the definition of 
goal functional (3.3) lead to the goal error representation

𝑄(𝑢) −𝑄(𝑢ℎ) = ⟨𝑓, 𝑢̃⟩− (𝑓 , 𝑢ℎ). (4.5)

The second term of the above equation is expressed using the solution 
of the dual problem (3.4) and successive application of the integration 
by parts as

(𝑓, 𝑢ℎ) =
∑
𝐾∈ℎ ∫𝐾

𝑢ℎΔ2𝑢̃dx =
∑
𝐾∈ℎ ∫𝐾

𝑢ℎdivdiv (𝐷2𝑢̃) dx

= −
∑
𝐾∈ℎ ∫𝐾

∇𝑢ℎ⋅div (𝐷2𝑢̃) dx +
∑
𝐾∈ℎ ∫𝜕𝐾

𝑢ℎdiv (𝐷2𝑢̃)⋅𝒏ds

=
∑
𝐾∈ℎ ∫𝐾

𝐷2𝑢ℎ ∶𝐷2𝑢̃dx −
∑
𝐾∈ℎ ∫𝜕𝐾

∇𝑢ℎ⋅𝐷
2𝑢̃𝒏ds

+
∑
𝐾∈ℎ ∫𝜕𝐾

𝑢ℎdiv (𝐷2𝑢̃)⋅𝒏ds.

Expressing the gradient in the tangent-normal direction as ∇𝑢ℎ =
𝜕𝜏𝑢ℎ𝝉𝑒+𝜕𝑛𝑢ℎ𝒏𝑒 and summing over all the edges, we obtain the following 
expression for the above equation as

(𝑓, 𝑢ℎ) =
∑
𝐾∈ℎ ∫𝐾

𝐷2𝑢ℎ ∶𝐷2𝑢̃dx −
∑
𝑒∈ℎ ∫𝑒

[[
𝜕𝜏𝑢ℎ

]]
𝑒
𝐷𝑛𝜏 𝑢̃ds

−
∑
𝑒∈ℎ ∫𝑒

[[
𝜕𝑛𝑢ℎ

]]
𝑒
𝐷𝑛𝑛𝑢̃ds +

∑
𝑒∈ℎ ∫𝑒

[[
𝑢ℎ
]]
𝑒
div (𝐷2𝑢̃)⋅𝒏𝑒 ds. (4.6)

The above two displayed equations (4.5) and (4.6) lead to

𝑄(𝑢) −𝑄(𝑢ℎ) = ⟨𝑓, 𝑢̃⟩− ∑
𝐾∈ℎ ∫𝐾

𝐷2𝑢ℎ ∶𝐷2𝑢̃dx +
∑
𝑒∈ℎ ∫𝑒

[[
𝜕𝜏𝑢ℎ

]]
𝑒
𝐷𝑛𝜏 𝑢̃ds

+
∑
𝑒∈ℎ ∫𝑒

[[
𝜕𝑛𝑢ℎ

]]
𝑒
𝐷𝑛𝑛𝑢̃ds

−
∑
𝑒∈ℎ ∫𝑒

[[
𝑢ℎ
]]
𝑒
div (𝐷2𝑢̃)⋅𝒏𝑒 ds. (4.7)

Introducing the equilibrated moment tensor 𝝈eq
ℎ

and 𝝈̃eq
ℎ

of Defini-

tion 3.2 in the first two terms of the above equation (4.7) yields
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⟨𝑓, 𝑢̃⟩− ∑
𝐾∈ℎ ∫𝐾

𝐷2𝑢ℎ ∶𝐷2𝑢̃dx

= ⟨𝑓 − divdiv𝝈eq
ℎ
, 𝑢̃⟩+ ∫

Ω

𝝈eq
ℎ
∶𝐷2𝑢̃dx −

∑
𝐾∈ℎ ∫𝐾

𝐷2𝑢ℎ ∶𝐷2𝑢̃dx

= ⟨𝑓 − divdiv𝝈eq
ℎ
, 𝑠̃ℎ⟩+ ⟨𝑓 − divdiv𝝈eq

ℎ
, 𝑢̃− 𝑠̃ℎ⟩

+
∑
𝐾∈ℎ ∫𝐾

(𝝈eq
ℎ
−𝐷2𝑢ℎ) ∶ 𝝈̃eq

ℎ
dx +

∑
𝐾∈ℎ∫𝐾

(𝝈eq
ℎ
−𝐷2𝑢ℎ) ∶ (𝐷2𝑢̃− 𝝈̃eq

ℎ
) dx.

(4.8)

The first two terms in the above equation can be written as

⟨𝑓 − divdiv𝝈eq
ℎ
, 𝑠̃ℎ⟩+ ⟨𝑓 − divdiv𝝈eq

ℎ
, 𝑢̃− 𝑠̃ℎ⟩

= ⟨𝑓, 𝑠̃ℎ⟩− (𝝈eq
ℎ
,𝐷2𝑠̃ℎ) + ⟨𝑓 − 𝑓ℎ, 𝑢̃− 𝑠̃ℎ⟩. (4.9)

Introducing the equilibrated moment tensor of tangent-normal direc-

tions in the third and fourth terms of (4.7), we obtain∑
𝑒∈ℎ ∫𝑒

[[
𝜕𝜏𝑢ℎ

]]
𝑒
𝐷𝑛𝜏 𝑢̃ds +

∑
𝑒∈ℎ ∫𝑒

[[
𝜕𝑛𝑢ℎ

]]
𝑒
𝐷𝑛𝑛𝑢̃ds

=
∑
𝑒∈ℎ ∫𝑒

[[
𝜕𝜏𝑢ℎ

]]
𝑒
𝜎̃
eq
ℎ,𝑛𝜏

ds +
∑
𝑒∈ℎ ∫𝑒

[[
𝜕𝑛𝑢ℎ

]]
𝑒
𝜎̃
eq
ℎ,𝑛𝑛

ds

+
∑
𝑒∈ℎ ∫𝑒

[[
𝜕𝜏𝑢ℎ

]]
𝑒
(𝐷𝑛𝜏 𝑢̃− 𝜎̃

eq
ℎ,𝑛𝜏

) ds +
∑
𝑒∈ℎ ∫𝑒

[[
𝜕𝑛𝑢ℎ

]]
𝑒
(𝐷𝑛𝑛𝑢̃− 𝜎̃

eq
ℎ,𝑛𝑛

) ds.

(4.10)

Introducing the equilibrated moment tensor of the normal direction in 
the last term of (4.7), we have∑
𝑒∈ℎ ∫𝑒

[[
𝑢ℎ
]]
𝑒
div (𝐷2𝑢̃)⋅𝒏𝑒 ds =

∑
𝑒∈ℎ ∫𝑒

[[
𝑢ℎ
]]
𝑒
div 𝝈̃eq

ℎ
⋅𝒏𝑒 ds

+
∑
𝑒∈ℎ ∫𝑒

[[
𝜕𝑛𝑢ℎ

]]
𝑒
(div (𝐷2𝑢̃) − div 𝝈̃eq

ℎ
)⋅𝒏𝑒 ds.

(4.11)

The last five displayed equations (4.7)-(4.11) represent the goal error 
equation (4.2) with the estimator term 𝜂res

ℎ,goal(𝑢ℎ, ̃𝑢ℎ; 𝝈
eq
ℎ
, 𝝈̃eq

ℎ
) and re-

mainder term res
ℎ,rem(𝑢, ̃𝑢, 𝑓 ; 𝑢ℎ, ̃𝑢ℎ). □

We often suppress the dependent variables for the goal estimator 
and remainder terms for the simplicity of notation. The residual-based 
a posteriori estimator 𝜂res

ℎ,goal in the above Theorem 4.1 provides an es-

timator for the approximation 𝑄(𝑢ℎ) of the goal functional 𝑄(𝑢) with a 
remainder term res

ℎ,rem. The estimator is computed using the approxi-

mations 𝑢ℎ of the primal and 𝑢̃ℎ of the dual problems together with the 
potential reconstruction 𝑠̃ℎ of Definition 3.1, and the equilibrated mo-

ment tensors 𝝈eq
ℎ

and 𝝈̃eq
ℎ

of Definition 3.2. The potential reconstruction 
𝑠̃ℎ is used in the above Theorem 4.1 to represent the data oscillation 
without additional regularity assumption on the given data.

A simplified residual-based goal estimator. If 𝑓 and divdiv𝝈eq
ℎ

be-

long to 𝐿2(Ω), we can replace 𝑠̃ℎ by 𝑢̃ℎ in (4.8) and obtain a simplified 
estimator of Theorem 4.1 as

𝜂res
ℎ,goal ∶ = (𝑓 − divdiv𝝈eq

ℎ
, 𝑢̃ℎ) +

∑
𝐾∈ℎ ∫𝐾

(𝝈eq
ℎ
−𝐷2𝑢ℎ) ∶ 𝝈̃eq

ℎ
dx

+
∑
𝑒∈ℎ ∫𝑒

[[
𝜕𝜏𝑢ℎ

]]
𝑒
𝜎̃
eq
ℎ,𝑛𝜏

ds +
∑
𝑒∈ℎ ∫𝑒

[[
𝜕𝑛𝑢ℎ

]]
𝑒
𝜎̃
eq
ℎ,𝑛𝑛

ds

+
∑
𝑒∈ℎ ∫𝑒

[[
𝑢ℎ
]]
𝑒
div 𝝈̃eq

ℎ
⋅𝒏𝑒 ds, (4.12)

with remainder term

re
ℎ,
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s
rem ∶ = (𝑓 − divdiv𝝈eq

ℎ
, 𝑢̃− 𝑢̃ℎ) +

∑
𝐾∈ℎ ∫𝐾

(𝝈eq
ℎ
−𝐷2𝑢ℎ) ∶ (𝐷2𝑢̃− 𝝈̃eq

ℎ
) dx

+
∑
𝑒∈ℎ ∫𝑒

[[
𝜕𝜏𝑢ℎ

]]
𝑒
(𝐷2

𝑛𝜏 𝑢̃− 𝜎̃
eq
ℎ,𝑛𝜏

) ds

+
∑
𝑒∈ℎ ∫𝑒

[[
𝜕𝑛𝑢ℎ

]]
𝑒
(𝐷2

𝑛𝑛𝑢̃− 𝜎̃
eq
ℎ,𝑛𝑛

) ds

+
∑
𝑒∈ℎ ∫𝑒

[[
𝑢ℎ
]]
𝑒
(div (𝐷2𝑢̃) − div 𝝈̃eq

ℎ
)⋅𝒏𝑒 ds.

alization of the goal estimator. To quantify the distribution of 
r for the approximation of goal functional in the estimator, we lo-

ze the estimator as follows. The estimator 𝜂res
ℎ,goal of (4.12) can be 

ressed as the sum of local element error contributions:

oal =
∑
𝐾∈ℎ

𝜂𝐾 =
∑
𝐾∈ℎ

(𝜂est,𝐾 + 𝜂jump,𝐾 + 𝜂,𝐾 ),

re the local contributions are given by

st,𝐾 ∶= ∫
𝐾

(𝝈eq
ℎ
−𝐷2𝑢ℎ) ∶ 𝝈̃eq

ℎ
dx,

p,𝐾 ∶=
∑
𝑒∈𝐾 ∫

𝑒

𝛾𝑒

([[
𝜕𝑛𝑢ℎ

]]
𝑒
𝜎̃
eq
ℎ,𝑛𝑛

+
[[
𝜕𝜏𝑢ℎ

]]
𝑒
𝜎̃
eq
ℎ,𝑛𝜏

+
[[
𝑢ℎ
]]
𝑒
div 𝝈̃eq

ℎ
⋅𝒏𝑒
)
ds,

,𝐾 ∶= ∫
𝐾

(𝑓 − divdiv𝝈eq
ℎ
)𝑢̃ℎ dx,

h the indicator function 𝛾𝑒 = 1∕2 for interior edge 𝑒 ∈ ℎ(Ω) and 𝛾𝑒 =
r boundary edge 𝑒 ∈ ℎ(𝜕Ω). These local contributions are useful to 
ign an adaptive algorithm.

. Guaranteed a posteriori error estimate

This subsection presents a guaranteed a posteriori error estimator 
the goal error based on the equilibrated moment tensor and the 
ential reconstruction. An abstract a posteriori estimator is derived. 
ection 5, we discuss two different finite element approximations for 
 practical realisations of the error estimation. Here and throughout 
 subsection, for given 𝝈eq

ℎ
and 𝝈̃eq

ℎ
belonging to [𝐿2(Ω)]2×2sym, we define 

= divdiv𝝈eq
ℎ

and 𝑓ℎ ∶= divdiv 𝝈̃eq
ℎ

. We proceed first by writing a goal 
r which is a generalisation of [29, Theorem 4.5] to the fourth-order 

armonic problem as:

ma 4.2 (Goal error equation). Let 𝑢 and 𝑢̃ ∈𝐻2
0 (Ω) respectively be the 

tion of (3.1) and (3.4). Let 𝑢ℎ and 𝑢̃ℎ ∈ ℙ𝑘(ℎ) respectively be arbitrary 
ewise polynomial approximations for 𝑢 and 𝑢̃. Let 𝑠ℎ be the potential 
nstructions of Definition 3.1, and 𝝈eq

ℎ
be the equilibrated moment tensors 

efinition 3.2. There holds

) −𝑄(𝑢ℎ) = ⟨𝑓 − 𝑓ℎ, 𝑢̃⟩+ (𝝈eq
ℎ
−𝐷2𝑠ℎ,𝐷

2𝑢̃) +𝑄(𝑠ℎ − 𝑢ℎ). (4.13)

of. From the primal dual equivalence relation (4.1) and Defini-

3.2, we obtain

) = ⟨𝑓, 𝑢̃⟩ = ⟨𝑓 − 𝑓ℎ, 𝑢̃⟩+ ⟨𝑓ℎ, 𝑢̃⟩
= ⟨𝑓 − 𝑓ℎ, 𝑢̃⟩+ ⟨divdiv𝝈eq

ℎ
, 𝑢̃⟩ = ⟨𝑓 − 𝑓ℎ, 𝑢̃⟩+ (𝝈eq

ℎ
,𝐷2𝑢̃).

ce 𝑠ℎ ∈𝐻2
0 (Ω), from the weak formulation of dual problem (3.5) with 

𝑠ℎ, we obtain

ℎ) =𝑄(𝑠ℎ) +𝑄(𝑢ℎ − 𝑠ℎ) = (𝐷2𝑢̃,𝐷2𝑠ℎ) +𝑄(𝑢ℎ − 𝑠ℎ)

= (𝐷2𝑠ℎ,𝐷
2𝑢̃) +𝑄(𝑢ℎ − 𝑠ℎ).

m the above two displayed equations, we have
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𝑄(𝑢) −𝑄(𝑢ℎ) = ⟨𝑓 − 𝑓ℎ, 𝑢̃⟩+ (𝝈eq
ℎ
−𝐷2𝑠ℎ,𝐷

2𝑢̃) −𝑄(𝑢ℎ − 𝑠ℎ).

This completes the proof. □

We apply the principle of the classical bounding technique of Lade-

vèze et al. [27,26] related to the goal-oriented a posteriori error esti-

mate of the elasticity problem. Let

𝝈̃m
ℎ
∶= 1

2

(
𝝈̃eq
ℎ
+𝐷2𝑠̃𝑖

ℎ

)
(4.14)

be the average of the moment tensor of Definition 3.2 and hessian of 
the potential reconstruction of Definition 3.1 for the dual problem. We 
denote the following oscillation terms by

𝑜𝑠𝑐2prim(𝑓, 𝑢̃) ∶= |⟨𝑓 − 𝑓ℎ, 𝑢̃− 𝑠̃ℎ⟩| and 𝑜𝑠𝑐2dual(𝑓, 𝑢̃) ∶= |⟨𝑓 − 𝑓ℎ, 𝑢̃− 𝑠̃ℎ⟩|.
(4.15)

Theorem 4.3 (Abstract goal-oriented a posteriori estimator). Let 𝑢 and 𝑢̃ ∈
𝐻2

0 (Ω) respectively be the solution of (3.1) and (3.4). Let 𝑢ℎ and 𝑢̃ℎ ∈ ℙ𝑘(ℎ)
respectively be arbitrary piecewise polynomial approximations for 𝑢 and 𝑢̃. 
Let 𝑠ℎ and 𝑠̃ℎ be the potential reconstructions of Definition 3.1, and 𝝈eq

ℎ
and 

𝝈̃eq
ℎ

be the equilibrated moment tensors of Definition 3.2 with 𝝈̃m
ℎ

being the 
average moment tensor of (4.14). There holds||||𝑄(𝑢) −𝑄(𝑢ℎ) −

(
𝝈eq
ℎ
−𝐷2𝑠ℎ, 𝝈̃

m
ℎ

)||||
≤ ‖𝐷2𝑠ℎ − 𝝈eq

ℎ
‖(1

2
‖𝐷2𝑠̃ℎ − 𝝈̃eq

ℎ
‖+ 𝑜𝑠𝑐dual(𝑓 , 𝑢̃)

)
+ |⟨𝑓 − 𝑓ℎ, 𝑠̃ℎ⟩

+𝑄(𝑠ℎ − 𝑢ℎ)|+ 𝑜𝑠𝑐2prim(𝑓, 𝑢̃). (4.16)

Proof. Adding and subtracting the average moment tensor 𝝈̃m
ℎ

in 
(4.13), we obtain

𝑄(𝑢) −𝑄(𝑢ℎ) −
(
𝝈eq
ℎ
−𝐷2𝑠ℎ, 𝝈̃

m
ℎ

)
= ⟨𝑓 − 𝑓ℎ, 𝑢̃⟩+ (𝝈eq

ℎ
−𝐷2𝑠ℎ,𝐷

2𝑢̃− 𝝈̃m
ℎ
) +𝑄(𝑠ℎ − 𝑢ℎ). (4.17)

From the definition of (4.14), we have

‖𝐷2𝑢̃− 𝝈̃m
ℎ
‖2 = 1

4
‖𝐷2(𝑢̃− 𝑠̃ℎ)‖2 + 1

4
‖𝐷2𝑢̃− 𝝈̃eq

ℎ
‖2

+ 1
2
(𝐷2(𝑢̃− 𝑠̃ℎ),𝐷2𝑢̃− 𝝈̃eq

ℎ
).

Apply the integration by parts twice to obtain

(𝐷2(𝑢̃− 𝑠̃ℎ),𝐷2𝑢̃− 𝝈̃eq
ℎ
) = ⟨𝑢̃− 𝑠̃ℎ, 𝑓 − 𝑓ℎ⟩.

The above two equations and (3.8) with 𝑣̃ = 𝑠̃ℎ imply

‖𝐷2𝑢̃− 𝝈̃m
ℎ
‖2 = 1

4
‖𝐷2𝑠̃ℎ − 𝝈̃eq

ℎ
‖2 + ⟨𝑢̃− 𝑠̃ℎ, 𝑓 − 𝑓ℎ⟩

≤ (1
2
‖𝐷2𝑠̃ℎ − 𝝈̃eq

ℎ
‖+ 𝑜𝑠𝑐dual(𝑓 , 𝑢̃)

)2
. (4.18)

Apply the Schwarz inequality in the right hand side of (4.17) and use 
(4.18) to obtain

|𝑄(𝑢) −𝑄(𝑢ℎ) −
(
𝝈eq
ℎ
−𝐷2𝑠ℎ, 𝝈̃

m
ℎ

)|
≤ ‖𝐷2𝑠ℎ − 𝝈eq

ℎ
‖(1

2
‖𝐷2𝑠̃ℎ − 𝝈̃eq

ℎ
‖+ 𝑜𝑠𝑐dual(𝑓 , 𝑢̃)

)
+ |⟨𝑓 − 𝑓ℎ, 𝑢̃⟩+𝑄(𝑠ℎ − 𝑢ℎ)|

≤ ‖𝐷2𝑠ℎ − 𝝈eq
ℎ
‖(1

2
‖𝐷2𝑠̃ℎ − 𝝈̃eq

ℎ
‖+ 𝑜𝑠𝑐dual(𝑓 , 𝑢̃)

)
+ |⟨𝑓 − 𝑓ℎ, 𝑠̃ℎ⟩+𝑄(𝑠ℎ − 𝑢ℎ)|+ 𝑜𝑠𝑐prim(𝑓, 𝑢̃).

This completes the proof. □
316
The above estimator (4.16) incorporates a correction (𝝈eq
ℎ
−𝐷2𝑠ℎ, 𝝈̃mℎ )

to the approximation 𝑄(𝑢ℎ) for the goal functional 𝑄(𝑢). Moreover, the 
average equilibrated moment tensor 𝝈̃m

ℎ
helps to reduce the effectivity 

by a factor of 1∕2 on the right hand side of the estimator. The potential 
reconstructions 𝑠ℎ and 𝑠̃ℎ of Definition 3.1 are the essential part of the 
above abstract estimator, and also this helps to represent the data os-

cillation without additional regularity assumptions on the given data. 
The essential difference of the above estimator (4.16) from the residual 
type estimator (6.3) is that it provides a guaranteed upper bound with 
a correction to the approximation of the goal functional.

Some bounds for the oscillation terms of (4.16). The triangle inequal-

ity and Lemma 3.3 imply

‖𝑢̃− 𝑠̃ℎ‖2 ≤ ‖𝑢̃− ̂̃𝑢‖2 + ‖ ̂̃𝑢− 𝑠̃ℎ‖2,ℎ ≤ ‖𝑓ℎ − 𝑓‖−2 + ‖𝐷2𝑠̃ℎ − 𝝈̃eq
ℎ
‖.

This leads to a bound for the data oscillation defined in (4.15),

𝑜𝑠𝑐2dual(𝑓, 𝑢̃) ∶= |(𝑓 − 𝑓ℎ, 𝑢̃− 𝑠̃ℎ)| ≤ ‖𝑓 − 𝑓ℎ‖−2‖𝑢̃− 𝑠̃ℎ‖2
≤ ‖𝑓 − 𝑓ℎ‖−2 (‖𝑓 − 𝑓ℎ‖−2 + ‖𝐷2𝑠̃ℎ − 𝝈̃eq

ℎ
‖) .

Similarly, the second data oscillation in (4.15) can be bounded as

𝑜𝑠𝑐2prim(𝑓, 𝑢̃) ≤ ‖𝑓 − 𝑓ℎ‖−2 (‖𝑓 − 𝑓ℎ‖−2 + ‖𝐷2𝑠̃ℎ − 𝝈̃eq
ℎ
‖) . (4.19)

We observe that if there are no data oscillations for primal and dual 
problems, then 𝑜𝑠𝑐prim(𝑓, ̃𝑢) = 0 and 𝑜𝑠𝑐dual(𝑓, ̃𝑢) = 0. Then the abstract a 
posteriori estimator (4.16) yields the simplified form:||||𝑄(𝑢) −𝑄(𝑢ℎ) −

(
𝝈eq
ℎ
−𝐷2𝑠ℎ, 𝝈̃

m
ℎ

)||||
≤ 1

2
‖𝐷2𝑠ℎ − 𝝈eq

ℎ
‖‖𝐷2𝑠̃ℎ − 𝝈̃eq

ℎ
‖+ |𝑄(𝑠ℎ − 𝑢ℎ)|.

5. Discretization of the biharmonic equation

In this section, two non-conforming finite element methods are dis-

cussed to realise the estimator found in Section 4. At first, finite element 
approximation is introduced, and then some procedures are described 
to obtain the potential reconstruction of Definition 3.1 and the equi-

librated moment tensor of Definition 3.2. Here and for the rest of the 
article, we assume 𝑓, 𝑓 ∈𝐿2(Ω) and 𝑘 ≥ 2.

5.1. 𝐶0IPDG method

We obtain an approximate solution by the 𝐶0 interior penalty 
method (𝐶0IPDG); see [9,18,6]. Define the polynomial space for 
𝐶0IPDG by

𝑉 𝑘
ℎ
∶= {𝑣IP ∈ 𝐶0(Ω) | 𝑣IP|𝐾 ∈ ℙ𝑘(𝐾), 𝐾 ∈ ℎ}.
Define the bilinear form 𝑎IP ∶ 𝑉 𝑘

ℎ
× 𝑉 𝑘

ℎ
→ℝ by

𝑎IP(𝑢IP, 𝑣IP) ∶=
∑
𝐾∈ℎ ∫𝐾

𝐷2𝑢IP ∶𝐷2𝑣IP dx −
∑
𝑒∈ℎ ∫𝑒

[[
𝜕𝑛𝑢IP

]]
𝑒

{{
𝐷2𝑣IP,𝑛𝑛

}}
𝑒
ds

−
∑
𝑒∈ℎ ∫𝑒

{{
𝐷2𝑢IP,𝑛𝑛

}}
𝑒

[[
𝜕𝑛𝑣IP

]]
𝑒
ds

+
∑
𝑒∈ℎ

𝜎

ℎ𝑒 ∫
𝑒

[[
𝜕𝑛𝑢IP

]]
𝑒

[[
𝜕𝑛𝑣IP

]]
𝑒
ds,

where 𝜎 is large positive penalty parameter. Define the linear forms for 
the primal and dual problems as

𝑙IP(𝑣IP) ∶=
∑
𝐾∈ℎ ∫𝐾

𝑓𝑣IP dx and 𝑙IP(𝑣IP) ∶=
∑
𝐾∈ℎ ∫𝐾

𝑓𝑣IP dx ∀ 𝑣IP ∈ 𝑉 𝑘
ℎ
.

The 𝐶0IPDG method for (3.2) seeks 𝑢IP ∈ 𝑉 𝑘 such that

ℎ
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𝑎IP(𝑢IP, 𝑣IP) = 𝑙IP(𝑣IP) ∀ 𝑣IP ∈ 𝑉 𝑘
ℎ
, (5.1)

and 𝐶0IPDG method for the dual problem (3.5) seeks 𝑢̃IP ∈ 𝑉 𝑘
ℎ

such that

𝑎IP(𝑢̃IP, 𝑣IP) = 𝑙IP(𝑣IP) ∀ 𝑣IP ∈ 𝑉 𝑘
ℎ
. (5.2)

The discretization error is measured by the mesh-dependent norm

‖𝑣‖2IP ∶= ∑
𝐾∈ℎ

‖𝐷2𝑣‖20,𝐾 +
∑
𝑒∈ℎ

𝜎

ℎ𝑒

‖ [[𝜕𝑛𝑣]]𝑒 ‖20,𝑒 ∀ 𝑣 ∈ 𝑉 𝑘
ℎ
+𝐻2

0 (Ω).

It is well known that for sufficiently large 𝜎 =𝑂((𝑘 + 1)2), there exists a 
positive constant 𝛽 such that the following coercivity result holds (see 
[9,18,6]):

𝑎IP(𝑣IP, 𝑣IP) ≥ 𝛽‖𝑣IP‖2IP ∀ 𝑣IP ∈ 𝑉 𝑘
ℎ
.

Also, the bilinear form 𝑎IP(∙, ∙) is continuous, i.e., |𝑎IP(𝑣, 𝑤)| ≤
𝐶‖𝑣‖IP‖𝑤‖IP for all 𝑣, 𝑤 ∈ 𝑉 𝑘

ℎ
. The boundedness and coercivity of 

𝑎IP(∙, ∙), and continuity of 𝑙IP and 𝑙IP lead to the existence and unique-

ness of the solution of primal and dual problems (5.1)-(5.2) by the 
Lax-Milgram lemma.

The estimator of Theorem 4.1 is computed by the construction of 
equilibrated moment tensors 𝝈eq

ℎ
and 𝝈̃eq

ℎ
of Definition 3.2, and poten-

tial reconstructions 𝑠ℎ and 𝑠̃ℎ of Definition 3.1. Their constructions are 
outlined below:

Construction of equilibrated moment tensor. We follow [6] for the 
construction of an equilibrated moment tensor. Define the symmetric 
piecewise polynomial tensor fields of order 𝑘 − 1 with the continuous 
normal-normal component 𝜏

ℎ,𝑛𝑛
= 𝒏𝑇𝑒 𝝉ℎ

𝒏𝑒 by

𝐌eq
ℎ
∶= {𝝉

ℎ
∈ [𝐿2(Ω)]2×2sym | 𝝉ℎ ∈ [ℙ𝑘−1(𝐾)]2×2sym,𝐾 ∈ ℎ,

𝜏
ℎ,𝑛𝑛

is continuous at interelement boundaries}.

Each 𝝉
ℎ
∈𝐌eq

ℎ
is uniquely defined by the degrees of freedom (see [15,

6])

∫
𝑒

𝜏
ℎ,𝑛𝑛

𝑞𝑒 ds, 𝑞𝑒 ∈ ℙ𝑘−1(𝑒), 𝑒 ∈ ℎ(𝐾),

∫
𝐾

𝝉
ℎ
∶ 𝑞𝐾 dx, 𝑞𝐾 ∈ [𝑃𝑘−2(𝐾)]2×2sym, 𝐾 ∈ ℎ.

This leads to the construction of an equilibrated moment tensor:

Lemma 5.1. [6, Lemma 5.1] There exists unique equilibrated moment ten-

sor 𝝈eq
ℎ
∈𝐌eq

ℎ
such that for each 𝐾 ∈ ℎ,

𝜎
eq
ℎ,𝑛𝑛

=
{{
𝐷2𝑢IP,𝑛𝑛

}}
𝑒
− 𝜎

ℎ𝑒

[[
𝜕𝑛𝑢IP

]]
𝑒

∈ ℙ𝑘−1(𝑒), 𝑒 ∈ ℎ(𝐾),

∫
𝐾

𝝈eq
ℎ
∶ 𝑞𝐾 dx = ∫

𝐾

𝐷2𝑢IP ∶ 𝑞𝐾 dx −
∑

𝑒⊂ℎ(𝐾)
∫
𝑒

𝛾𝑒
[[
𝜕𝑛𝑢IP

]]
𝑒
𝑞𝐾,𝑛𝑛 ds

∀ 𝑞𝐾 ∈ [𝑃𝑘−2(𝐾)]2×2sym,

where 𝛾𝑒 = 1∕2 for interior edge 𝑒 ∈ ℎ(Ω) and 𝛾𝑒 = 1 for a boundary edge 
𝑒 ∈ ℎ(𝜕Ω). Moreover, the equilibrated moment tensor satisfies [6, eq. (5.6)]

⟨divdiv𝝈eq
ℎ
, 𝑣IP⟩ = (𝑓, 𝑣IP) ∀ 𝑣IP ∈ 𝑉 𝑘

ℎ
. (5.3)

By the above Lemma 5.1 and following [6], we have the efficiency 
result:

Lemma 5.2. Let 𝑢IP be the discrete solution of (5.1) and 𝝈eq
ℎ

be of (5.3). 
Then the following efficiency result holds:

‖𝝈eq
ℎ
−𝐷2𝑢IP‖2 ≲ ‖𝑢− 𝑢IP‖2IP + ∑

𝐾∈ℎ
ℎ4
𝐾
‖𝑓 − 𝑓‖2

𝐿2(𝐾),

where 𝑓 is any interpolation of 𝑓 into the space of piecewise polynomial 
functions of total degree less than equals to 𝑘.

C

stru

let 𝑉
gula

an e
rich

of fr
its fi
the 
edge

𝑁(𝐸

whe

𝑁 a

satis

‖𝐸ℎ

for 
𝐸ℎ𝑢̃‖𝑠ℎ
choi

Com

Lem

data

the 
ℎ. T

‖𝑓 −

‖𝑓 −

whe

regu

𝑓 =
W

‖𝑢−
whe∑
𝑒∈ℎ

𝑜𝑠𝑐2

This

F[[
𝜕𝜏𝑢

follo

𝜂res
ℎ,go

M
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omputation of potential reconstruction. We describe the con-

ction of a potential reconstruction for 𝑘 = 2 by averaging [7,14,8]: 
̄
ℎ ⊂ 𝐻2

0 (Ω) be the Hsieh–Clough–Tocher associated with the trian-

tion ℎ. For higher-degree approximations 𝑘 ≥ 3, we refer [20] for 
xtension of this approach, see also (5.11) below. We define the en-

ment operator 𝐸ℎ ∶ 𝑉 𝑘
ℎ
→ 𝑉ℎ as follows: let 𝑁 be any (global) degree 

eedom of 𝑉ℎ, i.e., 𝑁 is either the evaluation of a shape function or 
rst-order derivatives at an interior vertex of ℎ or the evaluation of 
normal derivative of a shape function at the midpoint of an interior 
. For 𝑣IP ∈ 𝑉 𝑘

ℎ
define

ℎ𝑣IP) =
1|𝑁 | ∑𝐾∈𝑁

𝑁(𝑣IP|𝐾 ) (5.4)

re 𝑁 is the set of triangles in ℎ that share the degree of freedom 
nd |𝑁 | is the number of elements of 𝑁 . The enrichment operator 
fies the estimate:

𝑣IP − 𝑣IP‖IP ≤ 𝐶 inf
𝑣∈𝐻2

0 (Ω)
‖𝑣− 𝑣IP‖IP, (5.5)

some positive constant 𝐶 . Finally, we set 𝑠ℎ ∶= 𝐸ℎ𝑢IP and 𝑠̃ℎ ∶=
IP to compute the estimator in (4.16). Moreover, the efficiency 
− 𝑢IP‖IP ≤ 𝐶‖𝑢 − 𝑢IP‖IP follows from (5.5) with 𝑣IP = 𝑢IP and the 
ce 𝑣 = 𝑢.

putation of data oscillation. We follow the procedure of [6, 
ma 6.1] to compute the oscillation of data 𝑓 and 𝑓 . Assume the 
 𝑓 and 𝑓 belong to 𝐿2(Ω). Let 𝑓 denote the 𝐿2 projection of 𝑓 onto 
(discontinuous) space of piecewise polynomials of degree 𝑘 − 3 in 
hen the oscillation can be bounded by

𝑓ℎ‖−2 ≤ 𝑐
⎛⎜⎜⎝
∑
𝐾∈ℎ

ℎ4
𝐾
‖𝑓 − 𝑓‖20,𝐾⎞⎟⎟⎠

1∕2

and

𝑓ℎ‖−2 ≤ 𝑐
⎛⎜⎜⎝
∑
𝐾∈ℎ

ℎ4
𝐾
‖𝑓 − ̄̃𝑓‖20,𝐾⎞⎟⎟⎠

1∕2

,

re the constant 𝑐 is independent of ℎ but depends on the shape-

larity of the mesh. In the case of 𝑘 = 2, the projections can be set as 
0 and ̄̃𝑓 = 0.

e state convergence result, see [9,7,24]:

𝑢IP‖ℎ ≤( inf
𝑣IP∈𝑉 𝑘

ℎ

‖𝑢− 𝑣IP‖ℎ + 𝑜𝑠𝑐2(𝑓 )

)
re, the norm is defined by ‖𝑣IP‖2ℎ ∶= ‖𝑣IP‖2IP +∑
𝑖,𝑗=1,2

‖‖‖‖‖
{{

𝜕2𝑣IP
𝜕𝑥𝑖𝜕𝑥𝑗

}}
𝑒

‖‖‖‖‖
2

𝐿2(𝑒)
and the data oscillation by

(𝑓 ) ∶=
⎛⎜⎜⎝
∑
𝐾∈ℎ

ℎ4
𝐾

inf
𝑓∈𝑃𝑘−2(𝐾)

‖𝑓 − 𝑓‖2
𝐿2(𝐾)

⎞⎟⎟⎠
1∕2

.

 is used to obtain a convergence result for the goal error as follows.

or the above 𝐶0IPDG approximation, we observe that 
[[
𝑢IP
]]
𝑒
= 0 =

IP
]]
𝑒
. This is used to simplify the goal residual estimator of (4.3) as 

ws:

al ∶ = (𝑓 − divdiv𝝈eq
ℎ
, 𝑢̃IP) +

∑
𝐾∈ℎ ∫𝐾

(𝝈eq
ℎ
−𝐷2𝑢IP) ∶ 𝝈̃eq

ℎ
dx

+
∑
𝑒∈ℎ ∫𝑒

[[
𝜕𝑛𝑢IP

]]
𝑒
𝜎̃
eq
ℎ,𝑛𝑛

ds. (5.6)

oreover, the remainder term has the estimate:
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Theorem 5.3. Let 𝑢 and 𝑢̃ ∈ 𝐻2
0 (Ω) respectively be the solution of (3.2)

and (3.5). Let 𝑢IP ∈ 𝑉 𝑘
ℎ

and 𝑢̃IP ∈ 𝑉 𝑚
ℎ

respectively be the solution of (5.1)

and (5.2). Assume ‖𝑢 − 𝑢IP‖IP and ‖𝑢̃ − 𝑢̃IP‖IP, respectively, converge with 
orders 𝑂(ℎ𝑘) and 𝑂(ℎ𝑚). Then the remainder term res

ℎ,rem of (4.4) has the 
convergence

|res
ℎ,rem(𝑢, 𝑢̃, 𝑓 ;𝑢IP, 𝑢̃IP)| ≤ 𝐶ℎ𝑘+𝑚, (5.7)

where the positive constant 𝐶 (independent of the mesh parameter ℎ) de-

pends on the load function 𝑓 , and the exact solutions 𝑢 and 𝑢̃.

Proof. Recall the remainder term res
ℎ,rem(𝑢, ̃𝑢, 𝑓 ; 𝑢IP, ̃𝑢IP) of (4.4)

res
ℎ,rem(𝑢, 𝑢̃, 𝑓 ;𝑢IP, 𝑢̃IP) = ⟨𝑓 − 𝑓ℎ, 𝑢̃− 𝑠̃ℎ⟩

+
∑
𝐾∈ℎ ∫𝐾

(𝝈eq
ℎ
−𝐷2𝑢IP) ∶ (𝐷2𝑢̃− 𝝈̃eq

ℎ
) dx

+
∑
𝑒∈ℎ ∫𝑒

[[
𝜕𝑛𝑢IP

]]
𝑒
(𝐷2

𝑛𝑛𝑢̃− 𝜎̃
eq
ℎ,𝑛𝑛

) ds. (5.8)

The first oscillation term in the above (5.8) is estimated by (4.19) as

|⟨𝑓 − 𝑓ℎ, 𝑢̃− 𝑠̃ℎ⟩| ≤ ‖𝑓 − 𝑓ℎ‖−2(‖𝑓 − 𝑓ℎ‖−2 + ‖𝐷2𝑠̃ℎ − 𝝈̃eq
ℎ
‖).

The identity (3.8) with 𝑣̃ = 𝑠̃ℎ yields ‖𝐷2𝑢̃ − 𝝈̃eq
ℎ
‖ ≤ ‖𝐷2𝑠̃ℎ − 𝝈̃eq

ℎ
‖ +√

2𝑜𝑠𝑐dual(𝑓, ̃𝑢) by the Schwarz inequality. This leads to an estimate for 
the second term in (5.8) as

∑
𝐾∈ℎ ∫𝐾

(𝝈eq
ℎ
−𝐷2𝑢IP) ∶ (𝐷2𝑢̃− 𝝈̃eq

ℎ
) dx ≤ ‖𝝈eq

ℎ
−𝐷2𝑢IP‖‖𝐷2𝑢̃− 𝝈̃eq

ℎ
‖

≤ ‖𝝈eq
ℎ
−𝐷2𝑢IP‖(‖𝐷2𝑠̃ℎ − 𝝈̃eq

ℎ
‖+√2𝑜𝑠𝑐dual(𝑓, 𝑢̃)

)
.

The last term of (5.8) is bounded by the Cauchy–Schwarz inequality

|||| ∑𝑒∈ℎ ∫𝑒
[[
𝜕𝑛𝑢IP

]]
𝑒
(𝐷2

𝑛𝑛𝑢̃− 𝜎̃
eq
ℎ,𝑛𝑛

) ds
||||

≤ ∑
𝑒∈ℎ

‖ℎ−1∕2𝑒

[[
𝜕𝑛𝑢IP

]]
𝑒
‖𝐿2(𝑒)‖ℎ1∕2𝑒 (𝐷2

𝑛𝑛𝑢̃− 𝜎̃
eq
ℎ,𝑛𝑛

)‖𝐿2(𝑒)

≤ ‖𝑢− 𝑢IP‖IP(∑
𝑒∈ℎ

‖ℎ1∕2𝑒 (𝐷2
𝑛𝑛𝑢̃− 𝜎̃

eq
ℎ,𝑛𝑛

)‖2
𝐿2(𝑒)

)1∕2

.

The addition and subtraction of 𝑢IP with the trace inequality yield

∑
𝑒∈ℎ

‖ℎ1∕2𝑒 (𝐷2
𝑛𝑛𝑢̃− 𝜎̃

eq
ℎ,𝑛𝑛

)‖2
𝐿2(𝑒)

≤ ∑
𝑒∈ℎ

‖ℎ1∕2𝑒 𝐷2
𝑛𝑛(𝑢̃− 𝑢̃IP)‖2𝐿2(𝑒) +

∑
𝑒∈ℎ

‖ℎ1∕2𝑒 (𝐷2
𝑛𝑛𝑢̃IP − 𝜎̃

eq
ℎ,𝑛𝑛

)‖2
𝐿2(𝑒)

≤ ‖𝑢̃− 𝑢̃IP‖ℎ + ‖𝐷2𝑢̃IP − 𝝈̃eq
ℎ
‖.

The above displayed estimates and the efficiency result of Lemma 5.2

for primal and dual problems yield the required estimate (5.7). □

Corollary 5.4. If the primal and dual solutions, respectively 𝑢 and 𝑢̃ belong 
to 𝐻2+𝛼(Ω) ∩𝐻2

0 (Ω) for 12 < 𝛼 ≤ 1, then the remainder estimator res
ℎ,rem of 

(4.4) has the convergence

|res
ℎ,rem(𝑢, 𝑢̃, 𝑓 ;𝑢IP, 𝑢̃IP)| ≤ 𝐶ℎ2𝛼,

where the positive constant 𝐶 (independent of the mesh parameter ℎ) de-

pends on load function 𝑓 , and exact solutions 𝑢 and 𝑢̃.
318
5.2. Discontinuous Galerkin FEMs

Let 𝑉 𝑘
ℎ
∶= ℙ𝑘(ℎ). Define the bilinear form 𝑎dG ∶ 𝑉 𝑘

ℎ
× 𝑉 𝑘

ℎ
→ℝ by [5]

𝑎dG(𝑢dG, 𝑣dG) ∶=
∑
𝐾∈ℎ ∫𝐾

𝐷2𝑢dG ∶𝐷2𝑣dG dx

−
∑
𝑒∈ℎ ∫𝑒

[[
∇𝑢dG

]]
𝑒
⋅
{{
𝐷2𝑣dG𝒏𝑒

}}
𝑒
ds

−
∑
𝑒∈ℎ ∫𝑒

{{
𝐷2𝑢dG𝒏𝑒

}}
𝑒
⋅
[[
∇𝑣dG

]]
𝑒
ds

+
∑
𝑒∈ℎ ∫𝑒

([[
𝑢dG

]]
𝑒

{{
div (𝐷2𝑣dG)⋅𝒏𝑒

}}
𝑒

+
{{
div (𝐷2𝑢dG)⋅𝒏𝑒

}}
𝑒

[[
𝑣dG

]]
𝑒

)
ds

+
∑
𝑒∈ℎ

𝜎1
ℎ𝑒 ∫

𝑒

[[
𝜕𝑛𝑢dG

]]
𝑒

[[
𝜕𝑛𝑣dG

]]
𝑒
ds

+
∑
𝑒∈ℎ

𝜎2
ℎ3𝑒

∫
𝑒

[[
𝑢dG

]]
𝑒

[[
𝑣dG

]]
𝑒
ds

for positive penalty parameters 𝜎1 and 𝜎2, and the linear forms

𝑙dG(𝑣dG) ∶=
∑
𝐾∈ℎ ∫𝐾

𝑓𝑣dG dx and 𝑙dG(𝑣dG) ∶=
∑
𝐾∈ℎ ∫𝐾

𝑓𝑣dG dx.

The DG method for (3.2) seeks 𝑢dG ∈ 𝑉 𝑘
ℎ

such that

𝑎dG(𝑢dG, 𝑣dG) = 𝑙dG(𝑣dG) ∀ 𝑣dG ∈ 𝑉 𝑘
ℎ
, (5.9)

and for the dual problem (3.5) seeks 𝑢̃dG ∈ 𝑉 𝑘
ℎ

such that

𝑎dG(𝑢̃dG, 𝑣dG) = 𝑙dG(𝑣dG) ∀ 𝑣dG ∈ 𝑉 𝑘
ℎ
. (5.10)

The discretization error will be measured by the mesh-dependent dG 
norm

‖𝑣‖2dG ∶=
∑
𝐾∈ℎ

‖𝐷2𝑣‖20,𝐾 +
∑
𝑒∈ℎ

𝜎1
ℎ𝑒

‖ [[𝜕𝑛𝑣]]𝑒 ‖20,𝑒
+
∑
𝑒∈ℎ

𝜎2
ℎ3𝑒
‖ [[𝑣]]𝑒 ‖20,𝑒 ∀ 𝑣 ∈ 𝑉 𝑘

ℎ
+𝐻2

0 (Ω).

It is well known that for sufficiently large 𝜎1 = 𝑂((𝑘 + 1)2) and 𝜎2 =
𝑂((𝑘 + 1)6), there exists a positive constant 𝛽 such that the following 
coercivity result holds [5]:

𝑎dG(𝑣dG, 𝑣dG) ≥ 𝛽‖𝑣dG‖2dG ∀ 𝑣dG ∈ 𝑉 𝑘
ℎ
.

The boundedness |𝑎dG(𝑣dG, 𝑤dG)| ≤ 𝐶‖𝑣dG‖dG‖𝑤dG‖dG for all 𝑣dG, 𝑤dG ∈
𝑉dG also holds. Then, the existence and uniqueness of the solution of 
the primal and the dual problems (5.9)-(5.10) follow from the Lax-

Milgram lemma. Moreover, one can extend the definition of 𝑎dG(∙, ∙)
to 𝑉 𝑘

ℎ
+𝐻2

0 (Ω) by a lifting operator, see [19], and have the coercivity 
and boundedness of the extension. An abuse of notation, we also denote 
the extension of 𝑎dG(∙, ∙) to 𝑉 𝑘

ℎ
+𝐻2

0 (Ω) by itself.

Construction of equilibrated moment tensor. We follow [5] to con-

struct an equilibrated moment tensor. The equilibrated moment tensors 
are constructed in the discrete space 𝐌eq

ℎ
defined by

𝐌eq
ℎ
∶=
{
𝝉
ℎ
∈𝐿2(Ω)2×2 | 𝝉

ℎ
|𝐾 ∈ 𝑃𝓁(𝐾)2×2,𝐾 ∈ ℎ

}
∩𝐇(div2,Ω),

where 𝓁 ∶=

{
𝑘 if 𝑘 ≥ 3,
3 if 𝑘 = 2.

For 𝐾 ∈ ℎ, let 𝑓𝐾 be the 𝐿2-projection of 𝑓 onto 𝑃𝑙−2(𝐾), and 
let 𝑓ℎ ∈ 𝐿2(Ω) be such that 𝑓ℎ|𝐾 = 𝑓𝐾, 𝐾 ∈ ℎ. Let 𝐁𝐃𝐌𝑚(𝐾), 𝑚 ∈ ℕ
be denoted by the Brezzi–Douglas–Marini element of polynomial de-

gree 𝑚, see [10]. The construction of an equilibrated moment ten-

sor is obtained in two steps: first, construct an auxiliary vector field 
𝝍

eq ∈𝐇(div, Ω), 𝝍eq|𝐾 ∈ 𝐁𝐃𝐌𝓁−1(𝐾), 𝐾 ∈ ℎ satisfying

ℎ ℎ
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∇⋅𝝍eq
ℎ
= 𝑓ℎ in 𝐿2(Ω),

and then an equilibrated moment tensor 𝝈eq
ℎ
∈𝐌eq

ℎ
satisfying

∇⋅𝝈eq
ℎ
=𝝍eq

ℎ
in 𝐿2(Ω).

Define some auxiliary numerical flux functions on the edges 𝑒 ∈ ℎ by

𝒖̂
(1) ∶=

{{{
∇𝑢ℎ

}}
𝑒
, 𝑒 ∈ ℎ(Ω)
0, 𝑒 ∈ ℎ(𝜕Ω),

𝑢̂
(2) ∶=

{{{
𝑢ℎ
}}
𝑒
, 𝑒 ∈ ℎ(Ω)
0, 𝑒 ∈ ℎ(𝜕Ω),

𝒑̂ ∶=
{{
𝐷2𝑢ℎ

}}
𝑒
−

𝜎1
ℎ𝑒

𝒏𝑒
[[
∇𝑢ℎ

]]𝑇
𝑒
,

𝝍̂ ∶=
{{
∇⋅𝐷2𝑢ℎ

}}
𝑒
+

𝜎2
ℎ3𝑒

[[
𝑢ℎ
]]
𝑒
𝒏𝑒.

The auxiliary vector field 𝝍 eq
ℎ

is constructed locally on each element 
𝐾 ∈ ℎ such that 𝝍eq

ℎ
∈ 𝐁𝐃𝐌𝓁−1(𝐾) satisfies the following interpolation 

conditions, see [5, Eq. 6.5]

∫
𝑒

𝒏𝑒 ⋅𝝍
eq
ℎ
𝑞 ds = ∫

𝑒

𝒏𝑒 ⋅ 𝝍̂ 𝑞 ds, 𝑞 ∈ 𝑃𝓁−1(𝑒), 𝑒 ∈ ℎ(𝜕𝐾),

∫
𝐾

𝝍eq
ℎ
⋅∇𝑞 dx = ∫

𝜕𝐾

𝒏𝜕𝐾 ⋅ 𝝍̂𝑞 ds − ∫
𝐾

𝑓𝑞 dx, 𝑞 ∈ 𝑃𝓁−2(𝐾),

∫
𝐾

𝝍eq
ℎ
⋅ 𝐜𝐮𝐫𝐥(𝑏𝐾𝑞) dx = ∫

𝐾

(∇⋅𝐷2𝑢ℎ) ⋅ 𝐜𝐮𝐫𝐥(𝑏𝐾𝑞) dx, 𝑞 ∈ 𝑃𝓁−3(𝐾),

where 𝑏𝐾 = 𝜆𝐾1 𝜆𝐾2 𝜆𝐾3 is the bubble function on element 𝐾 for barycen-

tric coordinates 𝜆𝐾
𝑖
, 𝑖 = 1, 2, 3 of 𝐾 and 𝐜𝐮𝐫𝐥(∙) ∶= (−𝜕(∙)∕𝜕𝑦, 𝜕(∙)∕𝜕𝑥). 

Finally, the equilibrated moment tensor 𝝈eq
ℎ

= (𝜎ℎ,eq
𝑖𝑗

)2
𝑖,𝑗=1 ∈ 𝐌eq

ℎ
, with 

𝝈
(𝑖)
ℎ,eq = (𝜎ℎ,eq

𝑖1 , 𝜎ℎ,eq
𝑖2 )𝑇 , 1 ≤ 𝑖 ≤ 2, in each element 𝐾 is constructed by fix-

ing the degrees of freedom [5, Eq. 6.8]:

∫
𝑒

𝝈eq
ℎ
𝒏𝑒 ⋅ 𝒒 ds = ∫

𝑒

𝒑̂𝒏𝑒 ⋅ 𝒒 ds, 𝒒 ∈ [𝑃𝓁(𝑒)]2, 𝑒 ∈ ℎ(𝜕𝐾),

∫
𝐾

𝝈eq
ℎ
∶ ∇𝒒 dx =−∫

𝐾

𝝍eq
ℎ
⋅ 𝒒 dx +∫

𝜕𝐾

𝒑̂𝒏𝜕𝐾 ⋅ 𝒒 dx, 𝒒 ∈ [𝑃𝓁−1(𝐾)]2 ⧵ [𝑃0(𝐾)]2,

∫
𝐾

𝝈
(𝑖)
ℎ,eq ⋅ 𝐜𝐮𝐫𝐥(𝑏𝐾𝑞) dx = ∫

𝐾

𝒛(𝑖) ⋅ 𝐜𝐮𝐫𝐥(𝑏𝐾𝑞) dx, 𝑞 ∈ 𝑃𝓁−2(𝐾),1 ≤ 𝑖 ≤ 2,

where 𝒛(𝑖) = ( 𝜕2𝑢ℎ
𝜕𝑥𝑖𝜕𝑥1

, 𝜕2𝑢ℎ
𝜕𝑥𝑖𝜕𝑥2

), 𝑖 = 1, 2. The above constructions lead to the 
equilibrium: divdiv𝝈eq

ℎ
= 𝑓ℎ, see [5, Lemma 6.1 & Theorem 6.6]. Similar 

construction for the dual problem with data 𝑓 and approximation 𝑢̃ℎ
leads to the equilibrated moment tensor 𝝈̃eq

ℎ
.

Computation of potential reconstruction. Let 𝑆𝑟
ℎ

be a 𝐶1-conforming 
finite-element space consisting of the macro-elements of order 𝑟 ≥ 4, 
see [20, Definition 3.1]. We follow the construction of the recovery 
operator of [20]. For each nodal point 𝜈 of the 𝐶1-conforming finite-

element space 𝑆𝑘+2
ℎ

, define 𝜔𝜈 to be the set of 𝐾 ∈ ℎ that share the 
nodal point 𝜈, i.e., 𝜔𝜈 = {𝐾 ∈ ℎ ∶ 𝜈 ∈ 𝐾}. Define the operator 𝐸ℎ ∶
ℙ𝑘(ℎ) → 𝑆𝑘+2

ℎ
∩𝐻2

0 (Ω) by the averaging:

𝑁𝜈(𝐸ℎ𝑣dG) =

{ 1|𝜔𝜈 | ∑𝐾∈𝜔𝜈
𝑁𝜈(𝑣dG|𝐾 ) if 𝜈 ∉ 𝜕Ω,

0 if 𝜈 ∈ 𝜕Ω,

where 𝑁𝜈 is any nodal variable at 𝜈 and 𝜈 is any nodal point of 𝑆𝑘+2
ℎ

. 
This operator satisfies the estimate [20, Lemma 3.1] and [12, Lemma 
3.5]:

‖𝐸ℎ𝑣dG − 𝑣dG‖dG ≤ 𝐶 inf
𝑣∈𝐻2

0 (Ω)
‖𝑣− 𝑣dG‖dG, (5.11)

for some positive constant 𝐶 .
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orithm 1 Goal-oriented adaptive method. For newest vertex bisec-

 method see [38].

t: Initial mesh 0 , 𝐽 ≥ 1 the maximum number of mesh refinement levels, and real 
meter 𝜃 ∈ (0, 1).

= 0.

e (𝑗 ≤ 𝐽 ) do

SOLVE/COMPUTE:

1. Solve the primal and dual matrix systems 𝔸U𝑗 = 𝖥𝑗 and 𝔸Ũ𝑗 = F̃𝑗 related to 
the discrete problems.

2. Compute the potential reconstructions 𝑠𝑗 for the primal problem and 𝑠̃𝑗 for 
the dual problem from Definition 3.1. Compute the moment tensors 𝝈eq

𝑗
for 

the primal problem and 𝝈̃eq
𝑗

for the dual problem from Definition 3.2.

ESTIMATE. Compute the primal estimator 𝜂𝑗 , the dual estimator 𝜂̃𝑗 and the noncon-

forming estimator 𝜂𝑗,NC proposed for the goal-oriented error estimation.

MARK. Mark sets for each of the primal and dual problems:

1. The Dörfler marking chooses a minimal subset p
𝑗 ⊂ 𝑗 such that

𝜃
∑
𝐾∈𝑗

𝜂2
𝑗
(𝐾) ≤ ∑

𝐾∈p
𝑗

𝜂2
𝑗
(𝐾).

2. The Dörfler marking chooses a minimal subset d
𝑗 ⊂ 𝑗 such that

𝜃
∑
𝐾∈𝑗

𝜂̃2
𝑗
(𝐾) ≤ ∑

𝐾∈d
𝑗

𝜂̃2
𝑗
(𝐾).

3. The Dörfler marking chooses a minimal subset NC
𝑗 ⊂ 𝑗 such that

𝜃
∑
𝐾∈𝑗

𝜂2
𝑗,NC(𝐾) ≤ ∑

𝐾∈NC
𝑗

𝜂2
𝑗,NC(𝐾).

4. Set 𝑗 ∶=p
𝑗 ∪d

𝑗 ∪NC
𝑗 the union of marked sets found for primal, dual 

and nonconforming marking procedures above.

REFINE. Compute the closure of 𝑗 and generate a new triangulation 𝑗+1 using 
newest vertex bisection method ([38]).

Set 𝑗 ∶= 𝑗 + 1.

While

umerical experiments

In this section, some numerical results for the goal-oriented a pos-

ori estimations are presented for the 𝐶0IPDG method of Section 5.1

 𝑘 = 2. The approximate goal functional is defined by

=𝑄(𝑢ℎ) +
(
𝝈eq
ℎ
−𝐷2𝑠ℎ, 𝝈̃

m
ℎ

)
. (6.1)

 primal and dual estimators are defined respectively by 𝜂ℎ ∶=
𝑠ℎ − 𝝈eq

ℎ
‖ and 𝜂̃ℎ ∶= ‖𝐷2𝑠̃ℎ − 𝝈̃eq

ℎ
‖. This gives the following error 

mate from (4.16)

al ∶= |𝑄(𝑢) −𝑄ℎ| ≤ 𝜂ℎ𝜂̃ℎ
2

+ |𝑄(𝑠ℎ − 𝑢ℎ)| =∶ 𝜂abs
ℎ,goal, (6.2)

re the higher-order data oscillation terms are not considered in the 
putations. The estimators are further localized for a mesh adapta-

 as

2
ℎ
=
∑
𝐾∈ℎ

𝜂2
ℎ,𝐾

where 𝜂ℎ,𝐾 ∶= ‖𝐷2𝑠ℎ − 𝝈eq
ℎ
‖𝐿2(𝐾),

2
ℎ
=
∑
𝐾∈ℎ

𝜂̃2
ℎ,𝐾

where 𝜂̃ℎ,𝐾 ∶= ‖𝐷2𝑠̃ℎ − 𝝈̃eq
ℎ
‖𝐿2(𝐾) and

C =
∑
𝐾∈ℎ

𝜂2
ℎ,𝐾,NC where 𝜂ℎ,𝐾,NC ∶= |𝑄((𝑠ℎ − 𝑢ℎ)𝜒𝐾 )|,

 𝜒𝐾 is the characteristic function defined on 𝐾 ∈ ℎ. We apply Algo-

m 1 which follows standard adaptive procedure SOLVE, ESTIMATE, 
RK and REFINE for the numerical examples below. For the experi-

ts below, the penalty parameter 𝜎 for the 𝐶0IPDG method is set to 
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Fig. 1. The exact solution (left) and the zone of interest (right). Example 6.1, goal functional (6.4).

Fig. 2. (a) Initial triangulation 0 and (b) first uniform refinement 1 of Example 6.1.

Fig. 3. The exact primal solution (left), the approximate primal solution (middle), and the approximate dual solution (right). Example 6.1, goal functional (6.4).
In the following numerical tests, we also compute the estimator 
found in (5.6) in the context of 𝐶0IPDG method:

𝜂res
ℎ,goal ∶ =

||| ∑
𝐾∈ℎ ∫𝐾

(𝝈eq
ℎ
−𝐷2𝑢IP) ∶ 𝝈̃eq

ℎ
dx +

∑
𝑒∈ℎ ∫𝑒

[[
𝜕𝑛𝑢IP

]]
𝑒
𝜎̃
eq
ℎ,𝑛𝑛

ds|||, (6.3)

where the absolute value has been taken in order to compare the es-

timator with the positive abstract goal estimator 𝜂abs
ℎ,goal. The potential 

reconstructions 𝑠ℎ and 𝑠̃ℎ for the primal and dual solutions are com-

puted from the definition in (5.4). The symmetric piecewise linear 
equilibrated moment tensors 𝝈eq

ℎ
for the primal and 𝝈̃eq

ℎ
for the dual 

problems are constructed from Lemma 5.1. The effectivity indices are 
computed by the ratio 𝜂abs

ℎ,goal∕𝑒ℎ,goal for abstract goal estimator 𝜂abs
ℎ,goal

and by 𝜂res ∕𝑒ℎ,goal for the residual type goal estimator 𝜂res .

ℎ,goal ℎ,goal

320
6.1. Regular solution and uniform refinements

In this test, we consider an exact solution defined on a plate Ω ∶=
(0, 1) × (0, 1)

𝑢(𝑥, 𝑦) = 1012𝑥10(1 − 𝑥)10𝑦10(1 − 𝑦)10

with load function 𝑓 defined by 𝑓 ∶= Δ2𝑢 in Ω. We consider a goal 
functional which is the mean value of the deflection around a strip 
𝜔 ⊂Ω, where the right-hand side function 𝑓 , the solution 𝑢 and gradient 
of 𝑢 exhibit large changes. The exact solution has been illustrated in the 
left part of Fig. 1, and the zone of interest 𝜔 is highlighted by a grey 
colour in the right part of Fig. 1. The peak of the solution at ( 12 , 

1
2 ) is 

highlighted by a bullet. The goal functional is defined by
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Fig. 4. The convergence histories for the goal error 𝑒ℎ,goal , the abstract goal estimator 𝜂abs
ℎ,goal and the residual estimator 𝜂res

ℎ,goal with effectivity indices. Example 6.1, 
goal functional (6.4).

Fig. 5. The exact solution (left) and the zone of interest (right). Example 6.2, goal functional (6.5).
𝑄(𝑢) = 1|𝜔| ∫
𝜔

𝑢dx =
(
𝑓, 𝑢

)
Ω, with 𝑓 =

𝜒𝜔|𝜔| , (6.4)

where the strip 𝜔 ∶= {(𝑥, 𝑦) ∈ Ω ∶ 0.75 ≤ 𝑥 + 𝑦 ≤ 1.25} is illustrated in 
the right side of Fig. 1 and 𝜒𝜔 is the characteristic function defined on 
𝜔. The numerical integration value of the exact goal functional reads 
𝑄(𝑢) ≈ 0.06044290015.

Numerical experiments are performed on the sequence of uni-

form triangulations 0, 1, … , 5 with the initial triangulation shown in 
Fig. 2(a). In the uniform refinement process, each triangle is subdivided 
into four similar triangles, see Fig. 2. In Fig. 3, the exact solution 𝑢 in the 
left, the approximate primal solution 𝑢IP in the middle, and the approx-

imate dual solution 𝑢̃IP in the right are projected on the domain Ω. The 
approximation for the goal function is found to be 𝑄ℎ = 0.06046477792
on the mesh 5. The convergence histories for the goal error and goal 
estimator of (6.2) and (6.3) with respect to the number of unknowns 
are plotted in Fig. 4. We observe the quadratic convergence rates for 
the goal error and goal estimators with effectivity index close to 9.4 for 
the abstract goal estimator (6.2) and 2.5 for (6.3).
321
6.2. Singular solution and adaptive mesh refinement

In this test, we consider the L-shaped domain Ω = (−1, 1)2 ⧵
(
[0, 1) ×

(−1, 0]
)
. Set the singular functions [23] 𝑢(𝑟, 𝜃) ∶= (1 − 𝑟2 cos2 𝜃)2(1 −

𝑟2 sin2 𝜃)2𝑟1+𝛼𝑔𝛼,𝜔(𝜃) with 𝑔𝛼,𝜔(𝜃) ∶=( 1
𝛼 − 1

sin
(
(𝛼 − 1)𝜔

)
− 1

𝛼 + 1
sin
(
(𝛼 + 1)𝜔

))
×
(
cos

(
(𝛼 − 1)𝜃

)
− cos

(
(𝛼 + 1)𝜃

))
−
( 1
𝛼 − 1

sin
(
(𝛼 − 1)𝜃

)
− 1

𝛼 + 1
sin
(
(𝛼 + 1)𝜃

))
×
(
cos

(
(𝛼 − 1)𝜔

)
− cos

(
(𝛼 + 1)𝜔

))
,

where the angle 𝜔 ∶= 3𝜋
2 and the parameter 𝛼 = 0.5444837367 is a non-

characteristic root of sin2(𝛼𝜔) = 𝛼2 sin2(𝜔). It can be observed that the 
solution has the regularity 𝐻2+𝛼(Ω) ∩𝐻2

0 (Ω), see [23]. Since the problem 
has a singularity at the origin (0, 0), we consider the goal functional
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Fig. 6. The approximate primal solution 𝑢IP on 0,1,…7 with parameter 𝜃 = 0.25 of Algorithm 1 for Example 6.2.

Fig. 7. The approximate dual solution 𝑢̃IP on 0,1,…7 with parameter 𝜃 = 0.25 of Algorithm 1 for Example 6.2.
𝑄(𝑢) = 1|𝜔| ∫
𝜔

𝑢dx =
(
𝑓, 𝑢

)
Ω, with 𝑓 =

𝜒𝜔|𝜔| , (6.5)

where 𝜔 ∶= {(𝑥, 𝑦) ∈Ω ∶ (𝑥 − 0)2 + (𝑦 − 0)2 ≤ 0.252} and 𝜒𝜔 is the charac-

teristic function defined on 𝜔. The exact solution (left), the domain Ω, 
and the zone of interest (right) are illustrated in Fig. 5. The numerical 
integration value of the exact goal functional reads 𝑄(𝑢) ≈ 0.018334438.

For the numerical experiment, we start with an initial mesh 0 (see 
Fig. 8(a)). We apply the adaptive Algorithm 1 with refinement param-

eter 𝜃 = 0.25 and maximum refinement level 𝐽 = 13 to generate the 
adaptive meshes 1, 2, … , 13. We also compare the results with the 
uniform refinement levels 0, 1, … , 5. For the uniform refinement pro-

cess, each triangle is divided into four similar triangles to obtain the 
next level mesh as described for the previous test. The initial mesh and 
final adaptive mesh are shown in Fig. 8. The adaptive meshes and pro-
322
jected solutions for the primal and the dual problems are illustrated 
in Figs. 6 & 7 for the first 0, 1, … , 7 adaptive meshes. The conver-

gence histories for the goal error and goal estimator of (6.2) and (6.3)

with respect to the number of unknowns are plotted in Fig. 9 for the 
uniform and adaptive refinements. The goal error reduces for both the 
refinement procedures when the meshes are refined accordingly. More-

over, the convergence rate for adaptive refinements is higher than for 
uniform refinement. The adaptive algorithm helps to achieve higher ac-

curacy for the approximation of goal functional with less number of 
unknowns in the computational process. The effectivity indices for the 
goal estimator 𝜂abs

ℎ,goal and for the goal residual estimator 𝜂ℎ,res on the 
uniform meshes appear to be close to 2 and 2.5, respectively. Whereas 
effectivity indices for these estimators for adaptive refinements appear 
to be close to 5 and 3, respectively.
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Fig. 8. (a) Initial triangulation 0 and (b) adaptive mesh 13 with parameter 𝜃 = 0.25 of Algorithm 1 for Example 6.2.

Fig. 9. The convergence histories for the goal error and the goal estimators with effectivity index for Example 6.2.
6.3. Some shortcomings of the residual-based estimator of Theorem 4.1

and the abstract goal estimators of Theorem 4.3

In this test, we consider the following problem setups. Let Ω ∶=
(−1, 1) × (−1, 1). Consider the load function of the primal problem (3.1)

as

𝑓 (𝑥, 𝑦) =
⎧⎪⎨⎪⎩
1 if 𝑥 > 0 and 𝑦 > 0,
−1 if 𝑥 < 0 and 𝑦 < 0,
0 elsewhere,

and the load function of the dual problem (3.4) is given by 𝑓 ∶= 1|Ω| , i.e., 
the (global) mean deflection 𝑄(𝑢) = 1|Ω| ∫Ω 𝑢dx. Due to the symmetry of 
the domain and the load function, the value of the mean deflection of 
the plate 𝑄(𝑢) = 0.

Numerical experiments are performed on the sequence of uniform 
meshes 0, 1, … , 3 with the initial triangulation shown in Fig. 10(a). 
The computed solution 𝑢IP for the primal problem using 𝐶0IPDG 
method is illustrated in Fig. 10(b). The value of the computed goal func-

tional on 3 is 𝑄(𝑢IP) = −1.063258 × 10−15, i.e., zero up to the machine 
precision. Therefore, the value of the simple goal error of (4.2) on 3 is
323
|𝑄(𝑢) −𝑄(𝑢IP)| = 1.063258 × 10−15 ≪ 𝜂res
ℎ,goal = 4.501511 × 10−5. (6.6)

This shows that for this kind of goal functional the residual estimator 
𝜂res
ℎ,goal highly over estimate the error with an effectivity index close to 
+∞. The abstract goal estimator (4.16) provides the following error 
bound:

𝑒ℎ,goal = 1.763226 × 10−6 ≤ 𝜂abs
ℎ,goal = 1.933562 × 10−4.

It provides a better structural error bound than the above residual-based 
estimator (6.6), but it still suffers from a high effectivity index close to 
109.66.

7. Conclusion

This article presents an abstract framework of guaranteed goal-

oriented a posteriori error control for the numerical approximation of 
a goal functional. We considered two popular discontinuous Galerkin 
finite element approximations for the biharmonic plate problem. The 
error in the approximation of the goal functional is represented by an 
estimator and by a remainder term that combines the dual-weighted 
residual method and the equilibrated moment tensor. The estimators 
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Fig. 10. (a) Initial triangulation 0 and (b) the approximate primal solution 𝑢IP on 3 for Example 6.3.
are based on the potential reconstruction and the equilibrated moment 
tensor that can be applied to various other finite element approxima-

tions. The methodology described in this article for the goal-oriented a 
posteriori error analysis can also be applied to nonlinear fourth-order 
plate problems.
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