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Abstract 
The high spread rate of SARS-CoV-2 virus has put the researchers all over the world in a demanding situation. The need of the 
hour is to develop novel learning algorithms that can effectively learn a general pattern by training with fewer genome sequences 
of coronavirus. Learning from very few training samples is necessary and important during the beginning of a disease outbreak 
when sequencing data is limited. This is because a successful detection and isolation of patients can curb the spread of the virus. 
However, this poses a huge challenge for machine learning and deep learning algorithms as they require huge amounts of training 
data to learn the pattern and distinguish from other closely related viruses. In this paper, we propose a new paradigm – Neuro-
chaos Learning (NL) for classification of coronavirus genome sequence that addresses this specific problem. NL is inspired from 
the empirical evidence of chaos and non-linearity at the level of neurons in biological neural networks. The average sensitivity, 
specificity and accuracy for NL are 0.998, 0.999 and 0.998 respectively for the multiclass classification problem (SARS-CoV-2, 
Coronaviridae, Metapneumovirus, Rhinovirus and Influenza) using leave one out crossvalidation. With just one training sample per 
class for 1000 independent random trials of training, we report an average macro F1-score > 0.99 for the classification of SARS-
CoV-2 from SARS-CoV-1 genome sequences. We compare the performance of NL with K-nearest neighbours (KNN), logistic 
regression, random forest, SVM, and naïve Bayes classifiers. We foresee promising future applications in genome classification 
using NL with novel combinations of chaotic feature engineering and other machine learning algorithms.

Keywords Neurochaos · Machine learning · SARS-CoV-2 · Genome classification · Universal approximation theorem

1 Introduction

COVID-19 is an extremely contagious disease that was first 
reported in December 2019 at Wuhan city, Hubei prov-
ince, China [1]. SARS-CoV-2 is the pathogen responsible 

for COVID-19 disease and initial genome sequence data 
confirmed that SARS-CoV-2 was a member of the Betac-
oronavirus genus and Sarbecovirus subgenus [2]. To date, 
seven coronaviruses have been identified which includes two 
Alphacoronavirus: Human coronavirus 229E (HCoV-229E), 
Human coronavirus NL63 (HCoV-NL63) and five Betacoro-
navirus: Human coronavirus OC43 (HCoV-OC43), Human 
coronavirus HKU1 (HCoV-HKU1), severe acute respiratory 
syndrome coronavirus (SARS-CoV-1), Middle East respira-
tory syndrome-related coronavirus (MERS-CoV) and severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 
The SARS-CoV-2 virus has a very high spread rate [3] and 
affected all nations. On 11 March 2020, the World Health 
Organization (WHO) announced COVID-19 as a pandemic. 
Initial investigations have found that the genome sequence 
of SARS-CoV-2 shares 79% match with SARS-CoV-1 viral 
genome and 50% match with the MERS-CoV genome [4]. 
The epidemiological dynamics of SARS-CoV-2 is very dif-
ferent from SARS-CoV and MERS-CoV despite their close 
relatedness. This indicates that there is a striking biological 
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difference between the highly infectious SARS-CoV-2 and 
other Betacoronavirus [1]. Some of the common symptoms 
found with people tested positive for SARS-CoV-2 are dry 
cough, shortness of breath and dyspnoea, myalgia, headache 
and diarrhoea [4]. An early identification of this deadly dis-
ease and isolation of patients from the rest of the popula-
tion would have facilitated effective containment of disease 
spread. For this, we would need novel computational meth-
ods which can uniquely identify the signatures of SARS-
CoV-2 virus from limited samples (available during the early 
stages of the outbreak). This turns out to be a classification 
problem, i.e. to classify whether a given nucleotide sequence 
belongs to SARS-CoV-2 or not. Such problems are ideal for 
machine learning (ML) and deep learning (DL) algorithms.

Recently, DL and ML are widely applied in genomic 
research [5]. This was enabled by the abundance of genome 
data after the success of the Human Genome Project and 
other projects like ENCODE [6], FANTOM [7] and Road-
map Epigenomics [8]. As a result, several ML/DL algo-
rithms are applied in genomics research to obtain state-
of-the-art performance. Recent research [9, 10] shows the 
effectiveness of convolutional neural networks (CNNs) to 
model the sequence specificity of protein binding. In [11], 
a three-layer CNN was used to predict the effects of non-
coding variants from genome sequence. Similar to CNN, 
recurrent neural networks (RNNs) are another popular DL 
algorithm widely used in sequence modelling. The authors 
in [12] highlight the performance of hybrid architectures 
on a transcription factor binding site classification task. 
In [13], a deep learning architecture for the classification of 
SARS-CoV-2 viral genome sequence from other coronavirus 
has been proposed. Furthermore, the DL model is used for 
specific primer design. Authors in [14] use a DL model for 
the classification of SARS-COV-2 viral genome sequence 
from co-infecting RNA sequences (Coronaviridae, Metap-
neumovirus, Rhinovirus, Influenza). In [15, 16], classical 
machine learning techniques were used for the classification 
of SARS-CoV-2 genome sequence.

However in the case of COVID-19, especially during the 
early stages of the outbreak, ML/DL algorithms have only 
less data instances to learn and make decisions. The learning 
algorithms such as DL are ideally suited when the number 
of instances in the training data set is very high. In such a 
scenario, ML/DL algorithms would most likely fail to yield 
accurate classification of the virus sequence. It is in such 
situations, we demonstrate the usefulness of our proposed 
method, namely Neurochaos Learning (NL) for classifica-
tion. As we shall demonstrate, NL yields high classification 
accuracies with very few samples of training. This could, in 
principle, be applied for future outbreaks of novel diseases.

Neurochaos Learning is motivated from the chaotic 
behaviour exhibited at the level of individual neurons in 
the brain [17, 18]. Neuronal cells exhibit a large range of 

firing patterns such as repetitive pulses (periodic), quasi-
periodicity, and chaotic bursts of action potentials [17]. 
These firing patterns are driven by the external stimuli such 
as variations in the ionic environment driven by the effects 
of neuromodulators. This variability in the firing patterns 
indicates the presence of non-linearity and chaos at the level 
of neuron, axon etc. Such conclusions were inferred using 
classical intracellular electrophysiological recordings of 
action potentials in single neurons along with the help of 
macroscopic models [17]. A detailed study that supports 
the presence of chaos in the brain at various spatiotemporal 
scales and mathematical neuronal models exhibiting chaos is 
provided in [19] and [17]. Inspired by chaotic behaviours of 
neurons, we have recently proposed the ChaosNet archi-
tecture [20], where we used chaotic 1D generalized Lüroth 
series (GLS) neurons for extracting nonlinear features 
from the data for solving classification tasks. Furthermore, 
in [21], we augment the nonlinear features extracted from a 
single layer of GLS neurons with a support vector machine 
classifier (SVM) trained using a linear kernel (ChaosNet 
+ SVM). The efficacy of ChaosNet + SVM in low train-
ing sample regime is highlighted in [21] for Iris dataset and 
synthetically generated data. In this work, we propose an 
overarching architecture titled ‘Neurochaos Learning’ (NL) 
that generalizes our previous research (ChaosNet+ [20], 
+ChaosNet++SVM [21]). We qualitatively contrast NL with 
ANN and further provide mathematical justification of the 
power of chaos that is employed in NL (at the level of indi-
vidual neurons) in approximating a large class of discrete 
nonlinear functions (real-valued with finite support) — by 
proving a version of the universal approximation theorem. 
We also highlight the advantages of chaotic feature engineer-
ing which is implicit in NL architecture for the classifica-
tion of coronavirus genome sequences in the high training 
sample as well as low training sample regimes.

The sections in this paper are arranged as follows: Sec-
tion 2 explains the proposed NL architecture, Section 3 
provides the information of dataset used in this research, 
and Section 4 highlights the experiments conducted on real 
world data. Section 5 deals with the limitations of the pro-
posed method and Section 6 provides the scope for future 
work and the closing remarks.

2  Methodology

2.1  GLS neuron

NL consists of an input layer of chaotic neurons. The cha-
otic neurons considered are the 1D skew tent map. The 
mathematical equation of skew tent map is provided in 
Eq. 1. A detailed study of the tent map and its various 
properties can be found in [22].

2246 Medical & Biological Engineering & Computing (2022) 60:2245–2255



1 3

2.1.1  Tent map

CSkew−Tent ∶ [0, 1) → [0, 1) is defined as:

where x ∈ [0, 1) and b is the skew parameter ( 0 < b < 1 ). 
Figure 1a depicts the first return map of 1D skew tent map. 
Skew tent map has the following properties: 

1. Skew tent map has a positive Lyapunov exponent 
( � ) suggesting its chaotic nature. A skew tent map 
with a skew parameter ‘b’ has a Lyapunov exponent 
�(b) = −b ln (b) − (1 − b) ln (1 − b) [23].

2. Skew tent map has an invariant density function (the 
uniform distribution). This is exploited in chaotic cryp-
tography [24].

3. Tent map has been widely applied in data compression, 
coding and cryptography [24, 25].

2.2  A neurochaos architecture for learning (NL)

Neurochaos Learning (or NL) architecture consists of a 
multi-layer neural network built of chaotic neurons. The 
proposed NL architecture is provided in Fig.  1b. The 

(1)CSkew−Tent(x) =

{
x

b
, 0 ≤ x < b,

(1−x)

(1−b)
, b ≤ x < 1,

architecture consists of a single layer of GLS neurons 
( C1,C2,…Cn ). All GLS neurons in the input layer have an 
initial neural activity of q units. The skewness of GLS maps 
is controlled by the discrimination threshold (b). By varying 
b, the chaotic neurons can exhibit weak and strong chaos (as 
determined by the value of the Lyapunov exponent). The 
stimulus or input data to the proposed architecture are rep-
resented as x1, x2,… , xn in Fig. 1b. The stimulus initiates 
the firing in chaotic neurons. The chaotic firing trajectory 
of the k-th GLS neuron, represented as Ak(t) , halts when the 
trajectory reaches the � neighbourhood Ik = (xk − �, xk + �) 
of the stimulus xk . The time taken ( Nk ) for Ak(t) to reach the 
� neighbourhood of the stimulus ( xk ) is defined as the Firing 
Time [26]. The chaotic firing is guaranteed to stop because 
of the topological transitivity [20, 27] property of chaos.

Thus, for a single stimulus say xk , the GLS neuron 
( Ck ) outputs a chaotic trajectory. From this chaotic trajec-
tory, we extract the following features, which we term as 
‘ChaosFEX’: 

1. Firing time: Time taken for the chaotic trajectory to rec-
ognize the stimulus [21].

2. Firing rate: Fraction of time the chaotic trajectory is 
above the discrimination threshold so as to recognize 
the stimulus [21].

3. Energy: For the chaotic trajectory x(t) with firing time 
n, energy is defined as E =

∑n

t=1
�x(t)�2.

Fig. 1  a First return map of the GLS neuron (skew tent map) used 
in this work  [20]. b Neurochaos Learning (NL) architecture: 
ChaosFEX+SVM is an instance of NL architecture. ChaosFEX 
extracts features from the input layer of GLS neurons ( C

1
,C

2
,…C

n
 ). 

The stimulus or (normalized) input data to the architecture are repre-
sented as x

1
, x

2
,… x

n
 . The chaotic neuron, say C

k
 , starts firing when it 

encounters the corresponding stimulus x
k
 . The trajectory of k-th cha-

otic neuron C
k
 is represented as A

k
(t) . The trajectory continues until 

it reaches the � neighbourhood of the stimulus. From the chaotic tra-
jectory A

k
(t) , we extract firing time, firing rate, energy of the chaotic 

trajectory, and entropy of the symbolic sequence of chaotic trajectory. 
These extracted features (ChaosFEX) are passed to SVM classifier 
with linear kernel
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4. Entropy: For the chaotic trajectory x(t), we first compute 
the binary symbolic sequence S(t) as follows: 

 where i = 1 to n (firing time). We then compute Shan-
non entropy of S(t) as follows H(S) = −

∑2

i=1
pi log2(pi) 

bits, where p1 and p2 refer to the probabilities of the 
symbols 0 and 1 respectively.

These extracted features are passed to SVM classifier 
with linear kernel. These extracted ChaosFEX features 
can be freely combined with any of the available classi-
fiers or regression models from machine learning litera-
ture. Thus, the proposed Neurochaos Learning architec-
ture allows for a great deal of flexibility to be combined 
with traditional ML algorithms. A comparison of the 
properties of NL with ANNs is provided in Table  1. 
The salient properties of NL are provided in Section S1 
(Online Resource 1).

2.3  Universal approximation theorem for NL

Let f(n) be a discrete time real valued function having a finite 
support L. The NL architecture consisting of a single layer 
with L chaotic neurons can approximate1 f(n). Assuming that 
we use a chaotic 1D map Ci for the i-th neuron in NL, and 
given any desired error 𝜖 > 0 , we have:

(2)S(ti) =

{
0, x(ti) < b,

1, b ≤ x(ti) < 1,
where q is the initial neural activity for all the neurons in 
NL, Ni is the firing time of the i-th chaotic neuron and Ci is 
the 1D chaotic map with the chaotic trajectory starting from 
q a dense orbit.

Proof (by construction). Design an NL with one layer with 
exactly L chaotic neurons. Let each of the neurons be initial-
ized with q and let the input to this NL be the L real-valued 
samples of the function f(n) which act as stimuli for the cor-
responding L chaotic neurons.

Now, for a given 𝜖 > 0 , we can always construct a neigh-
bourhood of stimulus Ik = (f (k) − �, f (k) + �) , 0 < 𝜂 <

𝜖

2L
 

such that CNk

k
(q) ∈ Ik for the k-th chaotic neuron of NL. This 

is always possible because of the topological transitivity 
property of chaos defined in Section 2 and since the chaotic 
trajectory starting from initial value q is dense. The topo-
logical transitivity property guarantees the chaotic firing to 
reach the � neighbourhood ( Ik ) of stimulus in finite number 
of iterations ( Nk ) for the dense orbit starting from q. For any 
given � , the following is true:

Note that 𝜂 <
𝜖

2L
 since CNi

i
(q) ∈ (f (i) − �, f (i) + �) because 

Ni is the firing time for Ci and the orbit is dense. Hence, the 
set of chaotic neurons {Ci} that constitute the input layer 
of NL can always approximate the function f(n) with an � 

(3)d(f ,C) =

L∑

i=1

|f (i) − C
Ni

i
(q)| < 𝜖,

d(f ,C) =

L∑

i=1

d(f (i),C
Ni

i
) =

L∑

i=1

|f (i) − C
Ni

i
(q)|

<

L∑

i=1

2𝜂 < L(2𝜂) < L
(
2
𝜖

2L

)
= 𝜖.

Table 1  NL vs. ANN — a comparison of properties

Properties ANN NL Remarks

Neuron Linear followed by a Non-linear and chaotic Chaos allows for a rich set
nonlinear activation of properties to be exploited.

Output of a Scalar Variable length vector Neurons in NL perform non-linear
neuron computations as compared with simple

weighted linear addition in ANN.
Universal Satisfies UAT Satisfies UAT NL satisfies UAT with an exact
approximation specification on the number of neurons
theorem needed for approximating a real-valued
(UAT) discrete-time function with finite support.
Activation Yes No The nonlinearity in ANN is provided by the
functions activation function which is not needed for NL.
Backpropogation Yes No Not currently used. NL could employ

backpropagation in the future if needed.

1 For quantifying this approximation, we use the sum of absolute dif-
ferences as the distance metric. In other words, for any two real-val-
ued vectors V ,W ∈ ℝ

m , d(V ,W) =
∑m

i=1
�V

i
−W

i
�.
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error bound. This theorem holds true for NL constructed 
with chaotic neurons that satisfies the topological transitiv-
ity property and has a dense orbit. Furthermore, having a 
single dense orbit implies countably infinite number of dense 
orbits.

3  Dataset details

This section provides a detailed description of real world 
datasets used to evaluate the efficacy of NL (ChaosFEX+

SVM). The real-world dataset consists of genome sequences 
of SARS-CoV-2 and other coronaviruses.

3.1  Multiclass classification

The classification of SARS-CoV-2 and other co-infecting 
RNA viruses is a challenging problem. We used the data 
provided by the authors of the paper titled ‘PACIFIC: a 
lightweight deep-learning classifier of SARS-CoV-2 and 
co-infecting RNA viruses’ [14]. The dataset consists of 
genome sequences corresponding to SARS-CoV-2 (class-0), 
Coronaviridae (class-1), Metapneumovirus (class-2), Rhino-
virus (class-3) and Influenza (class-4). The dataset details 
are provided in Table 2. The authors [14] have made the 
data publicly available.2 A five class classification problem 
is formulated with this dataset. The data preprocessing is 
provided in Section S2 (Online Resource 1).

3.2  SARS‑CoV‑2 vs. SARS‑CoV‑1

For the binary classification of SARS-CoV-2 genomes from 
SARS-CoV-1 genomes, a total of 4498 and 101 genome 
sequences respectively were obtained from multiple data 
repositories until early April 2020. Three thousand nine 
hundred thirty SARS-CoV-2 sequences were obtained 
from GISAID, 407 from GenBank, and the remaining 
from Genome Warehouse, CNGBdb and NMDC databases 
through the China National Center for Bioinformation [28]. 

All SARS-CoV-1 sequences were obtained from GenBank. 
All sequences were chosen with the filters Nucleotide 
Completeness = ‘Complete’ AND host = ‘homo sapiens’. 
Accession IDs for all sequences as well as acknowledgement 
are provided in the GitHub repository.3 The data instance per 
class is provided in Table 3.

4  Experiments and results

This section deals with the set of experiments evaluated on 
coronavirus genome sequences. We have used Python 3, Lin-
earSVC [29], Numba [30], Numpy [31] and Scikit-learn [32] 
package for the implementation of ChaosFEX+SVM. We 
compare the performance of NL (ChaosFEX+SVM) with 
standalone SVM (RBF kernel), and standalone random for-
est. This learning paradigm with limited samples is referred 
as few shot learning. Few shot learning aims to develop ML 
models which generalizes from a small set of labeled train-
ing data. There has been previous research in few shot learn-
ing [33, 34].

4.1  Hyperparameter tuning

The hyperparameters used for ChaosFEX+SVM, standalone 
SVM (RBF kernel) and random forest for the multiclass 
classification and binary class classification are provided 
below: 

1. ChaosFEX+SVM: For multiclass classification, the 
hyperparameters used are q = 0.34 , b = 0.499 , and 
� = 0.18 . For binary classification, the hyperparameters 
used are q = 0.34 , b = 0.499 , and � = 0.183

2. SVM (RBF kernel): For multiclass classification, the 
hyperparameter used is C = 12.0 . For binary classifica-
tion, the hyperparameter used is C = 0.3

3. Random forest: For multiclass classification, the 
hyperparameters used are n_estimators = 100 and 
max_depth = 6 . For binary classification, the hyperpa-
rameters used are n_estimators = 10 and max_depth = 1.

Table 2  Multiclass classification: total number of data instances per 
class [14]

Data Genome No. of 
genome 
assemblies

Class-0 SARS-CoV-2 87
Class-1 Coronaviridae 11
Class-2 Metapneumovirus 5
Class-3 Rhinovirus 130
Class-4 Influenza 128

Table 3  SARS-CoV-2 vs. SARS-CoV-1: total number of data 
instances per class

Data Genome No. of sequences

Class-0 SARS-CoV-2 4498
Class-1 SARS-CoV-1 101

2 https:// cloud stor. aarnet. edu. au/ plus/s/ sRLwF 3IJQ1 2pNGQ
3 https:// github. com/ Harik rishn anNB/ genome- class ifica tion- nl/ tree/ 
main/ seque nce_ usage_ ackno wledg ements
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4.2  Performance metrics

From the multilabel and binary confusion matrix, the fol-
lowing metrics were derived for deeper understanding of the 
performance of the model. We follow the methodology for 
model evaluation as mentioned in [35]. 

1. Sensitivity (SE) = TP

TP+FN

2. Specificity (SP) = TN

TN+FP

3. Accuracy (ACC) = TP+TN

TP+TN+FP+FN

4. Positive predictive value (PPV) = TP

TP+FP

5. Negative predictive value (NPV) = TN

TN+FN

6. False positive rate (FPR) = FP

FP+TN

7. False discovery rate (FDR) = FP

FP+TP

Fig. 2  Multiclass classifica-
tion — multilabel confusion 
matrix. a Confusion matrix 
corresponding to LOOCV 
using ChaosFEX+SVM (linear 
kernel). b Confusion matrix 
corresponding to LOOCV using 
standalone random forest (RF). 
c Confusion matrix correspond-
ing to LOOCV using standalone 
SVM (RBF kernel)

Table 4  Performance of ChaosFEX+SVM for the multiclass classifi-
cation problem using LOOCV

Classification Class-0 Class-1 Class-2 Class-3 Class-4
measures

SE 1.0 1.0 1.0 1.0 0.992
SP 1.0 1.0 1.0 0.996 1.0
ACC 1.0 1.0 1.0 0.997 0.997
PPV 1.0 1.0 1.0 0.992 1.0
NPV 1.0 1.0 1.0 1.0 0.996
FPR 0 0 0 0.004 0
FDR 0 0 0 0.008 0
FNR 0 0 0 0 0.008
F1-score 1.0 1.0 1.0 0.996 0.996

Table 5  Performance of random forest for the multiclass classifica-
tion problem using LOOCV

Classification Class-0 Class-1 Class-2 Class-3 Class-4
measures

SE 1.0 1.0 0.8 1.0 0.992
SP 1.0 0.994 1.0 1.0 1.0
ACC 1.0 0.994 0.997 1.0 0.997
PPV 1.0 0.846 1.0 1.0 1.0
NPV 1.0 1.0 0.997 1.0 0.996
FPR 0 0.006 0 0 0
FDR 0 0.154 0 0 0
FNR 0 0 0.2 0 0.008
F1-score 1.0 0.917 0.889 1.0 0.996

2250 Medical & Biological Engineering & Computing (2022) 60:2245–2255



1 3

8. False negative rate (FNR) = FN

FN+TP

9. F1-score = 2⋅PPV⋅SE
PPV+SE

TP, TN, FP, FN refers to true positives, true negatives, false 
positives and false negatives respectively.

4.3  Multiclass classification

The dataset provided in Table 2 is highly imbalanced. So we 
carried out leave one out crossvalidation (LOOCV). From 
the multilabel confusion matrix, the following measures 
were used to evaluate the performance: SE, SP, ACC , PPV, 
NPV, FPR, FDR, FNR, and F1-score. The maximum and 
minimum sequence lengths we considered are 8000 and 6000 
respectively. All sequences of length less than 6000 were not 
considered for the study (Table 2). Both ChaosFEX+SVM 
and standalone SVM (linear kernel) have only one misclas-
sification for LOOCV. In the case of ChaosFEX+SVM, a 

single genome sequence belonging to Influenza was mis-
classified as Rhinovirus. Whereas in the case of standalone 
SVM (RBF kernel), a single genome sequence belonging to 
Influenza was misclassifed to Coronaviridae family. In the 
case of random forest, there are two misclassifications. This 
is depicted in the multilabel confusion matrix provided in 
Fig. 2a (ChaosFEX+SVM), c (standalone SVM (RBF ker-
nel)), and b (random forest). The class-wise performance 
for ChaosFEX+SVM, random forest and standalone SVM 
are provided in Tables 4, 5 and 6 respectively. The average 
SE, SP and ACC  for ChaosFEX+SVM are 0.998, 0.999, and 
0.998 respectively. In the case of random forest, the average 
SE, SP and ACC  are 0.958, 0.998 and 0.997 respectively. 
The average SE, SP and ACC  using standalone SVM with 
RBF kernel are the same as ChaosFEX+SVM. The RBF 
kernel in standalone SVM maps the input data to a high 
dimensional space where the data is nearly linearly sepa-
rable as indicated by the performance metrics. The similar 
performance of NL as compared to standalone SVM (RBF 
kernel) indicates the separability of input data in the non-
linear chaotic feature space. A perfect classification can be 
observed for SARS-CoV-2 (class-0), Coronaviridae (class-1) 
and Metapneumovirus (class-2) using NL (refer Table 4). In 
the case of standalone SVM (RBF kernel), a perfect classi-
fication can be seen for SARS-CoV-2 (class-0), Metapneu-
movirus (class-2) and Rhinovirus (class-3) (refer Table 6).

4.4  SARS‑CoV‑2 vs. SARS‑CoV‑1

For the binary classification problem (Table 3), the num-
ber of genome sequences of SARS-CoV-2 is higher when 
compared to the genome sequence of SARS-CoV-1. The 
maximum and minimum sequence lengths we considered 
are 8000 and 6000 respectively. All sequences of length less 

Table 6  Performance of SVM for the multiclass classification prob-
lem using LOOCV

Classification Class-0 Class-1 Class-2 Class-3 Class-4
measures

SE 1.0 1.0 1.0 1.0 0.992
SP 1.0 0.997 1.0 1.0 1.0
ACC 1.0 0.997 1.0 1.0 0.997
PPV 1.0 0.917 1.0 1.0 1.0
NPV 1.0 1.0 1.0 1.0 0.996
FPR 0 0.003 0 0 0
FDR 0 0.083 0 0 0
FNR 0 0 0 0 0.008
F1-score 1.0 0.957 1.0 1.0 0.996

Table 7  Performance of 
ChaosFEX+SVM for the binary 
class classification problem 
using LOOCV

In the case of random forest, the first three significant values of the performance metric are used. This is 
done in order to avoid misinterpretation since several metric values close to 1.0 would be rounded to 1.0

ChaosFEX+SVM Random forest SVM

Classification Class-0 Class-1 Class-0 Class-1 Class-0 Class-1

measures

SE 1.0 1.0 1.0 0.990 1.0 1.0
SP 1.0 1.0 0.990 1.0 1.0 1.0
ACC 1.0 1.0 0.999 0.999 1.0 1.0
PPV 1.0 1.0 0.999 1.0 1.0 1.0
NPV 1.0 1.0 1.0 0.999 1.0 1.0
FPR 0 0 0.009 0 0 0
FDR 0 0 0.0002 0 0 0
FNR 0 0 0 0.009 0 0
F1-score 1.0 1.0 0.999 0.995 1.0 1.0
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than 6000 were not considered for the study. The class-wise 
performance of ChaosFEX+SVM, random forest and stan-
dalone SVM using LOOCV is provided in Table 7.

The confusion matrices for ChaosFEX+SVM, stan-
dalone SVM (RBF kernel) and random forest are provided in 
Fig. 3a, b and c respectively. From these confusion matrices 
(Fig. 3a, c) and Table 7, the perfect classification obtained 
by both NL (ChaosFEX+SVM) and standalone SVM (RBF 
kernel) is evident. This shows the effectiveness of chaos-
based nonlinear feature transformation in separating the data 
instances belonging to distinct classes.

4.4.1  SARS‑CoV‑2 vs. SARS‑CoV‑1: low training sample 
regime

In the low training sample regime, we used 1, 2,… , 20 sam-
ples per class and performed 1000 independent random trials 
of training in each case. The rest of the data was used for 
testing. We then computed the average macro F1-score of 
the test data. Figure 4a and b represents the average macro 
F1-score and the standard deviation of macro F1-scores of 
test data respectively.

In the case of low training sample regime for SARS-
CoV-2 vs. SARS-CoV-1, NL yields a maximum average 
macro F1-score > 0.99 for training with one sample per 
class. As the number of training samples increases, the 
average F1-score shows a decreasingly increasing trend. 
The standard deviation of F1-scores as number of train-
ing samples increases shows an increasingly decreasing 
trend. NL slightly outperforms SVM with linear kernel 
and logistic regression in the low training sample regime 
except for training with 2, 3, 4 and 5 samples per class for 
SVM and 3, 4, 5 samples per class for logistic regression.

The low training sample regime highlights the 
requirement of only a single sample of SARS-CoV-2 and 
SARS-CoV-1 for classification using NL. From [36], 
SARS-CoV-2 and SARS-CoV-1 are genetically close to 
each other even though the SARS-CoV-2 is not a genetic 
descendent of SARS-CoV-1. However, our experi-
ments seem to indicate that the difference between 
the ChaosFEX features of the genomic sequences of 
the 2 viruses is significant enough that from very few 
observed sequences (few shot learning) ChaosFEX is 
able to generalize for efficient classification of larger 

Fig. 3  Binary classification — 
confusion matrix. a Confusion 
matrix corresponding LOOCV 
using ChaosFEX+SVM (linear 
kernel). b Confusion matrix 
corresponding LOOCV using 
standalone random forest 
classifier. c Confusion matrix 
corresponding LOOCV using 
standalone SVM (RBF kernel)
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sets of sequences from the 2 viruses. Please note that 
hyperparameter tuning has not been performed for this 
dataset.

5  Limitations of NL

NL architecture works with the assumption of separabil-
ity of data after a nonlinear chaotic feature transforma-
tion. In fact, it performs a nonlinear embedding in higher 
dimensions. However, this assumption may not be true 
in all scenarios. The present architecture of NL treats the 
input attributes as independent. But in real-world sce-
narios, this assumption may not be valid (especially in 
case of binary images). This limitation can be addressed 
by introducing coupled chaotic maps in the input layer 
of NL. Yet another limitation of NL is the absence of 
a principled way of hyperparameter tuning. The current 
implementation uses crossvalidation experiments to find 
the best q, b and �.

6  Conclusions

Machine learning finds immense application in the classifi-
cation of genome sequence. However, this problem becomes 
challenging when the number of training data instances 
are very less. Learning from very few training samples is 
a practical problem faced especially during the beginning 
of a disease outbreak. COVID-19 is the best example for 
this. A timely detection and isolation of patients in the early 
stage could have curbed the wide spread of the SARS-CoV-2 
virus.

In this work, we proposed a Neurochaos Learning (NL) 
architecture, namely ChaosFEX+SVM for the classifica-
tion of coronavirus. NL employs chaotic neurons (unlike 
traditional ANNs which has simple dumb neurons) and by 
combining chaos-based feature extraction with SVM-based 
classification, we demonstrate efficacy and robustness of 
such an approach. NL was shown to satisfy the universal 
approximation theorem (UAT). Our proof of UAT for NL is 
enabled by two properties of chaos — topological transitiv-
ity and existence of a dense orbit. An important benefit of 
our proof is the explicit construction of NL with the exact 
number of neurons needed to approximate a discrete time 
real valued function with finite support to any desired accu-
racy. Such an equivalent is not available for ANNs to the best 
of our knowledge. Thus, the benefit of using the rich features 
of chaos is evident in our work.

The proposed method finds application especially when 
the training data instances are less. In the experiments, 
we evaluated the performance of NL both in low and high 
training sample regime for classification of coronavi-
rus genome sequence data. In the case of classification 
of SARS-CoV-2 vs. SARS-CoV-1, NL gave an average 
F1-score > 0.99 with just one training sample per class. 
This shows the robustness of the ChaosFEX features and 
its ability to generalize with very few training samples.

The ChaosFEX features that we have used in NL in 
this work can in fact be combined with any other machine 
learning algorithm (not limited to SVM). Combining 
ChaosFEX with deep learning and reinforcement learn-
ing algorithms are a future line of work.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11517- 022- 02591-3.

(a) (b)

Fig. 4  SARS-CoV-2 vs. SARS-CoV-1 classification — low training sample regime ( 1, 2,… , 20 samples per class). a Average macro F1-score of 
test data for 1000 random trials of training. b Standard deviation of macro F1-scores for 1000 random trials of training
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