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Geometric thermodynamics of strain-induced crystallization in polymers
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Going beyond the classical Gaussian approximation of Einstein’s fluctuation theory, Ruppeiner gave it a
Riemannian geometric structure with an entropic metric. This yielded a fundamental quantity, the Riemannian
curvature, which was used to extract information on the nature of interactions between molecules in fluids, ideal
gases, and other open systems. In this article, we examine the implications of this curvature in a nonequilibrium
thermodynamic system where relaxation is sufficiently slow so as not to invalidate the local equilibrium
hypothesis. The nonequilibrium system comprises a rubbery polymer undergoing strain induced crystallization.
The curvature is found to impart information on a spurious isochoric energy arising from the conformational
stretching of already crystallized segments. This unphysical component perhaps arises as the crystallized
manifold is considered Euclidean with the stretch measures defined via the Euclidean metric. The
thermodynamic state associated with curvature is the key to determine the isochoric stretch and hence the
spurious energy. We determine this stretch and propose a form for the spurious free energy that must be removed
from the total energy in order for the correct stresses to be recovered.
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I. INTRODUCTION

Contrary to the notion that thermodynamics describes only
macroscopic material behavior, it also affords information on
microstates through the fluctuation theory [1]. The Gaussian
approximation to the thermodynamic fluctuation theory yields
the probability of finding a system in a given thermodynamic
state close to equilibrium [1]. However, the Gaussian ap-
proximation holds if the volume of the system is very large
vis-á-vis fluctuations in the intensive variables. As pointed
out by [2], when such conditions are not met, there arise
issues of inconsistency and lack of covariance (i.e., coordinate
dependence). Depending on the scenario, there is thus a need
to go beyond the Gaussian approximation [1,2]. Distributions
with characteristics free of these shortcomings are shown to
satisfy a diffusion equation involving coefficients, which nec-
essarily satisfy the metric transformation rules of Riemannian
geometry. This indicates that the thermodynamic manifold
generated by the possible microstates is Riemannian.

Reference [3] presented an approach to introduce a Rie-
mannian structure to the classical fluctuation theory, thereby
nontrivially modifying it. It also highlights a new quantity: the
thermodynamic Riemannian curvature, which emerges from
the Riemannian structure of the thermodynamic manifold.
This quantity contains rich information on the underlying fluc-
tuations. Subsequently, [1,4–8] employed this geometrically
motivated thermodynamic fluctuation theory to several open
thermodynamic systems such as ideal gases, paramagnets, van
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der Waals gases, and fluids with single or multiple compo-
nents. In fluids, the curvature is strongly correlated with the
nature of interactions with a reversal in sign through critical
values.

The implications of the thermodynamic fluctuation theory
in polymers have always been of interest to mechanicians [9]
especially for semiflexible polymers. For flexible polymers
where chains can be microscopically idealized as comprising
pin-jointed freely rotating rigid links, we may specifically
adopt the affine three-chain network model by [10] which
relates the microscopic and macroscopic free energies. In
this case, the macroscopic free energy in response to the
hyperelastic deformation typically observed in such polymers
assumes a neo-Hookean form. The thermodynamic fluctuation
theory in such a case predicts a Gaussian probability distribu-
tion for the effective average macroscopic stretch. The case
is, however, not so simple for semiflexible polymers where
the constituting monomers impart bending, extensional, or
torsional stiffnesses to the links that were assumed rigid for
flexible polymers. Also constraints such as entanglements
or cross-links demand the use of nonaffine network models.
Moreover, if the macroscopic deformation induces additional
inelastic mechanisms such as plasticity, damage, or strain-
induced crystallization, additional free energy components
due to the formation of defects or appearance of inelastic
dissipation need to be considered. The total free energy is
then not only a function of the macroscopic or microscopic
stretch, but also of other variables, e.g., internal variables,
describing the particular inelastic phenomenon. The infor-
mation afforded by a fluctuation theory on the underlying
microstates should shed light on the underlying mechanics.
It would also be of interest to see what additional information
the scalar curvature described in [1,4–8] provides. If it were to
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show criticality at some particular thermodynamic state, then
the natural question is what we could say about the process
itself. This might offer insights into whether we might put
this criticality to some advantage. Finally, Ruppeiner limited
his analysis to purely equilibrium systems. The important
issue of extending this useful construct to systems under-
going nonequilibrium changes also remains unresolved at
this time.

In an attempt to partially answer some of these questions
on polymer inelasticity, we explore the implications of in-
troducing a Riemannian structure to the fluctuation theory in
line with [3] and others. Specifically, we rely on the emerging
curvature to reveal the microscale information of a thermody-
namic system describing strain induced crystallization (SIC)
in a rubber specimen. SIC is a nonequilibrium phenomenon
in which regions of a rubber sample undergo crystallization
when stretched. At the molecular level, polymer chain seg-
ments in these regions orient themselves in the direction of
locally developed tension and weak intermolecular bonds are
formed in between adjacent straightened segments, establish-
ing a relatively long range order in the region. On removal of
deformation or in the event of a reversal of the local tensile
stress, the segments fall into a state of disorder and crystal-
lization is lost.

Strain-induced crystallization is intrinsically a nonequi-
librium phenomenon, but it is still possible to exploit
Ruppeiner’s approach if the local equilibrium hypothesis
holds. We recall that this hypothesis is posited on two con-
ditions. The first one is that an RVE (the smallest volume
of material whose effective behavior is representative of the
material as a whole) is sufficiently large so that the relative
fluctuations of the extensive thermodynamic variables can be
ignored. In contrast, the second one requires the RVE to be
small enough to ensure local homogeneity of the macroscopic
(continuum) response. Since smaller spatial scales typically
have fluctuations with higher frequency, the choice of the
RVE size is intricately related to the temporal fluctuations of
quantities of relevance at the micro- and macroscales.

In this context, we note that the timescale typically asso-
ciated with the crystallization of strained polymers (rubber)
is orders larger than that for atomistic vibrations, even as
it is smaller than the timescale of structural relaxation in a
polymeric glass. References [11,12] observe that the timescale
associated with crystallization is 4 s. The total timescale in-
cludes the timescale for nucleation as well as that for the
growth of crystallites. Furthermore, [13] predicts the total
timescale in vulcanized natural crepe rubber to range from 10
to 100 s depending on the ambient temperature. According
to that work, the growth phase in crystallization is strongly
dependent on the mobility of the chains and therefore on tem-
perature and strain rate. Temperature and strain rate therefore
have a strong influence on the overall rate of crystalliza-
tion. Indeed, it is only for very low temperatures (lower than
−25 ◦C) and large strain rates that the rate of crystallization is
high, which translates to a low characteristic timescale. In the
range of temperatures considered in this article, the character-
istic timescale is orders above that for atomistic vibrations.
Also, crystallized segments constitute mesoscale structures,
which are larger than molecular dimensions and allow local
thermodynamic states to be defined. For instance, the size of

a single crystallite is of the order of 10 nm [14] and a single
RVE contains several such structures. Thus, if a process has a
timescale appropriate for the local equilibrium hypothesis and
can be described using a number of metastable equilibrium
states characterised by local, instantaneously equilibrating
state variables or internal variables, Ruppeiner’s approach
should be applicable as all axioms of equilibrium thermody-
namics remain valid (see [15–18]).

Moreover, the same local equilibrium hypothesis has been
the basis for several constitutive theories for polymers in
general and for strain-induced crystallization in particular
[19–24].

We further assume that crystallization takes place isotrop-
ically so every chain in the RVE [10] undergoing SIC and
macroscopically represented by a material point has the same
“degree of crystallization” (defined as the fraction of chain
segments already crystallized). The free energy of such a
partially crystallized specimen is derived along the lines of
[19,23,24].

We then define the thermodynamic manifold for the sys-
tem in local equilibrium, where the coordinates are given
by the state variables that fluctuate. Then the metric, the
affine connection, and the invariant scalar curvature are de-
rived. The variation in scalar curvature over the manifold
is analyzed for any critical points and the physical sig-
nificance of these points is assessed for their relevance to
the total free energy density and the strain energy den-
sity. Finally, we investigate the possible exploitation of
this kinematically relevant information to redefine the free
energy density. The critical points, as it turns out, corre-
spond to states with unphysical conformational stretches. We
infer that, by not accounting for the non-Euclidean geomet-
ric aspects imparted by crystallization, earlier constitutive
theories ([23,24]) yield stretch measures incapable of elimi-
nating components due to the already crystallized segments.
We identify these stretches and thus propose a form for
the spurious energy to be eliminated from the total free
energy.

The rest of the article is organized as follows. We provide
definitions and some background information on the Rieman-
nian thermodynamic manifold and its metric and curvature in
Sec. II. This is followed in Sec. III by the definition of the
free energy of a polymer undergoing SIC. The free energy
is then used to determine the metric and the curvature in
Sec. IV. Analytical computation of geometric quantities in
a seven- or eight-dimensional manifold is immensely com-
plicated. Hence, to simplify calculations, we consider two
cases of deformation: uniaxial tension and simple shear.
Coordinates corresponding to the components of the right
Cauchy-Green tensor may thus be expressed as functions of
fewer coordinates representing the uniaxial tensile stretch in
an incompressible or a compressible material or the mag-
nitude of shear strain in an incompressible material. This
section also describes the physical implication of curvature
through a comparison of its variation over the manifold with
those of free energy and strain energy densities. Section V
defines the spurious isochoric free energy component as a
function of the strain determined in the earlier section. The
total free energy is also redefined after removal of this spuri-
ous energy. The article is finally concluded in Sec. VI.
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II. GEOMETRY OF RIEMANNIAN THERMODYNAMIC
MANIFOLDS

The basic geometry is based on two fundamental axioms
of equilibrium thermodynamics [3].

(i) In any thermodynamic system with a fixed scale, there
exist equilibrium states which can be represented by points
on a higher-dimensional manifold which is differentiable ev-
erywhere, considering no phase transitions and critical points.
The coordinates associated with the manifold are the indepen-
dent state variables describing the equilibrium states.

(ii) On the manifold, there exists a positive definite Rie-
mannian metric g, which is determined (at any point on the
manifold) by the condition that its components in a particular
coordinate system are the second moments of fluctuations of
the thermodynamic states.

Let us consider a thermodynamic manifold with points
denoting the entropy density η of a system. Let the mani-
fold be parametrized by a set of thermodynamic states x =
(x1, x2, . . . , xn). If we choose to adopt the standard entropy
representation of a thermodynamic system in line with [25],
then x1 is the internal energy density ε of the system and the
rest of the variables are mechanical parameters expressed as
standard densities. For such a parametrization, Ref. [2] states
that a metric tensor g satisfying the requirements of covari-
ance and consistency must have its components as follows:

gi j = − 1

kB

∂2η

∂xi∂x j
. (1)

The positive definite quadratic form defining the distance
between two states on the entropic manifold is given by

(�l )2 =
n∑

i, j=0

gi j�xi�x j . (2)

For any other parametrization, the quadratic form must be
expressed in transformed coordinates, and that should accord-
ingly yield the components of the metric in the transformed
space. For instance, if we wish to transform from x =
(ε, x2, . . . , xn) to x = (T, x2, . . . , xn), where T is the absolute
temperature, then in line with [2] the line element is

(�l )2 = 1

kBT

(
∂η

∂T

)
(�T )2

+ 1

kBT

2∑
i, j=1

(
∂ fi

∂x j

)
�xi�x j . (3)

Here fi = ( ∂ψ

∂xi
)T , where ψ is the Helmholtz free energy

Using η = − ∂�
∂T and the expression for fi, the quadratic

form can be expressed as a function of the free energy [8],

(�l )2 = − 1

kBT

(
∂2�

∂T 2

)
(�T )2

+ 1

kBT

2∑
i, j=1

(
∂2�

∂xi∂x j

)
�xi�x j . (4)

This can be used to find the metric components in the new
space. If we consider a three-dimensional thermodynamic

manifold parametrized by x = (T, x1, x2), the metric assumes
the form

gi j = 1

kBT

⎡
⎢⎢⎣

− ∂2�
∂T 2 0 0

0 ∂2�
∂x1

2
∂2�

∂x1∂x2

0 ∂2�
∂x2∂x1

∂2�
∂x2

2

⎤
⎥⎥⎦. (5)

The Christoffel symbols �k
i j associated with the affine connec-

tion are given by

�k
i j = gkm 1

2

[
∂gim

∂x j
+ ∂g jm

∂xi
− ∂gi j

∂xm

]
. (6)

These are then used to calculate the Riemannian curvature
tensor R̃ whose components may be expressed as

R̃l
i jk = ∂

∂X i
�l

jk − ∂

∂X j
�l

ik + �l
im�m

jk − �l
jm�m

ik . (7)

Upon contraction, we have the symmetric Ricci tensor R̂,

R̂i j = R̃k
ik j, (8)

as well as the Ricci scalar curvature R,

R = gi j R̃k
ik j, (9)

where gi j is the inverse (or the contravariant form) of the
metric gi j .

III. FREE ENERGY OF A PARTIALLY
CRYSTALLIZED POLYMER

On a continuum level, let ϕ : X �→ x be a diffeomorphism
that maps material points X ∈ B of the reference config-
uration B ⊂ R3 to points x = ϕ(X; t) ∈ S of the current
configuration S ⊂ R3. Define the deformation gradient as
F := ∇ϕ(X; t) with Jacobian J := det F > 0. The polymer is
considered slightly compressible; therefore F is decomposed
into volumetric and isochoric parts denoted respectively by
Fvol and F̄ [23]:

F = FvolF̄, where Fvol = J1/3I and F̄ = J−1/3F. (10)

If C denotes the right Cauchy-Green tensor, its isochoric com-
ponent is given by

C̄ = J−2/3C. (11)

The total free energy density is considered as a function of C,
the ambient temperature T , and the internal variable 	, which
is a macroscopic measure of the degree of crystallinity in the
material:

� = �(C,	, T ). (12)

In particular, 	 is the ratio of the volume of crystallized
polymeric segments to the total volume of the RVE. Thus, if
NT is the total number of polymeric segments in the RVE,
the total number of crystallized segments in the RVE is 	NT .
The total free energy density may be written as the sum of
a strain energy consisting of volumetric and isochoric parts, a
crystalline free energy, and the energy due to surrounding heat
interactions:

� = �strain(C̄,	, T ) + �cr (	, T ) + �surr (T ). (13)
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FIG. 1. Free energy surfaces for an incompressible material un-
der simple shear and different temperatures T .

As noted, the strain energy �strain comprises a deviatoric com-
ponent and a volumetric component:

�strain = �vol(J ) + �dev(C̄,	, T ), (14)

where the volumetric free energy �vol is given by

�vol = 1
2 B(J − 1)2, (15)

and B is the bulk modulus. The isochoric strain energy compo-
nent is the average of the strain energy of all the chains in the
RVE. Mesocopically speaking, the chains might have different
stretches and orientations in response to the deformation C.
Ideally, a cubic network of eight chains with orientations
along the diagonals and the sides of the cube is used to com-
pute an average stretch λa, which is assigned to every chain in
the RVE. If n is the number of the equivalent chains per unit
volume of the RVE with stretch λa, the total isochoric strain
energy density �dev may be related to the strain energy � in
each equivalent chain by the following relation:

�dev(C,	, T ) = n�(λa,	, T ). (16)

The average stretch λa of the equivalent chain is given by

λa =
√

I1/3 where I1 = tr[C̄]. (17)

The strain energy � in each equivalent chain is given by

�=kBT N (1−	)

[
3

2

(
λa√

N

)2

+ 9

20

(
λa√

N

)4

+ 99

350

(
λa√

N

)6]
,

(18)

where N is the number of segments in each equivalent chain.
This particular form is derived from the entropy generated due
to segmental conformations in the chain [26]. It is important to
note that λa in the above expression is the stretch in an uncrys-
tallized chain and needs be modified to include the effects of
crystallization. If the chain is partially crystallized, only the
segments in the uncrystallized zone are free to entropically
stretch or compress in response to deformation. In accordance
with [23,24], we introduce a modified total stretch �a in a
partially crystallized equivalent chain as �a = λa/

√
N−	

1−	
. Con-

sidering the modified stretch �a and the relation in Eq. (16),
the isochoric strain energy assumes the form

�dev = kBT Nn(1 − 	)

(
3

2
�2

a + 9

20
�4

a + 99

350
�6

a

)
. (19)

Now we focus on the remaining components of the free
energy density. The crystalline free energy is directly adopted
from Refs. [23,24,27]:

�cr = −nc

(
1 − T

Tm

)
	 − nξ

[
	

	max
+ ln

(
1 − 	

	max

)]
.

(20)

The first term on the right-hand side above is the enthalpy
of fusion of crystallized segments (see [19]), where c is the
heat of fusion per unit segment and Tm is the melting point
of the segments. The second term is a penalty term that
prevents the crystallization from growing unbounded, i.e.,
beyond 	max. The remaining component, i.e., the surrounding
energy, is taken from [28]:

�surr = cV

(
T − T0 − T ln

T

T0

)
. (21)

cV is the volumetric heat capacity and T0 a reference tem-
perature. cV in rubbers may be considered temperature
independent [28–30]. Moreover since the ambient tempera-
tures used in the numerical experiments are above the glass
transition temperature of the material, such an assumption
does make sense. The total free energy density therefore as-
sumes the following form:

� = 1

2
B(J − 1)2 + kBT nN (1 − 	)

(
3

2
�2

a + 9

20
�4

a + 99

350
�6

a

)
− nc

(
1 − T

Tm

)
	 − nξ

[
	

	max
+ ln

(
1 − 	

	max

)]

+ cV

(
T − T0 − T ln

T

T0

)
. (22)

The constitutive equation for the second Piola-Kirchhoff stress is given as

S = 2
∂�

∂C
= B

2
(J − 1)JC−1 + kBT n

√
N

3λa
J−2/3(1 − 	)

(
3�a + 9

5
�3

a + 594

350
�5

a

)(
I − tr[C]C−1

3

)
. (23)

The Cauchy stress is related to S by

σ = FSFT

J
. (24)
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FIG. 2. Plots of scalar curvature R with shear γ at varying temperatures, for crystallization ratios (a) 	 = 0, (b) 	 = 0.15, (c) 	 = 0.20,
(d) 	 = 0.30, (e) 	 = 0.45, (f) 	 = 0.60, (g) 	 = 0.70.

015005-5



SANHITA DAS, ASIF RAZA, AND DEBASISH ROY PHYSICAL REVIEW E 106, 015005 (2022)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Degree of crystallinity,

-15

-10

-5

0

C
ur

va
tu

re
 S

ca
la

r,
 R

 (
kB

)

(a)

T = 250K
T = 298K
T = 350K
T = 400K

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Degree of crystallinity,

-15

-10

-5

0

C
ur

va
tu

re
 S

ca
la

r,
 R

 (
kB

)

(b)

T = 250K
T = 298K
T = 350K
T = 400K

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Degree of crystallinity,

-40

-30

-20

-10

0

C
ur

va
tu

re
 S

ca
la

r,
 R

 (
kB

)

(c)

T = 250K
T = 298K
T = 350K
T = 400K

FIG. 3. Plots of scalar curvature R with degree of crystallinity 	 at varying temperatures, for shear strains (a) γ = 0, (b) γ = 1.4,
(c) γ = 2.9.

IV. THERMODYNAMIC GEOMETRY
OF CRYSTALLIZED POLYMER

Let us consider the temporally fluctuating thermodynamic
state (C,	, T ) of the deformed, crystallized polymer. It
is important to note that the timescale associated with
the fluctuations is orders larger than that associated with
crystallization. This enables us to invoke the principle of local
equilibrium. The thermodynamic manifold is eight dimen-
sional with coordinates (C11,C12,C13,C22,C23,C33,	, T ).
The metric and curvature of the system given by
Eqs. (5) and (9) may be expressed in the above
coordinates.

An attempt to consider fluctuations in all the eight quanti-
ties faces the difficulty that the metric and curvature tensors
are prohibitively complex, both to compute and to inter-
pret. This necessitates a reduction in the dimension of
the thermodynamic phase space. Thus we analyze the sys-
tem for three specific states of deformation: simple shear,
uniaxial tension with material incompressibility. and uni-
axial tension allowing for a compressible material. The
values for the following material parameters appearing in
Eqs. (23) have been adopted from [23] for sulfur cured
natural rubber: N = 18.5, n = 8.99 × 1025 m−3, cv = 1.8 ×
103 Nm−2 K−1, T0 = 273 K, 	max = 0.78, c = 3.5409 ×
10−19 N m, and ξ = 1.11 × 10−20 N m. B = 3.576 × 107 Pa
is the value obtained considering the Poisson’s ratio to
be 0.45. The value of Tm = 245 K has been taken
from [31].

A. Simple shear deformation in a hyperelastic solid

If γ denotes the shear strain, the deformation gradient for
the case of simple shear is given by

F =
⎡
⎣1 γ 0

0 1 0
0 0 1

⎤
⎦ (25)

The only nonzero components of the right Cauchy-Green
tensor are C11 = C33 = 1, C22 = 1 + γ 2, and C12 = C21 = γ .
The reduced thermodynamic phase space thus may be rep-
resented with just two coordinates, γ and 	. The average

stretch λa as obtained from Eq. (17) is
√

3+γ 2

3 . Using these
expressions, we obtain the total free energy from Eq. (22)
as a function of γ , 	, and T . The surfaces generated by the
free energy expression for different temperatures are shown
in Fig. 1. Using the free energy, the metric and the curvature
can be determined. The metric g in each case is scaled by kB

so as to ensure an accurate inversion of matrices by the soft-
ware Mathematica [32]. The resulting curvature is therefore
expressed in kB units.

To maintain expositional brevity, we avoid writing out the
explicit expressions for these quantities.

The scalar curvature R defines a hypersurface in R4 which
is difficult to visualize and interpret. To simplify the anal-
ysis, we generate two sets of plots. The first set comprises
of plots of R vs γ at various 	’s. Each plot contains curves
generated at various ambient temperatures T . In the second
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FIG. 4. Strain energy surfaces for different temperatures T .

set, there are plots of R vs 	 for certain critical values of
γ , which are determined from the first set of plots. Tem-
perature variation is captured in this set as well. The first
set of plots are shown in Fig. 2. Curves corresponding to
	 = 0, 0.15, and 0.2 monotonically increase from an initial
curvature till they reach a steady state, whereas for 	 > 0.2
sharp negative peaks are observed breaking the monotonicity.
Even though some of these plots have multiple peaks, we can
single out a characteristic peak in each of these plots, the
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FIG. 5. Plots of σ12 with shear strain γ at varying temperatures, for crystallization ratios (a) 	 = 0, (b) 	 = 0.15, (c) 	 = 0.30,
(d) 	 = 0.45.

strain corresponding to which is independent of temperature.
The existence of such a consistent break in the monotonicity
hints at some underlying criticality and perhaps a change
of response beyond a certain thermodynamic state. Let the
critical shear strain values be denoted γcr corresponding to the
chosen 	.

Across the plots, a temperature invariant peak is observed
for all 	 values greater than 0.2. In the second set of plots
shown in Fig. 3, the curvature is plotted against 	. These plots
are generated for certain values of γ . To assess the consistency
between plots in Figs. 2 and 3, we choose some γcr as values
of γ . As expected, we observe negative peaks at certain 	

values for each γ chosen, which we denote as 	cr. The 	cr

values obtained for γ = 1.4 and γ = 2.9 are the same 	’s
at which Figs. 2(d) and 2(e) respectively were plotted. From
Fig. 3, specifically the plot corresponding to γ = 0, we obtain
	cr to be 0.23, which is nothing but 1√

N
. This confirms that,

for all 	cr < 1√
N

, γcr is always 0.
Combining our observations from Figs. 2 and 3, we con-

clude that some change in physical response occurs at states
corresponding to (	cr, γcr), and the values of these states may
be obtained graphically. We determine their values to be (0,0),
(0,0.15), (0,0.2), (1.4,0.3), (2.7,0.45), (3.9,0.6), (4.7,0.7).

Towards understanding the physical significance of the
critical states, we analyze the variation in free energy in the
neighbourhood of these states. From Eqs. (5), (6), (7), and
(9), we may infer that the only components of free energy
contributing to the curvature would be those involving a strong
coupling among the thermodynamic states. Hence it suffices
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FIG. 6. Plots of scalar curvature R with stretch � at varying temperatures, for crystallization ratios (a) 	 = 0, (b) 	 = 0.15, (c) 	 = 0.30,
(d) 	 = 0.45, (e) 	 = 0.60, (f) 	 = 0.70.

to analyze the variation of �strain across the thermodynamic
space. From Fig. 4, we observe that at (γcr,	cr), denoted by
the black circular markers, this component reduces to zero.
The total free energy, however, remains nonzero [see Fig. 1
as well as Eq. (1)] due to the other components �cr and �surr

given by Eqs. (20) and (21) respectively.
Upon analyzing the graph and the expression for �strain, all

the pairs of (γcr, 	cr) satisfy

(	cr

√
N − λacr )H

(
	cr − 1√

N

)

+ (1 − λacr )H

(
1√
N

− 	cr

)
= 0, (26)

where λacr =
√

3+γ 2
cr

3 .

Let us not limit the set {(γcr, 	cr)} to just the pairs obtained
graphically, but to any pair satisfying the condition above.
Physically, at this state, the applied shear strain γ and the
degree of crystallization 	 are such that the effective strain
from the conformational changes in the uncrystallized links
is 0 and no elastic stress is generated. Also, γcr may be
considered as the internal strain generated solely due to the
crystallized segments. A shear strain can only give rise to any
elastic conformational stress if it is greater than γcr for a given
	cr. However, for any γ < γcr, the presence of a finite strain
energy is unphysical. Here, the only components contributing
to the total free energy should be �cr and �surr. Hence the total
free energy should be reduced by a spurious conformational
strain energy generated by γ < γcr for a given 	cr.

That the critical state is a stress-free state is corroborated
by the shear stress-strain plots shown in Fig. 5.
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FIG. 7. Plots of scalar curvature R with degree of crystallinity 	 at varying temperatures, for stretch values (a) � = 1, (b) � = 2,
(c) � = 3.3.

To investigate the influence of loading condition on the
critical state, we study curvature plots in the case of uniaxial
tension on an incompressible, hyperelastic solid and under a
general strain state that involves slight compression.

B. Uniaxial tension in an incompressible hyperelastic solid

If the tensile stretch is �, the deformation gradient assumes
the form

F =
⎡
⎣� 0 0

0 �−1/2 0
0 0 �−1/2

⎤
⎦. (27)

The eight-dimensional space is reduced to a three-
dimensional manifold by the following relations among the
components of the right Cauchy-Green tensor and the tensile
stretch: � − C11 = �2, C22 = C33 = �−1, the other compo-
nents of the tensor being 0. The thermodynamic states or the
coordinates of the manifold are therefore (�, 	, T ).

The scalar curvature is plotted against � for various values
of 	 and T in Fig. 6.

Unlike the case of simple shear, we observe multiple neg-
ative peaks in each plot of Fig. 6, which shows the variation
of scalar curvature R with tensile stretch � for some chosen 	

values. Considering each plot, out of all the � values at which
the multiple peaks occur, we identify a single � at which a
peak is present for all temperatures. Thus this � is a tem-
perature independent state at which the curvature consistently

displays criticality for a given 	. This is denoted as �cr. The
same can be said about the plots in Fig. 7, which shows the
variation of scalar curvature R with 	 for selected � values,
and there are temperature independent 	’s for all the � values
considered, which we denote as 	cr.

Thus using the above plots, we can again determine pairs
of (�cr,	cr). The pairs thus graphically obtained are (1,0),
(1,0.15), (1,0.22), (2,0.3), (3.26,0.45), (4.4,0.6), (5.2,0.7). �cr

FIG. 8. Free energy surfaces for different temperatures T under
uniaxial tension in an incompressible material.
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FIG. 9. Strain energy surfaces for different temperatures T for
uniaxial tension in an incompressible hyperelastic material.

for 	 < 1
N is again 1. The critical points satisfy condition (26)

as well. Also, the strain energy component in the free energy
reduces to zero, as is evident in Figs. 8 and 9. Hence we
conclude that, even for isochoric uniaxial tension, the critical
state retains the same meaning as that in simple shear and that
the infeasibility of any state (� < �cr) for a given 	cr calls
for the consideration of a spurious conformational energy and
hence a subsequent reduction in the total free energy.
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FIG. 10. Plots of σ11 with stretch � at varying temperatures, for crystallization ratios (a) 	 = 0, (b) 	 = 0.15, (c) 	 = 0.30, (d) 	 = 0.45.

C. Nonisochoric deformation in a hyperelastic solid

For the previous cases, the volumetric component of free
energy and the associated stress were absent either due to
the applied deformation being isochoric (in simple shear) or
a combination of conditions on the material response and the
deformation (uniaxial tension in an incompressible solid). In
both of them the critical pairs could be as well identified from
the stress plots (Figs. 5 and 10) as the stress at those states
reduces to zero.

We now consider a case where the volumetric component
contributes to the total free energy and stress, and investigate
the information imparted by the scalar curvature. So, this case
corresponds to nonisochoric deformation in a compressible
solid. Let the deformation gradient be given by

F =
⎡
⎣1 + γn 0 0

0 1 0
0 0 1

⎤
⎦. (28)

The eight-dimensional space is reduced to a three-
dimensional manifold, similarly to the earlier cases, and the
components of the right Cauchy-Green tensor are related to
strain γn through C11 = (1 + γn)2, C22 = C33 = 1. The other
components of the tensor are 0. Similar to the isochoric cases,
we determine the variation of scalar curvature across the phase
space through the plots in Figs. 11 and 12. Also, we obtain
the free energy and strain energy surfaces at different temper-
atures in Figs. 13 and 14, respectively.

In the plots of Fig. 11, nonzero curvature peaks are ob-
served only in the vicinity of or at γn = 0 for all 	 values. The
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FIG. 11. Plots of scalar curvature R with stretch γn at varying temperatures, for crystallization ratios (a) 	 = 0, (b) 	 = 0.15, (c) 	 = 0.20,
(d) 	 = 0.30, (e) 	 = 0.40, (f) 	 = 0.45, (g) 	 = 0.60, (h) 	 = 0.70.
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FIG. 12. Plots of scalar curvature R with degree of crystallinity 	 at varying temperatures, for (a) γn = 0, (b) γn = 1.

strain up to which the curvature remains nonzero is dependent
on 	 and increases with it. From the plot corresponding to
γn = 0 in Fig. 12 we obtain a negative peak at 	 = 0.23.
Peaks are observed at this location irrespective of the temper-
ature. Recall that, in isochoric cases, we had obtained peaks at
the same 	 value in plots of scalar curvature vs 	 for γ = 0
and � = 1 in Figs. 3 and 7 respectively. We had inferred that
when 	 < 1√

N
, the critical values of the strain and stretch

should be γcr = 0 and �cr = 1 respectively. Invoking the same
rationale, we can conclude that the critical value of strain in
this case must be 0, i.e., γncr = 0.

But, we cannot identify the critical strain for 	 > 1√
N

from
the curvature plots in Figs. 11 and 12 alone. In order to remove
the spurious energy that evidently is present, as indicated by
the nonzero curvature and strain energy at zero strain (See
Figs. 11 and 14), we must resort to other conditions such
as those derived from the mathematical expression of �strain.
Such conditions cannot be derived graphically.

Upon examination of the expressions of �strain, �vol, and
�dev, it is evident that the spurious energy is of the same
form as �dev, as �vol is identically zero. The condition under
which �dev = 0 is same as that stated in Eq. (26). Thus, for

FIG. 13. Free energy surfaces for different temperatures T for
nonisochoric deformation.

the nonisochoric case as well, we may assume that Eq. (26)
defines the bounds on the spurious energy. Any pair of (γn,	)
which satisfies condition Eq. (26) may thus be regarded as
(γncr,	cr).

It should be noted that the uniaxial stress σ11 shown in
Fig. 15 does not impart any significant information on the
bounds. This is probably due to the dominating contribution
of the volumetric component of stress.

In both isochoric and nonisochoric deformation for a cho-
sen 	, there exists a γcr or a �cr or a γncr , such that strain in
excess of the critical value only contributes to the conforma-
tional isochoric strain energy. Having clarified the physical
significance of these critical states, we must focus on how
the spurious energy must functionally depend on the strain
measure involving γcr, �cr, or γncr . As already emphasized,
this energy is conformational and must be purely of the form
�dev to effect a nonzero strain energy at zero strains.

V. MODIFIED FREE ENERGY

For both isochoric and nonisochoric cases, based on the
arguments in the preceding sections, any strain leading to
λa < λacr contributes to the spurious energy, where λacr satis-

FIG. 14. Strain energy surfaces for different temperatures T for
nonisochoric deformation.
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FIG. 15. Plots of σ11 with stretch γn at varying temperatures, for crystallization ratios (a) 	 = 0, (b) 	 = 0.15, (c) 	 = 0.20, (d) 	 = 0.30,
(e) 	 = 0.45, (f) 	 = 0.60, (g) 	 = 0.70.
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FIG. 16. Strain energy for isochoric uniaxial tension after re-
moval of spurious component.

fies the following condition:

(	
√

N−λacr )H

(
	− 1√

N

)
+(1 − λacr )H

(
1√
N

−	

)
= 0.

(29)

The spurious energy, which is the isochoric contribution due
to λa < λacr , accordingly takes the form

�spur = kBT Nn(1 − 	)H (λacr − λa)

×
(

3

2
�2

a + 9

20
�4

a + 99

350
�6

a

)
. (30)

The final free energy density is thus given by

� = �vol + �dev − �spur + �cr + �surr. (31)

The strain energy plots in Figs. 16 and 17 depict the cor-
rected strain energy variation, where the spurious energy has
been removed. This free energy may now be used to con-

FIG. 17. Strain energy for uniaxial tension of a compressible
solid after removal of spurious component.

struct a constitutive theory for strain-induced crystallization in
elastomers where stresses due to unphysical conformational
energy are absent. Also, the energy driving the crystalliza-
tion will not lead to an exaggerated crystallization ratio. In
previous theories for strain induced crystallization such as
[23], no such physical and systematic approach has been used
to eliminate these unphysical components. The fundamental
equations in these theories do not include any provisions
for correcting the quantities, thus rendering the constitutive
theories incomplete.

VI. CONCLUSION

The classical fluctuation theory reveals significant infor-
mation on underlying chain conformations in equilibrated
polymers undergoing elastic deformation. However, in the
case of inelastic deformation where relaxation occurs slowly
enough for the hypothesis of local equilibrium to hold, the
fluctuation theory may be still used to extract microstructural
information regarding the thermodynamic system. One such
piece of information would be regarding the proliferation and
transformation of defects or incompatibilities responsible for
the nonequilibrium response of the system. Additionally, if the
fluctuation theory in consideration should be geometrically
consistent in the sense of [3], an additional quantity is at our
disposal: the Ricci curvature.

In this article we have tried to apply such a fluctuation
theory to a thermodynamic system describing strain-induced-
crystallization in elastomers. Instead of the fluctuation the-
orem, we are interested in the Riemannian curvature and
the information it has to offer. For this thermodynamic sys-
tem, the curvature imparts vital information on a spurious,
crystallization-induced strain that results in a spurious iso-
choric energy. In the absence of a suitable correction, this
energy leads to an unphysical stress and an erroneous evolu-
tion of crystallization. We determine this spurious strain from
the curvature plots for both isochoric and nonisochoric strain
states, though in the case of nonisochoric strains the graphi-
cally obtained information is not complete. We establish their
unphysicality through an examination of the free energy and
strain energy landscapes. Using this strain, we construct a
modified free energy. It is evident from our study that the
curvature does prove to be a vital quantity containing essential
information on the physical viability of the thermodynamic
states across the thermodynamic space even in nonequilibrium
processes. In the case of crystallization, the curvature points to
states with unphysical stretch components attributable to the
geometric inconsistency while defining the stretch measures,
which contributes to spurious strain energies. Thus the curva-
ture yields constraints, extraneous to the constitutive relations
of the thermodynamic forces and the evolution equations of
internal variables and temperature. These constraints then
need to be satisfied along with the balance laws plus the con-
stitutive laws. The utility of curvature however is applicable to
nonequilibrium processes where local equilibrium hypothesis
can be applied.

The large deviation principle could be a possible ap-
proach to bypass the local equilibrium hypothesis and deal
with nonequilibrium (steady-state, non-Gaussian) fluctuations
in solids far from equilibrium. In such a case, it would
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be crucial to appropriately represent the large deviation
rate function and perhaps interpret it as a nonequilibrium
counterpart of the free energy in some sense. However,
a rational basis for this interpretation should be based on
the “deterministic limit” for the generator of a Markov
process of the jump-diffusion type [33]. This might also of-
fer a probabilistic basis for coarse graining from meso- to
macroscale. Such an approach, in the context of nonequilib-

rium thermodynamics of macroscopic solid continua, is worth
investigation.

In addition to approaches involving the large deviation
principle, our future efforts would include the study of cur-
vature in other nonequilibrium phenomena. Specifically, we
would like to study the implications of such a geometrically
motivated fluctuation theory for glassy polymers undergoing
viscoplastic deformation.
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