
Vol.:(0123456789)1 3

https://doi.org/10.1007/s11517-022-02591-3

ORIGINAL ARTICLE

Classification of SARS‑CoV‑2 viral genome sequences using
Neurochaos Learning

N. B. Harikrishnan1,2 · S. Y. Pranay2 · Nithin Nagaraj2

Received: 27 October 2021 / Accepted: 28 April 2022
© International Federation for Medical and Biological Engineering 2022

Abstract
The high spread rate of SARS-CoV-2 virus has put the researchers all over the world in a demanding situation. The need of the
hour is to develop novel learning algorithms that can effectively learn a general pattern by training with fewer genome sequences
of coronavirus. Learning from very few training samples is necessary and important during the beginning of a disease outbreak
when sequencing data is limited. This is because a successful detection and isolation of patients can curb the spread of the virus.
However, this poses a huge challenge for machine learning and deep learning algorithms as they require huge amounts of training
data to learn the pattern and distinguish from other closely related viruses. In this paper, we propose a new paradigm – Neuro-
chaos Learning (NL) for classification of coronavirus genome sequence that addresses this specific problem. NL is inspired from
the empirical evidence of chaos and non-linearity at the level of neurons in biological neural networks. The average sensitivity,
specificity and accuracy for NL are 0.998, 0.999 and 0.998 respectively for the multiclass classification problem (SARS-CoV-2,
Coronaviridae, Metapneumovirus, Rhinovirus and Influenza) using leave one out crossvalidation. With just one training sample per
class for 1000 independent random trials of training, we report an average macro F1-score > 0.99 for the classification of SARS-
CoV-2 from SARS-CoV-1 genome sequences. We compare the performance of NL with K-nearest neighbours (KNN), logistic
regression, random forest, SVM, and naïve Bayes classifiers. We foresee promising future applications in genome classification
using NL with novel combinations of chaotic feature engineering and other machine learning algorithms.

Keywords Neurochaos · Machine learning · SARS-CoV-2 · Genome classification · Universal approximation theorem

1 Introduction

COVID-19 is an extremely contagious disease that was first
reported in December 2019 at Wuhan city, Hubei prov-
ince, China [1]. SARS-CoV-2 is the pathogen responsible

for COVID-19 disease and initial genome sequence data
confirmed that SARS-CoV-2 was a member of the Betac-
oronavirus genus and Sarbecovirus subgenus [2]. To date,
seven coronaviruses have been identified which includes two
Alphacoronavirus: Human coronavirus 229E (HCoV-229E),
Human coronavirus NL63 (HCoV-NL63) and five Betacoro-
navirus: Human coronavirus OC43 (HCoV-OC43), Human
coronavirus HKU1 (HCoV-HKU1), severe acute respiratory
syndrome coronavirus (SARS-CoV-1), Middle East respira-
tory syndrome-related coronavirus (MERS-CoV) and severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
The SARS-CoV-2 virus has a very high spread rate [3] and
affected all nations. On 11 March 2020, the World Health
Organization (WHO) announced COVID-19 as a pandemic.
Initial investigations have found that the genome sequence
of SARS-CoV-2 shares 79% match with SARS-CoV-1 viral
genome and 50% match with the MERS-CoV genome [4].
The epidemiological dynamics of SARS-CoV-2 is very dif-
ferent from SARS-CoV and MERS-CoV despite their close
relatedness. This indicates that there is a striking biological

Harikrishnan N. B. thanks ‘The University of Trans-Disciplinary
Health Sciences and Technology (TDU)’ for permitting this
research as part of the PhD programme.

 * N. B. Harikrishnan
 harikrishnannb@nias.res.in

 S. Y. Pranay
 mail@pranaysy.com

 Nithin Nagaraj
 nithin@nias.res.in

1 The University of Trans-Disciplinary Health Sciences
and Technology, Bengaluru 560064, Karnataka, India

2 Consciousness Studies Programme, National Institute
of Advanced Studies, Indian Institute of Science Campus,
Bengaluru 560012, Karnataka, India

/ Published online: 7 June 2022

Medical & Biological Engineering & Computing (2022) 60:2245–2255

http://orcid.org/0000-0002-4575-3968
http://crossmark.crossref.org/dialog/?doi=10.1007/s11517-022-02591-3&domain=pdf

1 3

difference between the highly infectious SARS-CoV-2 and
other Betacoronavirus [1]. Some of the common symptoms
found with people tested positive for SARS-CoV-2 are dry
cough, shortness of breath and dyspnoea, myalgia, headache
and diarrhoea [4]. An early identification of this deadly dis-
ease and isolation of patients from the rest of the popula-
tion would have facilitated effective containment of disease
spread. For this, we would need novel computational meth-
ods which can uniquely identify the signatures of SARS-
CoV-2 virus from limited samples (available during the early
stages of the outbreak). This turns out to be a classification
problem, i.e. to classify whether a given nucleotide sequence
belongs to SARS-CoV-2 or not. Such problems are ideal for
machine learning (ML) and deep learning (DL) algorithms.

Recently, DL and ML are widely applied in genomic
research [5]. This was enabled by the abundance of genome
data after the success of the Human Genome Project and
other projects like ENCODE [6], FANTOM [7] and Road-
map Epigenomics [8]. As a result, several ML/DL algo-
rithms are applied in genomics research to obtain state-
of-the-art performance. Recent research [9, 10] shows the
effectiveness of convolutional neural networks (CNNs) to
model the sequence specificity of protein binding. In [11],
a three-layer CNN was used to predict the effects of non-
coding variants from genome sequence. Similar to CNN,
recurrent neural networks (RNNs) are another popular DL
algorithm widely used in sequence modelling. The authors
in [12] highlight the performance of hybrid architectures
on a transcription factor binding site classification task.
In [13], a deep learning architecture for the classification of
SARS-CoV-2 viral genome sequence from other coronavirus
has been proposed. Furthermore, the DL model is used for
specific primer design. Authors in [14] use a DL model for
the classification of SARS-COV-2 viral genome sequence
from co-infecting RNA sequences (Coronaviridae, Metap-
neumovirus, Rhinovirus, Influenza). In [15, 16], classical
machine learning techniques were used for the classification
of SARS-CoV-2 genome sequence.

However in the case of COVID-19, especially during the
early stages of the outbreak, ML/DL algorithms have only
less data instances to learn and make decisions. The learning
algorithms such as DL are ideally suited when the number
of instances in the training data set is very high. In such a
scenario, ML/DL algorithms would most likely fail to yield
accurate classification of the virus sequence. It is in such
situations, we demonstrate the usefulness of our proposed
method, namely Neurochaos Learning (NL) for classifica-
tion. As we shall demonstrate, NL yields high classification
accuracies with very few samples of training. This could, in
principle, be applied for future outbreaks of novel diseases.

Neurochaos Learning is motivated from the chaotic
behaviour exhibited at the level of individual neurons in
the brain [17, 18]. Neuronal cells exhibit a large range of

firing patterns such as repetitive pulses (periodic), quasi-
periodicity, and chaotic bursts of action potentials [17].
These firing patterns are driven by the external stimuli such
as variations in the ionic environment driven by the effects
of neuromodulators. This variability in the firing patterns
indicates the presence of non-linearity and chaos at the level
of neuron, axon etc. Such conclusions were inferred using
classical intracellular electrophysiological recordings of
action potentials in single neurons along with the help of
macroscopic models [17]. A detailed study that supports
the presence of chaos in the brain at various spatiotemporal
scales and mathematical neuronal models exhibiting chaos is
provided in [19] and [17]. Inspired by chaotic behaviours of
neurons, we have recently proposed the ChaosNet archi-
tecture [20], where we used chaotic 1D generalized Lüroth
series (GLS) neurons for extracting nonlinear features
from the data for solving classification tasks. Furthermore,
in [21], we augment the nonlinear features extracted from a
single layer of GLS neurons with a support vector machine
classifier (SVM) trained using a linear kernel (ChaosNet
+ SVM). The efficacy of ChaosNet + SVM in low train-
ing sample regime is highlighted in [21] for Iris dataset and
synthetically generated data. In this work, we propose an
overarching architecture titled ‘Neurochaos Learning’ (NL)
that generalizes our previous research (ChaosNet+ [20],
+ChaosNet++SVM [21]). We qualitatively contrast NL with
ANN and further provide mathematical justification of the
power of chaos that is employed in NL (at the level of indi-
vidual neurons) in approximating a large class of discrete
nonlinear functions (real-valued with finite support) — by
proving a version of the universal approximation theorem.
We also highlight the advantages of chaotic feature engineer-
ing which is implicit in NL architecture for the classifica-
tion of coronavirus genome sequences in the high training
sample as well as low training sample regimes.

The sections in this paper are arranged as follows: Sec-
tion 2 explains the proposed NL architecture, Section 3
provides the information of dataset used in this research,
and Section 4 highlights the experiments conducted on real
world data. Section 5 deals with the limitations of the pro-
posed method and Section 6 provides the scope for future
work and the closing remarks.

2 Methodology

2.1 GLS neuron

NL consists of an input layer of chaotic neurons. The cha-
otic neurons considered are the 1D skew tent map. The
mathematical equation of skew tent map is provided in
Eq. 1. A detailed study of the tent map and its various
properties can be found in [22].

2246 Medical & Biological Engineering & Computing (2022) 60:2245–2255

1 3

2.1.1 Tent map

CSkew−Tent ∶ [0, 1) → [0, 1) is defined as:

where x ∈ [0, 1) and b is the skew parameter (0 < b < 1).
Figure 1a depicts the first return map of 1D skew tent map.
Skew tent map has the following properties:

1. Skew tent map has a positive Lyapunov exponent
(�) suggesting its chaotic nature. A skew tent map
with a skew parameter ‘b’ has a Lyapunov exponent
�(b) = −b ln (b) − (1 − b) ln (1 − b) [23].

2. Skew tent map has an invariant density function (the
uniform distribution). This is exploited in chaotic cryp-
tography [24].

3. Tent map has been widely applied in data compression,
coding and cryptography [24, 25].

2.2 A neurochaos architecture for learning (NL)

Neurochaos Learning (or NL) architecture consists of a
multi-layer neural network built of chaotic neurons. The
proposed NL architecture is provided in Fig. 1b. The

(1)CSkew−Tent(x) =

{
x

b
, 0 ≤ x < b,

(1−x)

(1−b)
, b ≤ x < 1,

architecture consists of a single layer of GLS neurons
(C1,C2,…Cn). All GLS neurons in the input layer have an
initial neural activity of q units. The skewness of GLS maps
is controlled by the discrimination threshold (b). By varying
b, the chaotic neurons can exhibit weak and strong chaos (as
determined by the value of the Lyapunov exponent). The
stimulus or input data to the proposed architecture are rep-
resented as x1, x2,… , xn in Fig. 1b. The stimulus initiates
the firing in chaotic neurons. The chaotic firing trajectory
of the k-th GLS neuron, represented as Ak(t) , halts when the
trajectory reaches the � neighbourhood Ik = (xk − �, xk + �)
of the stimulus xk . The time taken (Nk) for Ak(t) to reach the
� neighbourhood of the stimulus (xk) is defined as the Firing
Time [26]. The chaotic firing is guaranteed to stop because
of the topological transitivity [20, 27] property of chaos.

Thus, for a single stimulus say xk , the GLS neuron
(Ck) outputs a chaotic trajectory. From this chaotic trajec-
tory, we extract the following features, which we term as
‘ChaosFEX’:

1. Firing time: Time taken for the chaotic trajectory to rec-
ognize the stimulus [21].

2. Firing rate: Fraction of time the chaotic trajectory is
above the discrimination threshold so as to recognize
the stimulus [21].

3. Energy: For the chaotic trajectory x(t) with firing time
n, energy is defined as E =

∑n

t=1
�x(t)�2.

Fig. 1 a First return map of the GLS neuron (skew tent map) used
in this work [20]. b Neurochaos Learning (NL) architecture:
ChaosFEX+SVM is an instance of NL architecture. ChaosFEX
extracts features from the input layer of GLS neurons (C

1
,C

2
,…C

n
).

The stimulus or (normalized) input data to the architecture are repre-
sented as x

1
, x

2
,… x

n
 . The chaotic neuron, say C

k
 , starts firing when it

encounters the corresponding stimulus x
k
 . The trajectory of k-th cha-

otic neuron C
k
 is represented as A

k
(t) . The trajectory continues until

it reaches the � neighbourhood of the stimulus. From the chaotic tra-
jectory A

k
(t) , we extract firing time, firing rate, energy of the chaotic

trajectory, and entropy of the symbolic sequence of chaotic trajectory.
These extracted features (ChaosFEX) are passed to SVM classifier
with linear kernel

2247Medical & Biological Engineering & Computing (2022) 60:2245–2255

1 3

4. Entropy: For the chaotic trajectory x(t), we first compute
the binary symbolic sequence S(t) as follows:

 where i = 1 to n (firing time). We then compute Shan-
non entropy of S(t) as follows H(S) = −

∑2

i=1
pi log2(pi)

bits, where p1 and p2 refer to the probabilities of the
symbols 0 and 1 respectively.

These extracted features are passed to SVM classifier
with linear kernel. These extracted ChaosFEX features
can be freely combined with any of the available classi-
fiers or regression models from machine learning litera-
ture. Thus, the proposed Neurochaos Learning architec-
ture allows for a great deal of flexibility to be combined
with traditional ML algorithms. A comparison of the
properties of NL with ANNs is provided in Table 1.
The salient properties of NL are provided in Section S1
(Online Resource 1).

2.3 Universal approximation theorem for NL

Let f(n) be a discrete time real valued function having a finite
support L. The NL architecture consisting of a single layer
with L chaotic neurons can approximate1 f(n). Assuming that
we use a chaotic 1D map Ci for the i-th neuron in NL, and
given any desired error 𝜖 > 0 , we have:

(2)S(ti) =

{
0, x(ti) < b,

1, b ≤ x(ti) < 1,
where q is the initial neural activity for all the neurons in
NL, Ni is the firing time of the i-th chaotic neuron and Ci is
the 1D chaotic map with the chaotic trajectory starting from
q a dense orbit.

Proof (by construction). Design an NL with one layer with
exactly L chaotic neurons. Let each of the neurons be initial-
ized with q and let the input to this NL be the L real-valued
samples of the function f(n) which act as stimuli for the cor-
responding L chaotic neurons.

Now, for a given 𝜖 > 0 , we can always construct a neigh-
bourhood of stimulus Ik = (f (k) − �, f (k) + �) , 0 < 𝜂 <

𝜖

2L

such that CNk

k
(q) ∈ Ik for the k-th chaotic neuron of NL. This

is always possible because of the topological transitivity
property of chaos defined in Section 2 and since the chaotic
trajectory starting from initial value q is dense. The topo-
logical transitivity property guarantees the chaotic firing to
reach the � neighbourhood (Ik) of stimulus in finite number
of iterations (Nk) for the dense orbit starting from q. For any
given � , the following is true:

Note that 𝜂 <
𝜖

2L
 since CNi

i
(q) ∈ (f (i) − �, f (i) + �) because

Ni is the firing time for Ci and the orbit is dense. Hence, the
set of chaotic neurons {Ci} that constitute the input layer
of NL can always approximate the function f(n) with an �

(3)d(f ,C) =

L∑

i=1

|f (i) − C
Ni

i
(q)| < 𝜖,

d(f ,C) =

L∑

i=1

d(f (i),C
Ni

i
) =

L∑

i=1

|f (i) − C
Ni

i
(q)|

<

L∑

i=1

2𝜂 < L(2𝜂) < L
(
2
𝜖

2L

)
= 𝜖.

Table 1 NL vs. ANN — a comparison of properties

Properties ANN NL Remarks

Neuron Linear followed by a Non-linear and chaotic Chaos allows for a rich set
nonlinear activation of properties to be exploited.

Output of a Scalar Variable length vector Neurons in NL perform non-linear
neuron computations as compared with simple

weighted linear addition in ANN.
Universal Satisfies UAT Satisfies UAT NL satisfies UAT with an exact
approximation specification on the number of neurons
theorem needed for approximating a real-valued
(UAT) discrete-time function with finite support.
Activation Yes No The nonlinearity in ANN is provided by the
functions activation function which is not needed for NL.
Backpropogation Yes No Not currently used. NL could employ

backpropagation in the future if needed.

1 For quantifying this approximation, we use the sum of absolute dif-
ferences as the distance metric. In other words, for any two real-val-
ued vectors V ,W ∈ ℝ

m , d(V ,W) =
∑m

i=1
�V

i
−W

i
�.

2248 Medical & Biological Engineering & Computing (2022) 60:2245–2255

1 3

error bound. This theorem holds true for NL constructed
with chaotic neurons that satisfies the topological transitiv-
ity property and has a dense orbit. Furthermore, having a
single dense orbit implies countably infinite number of dense
orbits.

3 Dataset details

This section provides a detailed description of real world
datasets used to evaluate the efficacy of NL (ChaosFEX+

SVM). The real-world dataset consists of genome sequences
of SARS-CoV-2 and other coronaviruses.

3.1 Multiclass classification

The classification of SARS-CoV-2 and other co-infecting
RNA viruses is a challenging problem. We used the data
provided by the authors of the paper titled ‘PACIFIC: a
lightweight deep-learning classifier of SARS-CoV-2 and
co-infecting RNA viruses’ [14]. The dataset consists of
genome sequences corresponding to SARS-CoV-2 (class-0),
Coronaviridae (class-1), Metapneumovirus (class-2), Rhino-
virus (class-3) and Influenza (class-4). The dataset details
are provided in Table 2. The authors [14] have made the
data publicly available.2 A five class classification problem
is formulated with this dataset. The data preprocessing is
provided in Section S2 (Online Resource 1).

3.2 SARS‑CoV‑2 vs. SARS‑CoV‑1

For the binary classification of SARS-CoV-2 genomes from
SARS-CoV-1 genomes, a total of 4498 and 101 genome
sequences respectively were obtained from multiple data
repositories until early April 2020. Three thousand nine
hundred thirty SARS-CoV-2 sequences were obtained
from GISAID, 407 from GenBank, and the remaining
from Genome Warehouse, CNGBdb and NMDC databases
through the China National Center for Bioinformation [28].

All SARS-CoV-1 sequences were obtained from GenBank.
All sequences were chosen with the filters Nucleotide
Completeness = ‘Complete’ AND host = ‘homo sapiens’.
Accession IDs for all sequences as well as acknowledgement
are provided in the GitHub repository.3 The data instance per
class is provided in Table 3.

4 Experiments and results

This section deals with the set of experiments evaluated on
coronavirus genome sequences. We have used Python 3, Lin-
earSVC [29], Numba [30], Numpy [31] and Scikit-learn [32]
package for the implementation of ChaosFEX+SVM. We
compare the performance of NL (ChaosFEX+SVM) with
standalone SVM (RBF kernel), and standalone random for-
est. This learning paradigm with limited samples is referred
as few shot learning. Few shot learning aims to develop ML
models which generalizes from a small set of labeled train-
ing data. There has been previous research in few shot learn-
ing [33, 34].

4.1 Hyperparameter tuning

The hyperparameters used for ChaosFEX+SVM, standalone
SVM (RBF kernel) and random forest for the multiclass
classification and binary class classification are provided
below:

1. ChaosFEX+SVM: For multiclass classification, the
hyperparameters used are q = 0.34 , b = 0.499 , and
� = 0.18 . For binary classification, the hyperparameters
used are q = 0.34 , b = 0.499 , and � = 0.183

2. SVM (RBF kernel): For multiclass classification, the
hyperparameter used is C = 12.0 . For binary classifica-
tion, the hyperparameter used is C = 0.3

3. Random forest: For multiclass classification, the
hyperparameters used are n_estimators = 100 and
max_depth = 6 . For binary classification, the hyperpa-
rameters used are n_estimators = 10 and max_depth = 1.

Table 2 Multiclass classification: total number of data instances per
class [14]

Data Genome No. of
genome
assemblies

Class-0 SARS-CoV-2 87
Class-1 Coronaviridae 11
Class-2 Metapneumovirus 5
Class-3 Rhinovirus 130
Class-4 Influenza 128

Table 3 SARS-CoV-2 vs. SARS-CoV-1: total number of data
instances per class

Data Genome No. of sequences

Class-0 SARS-CoV-2 4498
Class-1 SARS-CoV-1 101

2 https:// cloud stor. aarnet. edu. au/ plus/s/ sRLwF 3IJQ1 2pNGQ
3 https:// github. com/ Harik rishn anNB/ genome- class ifica tion- nl/ tree/
main/ seque nce_ usage_ ackno wledg ements

2249Medical & Biological Engineering & Computing (2022) 60:2245–2255

https://cloudstor.aarnet.edu.au/plus/s/sRLwF3IJQ12pNGQ
https://github.com/HarikrishnanNB/genome-classification-nl/tree/main/sequence_usage_acknowledgements
https://github.com/HarikrishnanNB/genome-classification-nl/tree/main/sequence_usage_acknowledgements

1 3

4.2 Performance metrics

From the multilabel and binary confusion matrix, the fol-
lowing metrics were derived for deeper understanding of the
performance of the model. We follow the methodology for
model evaluation as mentioned in [35].

1. Sensitivity (SE) = TP

TP+FN

2. Specificity (SP) = TN

TN+FP

3. Accuracy (ACC) = TP+TN

TP+TN+FP+FN

4. Positive predictive value (PPV) = TP

TP+FP

5. Negative predictive value (NPV) = TN

TN+FN

6. False positive rate (FPR) = FP

FP+TN

7. False discovery rate (FDR) = FP

FP+TP

Fig. 2 Multiclass classifica-
tion — multilabel confusion
matrix. a Confusion matrix
corresponding to LOOCV
using ChaosFEX+SVM (linear
kernel). b Confusion matrix
corresponding to LOOCV using
standalone random forest (RF).
c Confusion matrix correspond-
ing to LOOCV using standalone
SVM (RBF kernel)

Table 4 Performance of ChaosFEX+SVM for the multiclass classifi-
cation problem using LOOCV

Classification Class-0 Class-1 Class-2 Class-3 Class-4
measures

SE 1.0 1.0 1.0 1.0 0.992
SP 1.0 1.0 1.0 0.996 1.0
ACC 1.0 1.0 1.0 0.997 0.997
PPV 1.0 1.0 1.0 0.992 1.0
NPV 1.0 1.0 1.0 1.0 0.996
FPR 0 0 0 0.004 0
FDR 0 0 0 0.008 0
FNR 0 0 0 0 0.008
F1-score 1.0 1.0 1.0 0.996 0.996

Table 5 Performance of random forest for the multiclass classifica-
tion problem using LOOCV

Classification Class-0 Class-1 Class-2 Class-3 Class-4
measures

SE 1.0 1.0 0.8 1.0 0.992
SP 1.0 0.994 1.0 1.0 1.0
ACC 1.0 0.994 0.997 1.0 0.997
PPV 1.0 0.846 1.0 1.0 1.0
NPV 1.0 1.0 0.997 1.0 0.996
FPR 0 0.006 0 0 0
FDR 0 0.154 0 0 0
FNR 0 0 0.2 0 0.008
F1-score 1.0 0.917 0.889 1.0 0.996

2250 Medical & Biological Engineering & Computing (2022) 60:2245–2255

1 3

8. False negative rate (FNR) = FN

FN+TP

9. F1-score = 2⋅PPV⋅SE
PPV+SE

TP, TN, FP, FN refers to true positives, true negatives, false
positives and false negatives respectively.

4.3 Multiclass classification

The dataset provided in Table 2 is highly imbalanced. So we
carried out leave one out crossvalidation (LOOCV). From
the multilabel confusion matrix, the following measures
were used to evaluate the performance: SE, SP, ACC , PPV,
NPV, FPR, FDR, FNR, and F1-score. The maximum and
minimum sequence lengths we considered are 8000 and 6000
respectively. All sequences of length less than 6000 were not
considered for the study (Table 2). Both ChaosFEX+SVM
and standalone SVM (linear kernel) have only one misclas-
sification for LOOCV. In the case of ChaosFEX+SVM, a

single genome sequence belonging to Influenza was mis-
classified as Rhinovirus. Whereas in the case of standalone
SVM (RBF kernel), a single genome sequence belonging to
Influenza was misclassifed to Coronaviridae family. In the
case of random forest, there are two misclassifications. This
is depicted in the multilabel confusion matrix provided in
Fig. 2a (ChaosFEX+SVM), c (standalone SVM (RBF ker-
nel)), and b (random forest). The class-wise performance
for ChaosFEX+SVM, random forest and standalone SVM
are provided in Tables 4, 5 and 6 respectively. The average
SE, SP and ACC for ChaosFEX+SVM are 0.998, 0.999, and
0.998 respectively. In the case of random forest, the average
SE, SP and ACC are 0.958, 0.998 and 0.997 respectively.
The average SE, SP and ACC using standalone SVM with
RBF kernel are the same as ChaosFEX+SVM. The RBF
kernel in standalone SVM maps the input data to a high
dimensional space where the data is nearly linearly sepa-
rable as indicated by the performance metrics. The similar
performance of NL as compared to standalone SVM (RBF
kernel) indicates the separability of input data in the non-
linear chaotic feature space. A perfect classification can be
observed for SARS-CoV-2 (class-0), Coronaviridae (class-1)
and Metapneumovirus (class-2) using NL (refer Table 4). In
the case of standalone SVM (RBF kernel), a perfect classi-
fication can be seen for SARS-CoV-2 (class-0), Metapneu-
movirus (class-2) and Rhinovirus (class-3) (refer Table 6).

4.4 SARS‑CoV‑2 vs. SARS‑CoV‑1

For the binary classification problem (Table 3), the num-
ber of genome sequences of SARS-CoV-2 is higher when
compared to the genome sequence of SARS-CoV-1. The
maximum and minimum sequence lengths we considered
are 8000 and 6000 respectively. All sequences of length less

Table 6 Performance of SVM for the multiclass classification prob-
lem using LOOCV

Classification Class-0 Class-1 Class-2 Class-3 Class-4
measures

SE 1.0 1.0 1.0 1.0 0.992
SP 1.0 0.997 1.0 1.0 1.0
ACC 1.0 0.997 1.0 1.0 0.997
PPV 1.0 0.917 1.0 1.0 1.0
NPV 1.0 1.0 1.0 1.0 0.996
FPR 0 0.003 0 0 0
FDR 0 0.083 0 0 0
FNR 0 0 0 0 0.008
F1-score 1.0 0.957 1.0 1.0 0.996

Table 7 Performance of
ChaosFEX+SVM for the binary
class classification problem
using LOOCV

In the case of random forest, the first three significant values of the performance metric are used. This is
done in order to avoid misinterpretation since several metric values close to 1.0 would be rounded to 1.0

ChaosFEX+SVM Random forest SVM

Classification Class-0 Class-1 Class-0 Class-1 Class-0 Class-1

measures

SE 1.0 1.0 1.0 0.990 1.0 1.0
SP 1.0 1.0 0.990 1.0 1.0 1.0
ACC 1.0 1.0 0.999 0.999 1.0 1.0
PPV 1.0 1.0 0.999 1.0 1.0 1.0
NPV 1.0 1.0 1.0 0.999 1.0 1.0
FPR 0 0 0.009 0 0 0
FDR 0 0 0.0002 0 0 0
FNR 0 0 0 0.009 0 0
F1-score 1.0 1.0 0.999 0.995 1.0 1.0

2251Medical & Biological Engineering & Computing (2022) 60:2245–2255

1 3

than 6000 were not considered for the study. The class-wise
performance of ChaosFEX+SVM, random forest and stan-
dalone SVM using LOOCV is provided in Table 7.

The confusion matrices for ChaosFEX+SVM, stan-
dalone SVM (RBF kernel) and random forest are provided in
Fig. 3a, b and c respectively. From these confusion matrices
(Fig. 3a, c) and Table 7, the perfect classification obtained
by both NL (ChaosFEX+SVM) and standalone SVM (RBF
kernel) is evident. This shows the effectiveness of chaos-
based nonlinear feature transformation in separating the data
instances belonging to distinct classes.

4.4.1 SARS‑CoV‑2 vs. SARS‑CoV‑1: low training sample
regime

In the low training sample regime, we used 1, 2,… , 20 sam-
ples per class and performed 1000 independent random trials
of training in each case. The rest of the data was used for
testing. We then computed the average macro F1-score of
the test data. Figure 4a and b represents the average macro
F1-score and the standard deviation of macro F1-scores of
test data respectively.

In the case of low training sample regime for SARS-
CoV-2 vs. SARS-CoV-1, NL yields a maximum average
macro F1-score > 0.99 for training with one sample per
class. As the number of training samples increases, the
average F1-score shows a decreasingly increasing trend.
The standard deviation of F1-scores as number of train-
ing samples increases shows an increasingly decreasing
trend. NL slightly outperforms SVM with linear kernel
and logistic regression in the low training sample regime
except for training with 2, 3, 4 and 5 samples per class for
SVM and 3, 4, 5 samples per class for logistic regression.

The low training sample regime highlights the
requirement of only a single sample of SARS-CoV-2 and
SARS-CoV-1 for classification using NL. From [36],
SARS-CoV-2 and SARS-CoV-1 are genetically close to
each other even though the SARS-CoV-2 is not a genetic
descendent of SARS-CoV-1. However, our experi-
ments seem to indicate that the difference between
the ChaosFEX features of the genomic sequences of
the 2 viruses is significant enough that from very few
observed sequences (few shot learning) ChaosFEX is
able to generalize for efficient classification of larger

Fig. 3 Binary classification —
confusion matrix. a Confusion
matrix corresponding LOOCV
using ChaosFEX+SVM (linear
kernel). b Confusion matrix
corresponding LOOCV using
standalone random forest
classifier. c Confusion matrix
corresponding LOOCV using
standalone SVM (RBF kernel)

2252 Medical & Biological Engineering & Computing (2022) 60:2245–2255

1 3

sets of sequences from the 2 viruses. Please note that
hyperparameter tuning has not been performed for this
dataset.

5 Limitations of NL

NL architecture works with the assumption of separabil-
ity of data after a nonlinear chaotic feature transforma-
tion. In fact, it performs a nonlinear embedding in higher
dimensions. However, this assumption may not be true
in all scenarios. The present architecture of NL treats the
input attributes as independent. But in real-world sce-
narios, this assumption may not be valid (especially in
case of binary images). This limitation can be addressed
by introducing coupled chaotic maps in the input layer
of NL. Yet another limitation of NL is the absence of
a principled way of hyperparameter tuning. The current
implementation uses crossvalidation experiments to find
the best q, b and �.

6 Conclusions

Machine learning finds immense application in the classifi-
cation of genome sequence. However, this problem becomes
challenging when the number of training data instances
are very less. Learning from very few training samples is
a practical problem faced especially during the beginning
of a disease outbreak. COVID-19 is the best example for
this. A timely detection and isolation of patients in the early
stage could have curbed the wide spread of the SARS-CoV-2
virus.

In this work, we proposed a Neurochaos Learning (NL)
architecture, namely ChaosFEX+SVM for the classifica-
tion of coronavirus. NL employs chaotic neurons (unlike
traditional ANNs which has simple dumb neurons) and by
combining chaos-based feature extraction with SVM-based
classification, we demonstrate efficacy and robustness of
such an approach. NL was shown to satisfy the universal
approximation theorem (UAT). Our proof of UAT for NL is
enabled by two properties of chaos — topological transitiv-
ity and existence of a dense orbit. An important benefit of
our proof is the explicit construction of NL with the exact
number of neurons needed to approximate a discrete time
real valued function with finite support to any desired accu-
racy. Such an equivalent is not available for ANNs to the best
of our knowledge. Thus, the benefit of using the rich features
of chaos is evident in our work.

The proposed method finds application especially when
the training data instances are less. In the experiments,
we evaluated the performance of NL both in low and high
training sample regime for classification of coronavi-
rus genome sequence data. In the case of classification
of SARS-CoV-2 vs. SARS-CoV-1, NL gave an average
F1-score > 0.99 with just one training sample per class.
This shows the robustness of the ChaosFEX features and
its ability to generalize with very few training samples.

The ChaosFEX features that we have used in NL in
this work can in fact be combined with any other machine
learning algorithm (not limited to SVM). Combining
ChaosFEX with deep learning and reinforcement learn-
ing algorithms are a future line of work.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11517- 022- 02591-3.

(a) (b)

Fig. 4 SARS-CoV-2 vs. SARS-CoV-1 classification — low training sample regime (1, 2,… , 20 samples per class). a Average macro F1-score of
test data for 1000 random trials of training. b Standard deviation of macro F1-scores for 1000 random trials of training

2253Medical & Biological Engineering & Computing (2022) 60:2245–2255

https://doi.org/10.1007/s11517-022-02591-3

1 3

Funding This study was financially supported by Tata Trusts.

Availability of data and material Not applicable

Data availability Accession IDs as well as acknowledgement of the
genome sequence used in the classification of SARS-CoV-2 vs. SARS-
CoV-1 are available in the GitHub repository: https:// github. com/ Harik
rishn anNB/ genome- class ifica tion- nl/ tree/ main/ seque nce_ usage_ ackno
wledg ements.

Code availability The codes used in this research are available in the
following link: https:// github. com/ Harik rishn anNB/ genome- class ifica
tion- nl.

Declarations

Competing interests The authors declare no competing interests.

References

 1. Zhang Y-Z, Holmes EC (2020) A genomic perspective on the
origin and emergence of SARS-CoV-2. Cell 181(2):223–227

 2. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H,
Huang B, Zhu N et al (2020) Genomic characterisation and
epidemiology of 2019 novel coronavirus: implications for virus
origins and receptor binding. The Lancet 395(10224):565–574

 3. Salehi AW, Baglat P, Gupta G (2020) Review on machine and deep
learning models for the detection and prediction of coronavirus.
Mater Today Proc. https:// doi. org/ 10. 1016/j. matpr. 2020. 06. 245

 4. Lai C-C, Shih T-P, Ko W-C, Tang H-J, Hsueh P-R (2020) Severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and
coronavirus disease-2019 (COVID-19): the epidemic and the
challenges. Int J Antimicrob Agents, pp 105924

 5. Ahmed I, Jeon G (2021) Enabling artificial intelligence for
genome sequence analysis of COVID-19 and alike viruses.
Interdiscip Sci Comput Life Sci, pp 1–16

 6. Dunham I, Birney E, Lajoie BR, Sanyal A, Dong X, Greven M,
Lin X, Wang J, Whitfield TW, Zhuang J et al (2012) An inte-
grated encyclopedia of DNA elements in the human genome.
Nature 489(7414):57–74

 7. Kawai J, Shinagawa A, Shibata K, Yoshino M, Itoh M, Ishii
Y, Arakawa T, Hara A, Fukunishi Y, Konno H et al (2001)
Functional annotation of a full-length mouse cDNA collection.
Nature 409(6821):685–689

 8. Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-
Moussavi A, Kheradpour P, Zhang Z, Wang J, Ziller MJ et al
(2015) Integrative analysis of 111 reference human epigenomes.
Nature 518(7539):317–330

 9. Alipanahi B, Delong A, Weirauch MT, Frey BJ (2015) Pre-
dicting the sequence specificities of DNA-and RNA-binding
proteins by deep learning. Nature Biotechnology 33(8):831–838

 10. Zeng H, Edwards MD, Liu G, Gifford DK (2016) Convolutional
neural network architectures for predicting DNA-protein bind-
ing. Bioinformatics 32(12):i121–i127

 11. Zhang S, Zhou J, Hu H, Gong H, Chen L, Cheng C, Zeng J
(2016) A deep learning framework for modeling structural fea-
tures of RNA-binding protein targets. Nucleic Acids Research
44(4):e32–e32

 12. Lanchantin J, Singh R, Wang B, Qi Y (2016) Deep gdashboard:
Visualizing and understanding genomic sequences using deep
neural networks. arXiv: 1608. 03644

 13. Lopez-Rincon A, Tonda A, Mendoza-Maldonado L, Mulders
DGJC, Molenkamp R, Perez-Romero CA, Claassen E, Gars-
sen J, Kraneveld AD (2021) Classification and specific primer
design for accurate detection of SARS-CoV-2 using deep learn-
ing. Scientific Reports 11(1):1–11

 14. Acera Mateos P, Balboa RF, Easteal S, Eyras E, Patel HR (2021)
Pacific: a lightweight deep-learning classifier of SARS-CoV-2
and co-infecting RNA viruses. Scientific reports 11(1):1–14

 15. Singh OP, Vallejo M, El-Badawy IM, Aysha A, Madhanagopal
J, Faudzi AAM (2021) Classification of SARS-CoV-2 and non-
SARS-CoV-2 using machine learning algorithms. Computers in
biology and medicine 136:104650

 16. Arslan H (2021) Machine learning methods for COVID-19 pre-
diction using human genomic data. In: Multidisciplinary digital
publishing institute proceedings, vol 74. pp 20

 17. Korn H, Faure P (2003) Is there chaos in the brain? II. Experi-
mental evidence and related models. Comptes Rendus Biologies
326(9):787–840

 18. Tsuda I (1991) Chaotic itinerancy as a dynamical basis of her-
meneutics in brain and mind. World Futures: Journal of General
Evolution 32(2–3):167–184

 19. Faure P, Korn H (2001) Is there chaos in the brain? I. Concepts
of nonlinear dynamics and methods of investigation. Comptes
Rendus de l’Académie des Sciences-Series III-Sciences de la
Vie 324(9):773–793

 20. Balakrishnan HN, Kathpalia A, Saha S, Nagaraj N (2019) Cha-
osNet: a chaos based artificial neural network architecture for
classification. Chaos: An Interdisciplinary Journal of Nonlinear
Science 29(11):113125

 21. Harikrishnan NB, Nagaraj N (2020) Neurochaos inspired hybrid
machine learning architecture for classification. In: 2020 inter-
national conference on signal processing and communications
(SPCOM). IEEE, pp 1–5

 22. Yoshida T, Mori H, Shigematsu H (1983) Analytic study of
chaos of the tent map: band structures, power spectra, and criti-
cal behaviors. Journal of Statistical Physics 31(2):279–308

 23. Lai D, Chen G, Hasler M (1999) Distribution of the Lyapunov
exponent of the chaotic skew tent map. International Journal of
Bifurcation and Chaos 9(10):2059–2067

 24. Li C, Luo G, Qin K, Li C (2017) An image encryption scheme
based on chaotic tent map. Nonlinear Dynamics 87(1):127–133

 25. Nagaraj N (2008) Novel applications of chaos theory to coding
and cryptography. PhD thesis, NIAS

 26. Harikrishnan NB, Nagaraj N (2019) A novel chaos theory
inspired neuronal architecture. In: 2019 global conference for
advancement in technology (GCAT). IEEE, pp 1–6

 27. Devaney RL, Siegel PB, Mallinckrodt AJ, McKay S (1993) A
first course in chaotic dynamical systems: theory and experi-
ment. Computers in Physics 7(4):416–417

 28. Zhao W-M, Song S-H, Chen M-L, Zou D, Ma L-N, Ma Y-K,
Li R-J, Hao L-L, Li C-P, Tian D-M et al (2020) The 2019 novel
coronavirus resource. Yi chuan= Hereditas 42(2):212–221

 29. Fan R-E, Chang K-W, Hsieh C-J, Wang X-R, Lin C-J (2008)
LIBLINEAR: a library for large linear classification. Journal of
Machine Learning Research 9:1871–1874

 30. Lam SK, Pitrou A, Seibert S (2015) Numba: a LLVM-based
Python JIT compiler. In: Proceedings of the second workshop on
the LLVM compiler infrastructure in HPC, LLVM ’15, New York,
NY, USA. Association for Computing Machinery

 31. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen
P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R,
Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, del
R’io JF, Wiebe M, Peterson P, G’erard-Marchant P, Sheppard K,

2254 Medical & Biological Engineering & Computing (2022) 60:2245–2255

https://github.com/HarikrishnanNB/genome-classification-nl/tree/main/sequence_usage_acknowledgements
https://github.com/HarikrishnanNB/genome-classification-nl/tree/main/sequence_usage_acknowledgements
https://github.com/HarikrishnanNB/genome-classification-nl/tree/main/sequence_usage_acknowledgements
https://github.com/HarikrishnanNB/genome-classification-nl
https://github.com/HarikrishnanNB/genome-classification-nl
https://doi.org/10.1016/j.matpr.2020.06.245
http://arxiv.org/abs/1608.03644

1 3

Reddy T, Weckesser W, Abbasi H, Gohlke C, Oliphant TE (2020)
Array programming with NumPy. Nature 585(7825):357–362

 32. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B,
Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Van-
derplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duch-
esnay E (2011) Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research 12:2825–2830

 33. Oreshkin B, López PR, Lacoste A (2018) Tadam: task dependent
adaptive metric for improved few-shot learning. In: Advances in
neural information processing systems. pp 721–731

 34. Qiao S, Liu C, Shen W, Yuille AL (2018) Few-shot image recogni-
tion by predicting parameters from activations. In: Proceedings of
the IEEE conference on computer vision and pattern recognition.
pp 7229–7238

 35. Chen H, Das S, Morgan J, Maharatna K (2021) An effective
PSR-based arrhythmia classifier using self-similarity analysis.
Biomedical Signal Processing and Control 69:102851

 36. Coronaviridae Study Group of the International et al (2020) The
species severe acute respiratory syndrome-related coronavirus:
classifying 2019-nCoV and naming it SARS-CoV-2. Nature
Microbiology 5(4):536

NB Harikrishnan is currently a
Research Associate in Con-
sciousness Studies program at
National Institute of Advanced
Studies, Indian Institute of Sci-
ence Campus, Bengaluru. His
research interest includes experi-
mental and theoretical under-
standing of learning algorithms
such as deep learning and
machine learning. He also
attempts to develop a theory for
c h a o s b a s e d l e a r n i n g
algorithms.

SY Pranay received the M.B.B.S.
degree from King Edward
Memorial VII Hospital and Seth
GS Medical College, Mumbai,
India in 2015; the M.Phil. degree
in Neurophysiology from the
National Institute of Mental
Health and Neurosciences, Ban-
galore, India in 2018. He is cur-
rently studying for a PhD at the
Medical Research Council Cog-
nition and Brain Sciences Unit,
University of Cambridge, UK.
His research interests include
biomedical informatics, cogni-
tive neurosciences and mental

health.

Nithin Nagaraj is currently Asso-
ciate Professor at National insti-
tute of advanced studies. His
areas of research interests are
scientific theories of conscious-
ness, causality and brain inspired
artificial intelligence.

2255Medical & Biological Engineering & Computing (2022) 60:2245–2255

	Classification of SARS-CoV-2 viral genome sequences using Neurochaos Learning
	Abstract
	1 Introduction
	2 Methodology
	2.1 GLS neuron
	2.1.1 Tent map

	2.2 A neurochaos architecture for learning (NL)
	2.3 Universal approximation theorem for NL

	3 Dataset details
	3.1 Multiclass classification
	3.2 SARS-CoV-2 vs. SARS-CoV-1

	4 Experiments and results
	4.1 Hyperparameter tuning
	4.2 Performance metrics
	4.3 Multiclass classification
	4.4 SARS-CoV-2 vs. SARS-CoV-1
	4.4.1 SARS-CoV-2 vs. SARS-CoV-1: low training sample regime

	5 Limitations of NL
	6 Conclusions
	References

