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Abstract
The anomalous Hall effect in time-reversal symmetry broken systems is underpinned by the
concept of Berry curvature in band theory. However, recent experiments reveal that the nonlinear
Hall effect (NHE) can be observed in non-magnetic systems without applying an external
magnetic field. The emergence of NHE under time-reversal symmetric conditions can be explained
in terms of non-vanishing Berry curvature dipole (BCD) arising from inversion symmetry
breaking. In this work, we availed realistic tight-binding models, first-principles calculations, and
symmetry analyses to explore the combined effect of transverse electric field and strain, which
leads to a giant BCD in the elemental buckled honeycomb lattices—silicene, germanene, and
stanene. The external electric field breaks the inversion symmetry of these systems, while strain
helps to attain an asymmetrical distribution of Berry curvature of a single valley. Furthermore,
the topology of the electronic wavefunction switches from the band inverted quantum spin Hall
state to normal insulating one at the gapless point. This band gap closing at the critical electric field
strength is accompanied by an enhanced Berry curvature and concomitantly a giant BCD at the
Fermi level. Our results predict the occurrence of an electrically switchable nonlinear electrical and
thermal Hall effect in a new class of elemental systems that can be experimentally verified.

1. Introduction

The appearance of Hall current is invariably
contingent on the breaking of time-reversal sym-
metry (TRS) in the linear response regime [1]. TRS
in a material can be broken by an external mag-
netic field, or suitable magnetic dopants. How-
ever, in recent experiments, nonlinear Hall effects
(NHEs) [2, 3] have been detected in non-magnetic
transition-metal dichalcogenides (TMDs) under
time-reversal-symmetric conditions [4–6]. In their
seminal work, Sodemann and Fu [7] have explored
the quantum origin of this nonlinear response by
introducing an intrinsic effect of the dipole moment
of the Berry curvature. This Berry curvature dipole
(BCD) can be observed in time-reversal invariant
systems, but its non-zero value is strictly protec-
ted by the breaking of inversion symmetry of the
crystal. Moreover, symmetry-based indicators are
also crucial in determining the strength of BCD in a
noncentrosymmetric system. For example, a uniaxial

strain reduces the symmetry of TMDs and gives rise
to enhanced BCD [8–10]. Similar enhancements are
also observed for few-layer TMDs [4–6, 11], where
the lowering of symmetry is the result of the stack-
ing of monolayers. It has further been observed that
the electric field can efficiently tune the anomal-
ous NHE in low-symmetry TMDs [12]. Moreover,
a pressure-driven topological phase transition in
three-dimensional bismuth tellurium iodine with a
strong Rashba effect is also predicted to lead to a large
BCD [13]. In principle, the BCD-induced NHE can
be considered as a second-order response to the elec-
tric field in the system’s plane. The combined effect
of this in-plane electric field and BCD is responsible
for several exotic physical properties, such as giant
magneto-optical effects [14], orbital valley magnet-
ization [10], non-linear Nernst effects [15, 16], and
thermal Hall effect [17].

In general, large Berry curvature segregation
occurs at the Brillouin zone (BZ) points, where
two bands nearly touch each other. The shape of
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the Bloch states rapidly modifies near such narrow-
gap points of the BZ. Therefore, massive tilted
Dirac cones [7, 18, 19] or Weyl cones [20–24] are
the natural choices for realizing sizeable BCD. In
these systems, the BCD and corresponding NHE
systematically provide the geometrical information
of Bloch wavefunctions even under TRS. Moreover,
Battilomo et al have revealed that the Fermi sur-
face warping triggers appreciable BCD in uniaxially
strained monolayer and bilayer graphene [25]. It is
worth mentioning that the magnitude of BCD in
the warped graphene systems is comparable with
that of the TMDs. Further, the merging of Dirac
points near the Fermi level can also lead to non-
zero BCD even in the absence of any tilt or warp-
ing term [26]. The BCD and the unconventional
NHE drive the understanding of topological phys-
ics and quantum transport phenomena to the non-
linear domain. This generalization opens up many
exciting prospects for direct applications, such as
nonlinear photocurrents [27] and terahertz radiation
detection [28].

In a pioneering work, Kane and Mele [29]
first explored the fascinating quantum spin Hall
effect (QSHE) in graphene. However, in reality, the
QSHE in graphene is not experimentally access-
ible because of the negligible strength of spin–
orbit coupling (SOC). The strength of SOC largely
determines the occurrence of helical edge states
with well-defined spin texture in topological insu-
lators. In real systems, the requirement of large
SOC is considerably fulfilled by the experimental
realization of ‘graphene counterparts’—silicene, ger-
manene, and stanene [30–33]. Silicene, germanene,
and stanene are two-dimensional (2D) Dirac mater-
ials having a buckled honeycomb geometry. The
buckling can be exploited by employing a trans-
verse electric field that can tune the electronic band
structure, particularly, the band gap [34]. Further-
more, an electric field driven topological phase
transition from QSH to a normal insulating (NI)
state is a primary characteristic of these systems
[35–37].

In this work, we discover a large and electrically
switchable NHE in these elemental buckled honey-
comb lattices silicene, germanene, and stanene. Using
tight-binding (TB) calculations, in conjunction with
symmetry arguments, we explore the tunability of
the BCD in these systems, particularly near the topo-
logical phase transitions. We demonstrate a giant
enhancement of the BCD near the electric field tuned
topological critical points and connect it to the under-
lying variations of the Berry curvature. Our findings
put forward a new class of systems to explore nonlin-
ear topological phenomena, and highlight an as-yet-
unexplored aspect of elemental buckled honeycomb
lattices. We hope that our work motivates experi-
mental as well theoretical work along this front in the
near future.

2. Methodology

The nonlinear current in response to an oscillat-
ing electric field E⃗(t) = Re{E⃗0eiωt}, with a mag-
nitude E0 and frequency ω can be expressed

as Jα = Re{J(0)α + J(2ω)
α ei2 ωt} [7]. Therefore, the

response current has been clearly decomposed into a

static part (rectified current) J(0)α = χαβγ E⃗β E⃗∗γ and a
double frequency oscillating part (second harmonic)

J(2 ω)
α = χαβγ E⃗β E⃗γ . Under time-reversal symmetric
conditions, the nonlinear conductivity tensor (χαβγ)
depends on the momentum derivative of the Berry
curvature over the occupied states as follows

χαβγ =−ϵαδγ
e3 τ

2(1+ iωτ)

ˆ
k
[d⃗k]f0

(
∂Ωδ

∂kβ

)
. (1)

Here, e, τ , ϵαδγ , f 0 and Ωδ represent the electron
charge, scattering time, Levi-Civita symbol, equilib-
rium Fermi–Dirac distribution, and Berry curvature
component along δ, respectively with α,β,γ,
δ ∈ {x,y,z}. Here the integration is performed with
respect to [d⃗k], which has the expression ddk/(2π)d

in d dimensions. BCD can be defined in reciprocal
space as Dαβ =

´
k[d⃗k]f0 (∂Ωβ/∂kα). Particularly, in

2D materials, only the out-of-plane (z) component
of Berry curvature is non-vanishing, i.e. Ωβ ≡ Ωz. In
the framework of the well-known Kubo formalism,
this Ωz(k⃗) has the following form [38]

Ωz(⃗k) = 2i
∑
i̸=j

⟨i|∂Ĥ/∂kx|j⟩⟨ j|∂Ĥ/∂ky|i⟩(
εi − εj

)2 , (2)

where εi and εj are the eigenenergies of the Hamilto-
nian Ĥ with eigenstates |i⟩ and |j⟩, respectively. The
methodology discussed above for calculating BCD
is implemented in the Wannier-Berri package [39],
which is compatible with the PythTB module [40].
It is worth mentioning that the Berry curvature of
time-reversal invariant systems is an odd function
of momentum, i.e. T †Ωz(−k⃗)T =−Ωz(⃗k), where
T is the time-reversal operator. In contrast, BCD
is even under the above situation, as it satisfies
T †Dαβ(−k⃗)T = Dαβ (⃗k). Therefore, it is clear that
BCD can manifest a significant anomalous electronic
response, NHE, even in the presence of TRS.

In order to support the TB results, first-principles
calculations are carried out based on the density
functional theory (DFT) framework as implemen-
ted in the QUANTUM ESPRESSO code [41, 42]. A kin-
etic energy cut-off of 40 Ry is considered, using
the ultrasoft pseudopotentials [43] to describe the
core electrons, including SOC interactions. We used
the Perdew–Burke–Ernzerhof form for the exchange-
correlation functional [44]. The BZ is sampled over
a uniform Γ-centered k-mesh of 8× 8× 1, and the
monolayers were modeled with a 15 Å vacuum along
the z-direction to avoid any spurious interaction
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between the periodic images. To study the topolo-
gical properties, maximally localized Wannier func-
tions were computed to derive a TB model from the
ab-initio calculations, with complete s,p orbitals as
the basis, using the WANNIER90 code [45]. Further cal-
culation of Z2 topological invariants and analysis of
the edge spectra is performed using theWannierTools
code [46].

3. Results and discussion

3.1. Model and symmetry analysis
Next, we introduce the TB model Hamiltonian for
buckled honeycomb lattices used in this work. In
spite of the similarity in their basic geometry, the
buckled honeycomb lattices primarily differ in their
bond lengths (d), hopping integrals (t), and lattice
parameters (a=

√
3d). Further, the strength of SOC

(λSO) and buckling height (l) between the two sublat-
tices also depend on the atomic number of the con-
stituent atom and vary from system to system. All
the above mentioned parameters of buckled honey-
comb lattices are compared with that of graphene in
table 1. In our study, we shall extensively use these val-
ues in table 1 to extract the system specific informa-
tion, while also using general symmetry arguments.
In the presence of buckling, the transverse electric
field (Ez) assigns different mass terms to the two sub-
lattices. This difference in mass terms, in turn, breaks
the inversion symmetry of the system. The general-
ized TB Hamiltonian [35] of buckled honeycomb lat-
tices in the presence of an external transverse electric
field can be expressed as

Ĥ=− t
∑
⟨ij⟩,σ

c†i,σcj,σ + i
λSO

3
√
3

∑
⟨⟨ij⟩⟩,σ

σζijc
†
i,σcj,σ

− l
∑
i,σ

νiEzc
†
i,σci,σ. (3)

Here ⟨ij⟩ and ⟨⟨ij⟩⟩ indicate hopping between
i and j sites up to nearest and next-nearest neigh-
bors. Further, σ represents spin degrees of freedom
and denotes either ↑ (+1), or ↓ (−1) spin. The SOC
and staggered sublattice potential, ζij (=±1) and
ν (=±1) explicitly depend on the direction (clock-
wise or anticlockwise) of hopping and type of sublat-
tice, respectively. Furthermore, equation (3) reveals
that buckled honeycomb lattices exhibit a topologic-
ally nontrivial band gap, ∆E = 2 λSO, in the absence
of an external electric field [35]. Application of the
electric field reduces this value of the band gap to zero
at a topological critical point EC = λSO/l, where the
system behaves like a semimetal. Beyond this point,
∆E again increases and gives rise to a topologically
trivial phase. The TB parameters for equation (3) vary
across different systems we considered. The paramet-
ers for silicene, germanene, and stanene are compared
with graphene in table 1. Because of the negligible

SOC and planar geometry, graphene does not show
an electrically tunable quantum spin Hall state.

To trace this topological transition, we initiate our
calculations in the presence of a non-zero electric
field. The electric field helps us to attain the essential
criterion of inversion symmetry breaking for BCD.
Regardless of the breaking of inversion symmetry in
buckled honeycomb lattices, we obtain a vanishing
value of BCD at different electric field strengths. This
can be understood from the crystallographic sym-
metry of the buckled honeycomb lattices. The buck-
ling in buckled honeycomb lattices primarily elimin-
ates the C6, σh, and three σd symmetry elements of
the planar honeycomb lattices (D6h). Consequently,
the system possesses only three C2 rotational axes
perpendicular to the principal axis of symmetry.
Further, three mirror planes of the buckled system
bisect the angle between each neighboring pair of
these C2 rotational axes. Therefore, the groups of
wavevectors in buckled honeycomb lattices are D3d

(point group of buckled honeycomb lattices) and
D3 at symmetry points Γ and K respectively. The
order of the finite group D3 is 3 × 2= 6 with 3
rotational and three reflection symmetry elements.
In particular, the rotational symmetry elements are
2π, 2π/3, and 4π/3 rotation about the C3 axis, while
the reflection symmetry elements represent the sym-
metry planes (σd) passing through the three medi-
ans of the equilateral triangle. The character tables are
presented in tables S1 and S2 of ESI (available online
at stacks.iop.org/TDM/9/035013/mmedia). The pres-
ence of two or more mirror axes in 2D buckled hon-
eycomb lattices (here, three) relates non-linear Hall
conductance to a null pseudovector field [3], so that
the BCD is zero. Fundamentally, the maximum per-
mitted symmetry in two dimensions for the occur-
rence of non-vanishing BCD is a single mirror line.
This symmetry analysis motivates us to reduce the
symmetry of buckled honeycomb lattices down to a
single mirror axis by minimal operations. We have
achieved this by applying a small uniaxial strain that
elongates one nearest neighbor bond (d′) compared
to the other two (d) as depicted in figure 1(a). As a
representative value we have chosen to d′ to be differ-
ent from d by 2%. Application of such a strain does
not break the inversion symmetry of these systems
but essentially reduces its rotational symmetry. In the
above case,C3 rotational symmetry is destroyed along
with two σd reflection symmetry planes. The strained
buckled honeycomb lattices possess only one σd sym-
metry element, which corresponds toMxmirror sym-
metry plane in our case.We expect that these strained
buckled honeycomb lattices will be suitable candid-
ates for obtaining sizable BCD in the presence of an
external transverse electric field.

The unit cell of the strained buckled honeycomb
lattices is defined by a new set of lattice vectors:
a⃗1 =

√
3dx̂ and a⃗2 =

√
3d/2 x̂+(3d/2+ 2d/100)ŷ.

As a result, the angle, θ, between lattice parameters
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Table 1. The structural and tight binding model parameters of silicene, germanene, and stanene are compared to that of graphene. Here,
a, t, λSO, and l represent the lattice parameter, hopping integral, SOC strength, and buckling heights, respectively. The values are taken
from [47].

Systems a (Å) t (eV) λSO (meV) l (Å)

Graphene 2.46 2.8 10−3 0.00
Silicene 3.86 1.6 3.9 0.23
Germanene 4.02 1.3 43.0 0.33
Stanene 4.70 1.3 100.0 0.40

Figure 1. Buckled honeycomb lattices and their topological nature. (a) The top and side view of buckled strained honeycomb
structures—silicene, germanene, and stanene. One of the three nearest bonds is stretched (up to≈2%). Therefore, the angle
between the translation vectors increases from the usual 60o. A transverse electric field (⃗E) adequately exploits the buckling and
breaks the inversion symmetry of the lattice. Different colors indicate two sub-lattices for clarity. The elongated bond destroys the
C3 rotational symmetry but protects the mirror axis (Mx) in the direction perpendicular to the stretching. (b) The BZ of the
symmetry reduced buckled honeycomb structures. The coordinates of the symmetry pointK are distinct from that of the original
systems. (c) The phase diagram of the perturbed system (≈2% stretch) resembles the pristine structure. The blue line represents
the variation of band gap with external electric field. Appreciable spin-orbit interaction gives rise to the quantum spin Hall (QSH)
phase with a finite band gap (∆E). The band gap decreases with increasing electric field, and above a critical value (|Ec|),
a topological phase transition from topological insulator to NI occurs. The bottom panel (d) Band structures at different electric
fields. Two spin bands touch the Fermi level for the electric field strength |Ec|. At this point, the system behaves as a semimetal
with gapless bands. The systems exhibit a band gap below and above the critical field. The spin degeneracy of the bands is broken
due to the presence of a finite electric field.

slightly increases than the usual 60◦ of the pristine
case. In the reciprocal space, the strain changes the
high symmetry point K (0.3333,0.6667) to an equi-
valent point K (0.3404,0.6702) of the BZ as shown
in figure 1(b). Moreover, the bandminimum ormax-
imum of strained buckled honeycomb lattices occur
at this new point K, near which the band disper-
sion is linear. Similar to the unperturbed case, the
band gap of the slightly strained buckled honey-
comb lattices is 2λSO in the absence of an electric
field. Furthermore, the applied electric field controls
the band gap as ∆E ≈ 2 l|Ez −λSO/l| as indicated
in figure 1(c). Note that the strained systems are
semimetallic (∆E is zero) at a critical electric field
EC ≈ λSO/l. The low-energy effective Hamiltonian
Ĥeff around K can be written as follows

Ĥeff ≈

[
µ+ h11 vxkx + ivyky

vxkx − ivyky µ− h11

]
, (4)

where vx = vy = vF is the Fermi velocity. The matrix
elements h11 andµ are related to the Pauli spinmatrix
σz by the relations h11 =−λSOσz and µ= lEzσz. The
three-dimensional band structures obtained using
Ĥeff aroundK are illustrated in figure 1(d). As expec-
ted, the band structures of strained buckled honey-
comb lattices exhibit band opening on both sides
of the critical field EC similar to the pristine case
(see also, figure S1 of ESI).

The DFT band structures for all the three strained
systems, given in figure 2(a), also indicate that
the strained buckled honeycomb lattices invariably
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Figure 2. The electronic properties obtained by DFT methods. (a) The band structures of 2% strained buckled honeycomb
lattices exhibit a band splitting atK point. (b) Wannier charge centers for strained silicene demonstrate the nontrivial Z2 index of
the system. (c) The protected edge states have been calculated in the nontrivial topological region of the phase space.

exhibit a band gap at the K point. Further, the non-
trivial topological nature of the band gap has been
confirmed by the Wannier charge centers (WCCs)
plots (Z2 = 1) and symmetry protected edge states
given in figures 2(b) and (c), respectively. These res-
ults are in excellent agreement with our TB model
findings.

3.2. Berry curvature
We then calculated the Berry curvature using
equation (2), to understand the topological aspects
of the above-mentioned gapped states of our strained
buckled honeycomb lattices. It has been observed
that the sign of Berry curvature of two spin states
near the Fermi level, i.e. conduction band (CB) and
valence band (VB) flips when electric field strength
crosses the critical value EC [12]. A clear example of
this flipping of Berry curvature for strained stanene
with EC ≈ 0.2499 V Å−1 is shown in figure 3. It
is evident from figures 3(a) and (b) that the Berry

curvature distribution of the CB and VB are distinct
for the electric field strength 0.15 and 0.35 V Å−1.
In particular, the Berry curvature of the VB (CB) is
negative (positive) under 0.15 V Å−1 electric field,
while the same is positive (negative) for the field
strength 0.35 V Å−1. In a similar vein, we have also
observed the Berry curvature exchange between the
VB and CB for strained silicene (EC ≈ 0.0170 V Å−1)
and strained germanene (EC ≈ 0.1303 V Å−1). Note
that the Berry curvature of all the systems tends to
diverge while reaching the critical point from both
sides. All the results mentioned above are certainly
the signatures of a topological phase transition of the
buckled buckled honeycomb lattices.

To confirm the presence of distinct topological
phases in strained buckled honeycomb lattices, theZ2

invariant has been evaluated from theWCCs [48, 49].
Figure 4(a) indicates that a straight line parallel to ky
intersects WCC an odd number of times (Z2 = 1) in
half of the BZ of strained stanene under 0.15 V Å−1
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Figure 3. Berry curvature and electrical field. The Berry
curvatures of the four bands nearK point are shown for
stanene under (a) 0.15 V Å−1 (non-trivial phase) and
(b) 0.35 V Å−1 (trivial phase) electric field strength.
The spin degeneracy of the bands is lifted under the electric
field. A clear flipping of the Berry curvature of two bands
indicates the topological phase transition. The color scale is
shown on the right.

electric field. On the other hand, the same has an
even number of intersections (Z2 = 0) for the case
of 0.35 V Å−1 electric field (figure 4(b)). The Z2

invariant establishes that the external electric field
drives the strained stanene from a non-trivial topo-
logical state to a trivial one. Similar results have also
been observed for strained silicene and germanene
structures. Therefore, the electric field dependent
topological phase transition in BHLs is robust to this
applied strain. On that account, the required criteria
for tracing the topological phase transition in BHLs
by BCD are entirely fulfilled.

3.3. Berry curvature dipole
This rapid change with electric field in sign and
magnitude of Berry curvature in momentum space
strongly suggests the possibility of large and tunable
BCD in strained buckled honeycomb lattices.We next
explore this aspect in these systems by calculating the
BCD in the presence of an external electric field. As
we noted, the strained buckled honeycomb lattices
possess only one mirror symmetry Mx. In the pres-
ence ofMx symmetry, kx and ky transform as odd and
even parameters, respectively.Ωz is the only non-zero
component of Berry curvature in these 2D systems,
which is odd in momentum. The above observations
immediately show that the gradient of Ωz along kx,
or, dxz = ∂Ωz/∂kx will be the only even term. In other

Figure 4.Wannier charge centers. The Wannier charge
centers (WCCs) are plotted for stanene under (a)
0.15 V Å−1 (non-trivial phase) and (b) 0.35 V Å−1 (trivial
phase) electric field strengths. In the first case, a single line
parallel to ky crosses an odd number of charge centers in
the half of the BZ, giving rise to odd Z2 invariant. This odd
Z2 confirms the non-trivial topological state of the
material. (b) In the second case, due to an even number of
crossing points, the WCC reveals that the Z2 invariant is
now even, and the phase is trivial.

words, the momentum integrated dxz, i.e. Dxz will be
the only non-zero BCD tensor component in strained
buckled honeycomb lattices. We find that all these
strained buckled honeycomb lattices exhibit a sub-
stantial BCD in the presence of electric field induced
inversion symmetry breaking. Moreover, we have dis-
covered a generic feature of Dxz in these systems—
the contribution of Dxz is enormous near the Fermi
level for all the strained buckled honeycomb lattices
as shown in figure 5(a). This giant BCD value can
be well-explained by the high concentration of Berry
curvature near the Fermi level. Furthermore, the sign
of BCD is found to be reversed when the direction
of electric field, Ez, is flipped. A Fermi smearing of
40 K is considered for quantitative discussions. The
band gap of these systems gradually decreases to zero
at Ec and then again increases linearly. This band gap
variation results in a maximum BCD response near
the topological transition point, as we found. In par-
ticular, the maximum BCD of strained germanene
at the Fermi level is Dxz0 = 239.35 Å, which is lar-
ger than that of silicene (Dxz0 = 217.16 Å). In con-
trast, the maximum BCD of stanene Dxz0 = 179.73 Å
does not follow the above trend of with increasing
SOC. Similar results have been reported for Weyl

6
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Figure 5. BCD and its variation with electric field. (a) The
variation of BCD with the energy exhibits a peak near the
Fermi level for all the systems. Here, BCD for the silicene
under 0.0170 V Å−1 electric field, germanene under
0.1303 V Å−1 electric field, and stanene under
0.2499 V Å−1 electric field are given as an example. Only
the Dxz component of the BCD tensor is non-zero from
symmetry-based indicators. (b) The variation of BCD at
the Fermi level (Dxz0), with the electric field for silicene,
germanene, and stanene, shows a peak around the
corresponding topological critical point. The sign of BCD
also changes on either side of the topological transition.

semimetals TaAs, TaP, NbAs, and NbP [50]. In com-
parison, the maximum value of BCD for other 2D
materials, such as strained monolayer graphene [25],
bilayer graphene [25], WTe2 [12], and MoTe2 [12]
are approximately 0.01, 10, 60, and 80 Å, respect-
ively. Therefore, strained buckled honeycomb lattices
can provide an intriguing platform to achieve large
and tunable BCD. In particular, dual-gated, encapsu-
lated devices can be fabricated based on the strained
(∼2%) buckled honeycomb lattices with control-
lable chemical potential and transverse electric field
setup for realizing BCD at low temperature (∼100 K).
The alternating electric field applied to the device
will result in a non-linear voltage, with doubled fre-
quency, that can bemeasured using a sensitive lock-in
amplifier.

The diverging nature of BCD at topological trans-
ition point can be well understood from the follow-
ing discussion. It is evident from equation (4) that

SOC gives rise to massive Dirac cones by opening
a gap ∆E ≡∆≈ 2 l|Ez −λSO/l| in the energy spec-
tra. In the case of these strained buckled honey-
comb lattices, another term proportional ky (λky)
can be included to address the non-isotropic disper-
sion arising from the strain. The term proportional
to λ gives the anisotropic velocity, depending on the
applied strain. It is worth noting that this λ term
is responsible for the non-zero value of the BCD.
Further, two non-equivalent massive Dirac cones are
related by the time-reversal symmetry. Hence, only
the out-of-plane component of Berry curvature is
non-zero, which is segregated in these two valleys
with a different sign. Furthermore, the small external
strain is responsible for a perturbed Berry curvature
distribution and assigns different weights to it in the
BZ. We can write a low energy model Hamiltonian
for the system considering the states near the Fermi
level as

H=
(
vxkxσy − τvykyσx

)
+∆σz + τλky. (5)

Here valley index τ =±, σx and σy are Pauli spin
matrices. The Hamiltonian given above allows only
theMx crystal symmetry, where kx →−kx symmetry
is preserved. The dispersion relation obtained using
equation (5) is obtained as

ε±(kx,ky) = τλky ±
(
∆2 + v2x k

2
x + v2y k

2
y

)1/2
. (6)

Now, the Berry curvature Ωz(⃗k) can be calculated
using equation (2). For buckled honeycomb lattices
Ωz(⃗k) can be expressed as

Ωz(kx,ky) =±1

2

τvxvy∆(
∆2 + v2x k

2
x + v2y k

2
y

)3/2
. (7)

The BCD is related to the Berry curvature by
Dαβ =

´
k[d⃗k]f0 (∂Ωβ/∂kα). It is then straightfor-

ward towrite down the expression of BCDmentioned
above in terms of BCD density dαβ as follows

Dαβ =−
∑
n

ˆ
∂fn(⃗k)

∂εn(⃗k)
vαΩnβ (⃗k)d[⃗k]

=

ˆ
∂fn(⃗k)

∂εn(⃗k)
dαβd[⃗k]. (8)

In the above, fn(⃗k) is the distribution function and
the velocity vα can be obtained by ∂εn(⃗k)/∂kα. The
BCD density then has the following expression

dαβ =−
∑
n

vαΩnβ (⃗k). (9)

The partial differentiation gives the delta function
in the low energy limit, which indicates that BCD is
a Fermi surface property. We note that the band gap
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of the system is Eg = 2
(
∆2 + v2x k

2
x + v2y k

2
y

)1/2
. From

the above discussion it is evident that

lim
Eg→0

dxz =
1

2
lim
Eg→0

∑
n

vατvxvy∆(
∆2 + v2x k

2
x + v2y k

2
y

)3/2
→∞.

(10)

Therefore, we find that the BCD density predom-
inantly varies as∼1/∆2 and diverges near the topolo-
gical critical point where the band gap closes.

3.4. Nonlinear thermal Hall effect
Similar to the electrical Hall effect, the thermal Hall
current also vanishes under time reversal symmet-
ric condition in the linear response regime. How-
ever, in case of the strained honeycomb lattices the
perturbed distribution function gives rise to nonlin-
ear thermal Hall effect. The thermal Hall current,
jTa , in the nonlinear regime can be obtained using
Boltzmann equation as given below

jTa =−κabd∆bT∆dT. (11)

Here∆T represents temperature gradient and the
subscripts {a,b,d} ∈ {x,y,z} stand for the compon-
ents. The coefficient of nonlinear thermal Hall effect
is denoted by κabd. From the symmetry analysis it is
clear that the temperature gradient along a direction
normal to Mx gives rise to nonlinear thermal Hall
effect in the perpendicular direction. The intrinsic
contribution of the nonlinear thermal Hall coeffi-
cient,κBCD

abd , comes from the BCD [17] given as follows

κBCD
abd = ζT2G1

0(µ)+O[T4], (12)

where ζ = 7 τ0π
4 k4B

14 ℏ2 is a constant under the constant
relaxation time (τ 0) approximation. The chemical
potential dependent parameter G1

0(µ) = ∂G0(µ)/∂µ
is related to the BCD by

Gαβ(µ) =

ˆ
[dk]δ (ε− ε(k))Ωα(k)

∂ε(k)

∂kβ
. (13)

In presence of disorder, relaxation time τ 0 can
be written as τ−1

0 = nV2
0(µ

2 + 3∆2)/4ℏµvxvy, where,
n and V0 are the concentration and strength of dis-
order, respectively [17]. In the case of our buckled
honeycomb lattices, the yxx component of nonlinear
thermal Hall coefficient κBCD can be written as

κBCD =
7π3 k2Bλ∆vxvy(µ2 − 2∆2)

5nℏ2 V2
0 µ

4(µ2 + 3∆2)
kBT

2. (14)

We have studied the variation of the nonlinear
Hall coefficient for the strained buckled honeycomb
lattices (here, shown for stanene) with chemical
potential, for different temperatures, presented in
figure 6. We have considered representative values of
the different parameters for our buckled honeycomb

Figure 6. Nonlinear thermal Hall conductivity. The
variation of BCD induced nonlinear thermal Hall
conductivity, κBCD, with chemical potential, µ, for different
temperature values. The κBCD values are represented in the
units of 10−2k2B/ℏ Å.

systems: vx = vy = vF = at= 6.11 eV Å (velocity for
stanene given in table 1), ∆= 0.1 eV (band gap of
stanene given in table 1),λ= 0.1v, nV0 = 100 eV2 Å2.
Therefore, starting from the situation where the
Fermi level touches the bottom of CB (µ≈ 0.1 eV),
the chemical potential can be tuned using a gate
voltage. We find that for all temperatures, the non-
linear thermal Hall coefficient changes its sign and
exhibits a peak at µ> 0.1 eV for stanene. Further, the
coefficient invariably goes to zero for large value of
µ. The peak value of nonlinear thermal Hall coeffi-
cient increases with increasing temperature. In a nut-
shell, BCD can give rise to the nonlinear thermal
Hall conductivity, which varies quadratically in the
temperature difference.

We note that a stronger BCD response can be
attained by approaching the critical point with more
precision. Finally, we compare the BCD response in
the two distinct topological phases. All the strained
buckled honeycomb lattices exhibit universal beha-
vior around the topological critical point. Similar to
the observation during reversal of applied electric
field, the sign of BCD changes when going from topo-
logically non-trivial to trivial state. This is presented
in figure 5(b). This can be understood to be the result
of the exchange of Berry curvature between VB and
CB around the topological phase transition. Overall,
our results put forward a new platform to explore
large and tunable BCD in buckled honeycomb lat-
tices. This electrically switchable BCD will facilitate
the exploration of various exotic quantum mechan-
ical phenomena, such as NHE [7], chiral polaritonic
effects [51], nonlinear Nernst effect [15, 16], non-
linear thermal Hall effect [17], and orbital-Edelstein
[52] effects.

4. Conclusions

In summary, we introduced a class of elemental sys-
tems that exhibit electrically switchable giant BCD
at the Fermi level. In particular, the elemental

8
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buckled honeycomb lattices—silicene, germanene,
and stanene—exhibit an electric field-driven topo-
logical phase transition. The transverse electric field
breaks the inversion symmetry of the systems and
opens the possibility of obtaining a large BCD. How-
ever, the non-zero value of BCD is still restricted
by the point group symmetry of the crystals. There-
fore, we proposed that the symmetry of the crystals is
reduced down to a single mirror plane using appro-
priate strain. The strain essentially perturbs the distri-
bution of Berry curvature and induces asymmetry in
a valley. Consequently, a sizable BCD is obtained for
all the systems mentioned above. Moreover, a vanish-
ing band gap near the critical band gap closing point
triggers a giant BCD at the Fermi level. The value of
BCD switches when the electric field strength crosses
a critical value. This flipping can be explained in terms
of the change in sign of Berry curvature across the
critical point. Our study paves the way for exploring
field tunable electrical and thermal nonlinear effects
in a class of elemental systems.
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