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In this article, we discuss goal-oriented a posteriori error estimation for the biharmonic plate bending problem.
The error for a numerical approximation of a goal functional is represented by several computable estimators.
One of these estimators is obtained using the dual-weighted residual method, which takes advantage of an
equilibrated moment tensor. Then, an abstract unified framework for the goal-oriented a posteriori error
estimation is derived based on the equilibrated moment tensor and the potential reconstruction that provides
a guaranteed upper bound for the error of a numerical approximation for the goal functional. In particular, C°

interior penalty and discontinuous Galerkin finite element methods are employed for the practical realisation of
the estimators. Numerical experiments are performed to illustrate the effectivity of the estimators.

1. Introduction

Adjoint-based goal-oriented a posteriori error estimation is an effi-
cient tool for the numerical approximation of many engineering prob-
lems as it provides relevant information about the error in a quantity of
interest rather than the error estimation derived in some norm or semi-
norm. Goal-oriented a posteriori error estimation was initially proposed
by Becker and Rannacher [3] and Prudhomme and Oden [34,32] using
the dual-weighted residual (DWR) method (see [21,2,11,30] for subse-
quent works). Some of the popular approaches on the goal-oriented a
posteriori error estimation are the multi-objective goal functional er-
ror estimation of [39,17,25], the constitutive relation error (CRE) of
[26,28,37,35,36], the enhanced least-squares finite element methods of
[13], the combination of DWR, and the equilibrated flux of [31], the
guaranteed bounds based on the equilibrated flux of [29,1].

Traditionally, an a posteriori error analysis hinges upon the compu-
tation of the residual [2]

a(u —uy,v) =1(v) — a(uy,v) = p(uy)(v)

for some bilinear form a(,+) and linear form / associated with elliptic
partial differential equations (PDEs) with « and u;, being its weak and
Galerkin solutions, and v being a test function. By incorporating a goal-
functional Q in a dual problem a(v, z) = Q(v) for all test functions v, and
using Galerkin orthogonality, we have

OQu—up)=alu—uy,z)=alu—uy,z—uvy) = pu,)(z—uvy)
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for all discrete functions v,,. This approach involves the computation
of an estimator weighted with the solution related to the dual prob-
lem. For the computational purpose, a suitable residual-based estimator
can be chosen for the primal problem, and the dual-problem solution z
can be replaced by a discrete solution obtained in some finer discretiza-
tion space. However, in most cases, the estimators involve unknown
constants; hence they do not provide a guaranteed a posteriori error
bound. In order to obtain a guaranteed a posteriori estimator, one of-
ten incorporates the equilibrated flux (see [29,28]). Much research has
been conducted regarding the goal-oriented a posteriori estimation for
second-order PDEs. However, to the author’s knowledge, there are very
few results (except [22]) on the goal-oriented a posteriori error estima-
tion for fourth-order PDEs. An hp-discontinuous Galerkin DWR-based
goal error estimation has been proposed by [22] for the biharmonic
problem and applied to describe the displacement of a thin and isotropic
homogeneous plate and the stream function formulation of the Stokes
fluid problem that describes the flow of a viscous fluid around a flat
plate.

The article’s main purpose is to develop a unified framework for
goal-oriented a posteriori error estimation for a model linear bihar-
monic problem. We consider goal functional of the form Q(u) = (f,u)
for a weight function f € L?(Q). In practical applications, this can be
applied to approximate the goal functional governed by mean deflec-
tion around a specified zone and point deflection at some point (in a
regularized form). This framework is applied (but not limited) to C in-
terior penalty and discontinuous Galerkin finite element methods. We
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also establish a goal estimator that combines the DWR approach and the
equilibrated moment tensor for the primal and dual problems. Finally, a
unified guaranteed a posteriori error estimation is established through
the potential reconstruction and the equilibrated moment tensor, which
is significantly different from the DWR method of [22].

The organization of the paper is as follows. In Section 2, we de-
fine some notations and present some preliminary results. In Section 3,
we introduce a model problem and state some useful results. In Sec-
tion 4, we establish some a posteriori error estimates for the goal
functional. In Section 5, we consider finite element discretization for
the approximation of solution and address some applications of the ab-
stract framework. Finally, in Section 6, we perform some numerical
tests to substantiate the theoretical results.

2. Setting

Let Q c R? be a bounded polygonal domain with the boundary 9Q.
Throughout the paper, standard notations on Lebesgue and Sobolev
spaces and their norms are employed. We denote the L? scalar or vec-
tor inner product by (s, ). The standard semi-norm and norm on H*(Q)
(resp. W*P(Q)) for s > 0 are denoted by |« |, and || « ||, (resp. |« |, , and
I« ll;,)- We refer H™"(Q) to be the dual space of H{'(Q) with (),
denoting the duality product and for m =2 we often denote the dual-
ity product simply by (e, ). Further, let H(div,Q) be the Hilbert space
of vector fields q € [L*(Q)]? such that V-q € L?>(Q). Any matrix valued

function in [LZ(S_l)]ZX2 is denoted by q = (q;; ),.21.=1 and the inner-product

reads (p,q) = fgp :qdx, where p : q Z,-ZJ-:. pi;4;;- Moreover, we intro-

duce the Hilbert space

H:=

{geH(div,Q)z : VgeH(div,Q)}.

| as the matrix of second or-

der partial derivatives of a function v € H*(Q). The set of all symmetric
2 x 2 matrix valued functions is denoted by [LZ(Q)]E;‘T%.

Let 7, be a shape-regular [4] triangulation of Q into closed triangles.
The set of all internal vertices (resp. boundary vertices) and interior
edges (resp. boundary edges) of the triangulation 7, are denoted by
N,H(Q) (resp. N, (0Q)) and &,(Q) (resp. £,(0RQ)). Define a piecewise con-
stant mesh function hy, (x) = hg = diam(K) for all x€ K, K €7, and
set h :=maxger, hg. Also define a piecewise constant edge-function on
Ep 1= ER(Q) U E,(0Q) by hg, |, = h, = diam(e) for any e € &,. The set of
all edges of K is denoted by &,(K). Note that for a shape-regular fam-
ily, there exists a positive constant C independent of h such that any
K €7, and any e € &,(K) satisfy Chy < h, < hg. Let P, (K) denote the
set of all polynomials of degree less than or equal to k and

Finally, we refer to D?v :=(0*v/dx;0x j)[zj:

PuTy) = {0 € L2Q@) : VK €T, 0lx €PL(K)}.

The L%*(Q) projection onto P, (7}) is denoted by TI,. For a non-negative
integer s, define the broken Sobolev space for the subdivision 7}, as

H'T)={peL*Q) : ¢olx €H'K) VKET,},

with the broken Sobolev semi-norm | « | HS(Ty) and norm || « || H5(Ty) de-
fined by

>

KeT,

12
2
X 1l

12
2
R e
KeT,

|¢|Hs(n)=(

Define the jump [[¢]l, = ¢|g, — @|x_ and the average {¢}, = %((,al,(+ +
@lg_) across the interior edge e of ¢ € H!(T},) of the adjacent triangles
K, and K_. Extend the definition of the jump and the average to an
edge lying on the boundary by [¢], = ¢|, and {¢}}, = ¢|, when e be-
longs to the set of boundary edges £,(0Q). For any vector function, the
jump and the average are understood componentwise.
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There exist real numbers C,, and C,, . independent of 4 such that the
following discrete and continuous trace inequalities hold for all K € 7,,
and e € &, (see [16, Lemma 1.46 and 1.49])

-1/2
lolle < Coz Pllollg Vo € PL(K),
0llgk < Core(hg 10112 + Ay IVOIR)Y? Yo e H (K).

The positive constants C appearing in the inequalities denote
generic constants that do not depend on mesh-size. The notation a < b
means that there exists a generic constant C independent of the mesh
parameters such that a < Cb.

3. Model problem

In this article, we are interested in the goal-oriented a posteriori
error estimations for a general linear fourth-order boundary-value prob-
lem, but the results can be extended to more general situations. For
simplicity of presentation, we restrict ourselves to a simple model prob-
lem. Consider the biharmonic equation with the clamped boundary
conditions

in Q, (3.1a)

on 0Q, (3.1b)

where A%u = A(Aw) and the source term f. Define V := H(Q). The
weak formulation of (3.1) is given by: for f € H~2(Q), find u € V such
that

(D*u, D*v)={(f,v) YveV. (3.2)

In this article, we are interested in the following goal functional

ow)=(fu) (3.3)

for a chosen weight function f € L*(Q). We analyse the above goal
functional by a dual problem of (3.1) that consists of finding i : Q > R
such that

Ali=f inQ, (3.4a)

i=0= 9a on 0Q. (3.4b)
v

The weak formulation seeks i € V' such that

(D*i, D*v)=(f,v) VYveV. (3.5)

The existence and uniqueness of the weak solution of the primal and
the dual problems (3.2) and (3.5) follow from the Riesz representation
theorem.

We state two definitions that are essential for establishing some a
posteriori error estimations for the numerical approximation of the goal
functional Q of (3.3).

Definition 3.1 (Potential reconstruction). Any function s, (resp. §,) con-
structed from u,, (resp. ii;,) which satisfies

s, € HX(QNCY(Q) (resp. 5, € HX Q)N Cl(Q) (3.6)

is called a potential reconstruction.

Throughout the article, we understand the divdiv operator in the

distributional sense, i.e., for z € [Lz(Q)]g;‘[ﬁ

(divdiv z, w) :/1 : D*wdx, Vwe HX(Q).
Q
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Definition 3.2 (Equilibrated moment tensor). Let f, € H™2(Q) (resp.

fn € H2(Q)). Any matrix valued function g;q IS [LZ(Q)]gyX[?l (resp. & Zq IS
[LZ(Q)]E;,%) which satisfies

(divdivgiq,w) =(fp.w) VweHg(Q) (3.7a)
(resp. (divdiv g;q, w)={(fy.w) VweH}Q) (3.7b)

is called an equilibrated moment tensor.

The construction of the potential reconstruction of Definition 3.1 can
be found in [7,14,8,20], and the equilibrated moment tensor of Defini-
tion 3.2 can be found in [5,6]. We briefly describe their constructions in
Section 5. We state the following Prager-Synge type [33] energy prin-
ciple and refer to [5, Theorem 3.2] and [6, Theorem 3.1] for the proof.

Lemma 3.3 (Two-energies principle for the biharmonic equation). Let f, €
H2Q)and ie H g (Q) be the solution of the biharmonic equation

(D*t, D*w) = (f}.w) Vwe HXQ).

Forve H, 2(9), the tensor creq € [L2(§2)]2X2 defined in Definition 3.2 satisfies
[33,6]

I1D*@ - v)lI* + | D*a

- o> = |D*v - o*9|I%.
=h =h

Moreover, let u Hg(Q) (resp. ii € Hé(Q)) be the solution of (3.2) (resp.
(3.5)). Then for any v e Hg(Q) (resp. U € Hg(Q)), the following also holds

1D = )l + 11D = g = | D20 = I +2(f = fou =),

—gjfllz = ||D26—gjf||2 +2f = fri-0))

B (3.8)

(resp. || D*(ii — D)|)> + || D@

4. Goal-oriented error estimates

In this section, we present some approximations for the goal func-
tional. Then the goal error is decomposed into computable estimators.
Choosing v =u in (3.5) and v =4 in (3.2), the following primal-dual
equivalence relation holds

O) = (f,u) = (D?@, D*u) = (D*u, D*d) = (f, @). 4.1)

The goal functional is approximated in the following subsections,
and some error representations are presented.

4.1. Some residual type goal error estimations

In this subsection, the goal error is represented by an estimator and
a remainder term. For any edge e € &, the outward unit normal across
the edge is denoted by n, and unit tangent along the edge is denoted by
7,. Define 9,v :=Von,, D, v :=n] D*vn, and o, :=n czqn ,ool =

h,nt *

T ~¢€
T, th"e-

Theorem 4.1 (Error representation of the goal functional). Let u and i €
Hg(Q) respectively be the solutions of (3.1) and (3.4). Let u, and i, €
P, (T},) respectively be arbitrary piecewise polynomial approximations for u
and ii. Let 5, be the potential reconstructions of Definition 3.1, and g;q and
g;q be the equilibrated moment tensors of Definition 3.2 constructed from

uy, and ii;, respectively. Then the goal error is expressed as
Ow) = Qup) = oo (nr B3 €9, ) + Ry (it f 34y, By, (4.2)

where the estimator is given by
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”hgoal(uh’”h’c o Geq) =(f.5,) — Z / : D? §pdx
KeTh
+ 6% — D%uy) : 3%9dx
Y @ -Duy &

KeThK
ﬂd uh]]eahqmd€+ Z

/ eeé‘,,

/[[uh]] dlvo'q -n, ds,

/[[" uy], 5,

e€€h

(4.3)

eeé'h

with remainder term
€S ~ . ~ .
Ry e (W 0, f 5, y) ¢

=(f- d1vd1vo'eq -3+ Z
KeT, ¥

i-gyl yds+ Y

eeéh

(aiq — D%u;) : (D% — ~eq)dx

/[[0 uh]] (D /[[(3 uh]] (D2u—0eq )ds

LGSh

/[[uh]] (d1V(D2u)—d1v0'eq) -n, ds. (4.4)

eGEh

Proof. The primal-dual equivalence relation (4.1) and the definition of
goal functional (3.3) lead to the goal error representation

OW) = Oup) = ([, ) = (f,up). (4.5)

The second term of the above equation is expressed using the solution
of the dual problem (3.4) and successive application of the integration

by parts as
(f,uh): Z /uhAzﬁdx: Z /uhdivdiV(Dzﬁ)dx
KeTy ¥ KeT, ¥
/ Vuy-div(D’@)dx + ) / updiv (D*@)-n ds
KeT, ¥ KeThsx

= Z /Dzuh : D*adx — Z Vu,,-D*iands
KeTy g KeTp5x
+ Z /uhdiv(Dzﬁ)-nds.
KeTysx

Expressing the gradient in the tangent-normal direction as Vu, =
0,u7,+0,u,n, and summing over all the edges, we obtain the following
expression for the above equation as

(foup) = Z/ /[[0 uh]] D, iids

KeTy ¥

D?uy, : D*idx — Z

e€&y s,

[[0 uh]] D, ids+ Z
The above two displayed equations (4.5) and (4.6) lead to

eeé‘h
/ /[0uh]] D, iids

K

/[[6 “h]] D, iids

/ [un]], div (D*@)-n, ds. (4.6)

cES he

Ow) - Q) = (f,@) = Y

KeT,

D%uy : D*adx+ Y,

eeé‘h

eEEh

“4.7)

/[[uh]] dlv(Dzu)n ds.

eeé‘h

Introducing the equilibrated moment tensor ¢°¢ and &% of Defini-
tion 3.2 in the first two terms of the above equation (4.7) yields
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(- /D2u,, : D2iidx
KeTy g
=(f—divdivgeq,ﬁ)+/geq L DYadx - Y /Dzuh : D%adx
=h o =h KeT, i

=(f- divdivg;qjh) +(f —divdivgzq,ﬁ— Sp)

+ eq _ 2 eq
Z /(gh D<uy) : dx + z
KeT, ¥

KeTyy
(4.8)
The first two terms in the above equation can be written as
(f - divdivg;q,§h> +(f - divdivg;q,ﬂ -3
= (2500 = (@ D5+ (f = froli = 5p)- (4.9)

Introducing the equilibrated moment tensor of tangent-normal direc-
tions in the third and fourth terms of (4.7), we obtain

/[[a up]), D,eiids + Z/[[a up]], Dyuiids

eeé’h eeé‘,,
/ﬂd uh]]eahands+ 2 / [[6 uh]] o
eeé’h eeé‘h

/[[6 uh]] (D, ii— Uei’nr)ds+ Z

eEEh

/[[a up ], (Dyit = &7, ) ds.

(4.10)

e€é, h

Introducing the equilibrated moment tensor of the normal direction in
the last term of (4.7), we have

/[[uh]] d1v(D2u)~neds= Z

eeé‘h

/[[u,,]] d1vo-qn ds

e€¢, ne

/ [[0 uh]] (div (D) — div aeq) -n, ds.

eeé‘h

(4.11)

The last five displayed equations (4.7)-(4.11) represent the goal error
equation (4.2) with the estimator term n;f;(’al(uh,ﬁh;g;q,g;q) and re-
mainder term R} (u, i, fup,diy). O

We often suppress the dependent variables for the goal estimator
and remainder terms for the simplicity of notation. The residual-based
a posteriori estimator r/res in the above Theorem 4.1 provides an es-
timator for the approxnnatlon O(uy,) of the goal functional Q(u) with a
remainder term R;% . The estimator is computed using the approxi-
mations u;, of the prlrnal and i, of the dual problems together with the
potential reconstruction §, of Definition 3.1, and the equilibrated mo-
ment tensors ch and o-Cq of Definition 3.2. The potential reconstruction

5, is used in the above Theorem 4.1 to represent the data oscillation
without additional regularity assumption on the given data.

A simplified residual-based goal estimator. If / and divdiv g;q be-
long to L*(Q), we can replace §,, by i, in (4.8) and obtain a simplified

estimator of Theorem 4.1 as

res

/(aeq — D%uy) : 5%dx
—h =h

Mprsoal - =(f- dlvdlva'eq i) + Z
KeTy g
Y [ loanl 555 a5+ 3 [ Towul, 55,0
eeé’h eeé‘,,
/[[uh]] dlvo'eq ‘n, ds, (4.12)
eeé’h

with remainder term

/(aeq D%uy) : (D*a- “eq)dx.
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Rres

h,rem

=(f - dlvd1v0'eq i — i)+ Z
KeTy g

/[[0 uh]] (D2 u—aeq )ds
eeé‘h

(6% — D*up) : (D% — &) dx

/[[a up], (D} a-&ffm)ds

eeé‘h

/Huh]] (div (D) — d1v6'eq)n ds.

eeé‘h

Localization of the goal estimator. To quantify the distribution of
error for the approximation of goal functional in the estimator, we lo-
calize the estimator as follows. The estimator r/fsoal of (4.12) can be
expressed as the sum of local element error contributions:

n;,ezgd1 Z Nk = Z (nest,K + rljump,K + ’7(9,K)’

KeT, KeT,

where the local contributions are given by

Nest K -= /(g:q — D%u;) : 6%9dx,

=7

/yf [[a uh]]egzqnn

+ [[0 uh]]e &4

h,nt

ol divesson,) o,

e€Ek 7,

Nox * /(f —div divg;q)ﬁh dx,

J =
with the indicator function y, = 1/2 for interior edge e € £,(Q) and y, =
1 for boundary edge e € £,(0Q). These local contributions are useful to
design an adaptive algorithm.

4.2. Guaranteed a posteriori error estimate

This subsection presents a guaranteed a posteriori error estimator
for the goal error based on the equilibrated moment tensor and the
potential reconstruction. An abstract a posteriori estimator is derived.
In Section 5, we discuss two different finite element approximations for
the practical realisations of the error estimation. Here and throughout
this subsection, for given ¢° and 5-eq belonging to [L*(Q)I5;, we define

=
[ i=divdiv o-zq and fj, :=divdiv o-eq We proceed first by writing a goal
error which is a generalisation of [ [29 Theorem 4.5] to the fourth-order
biharmonic problem as:

Lemma 4.2 (Goal error equation). Let u and ii € H&(Q) respectively be the
solution of (3.1) and (3.4). Let u;, and i, € P (7},) respectively be arbitrary
piecewise polynomial approximations for u and i. Let s, be the potential
reconstructions of Definition 3.1, and E:,q be the equilibrated moment tensors

of Definition 3.2. There holds

0w = Ouy) = (f = fi, By + (€31 = D5, D*0) + OCs, = y)- (4.13)

Proof. From the primal dual equivalence relation (4.1) and Defini-
tion 3.2, we obtain

Q) =(f.a)=(f = fp. @) + (- 10)
=(f = fp. W) + (dinngZq,ﬁ) =(f = fy.0) + (E:q, D).

Since s, € H 5(9), from the weak formulation of dual problem (3.5) with
v =s,, we obtain

Ouy) = O(sp) + Oy, — s) = (D1, D) + Ouy, — 5)
=(D?%s;,, D) + O(uy, — ).

From the above two displayed equations, we have
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Ow) = Oluy) = (f = f4,8) + (@ = D5, D’B) = Olay, = 5.

This completes the proof. []

We apply the principle of the classical bounding technique of Lade-
veze et al. [27,26] related to the goal-oriented a posteriori error esti-
mate of the elasticity problem. Let
oy 1= (3294 0%, 4.14)
be the average of the moment tensor of Definition 3.2 and hessian of

the potential reconstruction of Definition 3.1 for the dual problem. We
denote the following oscillation terms by

05¢2 (£2) = [(f = Fruli=53)] and 05¢k, (F2) 1= [(F = Fouli= ).

(4.15)

Theorem 4.3 (Abstract goal-oriented a posteriori estimator). Let u and i €
HS(Q) respectively be the solution of (3.1) and (3.4). Let u;, and i, € P\ (T},)
respectively be arbitrary piecewise polynomial approximations for u and ii.
Let s, and 3, be the potential reconstructions of Definition 3.1, and c*4 and

g;q be the equilibrated moment tensors of Definition 3.2 with &} b;ing the

average moment tensor of (4.14). There holds
_ _ eq _ 2 ~m
'Q(u) 0y~ (g9~ D567 )‘

1 <~ 7o <
<1025, = & (31075, = 61 + oscquu (F-0) ) + 10/ = Fie54)

+ Qs = up)| + 0s¢y (D). (4.16)
Proof. Adding and subtracting the average moment tensor & in
(4.13), we obtain

_ _ eq _ n2 ~m
0) = 0uy) = (& - D%.57 )

=(f = )+ (@51 = D25y D2 = 531) + Qs — ). (4.17)

From the definition of (4.14), we have

. 1 I 1 _
1D%a = 6317 = JID2@ = 5,)I° + 711 D%a - °4)?

+ %(Dz(ﬁ —§,), D%i— a9

Apply the integration by parts twice to obtain
(D@ =5y), D* = ) = (i = 54, [ = f)-
The above two equations and (3.8) with & =3, imply

P 1 .. . . o oz
1D% = &3111* = 21Dy = G811 + (= 51, f = )

1, ~ -\’
< (1075, = &+ oscga(F.)) - (418)

Apply the Schwarz inequality in the right hand side of (4.17) and use
(4.18) to obtain

10) — Q) - (g;q - D256} )|
©f 1 3 ~ € F o~
<|ID%s, —gth <§||D2sh —gh“ll +oscdual(f,u)>
+1(f = Faoil) + OCsy, — up)]
€ 1 3 € 7o~
<1025, = g4 (31025, = 531 + 05640 (.0 )
+ 1 = frs3p) + QCsp — up)l + 05Cin (f, 10).

This completes the proof. []
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The above estimator (4.16) incorporates a correction (¢%4— D?s o 5';‘1‘)
=h

to the approximation Q(u,) for the goal functional Q(u). Moreover, the
average equilibrated moment tensor 6" helps to reduce the effectivity
by a factor of 1/2 on the right hand side of the estimator. The potential
reconstructions s, and 3, of Definition 3.1 are the essential part of the
above abstract estimator, and also this helps to represent the data os-
cillation without additional regularity assumptions on the given data.
The essential difference of the above estimator (4.16) from the residual
type estimator (6.3) is that it provides a guaranteed upper bound with
a correction to the approximation of the goal functional.

Some bounds for the oscillation terms of (4.16). The triangle inequal-
ity and Lemma 3.3 imply

PO ~ A A~ = 7z 2~ o
it =3plla < lla—ally + lla = Spllap <N fp = Fllo + 1D, —giqll-

This leads to a bound for the data oscillation defined in (4.15),

OSciual(f, @) = |(f = Fpo i = S < I1F = Full2llii = 54l
<7 = Falla (17 = Fall o+ 1035, = 541 .
Similarly, the second data oscillation in (4.15) can be bounded as

osc2. (f,i) <IIf = flla (4.19)

prim

(17 = 7ull o +1D%5, = 51 .

We observe that if there are no data oscillations for primal and dual
problems, then oscpim( f,i) =0 and oscgy, (f,#) = 0. Then the abstract a
posteriori estimator (4.16) yields the simplified form:

0w -0t~ (g~ 2%sn.07)

1 . ~
< 3 ID%s, = gD, = &1l + 10(s, = )l
5. Discretization of the biharmonic equation

In this section, two non-conforming finite element methods are dis-
cussed to realise the estimator found in Section 4. At first, finite element
approximation is introduced, and then some procedures are described
to obtain the potential reconstruction of Definition 3.1 and the equi-
librated moment tensor of Definition 3.2. Here and for the rest of the
article, we assume f, f € L%(Q) and k > 2.

5.1. C°IPDG method

We obtain an approximate solution by the C° interior penalty
method (CYIPDG); see [9,18,6]. Define the polynomial space for
CYIPDG by
VE = {vp e COQ) | vplg €PL(K), K €T}

Define the bilinear form ayp : Vh" X th - R by

Y [ T, {020}, o

eeE)y .

app(ugp, vrp) 1= Z

KeT,

-2

e€y

+ 2

e€eE)y

/Dzulp : DZUIP dx —
K

/ {{DZuIP,nn }}e [[anUIP]]  ds

e

= [ T, o], o
e
e

where o is large positive penalty parameter. Define the linear forms for
the primal and dual problems as

Ip(up) 1= Z

KeT, ¥

Sfopdx and Ijp(vp) 1= Z fopdx Yope th.

KeT, ¥

The C°IPDG method for (3.2) seeks up € th such that
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ap(upp, vip) =lp(vpp) Voup € th, 6.1

and C°IPDG method for the dual problem (3.5) seeks ip € th such that

ap(iip, vpp) = Ip(vpp) Vo € VE. (5.2)

The discretization error is measured by the mesh-dependent norm

2 D%l + X -

KeT, eeS,,

ol = || [0.0], 15, VveV,+Hy.

It is well known that for sufficiently large ¢ = O((k + 1)?), there exists a
positive constant # such that the following coercivity result holds (see
[9,18,61):

2 k
ap(vpp, vpp) 2 lloplly Yo €V

Also, the bilinear form ap(e,¢) is continuous, i.e., |ap(v,w)| <
Cllvllpllwllp for all v,w e th' The boundedness and coercivity of
app(s,+), and continuity of /;p and 7, lead to the existence and unique-
ness of the solution of primal and dual problems (5.1)-(5.2) by the
Lax-Milgram lemma.

The estimator of Theorem 4.1 is computed by the construction of
equilibrated moment tensors ch and ch of Definition 3.2, and poten-

tial reconstructions s, and 3, of Deﬁmtlon 3.1. Their constructions are
outlined below:

Construction of equilibrated moment tensor. We follow [6] for the
construction of an equilibrated moment tensor. Define the symmetric
piecewise polynomial tensor fields of order k — 1 with the continuous
normal-normal component L = "eTIh"e by

M=z € P 2(9)) e

sym

Iz z € [Py (K22

Sym? KeT,,
T
=h,nn

Each z S M;q is uniquely defined by the degrees of freedom (see [15,

/

T q,ds, gq,€P;_i(e),e€ LK),
—h,nn

T,k dx, qg€ [Pk_z(K)]f;fl, KerT,.

m— "

This leads to the construction of an equilibrated moment tensor:

Lemma 5.1. [6, Lemma 5.1] There exists unique equilibrated moment ten-
sor g;q € Meq such that for each K € T,

p, o {{D uyp nn}} - [[anuIP]]e €Py_i(e),e € &E(K),
(‘.‘
/E;q tggdx= / Dupp : qgdx — Z /}’e HanulP]]e‘IK,nn ds
X X ecER(K) Y,

Vg € [P (K,
where y, = 1/2 for interior edge e € £,(Q) and y, = 1 for a boundary edge
e € £,(0Q). Moreover, the equilibrated moment tensor satisfies [6, eq. (5.6)]

(div divgzq,un,) =(f.op) YopeVE (5.3)

By the above Lemma 5.1 and following [6], we have the efficiency
result:

Lemma 5.2. Let u;p be the discrete solution of (5.1) and gzq be of (5.3).
Then the following efficiency result holds:

2 2 4
gt = Dupl® $ llu—wipllfp + % s = 717

LX(K)’
KeT,

where f is any interpolation of f into the space of piecewise polynomial
functions of total degree less than equals to k.

is continuous at interelement boundaries}.
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Computation of potential reconstruction. We describe the con-
struction of a potential reconstruction for k =2 by averaging [7,14,8]:
let V, C Hg(Q) be the Hsieh—Clough-Tocher associated with the trian-
gulation 7. For higher-degree approximations k > 3, we refer [20] for
an extension of this approach, see also (5.11) below. We define the en-
richment operator Ej, : th — V), as follows: let N be any (global) degree
of freedom of ¥}, i.e., N is either the evaluation of a shape function or
its first-order derivatives at an interior vertex of 7, or the evaluation of
the normal derivative of a shape function at the midpoint of an interior
edge. For vjp € V¥ define
N(Epvp) =

2 N(vplg) (5.49)

1
Iyl KeTy

where 7y is the set of triangles in 7}, that share the degree of freedom
N and |Ty| is the number of elements of 7. The enrichment operator

satisfies the estimate:

lEpvp — vipllip <C
Ve

llo - vpllip, (5.5

inf
Hg(g

for some positive constant C. Finally, we set s, := E,up and 3, :
Eipp to compute the estimator in (4.16). Moreover, the efficiency
Ilsy, — uppllip < Cllu — upp|lp follows from (5.5) with vp = up and the

choice v =u.

Computation of data oscillation. We follow the procedure of [6,
Lemma 6.1] to compute the oscillation of data f and f. Assume the
data f and f belong to L?(Q). Let f denote the L? projection of f onto
the (discontinuous) space of piecewise polynomials of degree k —3 in
T, Then the oscillation can be bounded by

1/2
If=fallo<e| D hjlf =712, | and
KeTy,
1/2
7= Falla<e|l D mlF=Fg .|
KeT,

where the constant ¢ is independent of ~ but depends on the shape-
regularity of the mesh. In the case of k =2, the projections can be set as
f=0and f=0.

We state convergence result, see [9,7,24]:

llu = upll, < < inf lu—wvrpll, +0502(f)>
Uy

peV}
where, the norm is defined by ||qu||%1 1= ||UIP||12P +
vp s
Z Z and the data oscillation by
€&y ij=12 9x;0x; JJ 12(e)
1/2
ose)(f) 1= Z nt ) inf( \f - f”L2(I<)

KeT, JE€P—

This is used to obtain a convergence result for the goal error as follows.

For the above C°IPDG approximation, we observe that [up]], =0=
[[6Tulp]]g. This is used to simplify the goal residual estimator of (4.3) as
follows:

res

Mrgoat - = (f —divdiv aeq iirp) + Z

KeT) ¥

/ [[() uIP]]e O—I'z nn

4 dx
h

(5.6)

eEé’h

Moreover, the remainder term has the estimate:
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Theorem 5.3. Let u and i € Hg(Q) respectively be the solution of (3.2)
and (3.5). Let up € th and iip € V" respectively be the solution of (5.1)
and (5.2). Assume ||u — up|l;p and ||i — dyp||;p, respectively, converge with
orders O(h*) and O(h™). Then the remainder term R;ﬁ:em of (4.4) has the
convergence

|Rres

S k
hrem (& [ up, Bip)| < Ch o

(5.7)

where the positive constant C (independent of the mesh parameter h) de-
pends on the load function f, and the exact solutions u and ii.

Proof. Recall the remainder term R;f;em

(u, @, f;urp, fiyp) of (4.4)
R;Ie;em(u’ a’f;uIP’ﬁIP) = <f - fh,ﬁ - §h)

2

KeT, ¥

/ [0nte]], (D2, —

(aeq D’up) : (D% — g;q)dx

& qn")ds. (5.8)

eeé‘h

The first oscillation term in the above (5.8) is estimated by (4.19) as

S = fpd =3l < ”f_fh”—Z(”f_/;h”—Z"'||D2§h_g:q||)~

The identity (3.8) with & =5, yields || D% — o-eq|| < ||D?5, — o-“'ll +

\/Eoscdual( f.@) by the Schwarz inequality. This leads to an estimate for
the second term in (5.8) as

> /(aeq D?upp) : (D% —5dx < lgft - Dupp| | D% — &
KeT) ¥ =h

< llg — Duypll (11075, = 6411 + V2 osequa (7.1 )

The last term of (5.8) is bounded by the Cauchy-Schwarz inequality

/ [[0 ulp]] (D2 u—ch ) ds

eeé‘h

—-1/2 1/2 ~
< e [ouue]], Wz lhe (D2, = 333 Dl 2o

e€Ey
1/2
12,02 - =~
< lu = ugpllp ( Z 1% (D2 ii - ;q,m)”Lz(e)) .
e€Ey

The addition and subtraction of u;p with the trace inequality yield

1/2, ~2 i— &
Ym0 a-a0 IR,
e€sy
1/2 2 1 2 2
< X 2D @), + Y (D), fp =33 I

e€Ey eeEy

<@ —dpll, + ||D2u]p ~Zq”-
The above displayed estimates and the efficiency result of Lemma 5.2
for primal and dual problems yield the required estimate (5.7). []

Corollary 5.4. If the primal and dual solutions, respectively u and & belong
2 2 1 . .

to H*t*(Q)n Hj(Q) for 3 <a<l, then the remainder estimator R;fjem of

(4.4) has the convergence

| RI‘ES

h,rem

(W, L, [ up, iip)| < Ch*,

where the positive constant C (independent of the mesh parameter h) de-
pends on load function f, and exact solutions u and i.
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5.2. Discontinuous Galerkin FEMs

Let V¥ :=P,(7}). Define the bilinear form ayg : V;¥ X V¥ > R by [5]

a4 (UgG, Vag) = Z /Dzudc, : D?ugg dx

KeT, ¥

- % [ [Vl {(DPeion. ), as

e€&y s,

/ {Dugen, )}, - [Voas], ds

eeé’h
/ eac], {{div(D?ug)m, )},
eEEh

+ {{le(DzudG)'" }} IIUdG]] ) ds
+ 33 [l el

eeé‘h

P

e€Ey

/ leas], [oac]., ds
for positive penalty parameters ¢, and o¢,, and the linear forms

lac(vag) = Z

KeTy %

fugg dx and Iyg(veg) := Z Fogg dx.

KeT, %

The DG method for (3.2) seeks uyg € th such that

a46(Ugg Vag) = lag(ag) ¥ vag € VK, (5.9)
and for the dual problem (3.5) seeks i g € th such that
a4 (G Vag) = Li(vag) ¥ vag € VE. (5.10)

The discretization error will be measured by the mesh-dependent dG
norm

ol := D) ID*0IR  + 2 "l lo.0], 13,
KeT, eeé‘h
+ Z ||[[u]] lpe VveEVS+HIQ).
eeé'h

It is well known that for sufficiently large o, = O((k + 1)*) and o, =
O((k + 1)°), there exists a positive constant § such that the following
coercivity result holds [5]:

2 k
a46(yG- Vag) Z Bllvagllyg Vvag €V, -

The boundedness |ayg(v4g, Wea)| < Cllvggllaglwagllas for all vy, wag €
Vi also holds. Then, the existence and uniqueness of the solution of
the primal and the dual problems (5.9)-(5.10) follow from the Lax-
Milgram lemma. Moreover, one can extend the definition of ayg(e,*)
to V,f‘ + Hg(Q) by a lifting operator, see [19], and have the coercivity
and boundedness of the extension. An abuse of notation, we also denote
the extension of ayg(s, ) to th + Hg(Q) by itself.

Construction of equilibrated moment tensor. We follow [5] to con-
struct an equilibrated moment tensor. The equilibrated moment tensors
are constructed in the discrete space M;q defined by

M= {Ih € L@ |1 |x € PK*2KET, } NH(div2, Q),

if k>
where 7 := k k=23,
3 ifk=2.

For K €7, let fx be the L2-projection of f onto P,_,(K), and
let f, € L*(Q) be such that f,,|x = fx.K € T,. Let BDM,,(K),m € N
be denoted by the Brezzi-Douglas—Marini element of polynomial de-
gree m, see [10]. The construction of an equilibrated moment ten-
sor is obtained in two steps: first, construct an auxiliary vector field
l[/h € H(div, Q), y/ 9 € BDM,_,(K),K €T, satisfying
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Vy=f, inL*Q)
and then an equilibrated moment tensor % € M;q satisfying
=h ey

Vogtd =y in L2(Q).

=h
Define some auxiliary numerical flux functions on the edges e € &, by

a0 . [ {Vun}, e€ €@

- 0, e € £,(0Q),

AL {un},. e€&@)

- 0,c€ fh(agz),
pi={Du )}, — 7tn [Vur]; -
i = {{V -D’u,, }} + [[uh]] n,

The auxiliary vector field y/ 9 is constructed locally on each element
K €7, such that 1[/ 9 € BDM,_, (K) satisfies the following interpolation

conditions, see [5, Eq. 6.5]

/ne~£;qqu=/ne~fqu, g€ P,_i(e), e € £,(0K),

e e
/q/eq qux—/na,( wqu—/fqu q € P,_»(K),
K oK

/Z;q-curl(qu)dX=/(V~D2uh)~curl(qu)dx, q € P,_5(K),
K K

is the bubble function on element K for barycen-
curl(e) := (=0(+)/9y,d(+)/0x).

where by = AKX 2K
tric coordinates AiK,i =1,2,3 of K and

Finally, the equilibrated moment tensor 6% = (ah eq)” ) M;q, with
—n =
g(h’)e = (alhl e Ihzeq)r 1<i <2, in each element K is constructed by fix-

ing the degrees of freedom [5, Eq. 6.8]:

/Ezqne-gds=/’éne.gds, EE[PK(‘?)]Z,EGS,I@K),

e

e
/ :
=h
K oK
/ gﬁfcq -curl(bg q)dx = / 20 curl(bgq)dx, g€ Pr_y(K),1<i<2,
K X
where z® = ( Sy 0 ),i = 1,2. The above constructions lead to the
0x;0x]’ 0x;0x)

equilibrium: divdiv gzq = f},, see [5, Lemma 6.1 & Theorem 6.6]. Similar

construction for the dual problem with data f and approximation i,
leads to the equilibrated moment tensor Q;q.

Computation of potential reconstruction. Let S} bea C !_conforming
finite-element space consisting of the macro-elements of order r > 4,
see [20, Definition 3.1]. We follow the construction of the recovery
operator of [20]. For each nodal point v of the C!-conforming finite-
element space S;l‘”, define w, to be the set of K € 7, that share the
nodal point v, ie., o, = {K €7, : v € K}. Define the operator E, :
P (T — S’;J’z N HZ(Q) by the averaging:

i Zkew, Nv(vaglx) if v oQ,

N, (Epvg) = "”’
0 if ve oQ,

where N, is any nodal variable at v and v is any nodal point of S;"”.
This operator satisfies the estimate [20, Lemma 3.1] and [12, Lemma
3.5]:

(5.11)

I Epva — vagllag <€ .
D

inf lo= 046 llag-
HG(Q)

for some positive constant C.

°d ngx:—/z;q ~gdx+/§nak -qdx, g E[P,_ (K \ [Ry(K)P,
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Algorithm 1 Goal-oriented adaptive method. For newest vertex bisec-
tion method see [38].

Input: Initial mesh 7;, J > 1 the maximum number of mesh refinement levels, and real
parameter 0 € (0, 1).

Set j=0.
While (j <J) do

« SOLVE/COMPUTE:

1. Solve the primal and dual matrix systems AU, =F; and AU, =F; related to
the discrete problems.
2. Compute the potential reconstructions s; for the primal problem and 5; for
the dual problem from Definition 3.1. Compute the moment tensors ¢*? for
—J
the primal problem and % for the dual problem from Definition 3.2.
—J

+ ESTIMATE. Compute the primal estimator #;, the dual estimator 7; and the noncon-
forming estimator #; yc proposed for the goal-oriented error estimation.
« MARK. Mark sets for each of the primal and dual problems:

1. The Doérfler marking chooses a minimal subset Mf C 7; such that

DN HSEEDY

]
KeT; KeMj

; (K).

2. The Dorfler marking chooses a minimal subset Mf C 7, such that
0 Y RES Y K.
KeT; KeMm
3. The Dérfler marking chooses a minimal subset MY c 7, such that
0 Y WS Y, 1 (K.
KeT, KeM®

4. Set M; 1= M5 UM? UMJC the union of marked sets found for primal, dual
and nonconforming marking procedures above.

* REFINE. Compute the closure of M; and generate a new triangulation 7, using
newest vertex bisection method ([38]).
Setj:=j+1.

End While

6. Numerical experiments

In this section, some numerical results for the goal-oriented a pos-
teriori estimations are presented for the C°TPDG method of Section 5.1
with k =2. The approximate goal functional is defined by

Q) = 0w+ (2% = D257 ). ®6.1)

The primal and dual estimators are defined respectively by #, :=
| D%s), — O'qul and 7, :=||D*5), — aeqll This gives the following error

estimate from (4.16)

i

[0w) - Q] < N +10Gs, —up)l = ’7h goal’ (6.2)

ehA,goal =

where the higher-order data oscillation terms are not considered in the
computations. The estimators are further localized for a mesh adapta-
tion as

2 2 . 2
rlh = Z nth where Nhx = ||D Sp _gj’q”Lz(K)’
KeT),
= _ =2 S _ip2s _ &
i, = Z i, x where fj g :=||D"3, —g;qlle(K) and
KeT),
2 2 .
Mine= 2 M e Where iy x ne :=10((sy = w) i)l
KeT),

and yy is the characteristic function defined on K € 7,,. We apply Algo-
rithm 1 which follows standard adaptive procedure SOLVE, ESTIMATE,
MARK and REFINE for the numerical examples below. For the experi-
ments below, the penalty parameter o for the C’IPDG method is set to
20.
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Exact Solution

0.8
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(0, 1)

(0,0) (1,0)

Fig. 1. The exact solution (left) and the zone of interest (right). Example 6.1, goal functional (6.4).

(a)

(b)

Fig. 2. (a) Initial triangulation 7; and (b) first uniform refinement 7; of Example 6.1.

Exact Solution
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Dual Approximate Solution 10

1
8
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on i
0 o
o o1 02 03 04 05 06 07 08 09 1

Fig. 3. The exact primal solution (left), the approximate primal solution (middle), and the approximate dual solution (right). Example 6.1, goal functional (6.4).

In the following numerical tests, we also compute the estimator
found in (5.6) in the context of COIPDG method:

=| Z gzqu+z

KET) % €&y,

res .

TS (0% - Dup) : lo,ue], 5%, ds), 6.3)

where the absolute value has been taken in order to compare the es-
timator with the positive abstract goal estimator n;‘l'?gsoal. The potential
reconstructions s, and §, for the primal and dual solutions are com-
puted from the definition in (5.4). The symmetric piecewise linear
equilibrated moment tensors ¢! for the primal and 6% for the dual

—h =h
problems are constructed from Lemma 5.1. The effectivity indices are
i pab ; b
computed by the ratio ”Z,gsoal /engou for abstract goal estimator nz,gsoal

and by n;f;‘)a] /engoa for the residual type goal estimator 7,

h,goal”

6.1. Regular solution and uniform refinements

In this test, we consider an exact solution defined on a plate Q :=
0,1 x(0,1)

u(x,y) =102x10(1 = 00101 - '

with load function f defined by f := A%x in Q. We consider a goal
functional which is the mean value of the deflection around a strip
® C Q, where the right-hand side function f, the solution « and gradient
of u exhibit large changes. The exact solution has been illustrated in the
left part of Fig. 1, and the zone of interest  is highlighted by a grey
colour in the right part of Fig. 1. The peak of the solution at (%, %) is
highlighted by a bullet. The goal functional is defined by
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10°F

Error and Estimators

1 . " sl
10° 10

—— Goal Error
—O— Goal Est.
—#— Goal Res. Est.
—8— Eff. Ind. Goal

—&—Eff. Ind. Res. Goal

10° 10

Number of unknowns

Fig. 4. The convergence histories for the goal error ¢, ,,,, the abstract goal estimator

goal functional (6.4).

Exact Solution

abs

s with effectivity indices. Example 6.1,
goal

and the residual estimator ”;.%oal

Fig. 5. The exact solution (left) and the zone of interest (right). Example 6.2, goal functional (6.5).

0w = /udx— Fou),, with =22 (6.4)

||
[
where the strip w := {(x,y) € Q : 0.75 < x + y < 1.25} is illustrated in
the right side of Fig. 1 and y,, is the characteristic function defined on
. The numerical integration value of the exact goal functional reads
O(u) = 0.06044290015.

Numerical experiments are performed on the sequence of uni-
form triangulations 7,77, ..., 75 with the initial triangulation shown in
Fig. 2(a). In the uniform refinement process, each triangle is subdivided
into four similar triangles, see Fig. 2. In Fig. 3, the exact solution u in the
left, the approximate primal solution u;p in the middle, and the approx-
imate dual solution #p in the right are projected on the domain Q. The
approximation for the goal function is found to be Q) = 0.06046477792
on the mesh 75. The convergence histories for the goal error and goal
estimator of (6.2) and (6.3) with respect to the number of unknowns
are plotted in Fig. 4. We observe the quadratic convergence rates for
the goal error and goal estimators with effectivity index close to 9.4 for
the abstract goal estimator (6.2) and 2.5 for (6.3).

321

6.2. Singular solution and adaptive mesh refinement

In this test, we consider the L-shaped domain Q = (—1,1)? \ ([0, 1) x
(—1,01). Set the singular functions [23] u(r,6) := (1 — r*cos? 0)*(1 —
2 sin® 0)2r1*e g, (0) with g, ,(0) 1=

(all

x ((cos (@ 1)6) = cos ((@ -+ 1)0) )

(7=

X (cos ((a — l)w) — cos ((a+ 1)w)>,

sin (@ — Do) — — —sin ((a+ Do) )

- sin (@ = 1)6) - ! -sin ((@+1)6) )

where the angle o := 37” and the parameter « =0.5444837367 is a non-
characteristic root of sin’(aw) = a?sin?(w). It can be observed that the
solution has the regularity H>**(Q)n H, 5(9), see [23]. Since the problem

has a singularity at the origin (0,0), we consider the goal functional
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Fig. 6. The approximate primal solution u;, on 7,7,
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... T; with parameter 6 = 0.25 of Algorithm 1 for Example 6.2.

02 o0& o8 o8 1

02 o0& o8 o8 1

08 08 08 02 0

(2)

08 08 03 02 0

()

Fig. 7. The approximate dual solution i on 7,71, ... 7; with parameter 6 = 0.25 of Algorithm 1 for Example 6.2.

Yo

|l

0w = ﬁ/udx: (Fu)y> with f = 6.5)

where o := {(x,y) €Q: (x —0)? + (y — 0)> <0.25%} and g, is the charac-
teristic function defined on . The exact solution (left), the domain Q,
and the zone of interest (right) are illustrated in Fig. 5. The numerical
integration value of the exact goal functional reads O(u) ~ 0.018334438.

For the numerical experiment, we start with an initial mesh 7; (see
Fig. 8(a)). We apply the adaptive Algorithm 1 with refinement param-
eter # =0.25 and maximum refinement level J = 13 to generate the
adaptive meshes 7;,7,,...,7;5. We also compare the results with the
uniform refinement levels 7,7}, ..., 75. For the uniform refinement pro-
cess, each triangle is divided into four similar triangles to obtain the
next level mesh as described for the previous test. The initial mesh and
final adaptive mesh are shown in Fig. 8. The adaptive meshes and pro-

322

jected solutions for the primal and the dual problems are illustrated
in Figs. 6 & 7 for the first 7,,7},...,7; adaptive meshes. The conver-
gence histories for the goal error and goal estimator of (6.2) and (6.3)
with respect to the number of unknowns are plotted in Fig. 9 for the
uniform and adaptive refinements. The goal error reduces for both the
refinement procedures when the meshes are refined accordingly. More-
over, the convergence rate for adaptive refinements is higher than for
uniform refinement. The adaptive algorithm helps to achieve higher ac-
curacy for the approximation of goal functional with less number of
unknowns in the computational process. The effectivity indices for the

z’fgsoal and for the goal residual estimator 7. on the
uniform meshes appear to be close to 2 and 2.5, respectively. Whereas
effectivity indices for these estimators for adaptive refinements appear
to be close to 5 and 3, respectively.

goal estimator 7
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Fig. 9. The convergence histories for the goal error and the goal estimators with effectivity index for Example 6.2.

6.3. Some shortcomings of the residual-based estimator of Theorem 4.1
and the abstract goal estimators of Theorem 4.3

In this test, we consider the following problem setups. Let Q :=
(=1,1)x (=1,1). Consider the load function of the primal problem (3.1)
as

1 ifx>0andy>0,
f(x,y)=4-1 ifx<0andy<0,
0 elsewhere,
and the load function of the dual problem (3.4) is given by f := IIHI ,i.e.,

the (global) mean deflection Q(u) = ﬁ fQ udx. Due to the symmetry of
the domain and the load function, the value of the mean deflection of
the plate Q(u) =0.

Numerical experiments are performed on the sequence of uniform
meshes 7;,7;,...,7; with the initial triangulation shown in Fig. 10(a).
The computed solution ujp for the primal problem using C°IPDG
method is illustrated in Fig. 10(b). The value of the computed goal func-
tional on 75 is Q(up) = —1.063258 x 10713, i.e., zero up to the machine
precision. Therefore, the value of the simple goal error of (4.2) on 73 is

res

|O@) — Oup)| = 1.063258 x 10715 <« Mnga = 4501511 % 1075, (6.6)

This shows that for this kind of goal functional the residual estimator
”;:e;oal highly over estimate the error with an effectivity index close to
+00. The abstract goal estimator (4.16) provides the following error
bound:

Chgou = 1763226 X 1070 <y =1.933562x 107

h,goal

It provides a better structural error bound than the above residual-based
estimator (6.6), but it still suffers from a high effectivity index close to
109.66.

7. Conclusion

This article presents an abstract framework of guaranteed goal-
oriented a posteriori error control for the numerical approximation of
a goal functional. We considered two popular discontinuous Galerkin
finite element approximations for the biharmonic plate problem. The
error in the approximation of the goal functional is represented by an
estimator and by a remainder term that combines the dual-weighted
residual method and the equilibrated moment tensor. The estimators
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Fig. 10. (a) Initial triangulation 7; and (b) the approximate primal solution u;; on 7; for Example 6.3.

are based on the potential reconstruction and the equilibrated moment
tensor that can be applied to various other finite element approxima-
tions. The methodology described in this article for the goal-oriented a
posteriori error analysis can also be applied to nonlinear fourth-order
plate problems.
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